2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
26 #include <linux/highmem.h>
27 #include <linux/poll.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/dmaengine.h>
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
36 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 2
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43 sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * HW: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use HW,
65 * B. Checksumming on output.
67 * NONE: skb is checksummed by protocol or csum is not required.
69 * HW: device is required to csum packet as seen by hard_start_xmit
70 * from skb->h.raw to the end and to record the checksum
71 * at skb->h.raw+skb->csum.
73 * Device must show its capabilities in dev->features, set
74 * at device setup time.
75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 * TCP/UDP over IPv4. Sigh. Vendors like this
80 * way by an unknown reason. Though, see comment above
81 * about CHECKSUM_UNNECESSARY. 8)
83 * Any questions? No questions, good. --ANK
88 #ifdef CONFIG_NETFILTER
91 void (*destroy
)(struct nf_conntrack
*);
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info
{
97 struct net_device
*physindev
;
98 struct net_device
*physoutdev
;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 struct net_device
*netoutdev
;
103 unsigned long data
[32 / sizeof(unsigned long)];
109 struct sk_buff_head
{
110 /* These two members must be first. */
111 struct sk_buff
*next
;
112 struct sk_buff
*prev
;
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123 typedef struct skb_frag_struct skb_frag_t
;
125 struct skb_frag_struct
{
131 /* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
134 struct skb_shared_info
{
136 unsigned short nr_frags
;
137 unsigned short gso_size
;
138 /* Warning: this field is not always filled in (UFO)! */
139 unsigned short gso_segs
;
140 unsigned short gso_type
;
141 unsigned int ip6_frag_id
;
142 struct sk_buff
*frag_list
;
143 skb_frag_t frags
[MAX_SKB_FRAGS
];
146 /* We divide dataref into two halves. The higher 16 bits hold references
147 * to the payload part of skb->data. The lower 16 bits hold references to
148 * the entire skb->data. It is up to the users of the skb to agree on
149 * where the payload starts.
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
157 #define SKB_DATAREF_SHIFT 16
158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
167 SKB_FCLONE_UNAVAILABLE
,
173 SKB_GSO_TCPV4
= 1 << 0,
174 SKB_GSO_UDPV4
= 1 << 1,
178 * struct sk_buff - socket buffer
179 * @next: Next buffer in list
180 * @prev: Previous buffer in list
181 * @sk: Socket we are owned by
182 * @tstamp: Time we arrived
183 * @dev: Device we arrived on/are leaving by
184 * @input_dev: Device we arrived on
185 * @h: Transport layer header
186 * @nh: Network layer header
187 * @mac: Link layer header
188 * @dst: destination entry
189 * @sp: the security path, used for xfrm
190 * @cb: Control buffer. Free for use by every layer. Put private vars here
191 * @len: Length of actual data
192 * @data_len: Data length
193 * @mac_len: Length of link layer header
195 * @local_df: allow local fragmentation
196 * @cloned: Head may be cloned (check refcnt to be sure)
197 * @nohdr: Payload reference only, must not modify header
198 * @pkt_type: Packet class
199 * @fclone: skbuff clone status
200 * @ip_summed: Driver fed us an IP checksum
201 * @priority: Packet queueing priority
202 * @users: User count - see {datagram,tcp}.c
203 * @protocol: Packet protocol from driver
204 * @truesize: Buffer size
205 * @head: Head of buffer
206 * @data: Data head pointer
207 * @tail: Tail pointer
209 * @destructor: Destruct function
210 * @nfmark: Can be used for communication between hooks
211 * @nfct: Associated connection, if any
212 * @ipvs_property: skbuff is owned by ipvs
213 * @nfctinfo: Relationship of this skb to the connection
214 * @nfct_reasm: netfilter conntrack re-assembly pointer
215 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
216 * @tc_index: Traffic control index
217 * @tc_verd: traffic control verdict
218 * @dma_cookie: a cookie to one of several possible DMA operations
219 * done by skb DMA functions
220 * @secmark: security marking
224 /* These two members must be first. */
225 struct sk_buff
*next
;
226 struct sk_buff
*prev
;
229 struct skb_timeval tstamp
;
230 struct net_device
*dev
;
231 struct net_device
*input_dev
;
236 struct icmphdr
*icmph
;
237 struct igmphdr
*igmph
;
239 struct ipv6hdr
*ipv6h
;
245 struct ipv6hdr
*ipv6h
;
254 struct dst_entry
*dst
;
258 * This is the control buffer. It is free to use for every
259 * layer. Please put your private variables there. If you
260 * want to keep them across layers you have to do a skb_clone()
261 * first. This is owned by whoever has the skb queued ATM.
280 void (*destructor
)(struct sk_buff
*skb
);
281 #ifdef CONFIG_NETFILTER
282 struct nf_conntrack
*nfct
;
283 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
284 struct sk_buff
*nfct_reasm
;
286 #ifdef CONFIG_BRIDGE_NETFILTER
287 struct nf_bridge_info
*nf_bridge
;
290 #endif /* CONFIG_NETFILTER */
291 #ifdef CONFIG_NET_SCHED
292 __u16 tc_index
; /* traffic control index */
293 #ifdef CONFIG_NET_CLS_ACT
294 __u16 tc_verd
; /* traffic control verdict */
297 #ifdef CONFIG_NET_DMA
298 dma_cookie_t dma_cookie
;
300 #ifdef CONFIG_NETWORK_SECMARK
305 /* These elements must be at the end, see alloc_skb() for details. */
306 unsigned int truesize
;
316 * Handling routines are only of interest to the kernel
318 #include <linux/slab.h>
320 #include <asm/system.h>
322 extern void kfree_skb(struct sk_buff
*skb
);
323 extern void __kfree_skb(struct sk_buff
*skb
);
324 extern struct sk_buff
*__alloc_skb(unsigned int size
,
325 gfp_t priority
, int fclone
);
326 static inline struct sk_buff
*alloc_skb(unsigned int size
,
329 return __alloc_skb(size
, priority
, 0);
332 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
335 return __alloc_skb(size
, priority
, 1);
338 extern struct sk_buff
*alloc_skb_from_cache(kmem_cache_t
*cp
,
341 extern void kfree_skbmem(struct sk_buff
*skb
);
342 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
344 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
346 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
348 extern int pskb_expand_head(struct sk_buff
*skb
,
349 int nhead
, int ntail
,
351 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
352 unsigned int headroom
);
353 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
354 int newheadroom
, int newtailroom
,
356 extern int skb_pad(struct sk_buff
*skb
, int pad
);
357 #define dev_kfree_skb(a) kfree_skb(a)
358 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
360 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
362 extern void skb_truesize_bug(struct sk_buff
*skb
);
364 static inline void skb_truesize_check(struct sk_buff
*skb
)
366 if (unlikely((int)skb
->truesize
< sizeof(struct sk_buff
) + skb
->len
))
367 skb_truesize_bug(skb
);
370 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
371 int getfrag(void *from
, char *to
, int offset
,
372 int len
,int odd
, struct sk_buff
*skb
),
373 void *from
, int length
);
380 __u32 stepped_offset
;
381 struct sk_buff
*root_skb
;
382 struct sk_buff
*cur_skb
;
386 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
387 unsigned int from
, unsigned int to
,
388 struct skb_seq_state
*st
);
389 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
390 struct skb_seq_state
*st
);
391 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
393 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
394 unsigned int to
, struct ts_config
*config
,
395 struct ts_state
*state
);
398 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
401 * skb_queue_empty - check if a queue is empty
404 * Returns true if the queue is empty, false otherwise.
406 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
408 return list
->next
== (struct sk_buff
*)list
;
412 * skb_get - reference buffer
413 * @skb: buffer to reference
415 * Makes another reference to a socket buffer and returns a pointer
418 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
420 atomic_inc(&skb
->users
);
425 * If users == 1, we are the only owner and are can avoid redundant
430 * skb_cloned - is the buffer a clone
431 * @skb: buffer to check
433 * Returns true if the buffer was generated with skb_clone() and is
434 * one of multiple shared copies of the buffer. Cloned buffers are
435 * shared data so must not be written to under normal circumstances.
437 static inline int skb_cloned(const struct sk_buff
*skb
)
439 return skb
->cloned
&&
440 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
444 * skb_header_cloned - is the header a clone
445 * @skb: buffer to check
447 * Returns true if modifying the header part of the buffer requires
448 * the data to be copied.
450 static inline int skb_header_cloned(const struct sk_buff
*skb
)
457 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
458 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
463 * skb_header_release - release reference to header
464 * @skb: buffer to operate on
466 * Drop a reference to the header part of the buffer. This is done
467 * by acquiring a payload reference. You must not read from the header
468 * part of skb->data after this.
470 static inline void skb_header_release(struct sk_buff
*skb
)
474 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
478 * skb_shared - is the buffer shared
479 * @skb: buffer to check
481 * Returns true if more than one person has a reference to this
484 static inline int skb_shared(const struct sk_buff
*skb
)
486 return atomic_read(&skb
->users
) != 1;
490 * skb_share_check - check if buffer is shared and if so clone it
491 * @skb: buffer to check
492 * @pri: priority for memory allocation
494 * If the buffer is shared the buffer is cloned and the old copy
495 * drops a reference. A new clone with a single reference is returned.
496 * If the buffer is not shared the original buffer is returned. When
497 * being called from interrupt status or with spinlocks held pri must
500 * NULL is returned on a memory allocation failure.
502 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
505 might_sleep_if(pri
& __GFP_WAIT
);
506 if (skb_shared(skb
)) {
507 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
515 * Copy shared buffers into a new sk_buff. We effectively do COW on
516 * packets to handle cases where we have a local reader and forward
517 * and a couple of other messy ones. The normal one is tcpdumping
518 * a packet thats being forwarded.
522 * skb_unshare - make a copy of a shared buffer
523 * @skb: buffer to check
524 * @pri: priority for memory allocation
526 * If the socket buffer is a clone then this function creates a new
527 * copy of the data, drops a reference count on the old copy and returns
528 * the new copy with the reference count at 1. If the buffer is not a clone
529 * the original buffer is returned. When called with a spinlock held or
530 * from interrupt state @pri must be %GFP_ATOMIC
532 * %NULL is returned on a memory allocation failure.
534 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
537 might_sleep_if(pri
& __GFP_WAIT
);
538 if (skb_cloned(skb
)) {
539 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
540 kfree_skb(skb
); /* Free our shared copy */
548 * @list_: list to peek at
550 * Peek an &sk_buff. Unlike most other operations you _MUST_
551 * be careful with this one. A peek leaves the buffer on the
552 * list and someone else may run off with it. You must hold
553 * the appropriate locks or have a private queue to do this.
555 * Returns %NULL for an empty list or a pointer to the head element.
556 * The reference count is not incremented and the reference is therefore
557 * volatile. Use with caution.
559 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
561 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
562 if (list
== (struct sk_buff
*)list_
)
569 * @list_: list to peek at
571 * Peek an &sk_buff. Unlike most other operations you _MUST_
572 * be careful with this one. A peek leaves the buffer on the
573 * list and someone else may run off with it. You must hold
574 * the appropriate locks or have a private queue to do this.
576 * Returns %NULL for an empty list or a pointer to the tail element.
577 * The reference count is not incremented and the reference is therefore
578 * volatile. Use with caution.
580 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
582 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
583 if (list
== (struct sk_buff
*)list_
)
589 * skb_queue_len - get queue length
590 * @list_: list to measure
592 * Return the length of an &sk_buff queue.
594 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
599 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
601 spin_lock_init(&list
->lock
);
602 list
->prev
= list
->next
= (struct sk_buff
*)list
;
607 * Insert an sk_buff at the start of a list.
609 * The "__skb_xxxx()" functions are the non-atomic ones that
610 * can only be called with interrupts disabled.
614 * __skb_queue_after - queue a buffer at the list head
616 * @prev: place after this buffer
617 * @newsk: buffer to queue
619 * Queue a buffer int the middle of a list. This function takes no locks
620 * and you must therefore hold required locks before calling it.
622 * A buffer cannot be placed on two lists at the same time.
624 static inline void __skb_queue_after(struct sk_buff_head
*list
,
625 struct sk_buff
*prev
,
626 struct sk_buff
*newsk
)
628 struct sk_buff
*next
;
634 next
->prev
= prev
->next
= newsk
;
638 * __skb_queue_head - queue a buffer at the list head
640 * @newsk: buffer to queue
642 * Queue a buffer at the start of a list. This function takes no locks
643 * and you must therefore hold required locks before calling it.
645 * A buffer cannot be placed on two lists at the same time.
647 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
648 static inline void __skb_queue_head(struct sk_buff_head
*list
,
649 struct sk_buff
*newsk
)
651 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
655 * __skb_queue_tail - queue a buffer at the list tail
657 * @newsk: buffer to queue
659 * Queue a buffer at the end of a list. This function takes no locks
660 * and you must therefore hold required locks before calling it.
662 * A buffer cannot be placed on two lists at the same time.
664 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
665 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
666 struct sk_buff
*newsk
)
668 struct sk_buff
*prev
, *next
;
671 next
= (struct sk_buff
*)list
;
675 next
->prev
= prev
->next
= newsk
;
680 * __skb_dequeue - remove from the head of the queue
681 * @list: list to dequeue from
683 * Remove the head of the list. This function does not take any locks
684 * so must be used with appropriate locks held only. The head item is
685 * returned or %NULL if the list is empty.
687 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
688 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
690 struct sk_buff
*next
, *prev
, *result
;
692 prev
= (struct sk_buff
*) list
;
701 result
->next
= result
->prev
= NULL
;
708 * Insert a packet on a list.
710 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
711 static inline void __skb_insert(struct sk_buff
*newsk
,
712 struct sk_buff
*prev
, struct sk_buff
*next
,
713 struct sk_buff_head
*list
)
717 next
->prev
= prev
->next
= newsk
;
722 * Place a packet after a given packet in a list.
724 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
725 static inline void __skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
727 __skb_insert(newsk
, old
, old
->next
, list
);
731 * remove sk_buff from list. _Must_ be called atomically, and with
734 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
735 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
737 struct sk_buff
*next
, *prev
;
742 skb
->next
= skb
->prev
= NULL
;
748 /* XXX: more streamlined implementation */
751 * __skb_dequeue_tail - remove from the tail of the queue
752 * @list: list to dequeue from
754 * Remove the tail of the list. This function does not take any locks
755 * so must be used with appropriate locks held only. The tail item is
756 * returned or %NULL if the list is empty.
758 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
759 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
761 struct sk_buff
*skb
= skb_peek_tail(list
);
763 __skb_unlink(skb
, list
);
768 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
770 return skb
->data_len
;
773 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
775 return skb
->len
- skb
->data_len
;
778 static inline int skb_pagelen(const struct sk_buff
*skb
)
782 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
783 len
+= skb_shinfo(skb
)->frags
[i
].size
;
784 return len
+ skb_headlen(skb
);
787 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
788 struct page
*page
, int off
, int size
)
790 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
793 frag
->page_offset
= off
;
795 skb_shinfo(skb
)->nr_frags
= i
+ 1;
798 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
799 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
800 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
803 * Add data to an sk_buff
805 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
807 unsigned char *tmp
= skb
->tail
;
808 SKB_LINEAR_ASSERT(skb
);
815 * skb_put - add data to a buffer
816 * @skb: buffer to use
817 * @len: amount of data to add
819 * This function extends the used data area of the buffer. If this would
820 * exceed the total buffer size the kernel will panic. A pointer to the
821 * first byte of the extra data is returned.
823 static inline unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
825 unsigned char *tmp
= skb
->tail
;
826 SKB_LINEAR_ASSERT(skb
);
829 if (unlikely(skb
->tail
>skb
->end
))
830 skb_over_panic(skb
, len
, current_text_addr());
834 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
842 * skb_push - add data to the start of a buffer
843 * @skb: buffer to use
844 * @len: amount of data to add
846 * This function extends the used data area of the buffer at the buffer
847 * start. If this would exceed the total buffer headroom the kernel will
848 * panic. A pointer to the first byte of the extra data is returned.
850 static inline unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
854 if (unlikely(skb
->data
<skb
->head
))
855 skb_under_panic(skb
, len
, current_text_addr());
859 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
862 BUG_ON(skb
->len
< skb
->data_len
);
863 return skb
->data
+= len
;
867 * skb_pull - remove data from the start of a buffer
868 * @skb: buffer to use
869 * @len: amount of data to remove
871 * This function removes data from the start of a buffer, returning
872 * the memory to the headroom. A pointer to the next data in the buffer
873 * is returned. Once the data has been pulled future pushes will overwrite
876 static inline unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
878 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
881 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
883 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
885 if (len
> skb_headlen(skb
) &&
886 !__pskb_pull_tail(skb
, len
-skb_headlen(skb
)))
889 return skb
->data
+= len
;
892 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
894 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
897 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
899 if (likely(len
<= skb_headlen(skb
)))
901 if (unlikely(len
> skb
->len
))
903 return __pskb_pull_tail(skb
, len
-skb_headlen(skb
)) != NULL
;
907 * skb_headroom - bytes at buffer head
908 * @skb: buffer to check
910 * Return the number of bytes of free space at the head of an &sk_buff.
912 static inline int skb_headroom(const struct sk_buff
*skb
)
914 return skb
->data
- skb
->head
;
918 * skb_tailroom - bytes at buffer end
919 * @skb: buffer to check
921 * Return the number of bytes of free space at the tail of an sk_buff
923 static inline int skb_tailroom(const struct sk_buff
*skb
)
925 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
929 * skb_reserve - adjust headroom
930 * @skb: buffer to alter
931 * @len: bytes to move
933 * Increase the headroom of an empty &sk_buff by reducing the tail
934 * room. This is only allowed for an empty buffer.
936 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
943 * CPUs often take a performance hit when accessing unaligned memory
944 * locations. The actual performance hit varies, it can be small if the
945 * hardware handles it or large if we have to take an exception and fix it
948 * Since an ethernet header is 14 bytes network drivers often end up with
949 * the IP header at an unaligned offset. The IP header can be aligned by
950 * shifting the start of the packet by 2 bytes. Drivers should do this
953 * skb_reserve(NET_IP_ALIGN);
955 * The downside to this alignment of the IP header is that the DMA is now
956 * unaligned. On some architectures the cost of an unaligned DMA is high
957 * and this cost outweighs the gains made by aligning the IP header.
959 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
963 #define NET_IP_ALIGN 2
967 * The networking layer reserves some headroom in skb data (via
968 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
969 * the header has to grow. In the default case, if the header has to grow
970 * 16 bytes or less we avoid the reallocation.
972 * Unfortunately this headroom changes the DMA alignment of the resulting
973 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
974 * on some architectures. An architecture can override this value,
975 * perhaps setting it to a cacheline in size (since that will maintain
976 * cacheline alignment of the DMA). It must be a power of 2.
978 * Various parts of the networking layer expect at least 16 bytes of
979 * headroom, you should not reduce this.
982 #define NET_SKB_PAD 16
985 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
987 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
989 if (unlikely(skb
->data_len
)) {
994 skb
->tail
= skb
->data
+ len
;
998 * skb_trim - remove end from a buffer
999 * @skb: buffer to alter
1002 * Cut the length of a buffer down by removing data from the tail. If
1003 * the buffer is already under the length specified it is not modified.
1004 * The skb must be linear.
1006 static inline void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1009 __skb_trim(skb
, len
);
1013 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1016 return ___pskb_trim(skb
, len
);
1017 __skb_trim(skb
, len
);
1021 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1023 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1027 * skb_orphan - orphan a buffer
1028 * @skb: buffer to orphan
1030 * If a buffer currently has an owner then we call the owner's
1031 * destructor function and make the @skb unowned. The buffer continues
1032 * to exist but is no longer charged to its former owner.
1034 static inline void skb_orphan(struct sk_buff
*skb
)
1036 if (skb
->destructor
)
1037 skb
->destructor(skb
);
1038 skb
->destructor
= NULL
;
1043 * __skb_queue_purge - empty a list
1044 * @list: list to empty
1046 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1047 * the list and one reference dropped. This function does not take the
1048 * list lock and the caller must hold the relevant locks to use it.
1050 extern void skb_queue_purge(struct sk_buff_head
*list
);
1051 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1053 struct sk_buff
*skb
;
1054 while ((skb
= __skb_dequeue(list
)) != NULL
)
1058 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1060 * __dev_alloc_skb - allocate an skbuff for sending
1061 * @length: length to allocate
1062 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1064 * Allocate a new &sk_buff and assign it a usage count of one. The
1065 * buffer has unspecified headroom built in. Users should allocate
1066 * the headroom they think they need without accounting for the
1067 * built in space. The built in space is used for optimisations.
1069 * %NULL is returned in there is no free memory.
1071 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1074 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1076 skb_reserve(skb
, NET_SKB_PAD
);
1080 extern struct sk_buff
*__dev_alloc_skb(unsigned int length
, int gfp_mask
);
1084 * dev_alloc_skb - allocate an skbuff for sending
1085 * @length: length to allocate
1087 * Allocate a new &sk_buff and assign it a usage count of one. The
1088 * buffer has unspecified headroom built in. Users should allocate
1089 * the headroom they think they need without accounting for the
1090 * built in space. The built in space is used for optimisations.
1092 * %NULL is returned in there is no free memory. Although this function
1093 * allocates memory it can be called from an interrupt.
1095 static inline struct sk_buff
*dev_alloc_skb(unsigned int length
)
1097 return __dev_alloc_skb(length
, GFP_ATOMIC
);
1101 * skb_cow - copy header of skb when it is required
1102 * @skb: buffer to cow
1103 * @headroom: needed headroom
1105 * If the skb passed lacks sufficient headroom or its data part
1106 * is shared, data is reallocated. If reallocation fails, an error
1107 * is returned and original skb is not changed.
1109 * The result is skb with writable area skb->head...skb->tail
1110 * and at least @headroom of space at head.
1112 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1114 int delta
= (headroom
> NET_SKB_PAD
? headroom
: NET_SKB_PAD
) -
1120 if (delta
|| skb_cloned(skb
))
1121 return pskb_expand_head(skb
, (delta
+ (NET_SKB_PAD
-1)) &
1122 ~(NET_SKB_PAD
-1), 0, GFP_ATOMIC
);
1127 * skb_padto - pad an skbuff up to a minimal size
1128 * @skb: buffer to pad
1129 * @len: minimal length
1131 * Pads up a buffer to ensure the trailing bytes exist and are
1132 * blanked. If the buffer already contains sufficient data it
1133 * is untouched. Otherwise it is extended. Returns zero on
1134 * success. The skb is freed on error.
1137 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1139 unsigned int size
= skb
->len
;
1140 if (likely(size
>= len
))
1142 return skb_pad(skb
, len
-size
);
1145 static inline int skb_add_data(struct sk_buff
*skb
,
1146 char __user
*from
, int copy
)
1148 const int off
= skb
->len
;
1150 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1152 unsigned int csum
= csum_and_copy_from_user(from
,
1156 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1159 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1162 __skb_trim(skb
, off
);
1166 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1167 struct page
*page
, int off
)
1170 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1172 return page
== frag
->page
&&
1173 off
== frag
->page_offset
+ frag
->size
;
1178 static inline int __skb_linearize(struct sk_buff
*skb
)
1180 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1184 * skb_linearize - convert paged skb to linear one
1185 * @skb: buffer to linarize
1187 * If there is no free memory -ENOMEM is returned, otherwise zero
1188 * is returned and the old skb data released.
1190 static inline int skb_linearize(struct sk_buff
*skb
)
1192 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1196 * skb_linearize_cow - make sure skb is linear and writable
1197 * @skb: buffer to process
1199 * If there is no free memory -ENOMEM is returned, otherwise zero
1200 * is returned and the old skb data released.
1202 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1204 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1205 __skb_linearize(skb
) : 0;
1209 * skb_postpull_rcsum - update checksum for received skb after pull
1210 * @skb: buffer to update
1211 * @start: start of data before pull
1212 * @len: length of data pulled
1214 * After doing a pull on a received packet, you need to call this to
1215 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1216 * so that it can be recomputed from scratch.
1219 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1220 const void *start
, unsigned int len
)
1222 if (skb
->ip_summed
== CHECKSUM_HW
)
1223 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1226 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1229 * pskb_trim_rcsum - trim received skb and update checksum
1230 * @skb: buffer to trim
1233 * This is exactly the same as pskb_trim except that it ensures the
1234 * checksum of received packets are still valid after the operation.
1237 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1239 if (likely(len
>= skb
->len
))
1241 if (skb
->ip_summed
== CHECKSUM_HW
)
1242 skb
->ip_summed
= CHECKSUM_NONE
;
1243 return __pskb_trim(skb
, len
);
1246 static inline void *kmap_skb_frag(const skb_frag_t
*frag
)
1248 #ifdef CONFIG_HIGHMEM
1253 return kmap_atomic(frag
->page
, KM_SKB_DATA_SOFTIRQ
);
1256 static inline void kunmap_skb_frag(void *vaddr
)
1258 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
1259 #ifdef CONFIG_HIGHMEM
1264 #define skb_queue_walk(queue, skb) \
1265 for (skb = (queue)->next; \
1266 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1269 #define skb_queue_reverse_walk(queue, skb) \
1270 for (skb = (queue)->prev; \
1271 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1275 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1276 int noblock
, int *err
);
1277 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1278 struct poll_table_struct
*wait
);
1279 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1280 int offset
, struct iovec
*to
,
1282 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1285 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1286 extern void skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1287 unsigned int flags
);
1288 extern unsigned int skb_checksum(const struct sk_buff
*skb
, int offset
,
1289 int len
, unsigned int csum
);
1290 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1292 extern int skb_store_bits(const struct sk_buff
*skb
, int offset
,
1293 void *from
, int len
);
1294 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1295 int offset
, u8
*to
, int len
,
1297 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1298 extern void skb_split(struct sk_buff
*skb
,
1299 struct sk_buff
*skb1
, const u32 len
);
1301 extern void skb_release_data(struct sk_buff
*skb
);
1302 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int sg
);
1304 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1305 int len
, void *buffer
)
1307 int hlen
= skb_headlen(skb
);
1309 if (hlen
- offset
>= len
)
1310 return skb
->data
+ offset
;
1312 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1318 extern void skb_init(void);
1319 extern void skb_add_mtu(int mtu
);
1322 * skb_get_timestamp - get timestamp from a skb
1323 * @skb: skb to get stamp from
1324 * @stamp: pointer to struct timeval to store stamp in
1326 * Timestamps are stored in the skb as offsets to a base timestamp.
1327 * This function converts the offset back to a struct timeval and stores
1330 static inline void skb_get_timestamp(const struct sk_buff
*skb
, struct timeval
*stamp
)
1332 stamp
->tv_sec
= skb
->tstamp
.off_sec
;
1333 stamp
->tv_usec
= skb
->tstamp
.off_usec
;
1337 * skb_set_timestamp - set timestamp of a skb
1338 * @skb: skb to set stamp of
1339 * @stamp: pointer to struct timeval to get stamp from
1341 * Timestamps are stored in the skb as offsets to a base timestamp.
1342 * This function converts a struct timeval to an offset and stores
1345 static inline void skb_set_timestamp(struct sk_buff
*skb
, const struct timeval
*stamp
)
1347 skb
->tstamp
.off_sec
= stamp
->tv_sec
;
1348 skb
->tstamp
.off_usec
= stamp
->tv_usec
;
1351 extern void __net_timestamp(struct sk_buff
*skb
);
1353 extern unsigned int __skb_checksum_complete(struct sk_buff
*skb
);
1356 * skb_checksum_complete - Calculate checksum of an entire packet
1357 * @skb: packet to process
1359 * This function calculates the checksum over the entire packet plus
1360 * the value of skb->csum. The latter can be used to supply the
1361 * checksum of a pseudo header as used by TCP/UDP. It returns the
1364 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1365 * this function can be used to verify that checksum on received
1366 * packets. In that case the function should return zero if the
1367 * checksum is correct. In particular, this function will return zero
1368 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1369 * hardware has already verified the correctness of the checksum.
1371 static inline unsigned int skb_checksum_complete(struct sk_buff
*skb
)
1373 return skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
1374 __skb_checksum_complete(skb
);
1377 #ifdef CONFIG_NETFILTER
1378 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1380 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1381 nfct
->destroy(nfct
);
1383 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1386 atomic_inc(&nfct
->use
);
1388 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1389 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1392 atomic_inc(&skb
->users
);
1394 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1400 #ifdef CONFIG_BRIDGE_NETFILTER
1401 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1403 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1406 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1409 atomic_inc(&nf_bridge
->use
);
1411 #endif /* CONFIG_BRIDGE_NETFILTER */
1412 static inline void nf_reset(struct sk_buff
*skb
)
1414 nf_conntrack_put(skb
->nfct
);
1416 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1417 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1418 skb
->nfct_reasm
= NULL
;
1420 #ifdef CONFIG_BRIDGE_NETFILTER
1421 nf_bridge_put(skb
->nf_bridge
);
1422 skb
->nf_bridge
= NULL
;
1426 #else /* CONFIG_NETFILTER */
1427 static inline void nf_reset(struct sk_buff
*skb
) {}
1428 #endif /* CONFIG_NETFILTER */
1430 #ifdef CONFIG_NETWORK_SECMARK
1431 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1433 to
->secmark
= from
->secmark
;
1436 static inline void skb_init_secmark(struct sk_buff
*skb
)
1441 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1444 static inline void skb_init_secmark(struct sk_buff
*skb
)
1448 #endif /* __KERNEL__ */
1449 #endif /* _LINUX_SKBUFF_H */