[PATCH] Driver Core: pm diagnostics update, check for errors
[linux-2.6/verdex.git] / arch / ppc64 / mm / hugetlbpage.c
blobd3bf86a5c1ad40a745ded13bdf9d9b6aa80da0c8
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
28 #include <linux/sysctl.h>
30 #define HUGEPGDIR_SHIFT (HPAGE_SHIFT + PAGE_SHIFT - 3)
31 #define HUGEPGDIR_SIZE (1UL << HUGEPGDIR_SHIFT)
32 #define HUGEPGDIR_MASK (~(HUGEPGDIR_SIZE-1))
34 #define HUGEPTE_INDEX_SIZE 9
35 #define HUGEPGD_INDEX_SIZE 10
37 #define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
38 #define PTRS_PER_HUGEPGD (1 << HUGEPGD_INDEX_SIZE)
40 static inline int hugepgd_index(unsigned long addr)
42 return (addr & ~REGION_MASK) >> HUGEPGDIR_SHIFT;
45 static pud_t *hugepgd_offset(struct mm_struct *mm, unsigned long addr)
47 int index;
49 if (! mm->context.huge_pgdir)
50 return NULL;
53 index = hugepgd_index(addr);
54 BUG_ON(index >= PTRS_PER_HUGEPGD);
55 return (pud_t *)(mm->context.huge_pgdir + index);
58 static inline pte_t *hugepte_offset(pud_t *dir, unsigned long addr)
60 int index;
62 if (pud_none(*dir))
63 return NULL;
65 index = (addr >> HPAGE_SHIFT) % PTRS_PER_HUGEPTE;
66 return (pte_t *)pud_page(*dir) + index;
69 static pud_t *hugepgd_alloc(struct mm_struct *mm, unsigned long addr)
71 BUG_ON(! in_hugepage_area(mm->context, addr));
73 if (! mm->context.huge_pgdir) {
74 pgd_t *new;
75 spin_unlock(&mm->page_table_lock);
76 /* Don't use pgd_alloc(), because we want __GFP_REPEAT */
77 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
78 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
79 spin_lock(&mm->page_table_lock);
82 * Because we dropped the lock, we should re-check the
83 * entry, as somebody else could have populated it..
85 if (mm->context.huge_pgdir)
86 pgd_free(new);
87 else
88 mm->context.huge_pgdir = new;
90 return hugepgd_offset(mm, addr);
93 static pte_t *hugepte_alloc(struct mm_struct *mm, pud_t *dir, unsigned long addr)
95 if (! pud_present(*dir)) {
96 pte_t *new;
98 spin_unlock(&mm->page_table_lock);
99 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
100 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
101 spin_lock(&mm->page_table_lock);
103 * Because we dropped the lock, we should re-check the
104 * entry, as somebody else could have populated it..
106 if (pud_present(*dir)) {
107 if (new)
108 kmem_cache_free(zero_cache, new);
109 } else {
110 struct page *ptepage;
112 if (! new)
113 return NULL;
114 ptepage = virt_to_page(new);
115 ptepage->mapping = (void *) mm;
116 ptepage->index = addr & HUGEPGDIR_MASK;
117 pud_populate(mm, dir, new);
121 return hugepte_offset(dir, addr);
124 static pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
126 pud_t *pud;
128 BUG_ON(! in_hugepage_area(mm->context, addr));
130 pud = hugepgd_offset(mm, addr);
131 if (! pud)
132 return NULL;
134 return hugepte_offset(pud, addr);
137 static pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
139 pud_t *pud;
141 BUG_ON(! in_hugepage_area(mm->context, addr));
143 pud = hugepgd_alloc(mm, addr);
144 if (! pud)
145 return NULL;
147 return hugepte_alloc(mm, pud, addr);
150 static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma,
151 unsigned long addr, struct page *page,
152 pte_t *ptep, int write_access)
154 pte_t entry;
156 add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
157 if (write_access) {
158 entry =
159 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
160 } else {
161 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
163 entry = pte_mkyoung(entry);
164 entry = pte_mkhuge(entry);
166 set_pte_at(mm, addr, ptep, entry);
170 * This function checks for proper alignment of input addr and len parameters.
172 int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
174 if (len & ~HPAGE_MASK)
175 return -EINVAL;
176 if (addr & ~HPAGE_MASK)
177 return -EINVAL;
178 if (! (within_hugepage_low_range(addr, len)
179 || within_hugepage_high_range(addr, len)) )
180 return -EINVAL;
181 return 0;
184 static void flush_segments(void *parm)
186 u16 segs = (unsigned long) parm;
187 unsigned long i;
189 asm volatile("isync" : : : "memory");
191 for (i = 0; i < 16; i++) {
192 if (! (segs & (1U << i)))
193 continue;
194 asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
197 asm volatile("isync" : : : "memory");
200 static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
202 unsigned long start = seg << SID_SHIFT;
203 unsigned long end = (seg+1) << SID_SHIFT;
204 struct vm_area_struct *vma;
206 BUG_ON(seg >= 16);
208 /* Check no VMAs are in the region */
209 vma = find_vma(mm, start);
210 if (vma && (vma->vm_start < end))
211 return -EBUSY;
213 return 0;
216 static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
218 unsigned long i;
220 newsegs &= ~(mm->context.htlb_segs);
221 if (! newsegs)
222 return 0; /* The segments we want are already open */
224 for (i = 0; i < 16; i++)
225 if ((1 << i) & newsegs)
226 if (prepare_low_seg_for_htlb(mm, i) != 0)
227 return -EBUSY;
229 mm->context.htlb_segs |= newsegs;
231 /* update the paca copy of the context struct */
232 get_paca()->context = mm->context;
234 /* the context change must make it to memory before the flush,
235 * so that further SLB misses do the right thing. */
236 mb();
237 on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
239 return 0;
242 int prepare_hugepage_range(unsigned long addr, unsigned long len)
244 if (within_hugepage_high_range(addr, len))
245 return 0;
246 else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) {
247 int err;
248 /* Yes, we need both tests, in case addr+len overflows
249 * 64-bit arithmetic */
250 err = open_low_hpage_segs(current->mm,
251 LOW_ESID_MASK(addr, len));
252 if (err)
253 printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
254 " failed (segs: 0x%04hx)\n", addr, len,
255 LOW_ESID_MASK(addr, len));
256 return err;
259 return -EINVAL;
262 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
263 struct vm_area_struct *vma)
265 pte_t *src_pte, *dst_pte, entry;
266 struct page *ptepage;
267 unsigned long addr = vma->vm_start;
268 unsigned long end = vma->vm_end;
269 int err = -ENOMEM;
271 while (addr < end) {
272 dst_pte = huge_pte_alloc(dst, addr);
273 if (!dst_pte)
274 goto out;
276 src_pte = huge_pte_offset(src, addr);
277 entry = *src_pte;
279 ptepage = pte_page(entry);
280 get_page(ptepage);
281 add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
282 set_pte_at(dst, addr, dst_pte, entry);
284 addr += HPAGE_SIZE;
287 err = 0;
288 out:
289 return err;
293 follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
294 struct page **pages, struct vm_area_struct **vmas,
295 unsigned long *position, int *length, int i)
297 unsigned long vpfn, vaddr = *position;
298 int remainder = *length;
300 WARN_ON(!is_vm_hugetlb_page(vma));
302 vpfn = vaddr/PAGE_SIZE;
303 while (vaddr < vma->vm_end && remainder) {
304 if (pages) {
305 pte_t *pte;
306 struct page *page;
308 pte = huge_pte_offset(mm, vaddr);
310 /* hugetlb should be locked, and hence, prefaulted */
311 WARN_ON(!pte || pte_none(*pte));
313 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
315 WARN_ON(!PageCompound(page));
317 get_page(page);
318 pages[i] = page;
321 if (vmas)
322 vmas[i] = vma;
324 vaddr += PAGE_SIZE;
325 ++vpfn;
326 --remainder;
327 ++i;
330 *length = remainder;
331 *position = vaddr;
333 return i;
336 struct page *
337 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
339 pte_t *ptep;
340 struct page *page;
342 if (! in_hugepage_area(mm->context, address))
343 return ERR_PTR(-EINVAL);
345 ptep = huge_pte_offset(mm, address);
346 page = pte_page(*ptep);
347 if (page)
348 page += (address % HPAGE_SIZE) / PAGE_SIZE;
350 return page;
353 int pmd_huge(pmd_t pmd)
355 return 0;
358 struct page *
359 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
360 pmd_t *pmd, int write)
362 BUG();
363 return NULL;
366 void unmap_hugepage_range(struct vm_area_struct *vma,
367 unsigned long start, unsigned long end)
369 struct mm_struct *mm = vma->vm_mm;
370 unsigned long addr;
371 pte_t *ptep;
372 struct page *page;
374 WARN_ON(!is_vm_hugetlb_page(vma));
375 BUG_ON((start % HPAGE_SIZE) != 0);
376 BUG_ON((end % HPAGE_SIZE) != 0);
378 for (addr = start; addr < end; addr += HPAGE_SIZE) {
379 pte_t pte;
381 ptep = huge_pte_offset(mm, addr);
382 if (!ptep || pte_none(*ptep))
383 continue;
385 pte = *ptep;
386 page = pte_page(pte);
387 pte_clear(mm, addr, ptep);
389 put_page(page);
391 add_mm_counter(mm, rss, -((end - start) >> PAGE_SHIFT));
392 flush_tlb_pending();
395 int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
397 struct mm_struct *mm = current->mm;
398 unsigned long addr;
399 int ret = 0;
401 WARN_ON(!is_vm_hugetlb_page(vma));
402 BUG_ON((vma->vm_start % HPAGE_SIZE) != 0);
403 BUG_ON((vma->vm_end % HPAGE_SIZE) != 0);
405 spin_lock(&mm->page_table_lock);
406 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
407 unsigned long idx;
408 pte_t *pte = huge_pte_alloc(mm, addr);
409 struct page *page;
411 if (!pte) {
412 ret = -ENOMEM;
413 goto out;
415 if (! pte_none(*pte))
416 continue;
418 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
419 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
420 page = find_get_page(mapping, idx);
421 if (!page) {
422 /* charge the fs quota first */
423 if (hugetlb_get_quota(mapping)) {
424 ret = -ENOMEM;
425 goto out;
427 page = alloc_huge_page();
428 if (!page) {
429 hugetlb_put_quota(mapping);
430 ret = -ENOMEM;
431 goto out;
433 ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
434 if (! ret) {
435 unlock_page(page);
436 } else {
437 hugetlb_put_quota(mapping);
438 free_huge_page(page);
439 goto out;
442 set_huge_pte(mm, vma, addr, page, pte, vma->vm_flags & VM_WRITE);
444 out:
445 spin_unlock(&mm->page_table_lock);
446 return ret;
449 /* Because we have an exclusive hugepage region which lies within the
450 * normal user address space, we have to take special measures to make
451 * non-huge mmap()s evade the hugepage reserved regions. */
452 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
453 unsigned long len, unsigned long pgoff,
454 unsigned long flags)
456 struct mm_struct *mm = current->mm;
457 struct vm_area_struct *vma;
458 unsigned long start_addr;
460 if (len > TASK_SIZE)
461 return -ENOMEM;
463 if (addr) {
464 addr = PAGE_ALIGN(addr);
465 vma = find_vma(mm, addr);
466 if (((TASK_SIZE - len) >= addr)
467 && (!vma || (addr+len) <= vma->vm_start)
468 && !is_hugepage_only_range(mm, addr,len))
469 return addr;
471 start_addr = addr = mm->free_area_cache;
473 full_search:
474 vma = find_vma(mm, addr);
475 while (TASK_SIZE - len >= addr) {
476 BUG_ON(vma && (addr >= vma->vm_end));
478 if (touches_hugepage_low_range(mm, addr, len)) {
479 addr = ALIGN(addr+1, 1<<SID_SHIFT);
480 vma = find_vma(mm, addr);
481 continue;
483 if (touches_hugepage_high_range(addr, len)) {
484 addr = TASK_HPAGE_END;
485 vma = find_vma(mm, addr);
486 continue;
488 if (!vma || addr + len <= vma->vm_start) {
490 * Remember the place where we stopped the search:
492 mm->free_area_cache = addr + len;
493 return addr;
495 addr = vma->vm_end;
496 vma = vma->vm_next;
499 /* Make sure we didn't miss any holes */
500 if (start_addr != TASK_UNMAPPED_BASE) {
501 start_addr = addr = TASK_UNMAPPED_BASE;
502 goto full_search;
504 return -ENOMEM;
508 * This mmap-allocator allocates new areas top-down from below the
509 * stack's low limit (the base):
511 * Because we have an exclusive hugepage region which lies within the
512 * normal user address space, we have to take special measures to make
513 * non-huge mmap()s evade the hugepage reserved regions.
515 unsigned long
516 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
517 const unsigned long len, const unsigned long pgoff,
518 const unsigned long flags)
520 struct vm_area_struct *vma, *prev_vma;
521 struct mm_struct *mm = current->mm;
522 unsigned long base = mm->mmap_base, addr = addr0;
523 int first_time = 1;
525 /* requested length too big for entire address space */
526 if (len > TASK_SIZE)
527 return -ENOMEM;
529 /* dont allow allocations above current base */
530 if (mm->free_area_cache > base)
531 mm->free_area_cache = base;
533 /* requesting a specific address */
534 if (addr) {
535 addr = PAGE_ALIGN(addr);
536 vma = find_vma(mm, addr);
537 if (TASK_SIZE - len >= addr &&
538 (!vma || addr + len <= vma->vm_start)
539 && !is_hugepage_only_range(mm, addr,len))
540 return addr;
543 try_again:
544 /* make sure it can fit in the remaining address space */
545 if (mm->free_area_cache < len)
546 goto fail;
548 /* either no address requested or cant fit in requested address hole */
549 addr = (mm->free_area_cache - len) & PAGE_MASK;
550 do {
551 hugepage_recheck:
552 if (touches_hugepage_low_range(mm, addr, len)) {
553 addr = (addr & ((~0) << SID_SHIFT)) - len;
554 goto hugepage_recheck;
555 } else if (touches_hugepage_high_range(addr, len)) {
556 addr = TASK_HPAGE_BASE - len;
560 * Lookup failure means no vma is above this address,
561 * i.e. return with success:
563 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
564 return addr;
567 * new region fits between prev_vma->vm_end and
568 * vma->vm_start, use it:
570 if (addr+len <= vma->vm_start &&
571 (!prev_vma || (addr >= prev_vma->vm_end)))
572 /* remember the address as a hint for next time */
573 return (mm->free_area_cache = addr);
574 else
575 /* pull free_area_cache down to the first hole */
576 if (mm->free_area_cache == vma->vm_end)
577 mm->free_area_cache = vma->vm_start;
579 /* try just below the current vma->vm_start */
580 addr = vma->vm_start-len;
581 } while (len <= vma->vm_start);
583 fail:
585 * if hint left us with no space for the requested
586 * mapping then try again:
588 if (first_time) {
589 mm->free_area_cache = base;
590 first_time = 0;
591 goto try_again;
594 * A failed mmap() very likely causes application failure,
595 * so fall back to the bottom-up function here. This scenario
596 * can happen with large stack limits and large mmap()
597 * allocations.
599 mm->free_area_cache = TASK_UNMAPPED_BASE;
600 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
602 * Restore the topdown base:
604 mm->free_area_cache = base;
606 return addr;
609 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
611 unsigned long addr = 0;
612 struct vm_area_struct *vma;
614 vma = find_vma(current->mm, addr);
615 while (addr + len <= 0x100000000UL) {
616 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
618 if (! __within_hugepage_low_range(addr, len, segmask)) {
619 addr = ALIGN(addr+1, 1<<SID_SHIFT);
620 vma = find_vma(current->mm, addr);
621 continue;
624 if (!vma || (addr + len) <= vma->vm_start)
625 return addr;
626 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
627 /* Depending on segmask this might not be a confirmed
628 * hugepage region, so the ALIGN could have skipped
629 * some VMAs */
630 vma = find_vma(current->mm, addr);
633 return -ENOMEM;
636 static unsigned long htlb_get_high_area(unsigned long len)
638 unsigned long addr = TASK_HPAGE_BASE;
639 struct vm_area_struct *vma;
641 vma = find_vma(current->mm, addr);
642 for (vma = find_vma(current->mm, addr);
643 addr + len <= TASK_HPAGE_END;
644 vma = vma->vm_next) {
645 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
646 BUG_ON(! within_hugepage_high_range(addr, len));
648 if (!vma || (addr + len) <= vma->vm_start)
649 return addr;
650 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
651 /* Because we're in a hugepage region, this alignment
652 * should not skip us over any VMAs */
655 return -ENOMEM;
658 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
659 unsigned long len, unsigned long pgoff,
660 unsigned long flags)
662 if (len & ~HPAGE_MASK)
663 return -EINVAL;
665 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
666 return -EINVAL;
668 if (test_thread_flag(TIF_32BIT)) {
669 int lastshift = 0;
670 u16 segmask, cursegs = current->mm->context.htlb_segs;
672 /* First see if we can do the mapping in the existing
673 * low hpage segments */
674 addr = htlb_get_low_area(len, cursegs);
675 if (addr != -ENOMEM)
676 return addr;
678 for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
679 ! lastshift; segmask >>=1) {
680 if (segmask & 1)
681 lastshift = 1;
683 addr = htlb_get_low_area(len, cursegs | segmask);
684 if ((addr != -ENOMEM)
685 && open_low_hpage_segs(current->mm, segmask) == 0)
686 return addr;
688 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
689 " enough segments\n");
690 return -ENOMEM;
691 } else {
692 return htlb_get_high_area(len);
696 void hugetlb_mm_free_pgd(struct mm_struct *mm)
698 int i;
699 pgd_t *pgdir;
701 spin_lock(&mm->page_table_lock);
703 pgdir = mm->context.huge_pgdir;
704 if (! pgdir)
705 goto out;
707 mm->context.huge_pgdir = NULL;
709 /* cleanup any hugepte pages leftover */
710 for (i = 0; i < PTRS_PER_HUGEPGD; i++) {
711 pud_t *pud = (pud_t *)(pgdir + i);
713 if (! pud_none(*pud)) {
714 pte_t *pte = (pte_t *)pud_page(*pud);
715 struct page *ptepage = virt_to_page(pte);
717 ptepage->mapping = NULL;
719 BUG_ON(memcmp(pte, empty_zero_page, PAGE_SIZE));
720 kmem_cache_free(zero_cache, pte);
722 pud_clear(pud);
725 BUG_ON(memcmp(pgdir, empty_zero_page, PAGE_SIZE));
726 kmem_cache_free(zero_cache, pgdir);
728 out:
729 spin_unlock(&mm->page_table_lock);
732 int hash_huge_page(struct mm_struct *mm, unsigned long access,
733 unsigned long ea, unsigned long vsid, int local)
735 pte_t *ptep;
736 unsigned long va, vpn;
737 pte_t old_pte, new_pte;
738 unsigned long hpteflags, prpn;
739 long slot;
740 int err = 1;
742 spin_lock(&mm->page_table_lock);
744 ptep = huge_pte_offset(mm, ea);
746 /* Search the Linux page table for a match with va */
747 va = (vsid << 28) | (ea & 0x0fffffff);
748 vpn = va >> HPAGE_SHIFT;
751 * If no pte found or not present, send the problem up to
752 * do_page_fault
754 if (unlikely(!ptep || pte_none(*ptep)))
755 goto out;
757 /* BUG_ON(pte_bad(*ptep)); */
760 * Check the user's access rights to the page. If access should be
761 * prevented then send the problem up to do_page_fault.
763 if (unlikely(access & ~pte_val(*ptep)))
764 goto out;
766 * At this point, we have a pte (old_pte) which can be used to build
767 * or update an HPTE. There are 2 cases:
769 * 1. There is a valid (present) pte with no associated HPTE (this is
770 * the most common case)
771 * 2. There is a valid (present) pte with an associated HPTE. The
772 * current values of the pp bits in the HPTE prevent access
773 * because we are doing software DIRTY bit management and the
774 * page is currently not DIRTY.
778 old_pte = *ptep;
779 new_pte = old_pte;
781 hpteflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW));
782 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
783 hpteflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC);
785 /* Check if pte already has an hpte (case 2) */
786 if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) {
787 /* There MIGHT be an HPTE for this pte */
788 unsigned long hash, slot;
790 hash = hpt_hash(vpn, 1);
791 if (pte_val(old_pte) & _PAGE_SECONDARY)
792 hash = ~hash;
793 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
794 slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12;
796 if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1)
797 pte_val(old_pte) &= ~_PAGE_HPTEFLAGS;
800 if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) {
801 unsigned long hash = hpt_hash(vpn, 1);
802 unsigned long hpte_group;
804 prpn = pte_pfn(old_pte);
806 repeat:
807 hpte_group = ((hash & htab_hash_mask) *
808 HPTES_PER_GROUP) & ~0x7UL;
810 /* Update the linux pte with the HPTE slot */
811 pte_val(new_pte) &= ~_PAGE_HPTEFLAGS;
812 pte_val(new_pte) |= _PAGE_HASHPTE;
814 /* Add in WIMG bits */
815 /* XXX We should store these in the pte */
816 hpteflags |= _PAGE_COHERENT;
818 slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0,
819 hpteflags, 0, 1);
821 /* Primary is full, try the secondary */
822 if (unlikely(slot == -1)) {
823 pte_val(new_pte) |= _PAGE_SECONDARY;
824 hpte_group = ((~hash & htab_hash_mask) *
825 HPTES_PER_GROUP) & ~0x7UL;
826 slot = ppc_md.hpte_insert(hpte_group, va, prpn,
827 1, hpteflags, 0, 1);
828 if (slot == -1) {
829 if (mftb() & 0x1)
830 hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
832 ppc_md.hpte_remove(hpte_group);
833 goto repeat;
837 if (unlikely(slot == -2))
838 panic("hash_huge_page: pte_insert failed\n");
840 pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX;
843 * No need to use ldarx/stdcx here because all who
844 * might be updating the pte will hold the
845 * page_table_lock
847 *ptep = new_pte;
850 err = 0;
852 out:
853 spin_unlock(&mm->page_table_lock);
855 return err;