[SPARC64]: Virtualize IRQ numbers.
[linux-2.6/verdex.git] / arch / sparc64 / kernel / irq.c
blob49ad9cd0f8c8b8dab59dc0a22a347b611828fe5a
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2 * irq.c: UltraSparc IRQ handling/init/registry.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/errno.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/random.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/bootmem.h>
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/sbus.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
45 #ifdef CONFIG_SMP
46 static void distribute_irqs(void);
47 #endif
49 /* UPA nodes send interrupt packet to UltraSparc with first data reg
50 * value low 5 (7 on Starfire) bits holding the IRQ identifier being
51 * delivered. We must translate this into a non-vector IRQ so we can
52 * set the softint on this cpu.
54 * To make processing these packets efficient and race free we use
55 * an array of irq buckets below. The interrupt vector handler in
56 * entry.S feeds incoming packets into per-cpu pil-indexed lists.
57 * The IVEC handler does not need to act atomically, the PIL dispatch
58 * code uses CAS to get an atomic snapshot of the list and clear it
59 * at the same time.
62 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
64 /* This has to be in the main kernel image, it cannot be
65 * turned into per-cpu data. The reason is that the main
66 * kernel image is locked into the TLB and this structure
67 * is accessed from the vectored interrupt trap handler. If
68 * access to this structure takes a TLB miss it could cause
69 * the 5-level sparc v9 trap stack to overflow.
71 #define irq_work(__cpu) &(trap_block[(__cpu)].irq_worklist)
73 static struct irqaction timer_irq_action = {
74 .name = "timer",
76 static struct irqaction *irq_action[NR_IRQS] = { &timer_irq_action, };
78 /* This only synchronizes entities which modify IRQ handler
79 * state and some selected user-level spots that want to
80 * read things in the table. IRQ handler processing orders
81 * its' accesses such that no locking is needed.
83 static DEFINE_SPINLOCK(irq_action_lock);
85 static unsigned int virt_to_real_irq_table[NR_IRQS];
86 static unsigned char virt_irq_cur = 1;
88 static unsigned char virt_irq_alloc(unsigned int real_irq)
90 unsigned char ent;
92 BUILD_BUG_ON(NR_IRQS >= 256);
94 ent = virt_irq_cur;
95 if (ent >= NR_IRQS) {
96 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
97 return 0;
100 virt_irq_cur = ent + 1;
101 virt_to_real_irq_table[ent] = real_irq;
103 return ent;
106 #if 0 /* Currently unused. */
107 static unsigned char real_to_virt_irq(unsigned int real_irq)
109 struct ino_bucket *bucket = __bucket(real_irq);
111 return bucket->virt_irq;
113 #endif
115 static unsigned int virt_to_real_irq(unsigned char virt_irq)
117 return virt_to_real_irq_table[virt_irq];
120 void irq_install_pre_handler(int virt_irq,
121 void (*func)(struct ino_bucket *, void *, void *),
122 void *arg1, void *arg2)
124 unsigned int real_irq = virt_to_real_irq(virt_irq);
125 struct ino_bucket *bucket;
126 struct irq_desc *d;
128 if (unlikely(!real_irq))
129 return;
131 bucket = __bucket(real_irq);
132 d = bucket->irq_info;
133 d->pre_handler = func;
134 d->pre_handler_arg1 = arg1;
135 d->pre_handler_arg2 = arg2;
138 static void register_irq_proc (unsigned int irq);
141 * Upper 2b of irqaction->flags holds the ino.
142 * irqaction->mask holds the smp affinity information.
144 #define put_ino_in_irqaction(action, irq) \
145 action->flags &= 0xffffffffffffUL; \
146 action->flags |= __irq_ino(irq) << 48;
148 #define get_ino_in_irqaction(action) (action->flags >> 48)
150 #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
151 #define get_smpaff_in_irqaction(action) ((action)->mask)
153 int show_interrupts(struct seq_file *p, void *v)
155 unsigned long flags;
156 int i = *(loff_t *) v;
157 struct irqaction *action;
158 #ifdef CONFIG_SMP
159 int j;
160 #endif
162 spin_lock_irqsave(&irq_action_lock, flags);
163 if (i <= NR_IRQS) {
164 if (!(action = *(i + irq_action)))
165 goto out_unlock;
166 seq_printf(p, "%3d: ", i);
167 #ifndef CONFIG_SMP
168 seq_printf(p, "%10u ", kstat_irqs(i));
169 #else
170 for_each_online_cpu(j) {
171 seq_printf(p, "%10u ",
172 kstat_cpu(j).irqs[i]);
174 #endif
175 seq_printf(p, " %s", action->name);
176 for (action = action->next; action; action = action->next)
177 seq_printf(p, ", %s", action->name);
178 seq_putc(p, '\n');
180 out_unlock:
181 spin_unlock_irqrestore(&irq_action_lock, flags);
183 return 0;
186 extern unsigned long real_hard_smp_processor_id(void);
188 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
190 unsigned int tid;
192 if (this_is_starfire) {
193 tid = starfire_translate(imap, cpuid);
194 tid <<= IMAP_TID_SHIFT;
195 tid &= IMAP_TID_UPA;
196 } else {
197 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
198 unsigned long ver;
200 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
201 if ((ver >> 32UL) == __JALAPENO_ID ||
202 (ver >> 32UL) == __SERRANO_ID) {
203 tid = cpuid << IMAP_TID_SHIFT;
204 tid &= IMAP_TID_JBUS;
205 } else {
206 unsigned int a = cpuid & 0x1f;
207 unsigned int n = (cpuid >> 5) & 0x1f;
209 tid = ((a << IMAP_AID_SHIFT) |
210 (n << IMAP_NID_SHIFT));
211 tid &= (IMAP_AID_SAFARI |
212 IMAP_NID_SAFARI);;
214 } else {
215 tid = cpuid << IMAP_TID_SHIFT;
216 tid &= IMAP_TID_UPA;
220 return tid;
223 void enable_irq(unsigned int virt_irq)
225 unsigned int real_irq = virt_to_real_irq(virt_irq);
226 struct ino_bucket *bucket;
227 unsigned long imap, cpuid;
229 if (unlikely(!real_irq))
230 return;
232 bucket = __bucket(real_irq);
233 imap = bucket->imap;
234 if (unlikely(imap == 0UL))
235 return;
237 preempt_disable();
239 /* This gets the physical processor ID, even on uniprocessor,
240 * so we can always program the interrupt target correctly.
242 cpuid = real_hard_smp_processor_id();
244 if (tlb_type == hypervisor) {
245 unsigned int ino = __irq_ino(real_irq);
246 int err;
248 err = sun4v_intr_settarget(ino, cpuid);
249 if (err != HV_EOK)
250 printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
251 ino, cpuid, err);
252 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
253 if (err != HV_EOK)
254 printk("sun4v_intr_setenabled(%x): err(%d)\n",
255 ino, err);
256 } else {
257 unsigned int tid = sun4u_compute_tid(imap, cpuid);
259 /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
260 * of this SYSIO's preconfigured IGN in the SYSIO Control
261 * Register, the hardware just mirrors that value here.
262 * However for Graphics and UPA Slave devices the full
263 * IMAP_INR field can be set by the programmer here.
265 * Things like FFB can now be handled via the new IRQ
266 * mechanism.
268 upa_writel(tid | IMAP_VALID, imap);
271 preempt_enable();
274 void disable_irq(unsigned int virt_irq)
276 unsigned int real_irq = virt_to_real_irq(virt_irq);
277 struct ino_bucket *bucket;
278 unsigned long imap;
280 if (unlikely(!real_irq))
281 return;
283 bucket = __bucket(real_irq);
284 imap = bucket->imap;
285 if (unlikely(imap == 0UL))
286 return;
288 if (tlb_type == hypervisor) {
289 unsigned int ino = __irq_ino(real_irq);
290 int err;
292 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
293 if (err != HV_EOK)
294 printk("sun4v_intr_setenabled(%x): "
295 "err(%d)\n", ino, err);
296 } else {
297 u32 tmp;
299 /* NOTE: We do not want to futz with the IRQ clear registers
300 * and move the state to IDLE, the SCSI code does call
301 * disable_irq() to assure atomicity in the queue cmd
302 * SCSI adapter driver code. Thus we'd lose interrupts.
304 tmp = upa_readl(imap);
305 tmp &= ~IMAP_VALID;
306 upa_writel(tmp, imap);
310 static void build_irq_error(const char *msg, unsigned int ino, int inofixup,
311 unsigned long iclr, unsigned long imap,
312 struct ino_bucket *bucket)
314 prom_printf("IRQ: INO %04x (%016lx:%016lx) --> "
315 "(%d:%016lx:%016lx), halting...\n",
316 ino, bucket->iclr, bucket->imap,
317 inofixup, iclr, imap);
318 prom_halt();
321 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap, unsigned char flags)
323 struct ino_bucket *bucket;
324 int ino;
326 BUG_ON(tlb_type == hypervisor);
328 /* RULE: Both must be specified. */
329 if (iclr == 0UL || imap == 0UL) {
330 prom_printf("Invalid build_irq %d %016lx %016lx\n",
331 inofixup, iclr, imap);
332 prom_halt();
335 ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
336 if (ino > NUM_IVECS) {
337 prom_printf("Invalid INO %04x (%d:%016lx:%016lx)\n",
338 ino, inofixup, iclr, imap);
339 prom_halt();
342 bucket = &ivector_table[ino];
343 if (bucket->flags & IBF_ACTIVE)
344 build_irq_error("IRQ: Trying to build active INO bucket.\n",
345 ino, inofixup, iclr, imap, bucket);
347 if (bucket->irq_info) {
348 if (bucket->imap != imap || bucket->iclr != iclr)
349 build_irq_error("IRQ: Trying to reinit INO bucket.\n",
350 ino, inofixup, iclr, imap, bucket);
352 goto out;
355 bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
356 if (!bucket->irq_info) {
357 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
358 prom_halt();
361 /* Ok, looks good, set it up. Don't touch the irq_chain or
362 * the pending flag.
364 bucket->imap = imap;
365 bucket->iclr = iclr;
366 if (!bucket->virt_irq)
367 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
368 bucket->flags = flags;
370 out:
371 return bucket->virt_irq;
374 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino, unsigned char flags)
376 struct ino_bucket *bucket;
377 unsigned long sysino;
379 sysino = sun4v_devino_to_sysino(devhandle, devino);
381 bucket = &ivector_table[sysino];
383 /* Catch accidental accesses to these things. IMAP/ICLR handling
384 * is done by hypervisor calls on sun4v platforms, not by direct
385 * register accesses.
387 * But we need to make them look unique for the disable_irq() logic
388 * in free_irq().
390 bucket->imap = ~0UL - sysino;
391 bucket->iclr = ~0UL - sysino;
392 if (!bucket->virt_irq)
393 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
394 bucket->flags = flags;
396 bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
397 if (!bucket->irq_info) {
398 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
399 prom_halt();
402 return bucket->virt_irq;
405 static void atomic_bucket_insert(struct ino_bucket *bucket)
407 unsigned long pstate;
408 unsigned int *ent;
410 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
411 __asm__ __volatile__("wrpr %0, %1, %%pstate"
412 : : "r" (pstate), "i" (PSTATE_IE));
413 ent = irq_work(smp_processor_id());
414 bucket->irq_chain = *ent;
415 *ent = __irq(bucket);
416 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
419 static int check_irq_sharing(int pil, unsigned long irqflags)
421 struct irqaction *action;
423 action = *(irq_action + pil);
424 if (action) {
425 if (!(action->flags & SA_SHIRQ) || !(irqflags & SA_SHIRQ))
426 return -EBUSY;
428 return 0;
431 static void append_irq_action(int pil, struct irqaction *action)
433 struct irqaction **pp = irq_action + pil;
435 while (*pp)
436 pp = &((*pp)->next);
437 *pp = action;
440 static struct irqaction *get_action_slot(struct ino_bucket *bucket)
442 struct irq_desc *desc = bucket->irq_info;
443 int max_irq, i;
445 max_irq = 1;
446 if (bucket->flags & IBF_PCI)
447 max_irq = MAX_IRQ_DESC_ACTION;
448 for (i = 0; i < max_irq; i++) {
449 struct irqaction *p = &desc->action[i];
450 u32 mask = (1 << i);
452 if (desc->action_active_mask & mask)
453 continue;
455 desc->action_active_mask |= mask;
456 return p;
458 return NULL;
461 int request_irq(unsigned int virt_irq,
462 irqreturn_t (*handler)(int, void *, struct pt_regs *),
463 unsigned long irqflags, const char *name, void *dev_id)
465 struct irqaction *action;
466 struct ino_bucket *bucket;
467 unsigned long flags;
468 unsigned int real_irq;
469 int pending = 0;
471 real_irq = virt_to_real_irq(virt_irq);
472 if (unlikely(!real_irq))
473 return -EINVAL;
475 if (unlikely(!handler))
476 return -EINVAL;
478 bucket = __bucket(real_irq);
479 if (unlikely(!bucket->irq_info))
480 return -ENODEV;
482 if (irqflags & SA_SAMPLE_RANDOM) {
484 * This function might sleep, we want to call it first,
485 * outside of the atomic block.
486 * Yes, this might clear the entropy pool if the wrong
487 * driver is attempted to be loaded, without actually
488 * installing a new handler, but is this really a problem,
489 * only the sysadmin is able to do this.
491 rand_initialize_irq(virt_irq);
494 spin_lock_irqsave(&irq_action_lock, flags);
496 if (check_irq_sharing(virt_irq, irqflags)) {
497 spin_unlock_irqrestore(&irq_action_lock, flags);
498 return -EBUSY;
501 action = get_action_slot(bucket);
502 if (!action) {
503 spin_unlock_irqrestore(&irq_action_lock, flags);
504 return -ENOMEM;
507 bucket->flags |= IBF_ACTIVE;
508 pending = bucket->pending;
509 if (pending)
510 bucket->pending = 0;
512 action->handler = handler;
513 action->flags = irqflags;
514 action->name = name;
515 action->next = NULL;
516 action->dev_id = dev_id;
517 put_ino_in_irqaction(action, __irq_ino(real_irq));
518 put_smpaff_in_irqaction(action, CPU_MASK_NONE);
520 append_irq_action(virt_irq, action);
522 enable_irq(virt_irq);
524 /* We ate the IVEC already, this makes sure it does not get lost. */
525 if (pending) {
526 atomic_bucket_insert(bucket);
527 set_softint(1 << PIL_DEVICE_IRQ);
530 spin_unlock_irqrestore(&irq_action_lock, flags);
532 register_irq_proc(virt_irq);
534 #ifdef CONFIG_SMP
535 distribute_irqs();
536 #endif
537 return 0;
540 EXPORT_SYMBOL(request_irq);
542 static struct irqaction *unlink_irq_action(unsigned int virt_irq, void *dev_id)
544 struct irqaction *action, **pp;
546 pp = irq_action + virt_irq;
547 action = *pp;
548 if (unlikely(!action))
549 return NULL;
551 if (unlikely(!action->handler)) {
552 printk("Freeing free IRQ %d\n", virt_irq);
553 return NULL;
556 while (action && action->dev_id != dev_id) {
557 pp = &action->next;
558 action = *pp;
561 if (likely(action))
562 *pp = action->next;
564 return action;
567 void free_irq(unsigned int virt_irq, void *dev_id)
569 struct irqaction *action;
570 struct ino_bucket *bucket;
571 struct irq_desc *desc;
572 unsigned long flags;
573 unsigned int real_irq;
574 int ent, i;
576 real_irq = virt_to_real_irq(virt_irq);
577 if (unlikely(!real_irq))
578 return;
580 spin_lock_irqsave(&irq_action_lock, flags);
582 action = unlink_irq_action(virt_irq, dev_id);
584 spin_unlock_irqrestore(&irq_action_lock, flags);
586 if (unlikely(!action))
587 return;
589 synchronize_irq(virt_irq);
591 spin_lock_irqsave(&irq_action_lock, flags);
593 bucket = __bucket(real_irq);
594 desc = bucket->irq_info;
596 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
597 struct irqaction *p = &desc->action[i];
599 if (p == action) {
600 desc->action_active_mask &= ~(1 << i);
601 break;
605 if (!desc->action_active_mask) {
606 unsigned long imap = bucket->imap;
608 /* This unique interrupt source is now inactive. */
609 bucket->flags &= ~IBF_ACTIVE;
611 /* See if any other buckets share this bucket's IMAP
612 * and are still active.
614 for (ent = 0; ent < NUM_IVECS; ent++) {
615 struct ino_bucket *bp = &ivector_table[ent];
616 if (bp != bucket &&
617 bp->imap == imap &&
618 (bp->flags & IBF_ACTIVE) != 0)
619 break;
622 /* Only disable when no other sub-irq levels of
623 * the same IMAP are active.
625 if (ent == NUM_IVECS)
626 disable_irq(virt_irq);
629 spin_unlock_irqrestore(&irq_action_lock, flags);
632 EXPORT_SYMBOL(free_irq);
634 #ifdef CONFIG_SMP
635 void synchronize_irq(unsigned int virt_irq)
637 unsigned int real_irq = virt_to_real_irq(virt_irq);
638 struct ino_bucket *bucket;
640 if (unlikely(!real_irq))
641 return;
643 bucket = __bucket(real_irq);
644 #if 0
645 /* The following is how I wish I could implement this.
646 * Unfortunately the ICLR registers are read-only, you can
647 * only write ICLR_foo values to them. To get the current
648 * IRQ status you would need to get at the IRQ diag registers
649 * in the PCI/SBUS controller and the layout of those vary
650 * from one controller to the next, sigh... -DaveM
652 unsigned long iclr = bucket->iclr;
654 while (1) {
655 u32 tmp = upa_readl(iclr);
657 if (tmp == ICLR_TRANSMIT ||
658 tmp == ICLR_PENDING) {
659 cpu_relax();
660 continue;
662 break;
664 #else
665 /* So we have to do this with a INPROGRESS bit just like x86. */
666 while (bucket->flags & IBF_INPROGRESS)
667 cpu_relax();
668 #endif
670 #endif /* CONFIG_SMP */
672 static void process_bucket(struct ino_bucket *bp, struct pt_regs *regs)
674 struct irq_desc *desc = bp->irq_info;
675 unsigned char flags = bp->flags;
676 u32 action_mask, i;
677 int random;
679 bp->flags |= IBF_INPROGRESS;
681 if (unlikely(!(flags & IBF_ACTIVE))) {
682 bp->pending = 1;
683 goto out;
686 if (desc->pre_handler)
687 desc->pre_handler(bp,
688 desc->pre_handler_arg1,
689 desc->pre_handler_arg2);
691 action_mask = desc->action_active_mask;
692 random = 0;
693 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
694 struct irqaction *p = &desc->action[i];
695 u32 mask = (1 << i);
697 if (!(action_mask & mask))
698 continue;
700 action_mask &= ~mask;
702 if (p->handler(bp->virt_irq, p->dev_id, regs) == IRQ_HANDLED)
703 random |= p->flags;
705 if (!action_mask)
706 break;
709 if (tlb_type == hypervisor) {
710 unsigned int ino = __irq_ino(bp);
711 int err;
713 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
714 if (err != HV_EOK)
715 printk("sun4v_intr_setstate(%x): "
716 "err(%d)\n", ino, err);
717 } else {
718 upa_writel(ICLR_IDLE, bp->iclr);
721 /* Test and add entropy */
722 if (random & SA_SAMPLE_RANDOM)
723 add_interrupt_randomness(bp->virt_irq);
724 out:
725 bp->flags &= ~IBF_INPROGRESS;
728 #ifndef CONFIG_SMP
729 extern irqreturn_t timer_interrupt(int, void *, struct pt_regs *);
731 void timer_irq(int irq, struct pt_regs *regs)
733 unsigned long clr_mask = 1 << irq;
734 unsigned long tick_mask = tick_ops->softint_mask;
736 if (get_softint() & tick_mask) {
737 irq = 0;
738 clr_mask = tick_mask;
740 clear_softint(clr_mask);
742 irq_enter();
743 kstat_this_cpu.irqs[0]++;
744 timer_interrupt(irq, NULL, regs);
745 irq_exit();
747 #endif
749 void handler_irq(int irq, struct pt_regs *regs)
751 struct ino_bucket *bp;
752 int cpu = smp_processor_id();
754 /* XXX at this point we should be able to assert that
755 * XXX irq is PIL_DEVICE_IRQ...
757 clear_softint(1 << irq);
759 irq_enter();
761 /* Sliiiick... */
762 bp = __bucket(xchg32(irq_work(cpu), 0));
763 while (bp) {
764 struct ino_bucket *nbp = __bucket(bp->irq_chain);
766 kstat_this_cpu.irqs[bp->virt_irq]++;
768 bp->irq_chain = 0;
769 process_bucket(bp, regs);
770 bp = nbp;
772 irq_exit();
775 #ifdef CONFIG_BLK_DEV_FD
776 extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);
778 /* XXX No easy way to include asm/floppy.h XXX */
779 extern unsigned char *pdma_vaddr;
780 extern unsigned long pdma_size;
781 extern volatile int doing_pdma;
782 extern unsigned long fdc_status;
784 irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
786 if (likely(doing_pdma)) {
787 void __iomem *stat = (void __iomem *) fdc_status;
788 unsigned char *vaddr = pdma_vaddr;
789 unsigned long size = pdma_size;
790 u8 val;
792 while (size) {
793 val = readb(stat);
794 if (unlikely(!(val & 0x80))) {
795 pdma_vaddr = vaddr;
796 pdma_size = size;
797 return IRQ_HANDLED;
799 if (unlikely(!(val & 0x20))) {
800 pdma_vaddr = vaddr;
801 pdma_size = size;
802 doing_pdma = 0;
803 goto main_interrupt;
805 if (val & 0x40) {
806 /* read */
807 *vaddr++ = readb(stat + 1);
808 } else {
809 unsigned char data = *vaddr++;
811 /* write */
812 writeb(data, stat + 1);
814 size--;
817 pdma_vaddr = vaddr;
818 pdma_size = size;
820 /* Send Terminal Count pulse to floppy controller. */
821 val = readb(auxio_register);
822 val |= AUXIO_AUX1_FTCNT;
823 writeb(val, auxio_register);
824 val &= ~AUXIO_AUX1_FTCNT;
825 writeb(val, auxio_register);
827 doing_pdma = 0;
830 main_interrupt:
831 return floppy_interrupt(irq, dev_cookie, regs);
833 EXPORT_SYMBOL(sparc_floppy_irq);
834 #endif
836 /* We really don't need these at all on the Sparc. We only have
837 * stubs here because they are exported to modules.
839 unsigned long probe_irq_on(void)
841 return 0;
844 EXPORT_SYMBOL(probe_irq_on);
846 int probe_irq_off(unsigned long mask)
848 return 0;
851 EXPORT_SYMBOL(probe_irq_off);
853 #ifdef CONFIG_SMP
854 static int retarget_one_irq(struct irqaction *p, int goal_cpu)
856 struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
858 while (!cpu_online(goal_cpu)) {
859 if (++goal_cpu >= NR_CPUS)
860 goal_cpu = 0;
863 if (tlb_type == hypervisor) {
864 unsigned int ino = __irq_ino(bucket);
866 sun4v_intr_settarget(ino, goal_cpu);
867 sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
868 } else {
869 unsigned long imap = bucket->imap;
870 unsigned int tid = sun4u_compute_tid(imap, goal_cpu);
872 upa_writel(tid | IMAP_VALID, imap);
875 do {
876 if (++goal_cpu >= NR_CPUS)
877 goal_cpu = 0;
878 } while (!cpu_online(goal_cpu));
880 return goal_cpu;
883 /* Called from request_irq. */
884 static void distribute_irqs(void)
886 unsigned long flags;
887 int cpu, level;
889 spin_lock_irqsave(&irq_action_lock, flags);
890 cpu = 0;
892 for (level = 1; level < NR_IRQS; level++) {
893 struct irqaction *p = irq_action[level];
895 while(p) {
896 cpu = retarget_one_irq(p, cpu);
897 p = p->next;
900 spin_unlock_irqrestore(&irq_action_lock, flags);
902 #endif
904 struct sun5_timer {
905 u64 count0;
906 u64 limit0;
907 u64 count1;
908 u64 limit1;
911 static struct sun5_timer *prom_timers;
912 static u64 prom_limit0, prom_limit1;
914 static void map_prom_timers(void)
916 unsigned int addr[3];
917 int tnode, err;
919 /* PROM timer node hangs out in the top level of device siblings... */
920 tnode = prom_finddevice("/counter-timer");
922 /* Assume if node is not present, PROM uses different tick mechanism
923 * which we should not care about.
925 if (tnode == 0 || tnode == -1) {
926 prom_timers = (struct sun5_timer *) 0;
927 return;
930 /* If PROM is really using this, it must be mapped by him. */
931 err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
932 if (err == -1) {
933 prom_printf("PROM does not have timer mapped, trying to continue.\n");
934 prom_timers = (struct sun5_timer *) 0;
935 return;
937 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
940 static void kill_prom_timer(void)
942 if (!prom_timers)
943 return;
945 /* Save them away for later. */
946 prom_limit0 = prom_timers->limit0;
947 prom_limit1 = prom_timers->limit1;
949 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
950 * We turn both off here just to be paranoid.
952 prom_timers->limit0 = 0;
953 prom_timers->limit1 = 0;
955 /* Wheee, eat the interrupt packet too... */
956 __asm__ __volatile__(
957 " mov 0x40, %%g2\n"
958 " ldxa [%%g0] %0, %%g1\n"
959 " ldxa [%%g2] %1, %%g1\n"
960 " stxa %%g0, [%%g0] %0\n"
961 " membar #Sync\n"
962 : /* no outputs */
963 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
964 : "g1", "g2");
967 void init_irqwork_curcpu(void)
969 int cpu = hard_smp_processor_id();
971 trap_block[cpu].irq_worklist = 0;
974 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
976 unsigned long num_entries = 128;
977 unsigned long status;
979 status = sun4v_cpu_qconf(type, paddr, num_entries);
980 if (status != HV_EOK) {
981 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
982 "err %lu\n", type, paddr, num_entries, status);
983 prom_halt();
987 static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
989 struct trap_per_cpu *tb = &trap_block[this_cpu];
991 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
992 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
993 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
994 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
997 static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
999 void *page;
1001 if (use_bootmem)
1002 page = alloc_bootmem_low_pages(PAGE_SIZE);
1003 else
1004 page = (void *) get_zeroed_page(GFP_ATOMIC);
1006 if (!page) {
1007 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
1008 prom_halt();
1011 *pa_ptr = __pa(page);
1014 static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
1016 void *page;
1018 if (use_bootmem)
1019 page = alloc_bootmem_low_pages(PAGE_SIZE);
1020 else
1021 page = (void *) get_zeroed_page(GFP_ATOMIC);
1023 if (!page) {
1024 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
1025 prom_halt();
1028 *pa_ptr = __pa(page);
1031 static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
1033 #ifdef CONFIG_SMP
1034 void *page;
1036 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
1038 if (use_bootmem)
1039 page = alloc_bootmem_low_pages(PAGE_SIZE);
1040 else
1041 page = (void *) get_zeroed_page(GFP_ATOMIC);
1043 if (!page) {
1044 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1045 prom_halt();
1048 tb->cpu_mondo_block_pa = __pa(page);
1049 tb->cpu_list_pa = __pa(page + 64);
1050 #endif
1053 /* Allocate and register the mondo and error queues for this cpu. */
1054 void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
1056 struct trap_per_cpu *tb = &trap_block[cpu];
1058 if (alloc) {
1059 alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
1060 alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
1061 alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
1062 alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
1063 alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
1064 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
1066 init_cpu_send_mondo_info(tb, use_bootmem);
1069 if (load) {
1070 if (cpu != hard_smp_processor_id()) {
1071 prom_printf("SUN4V: init mondo on cpu %d not %d\n",
1072 cpu, hard_smp_processor_id());
1073 prom_halt();
1075 sun4v_register_mondo_queues(cpu);
1079 /* Only invoked on boot processor. */
1080 void __init init_IRQ(void)
1082 map_prom_timers();
1083 kill_prom_timer();
1084 memset(&ivector_table[0], 0, sizeof(ivector_table));
1086 if (tlb_type == hypervisor)
1087 sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
1089 /* We need to clear any IRQ's pending in the soft interrupt
1090 * registers, a spurious one could be left around from the
1091 * PROM timer which we just disabled.
1093 clear_softint(get_softint());
1095 /* Now that ivector table is initialized, it is safe
1096 * to receive IRQ vector traps. We will normally take
1097 * one or two right now, in case some device PROM used
1098 * to boot us wants to speak to us. We just ignore them.
1100 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1101 "or %%g1, %0, %%g1\n\t"
1102 "wrpr %%g1, 0x0, %%pstate"
1103 : /* No outputs */
1104 : "i" (PSTATE_IE)
1105 : "g1");
1108 static struct proc_dir_entry *root_irq_dir;
1109 static struct proc_dir_entry *irq_dir[NR_IRQS];
1111 #ifdef CONFIG_SMP
1113 static int irq_affinity_read_proc(char *page, char **start, off_t off,
1114 int count, int *eof, void *data)
1116 struct ino_bucket *bp = ivector_table + (long)data;
1117 struct irq_desc *desc = bp->irq_info;
1118 struct irqaction *ap = desc->action;
1119 cpumask_t mask;
1120 int len;
1122 mask = get_smpaff_in_irqaction(ap);
1123 if (cpus_empty(mask))
1124 mask = cpu_online_map;
1126 len = cpumask_scnprintf(page, count, mask);
1127 if (count - len < 2)
1128 return -EINVAL;
1129 len += sprintf(page + len, "\n");
1130 return len;
1133 static inline void set_intr_affinity(int virt_irq, cpumask_t hw_aff)
1135 struct ino_bucket *bp;
1136 struct irq_desc *desc;
1137 struct irqaction *ap;
1138 unsigned int real_irq;
1140 real_irq = virt_to_real_irq(virt_irq);
1141 if (unlikely(!real_irq))
1142 return;
1144 bp = __bucket(real_irq);
1145 desc = bp->irq_info;
1146 ap = desc->action;
1148 /* Users specify affinity in terms of hw cpu ids.
1149 * As soon as we do this, handler_irq() might see and take action.
1151 put_smpaff_in_irqaction(ap, hw_aff);
1153 /* Migration is simply done by the next cpu to service this
1154 * interrupt.
1156 * XXX Broken, this doesn't happen anymore...
1160 static int irq_affinity_write_proc(struct file *file,
1161 const char __user *buffer,
1162 unsigned long count, void *data)
1164 int virt_irq = (long) data, full_count = count, err;
1165 cpumask_t new_value;
1167 err = cpumask_parse(buffer, count, new_value);
1170 * Do not allow disabling IRQs completely - it's a too easy
1171 * way to make the system unusable accidentally :-) At least
1172 * one online CPU still has to be targeted.
1174 cpus_and(new_value, new_value, cpu_online_map);
1175 if (cpus_empty(new_value))
1176 return -EINVAL;
1178 set_intr_affinity(virt_irq, new_value);
1180 return full_count;
1183 #endif
1185 #define MAX_NAMELEN 10
1187 static void register_irq_proc(unsigned int virt_irq)
1189 char name [MAX_NAMELEN];
1191 if (!root_irq_dir || irq_dir[virt_irq])
1192 return;
1194 memset(name, 0, MAX_NAMELEN);
1195 sprintf(name, "%d", virt_irq);
1197 /* create /proc/irq/1234 */
1198 irq_dir[virt_irq] = proc_mkdir(name, root_irq_dir);
1200 #ifdef CONFIG_SMP
1201 /* XXX SMP affinity not supported on starfire yet. */
1202 if (this_is_starfire == 0) {
1203 struct proc_dir_entry *entry;
1205 /* create /proc/irq/1234/smp_affinity */
1206 entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1208 if (entry) {
1209 entry->nlink = 1;
1210 entry->data = (void *)(long)virt_irq;
1211 entry->read_proc = irq_affinity_read_proc;
1212 entry->write_proc = irq_affinity_write_proc;
1215 #endif
1218 void init_irq_proc(void)
1220 /* create /proc/irq */
1221 root_irq_dir = proc_mkdir("irq", NULL);