[PATCH] Driver Core: pm diagnostics update, check for errors
[linux-2.6/verdex.git] / drivers / net / 8139cp.c
blobd639cb8dc461c85ccf04cc2da6cfd4f8c7b963c1
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
29 * Implement dev->tx_timeout
31 Low priority TODO:
32 * Complete reset on PciErr
33 * Consider Rx interrupt mitigation using TimerIntr
34 * Investigate using skb->priority with h/w VLAN priority
35 * Investigate using High Priority Tx Queue with skb->priority
36 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
37 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
38 * Implement Tx software interrupt mitigation via
39 Tx descriptor bit
40 * The real minimum of CP_MIN_MTU is 4 bytes. However,
41 for this to be supported, one must(?) turn on packet padding.
42 * Support external MII transceivers (patch available)
44 NOTES:
45 * TX checksumming is considered experimental. It is off by
46 default, use ethtool to turn it on.
50 #define DRV_NAME "8139cp"
51 #define DRV_VERSION "1.2"
52 #define DRV_RELDATE "Mar 22, 2004"
55 #include <linux/config.h>
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/compiler.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/delay.h>
64 #include <linux/ethtool.h>
65 #include <linux/mii.h>
66 #include <linux/if_vlan.h>
67 #include <linux/crc32.h>
68 #include <linux/in.h>
69 #include <linux/ip.h>
70 #include <linux/tcp.h>
71 #include <linux/udp.h>
72 #include <linux/cache.h>
73 #include <asm/io.h>
74 #include <asm/irq.h>
75 #include <asm/uaccess.h>
77 /* VLAN tagging feature enable/disable */
78 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
79 #define CP_VLAN_TAG_USED 1
80 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
81 do { (tx_desc)->opts2 = (vlan_tag_value); } while (0)
82 #else
83 #define CP_VLAN_TAG_USED 0
84 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
85 do { (tx_desc)->opts2 = 0; } while (0)
86 #endif
88 /* These identify the driver base version and may not be removed. */
89 static char version[] =
90 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
92 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
93 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
94 MODULE_LICENSE("GPL");
96 static int debug = -1;
97 MODULE_PARM (debug, "i");
98 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
100 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
101 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
102 static int multicast_filter_limit = 32;
103 MODULE_PARM (multicast_filter_limit, "i");
104 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
106 #define PFX DRV_NAME ": "
108 #ifndef TRUE
109 #define FALSE 0
110 #define TRUE (!FALSE)
111 #endif
113 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
114 NETIF_MSG_PROBE | \
115 NETIF_MSG_LINK)
116 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
117 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
118 #define CP_REGS_SIZE (0xff + 1)
119 #define CP_REGS_VER 1 /* version 1 */
120 #define CP_RX_RING_SIZE 64
121 #define CP_TX_RING_SIZE 64
122 #define CP_RING_BYTES \
123 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
124 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
125 CP_STATS_SIZE)
126 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
127 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
128 #define TX_BUFFS_AVAIL(CP) \
129 (((CP)->tx_tail <= (CP)->tx_head) ? \
130 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
131 (CP)->tx_tail - (CP)->tx_head - 1)
133 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
134 #define RX_OFFSET 2
135 #define CP_INTERNAL_PHY 32
137 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
138 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
139 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
140 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
141 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
143 /* Time in jiffies before concluding the transmitter is hung. */
144 #define TX_TIMEOUT (6*HZ)
146 /* hardware minimum and maximum for a single frame's data payload */
147 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
148 #define CP_MAX_MTU 4096
150 enum {
151 /* NIC register offsets */
152 MAC0 = 0x00, /* Ethernet hardware address. */
153 MAR0 = 0x08, /* Multicast filter. */
154 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
155 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
156 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
157 Cmd = 0x37, /* Command register */
158 IntrMask = 0x3C, /* Interrupt mask */
159 IntrStatus = 0x3E, /* Interrupt status */
160 TxConfig = 0x40, /* Tx configuration */
161 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
162 RxConfig = 0x44, /* Rx configuration */
163 RxMissed = 0x4C, /* 24 bits valid, write clears */
164 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
165 Config1 = 0x52, /* Config1 */
166 Config3 = 0x59, /* Config3 */
167 Config4 = 0x5A, /* Config4 */
168 MultiIntr = 0x5C, /* Multiple interrupt select */
169 BasicModeCtrl = 0x62, /* MII BMCR */
170 BasicModeStatus = 0x64, /* MII BMSR */
171 NWayAdvert = 0x66, /* MII ADVERTISE */
172 NWayLPAR = 0x68, /* MII LPA */
173 NWayExpansion = 0x6A, /* MII Expansion */
174 Config5 = 0xD8, /* Config5 */
175 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
176 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
177 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
178 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
179 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
180 TxThresh = 0xEC, /* Early Tx threshold */
181 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
182 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
184 /* Tx and Rx status descriptors */
185 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
186 RingEnd = (1 << 30), /* End of descriptor ring */
187 FirstFrag = (1 << 29), /* First segment of a packet */
188 LastFrag = (1 << 28), /* Final segment of a packet */
189 TxError = (1 << 23), /* Tx error summary */
190 RxError = (1 << 20), /* Rx error summary */
191 IPCS = (1 << 18), /* Calculate IP checksum */
192 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
193 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
194 TxVlanTag = (1 << 17), /* Add VLAN tag */
195 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
196 IPFail = (1 << 15), /* IP checksum failed */
197 UDPFail = (1 << 14), /* UDP/IP checksum failed */
198 TCPFail = (1 << 13), /* TCP/IP checksum failed */
199 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
200 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
201 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
202 RxProtoTCP = 1,
203 RxProtoUDP = 2,
204 RxProtoIP = 3,
205 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
206 TxOWC = (1 << 22), /* Tx Out-of-window collision */
207 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
208 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
209 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
210 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
211 RxErrFrame = (1 << 27), /* Rx frame alignment error */
212 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
213 RxErrCRC = (1 << 18), /* Rx CRC error */
214 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
215 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
216 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
218 /* StatsAddr register */
219 DumpStats = (1 << 3), /* Begin stats dump */
221 /* RxConfig register */
222 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
223 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
224 AcceptErr = 0x20, /* Accept packets with CRC errors */
225 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
226 AcceptBroadcast = 0x08, /* Accept broadcast packets */
227 AcceptMulticast = 0x04, /* Accept multicast packets */
228 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
229 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
231 /* IntrMask / IntrStatus registers */
232 PciErr = (1 << 15), /* System error on the PCI bus */
233 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
234 LenChg = (1 << 13), /* Cable length change */
235 SWInt = (1 << 8), /* Software-requested interrupt */
236 TxEmpty = (1 << 7), /* No Tx descriptors available */
237 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
238 LinkChg = (1 << 5), /* Packet underrun, or link change */
239 RxEmpty = (1 << 4), /* No Rx descriptors available */
240 TxErr = (1 << 3), /* Tx error */
241 TxOK = (1 << 2), /* Tx packet sent */
242 RxErr = (1 << 1), /* Rx error */
243 RxOK = (1 << 0), /* Rx packet received */
244 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
245 but hardware likes to raise it */
247 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
248 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
249 RxErr | RxOK | IntrResvd,
251 /* C mode command register */
252 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
253 RxOn = (1 << 3), /* Rx mode enable */
254 TxOn = (1 << 2), /* Tx mode enable */
256 /* C+ mode command register */
257 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
258 RxChkSum = (1 << 5), /* Rx checksum offload enable */
259 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
260 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
261 CpRxOn = (1 << 1), /* Rx mode enable */
262 CpTxOn = (1 << 0), /* Tx mode enable */
264 /* Cfg9436 EEPROM control register */
265 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
266 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
268 /* TxConfig register */
269 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
270 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
272 /* Early Tx Threshold register */
273 TxThreshMask = 0x3f, /* Mask bits 5-0 */
274 TxThreshMax = 2048, /* Max early Tx threshold */
276 /* Config1 register */
277 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
278 LWACT = (1 << 4), /* LWAKE active mode */
279 PMEnable = (1 << 0), /* Enable various PM features of chip */
281 /* Config3 register */
282 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
283 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
284 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
286 /* Config4 register */
287 LWPTN = (1 << 1), /* LWAKE Pattern */
288 LWPME = (1 << 4), /* LANWAKE vs PMEB */
290 /* Config5 register */
291 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
292 MWF = (1 << 5), /* Accept Multicast wakeup frame */
293 UWF = (1 << 4), /* Accept Unicast wakeup frame */
294 LANWake = (1 << 1), /* Enable LANWake signal */
295 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
297 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
298 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
299 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
302 static const unsigned int cp_rx_config =
303 (RX_FIFO_THRESH << RxCfgFIFOShift) |
304 (RX_DMA_BURST << RxCfgDMAShift);
306 struct cp_desc {
307 u32 opts1;
308 u32 opts2;
309 u64 addr;
312 struct ring_info {
313 struct sk_buff *skb;
314 dma_addr_t mapping;
315 unsigned frag;
318 struct cp_dma_stats {
319 u64 tx_ok;
320 u64 rx_ok;
321 u64 tx_err;
322 u32 rx_err;
323 u16 rx_fifo;
324 u16 frame_align;
325 u32 tx_ok_1col;
326 u32 tx_ok_mcol;
327 u64 rx_ok_phys;
328 u64 rx_ok_bcast;
329 u32 rx_ok_mcast;
330 u16 tx_abort;
331 u16 tx_underrun;
332 } __attribute__((packed));
334 struct cp_extra_stats {
335 unsigned long rx_frags;
338 struct cp_private {
339 void __iomem *regs;
340 struct net_device *dev;
341 spinlock_t lock;
342 u32 msg_enable;
344 struct pci_dev *pdev;
345 u32 rx_config;
346 u16 cpcmd;
348 struct net_device_stats net_stats;
349 struct cp_extra_stats cp_stats;
350 struct cp_dma_stats *nic_stats;
351 dma_addr_t nic_stats_dma;
353 unsigned rx_tail ____cacheline_aligned;
354 struct cp_desc *rx_ring;
355 struct ring_info rx_skb[CP_RX_RING_SIZE];
356 unsigned rx_buf_sz;
358 unsigned tx_head ____cacheline_aligned;
359 unsigned tx_tail;
361 struct cp_desc *tx_ring;
362 struct ring_info tx_skb[CP_TX_RING_SIZE];
363 dma_addr_t ring_dma;
365 #if CP_VLAN_TAG_USED
366 struct vlan_group *vlgrp;
367 #endif
369 unsigned int wol_enabled : 1; /* Is Wake-on-LAN enabled? */
371 struct mii_if_info mii_if;
374 #define cpr8(reg) readb(cp->regs + (reg))
375 #define cpr16(reg) readw(cp->regs + (reg))
376 #define cpr32(reg) readl(cp->regs + (reg))
377 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
378 #define cpw16(reg,val) writew((val), cp->regs + (reg))
379 #define cpw32(reg,val) writel((val), cp->regs + (reg))
380 #define cpw8_f(reg,val) do { \
381 writeb((val), cp->regs + (reg)); \
382 readb(cp->regs + (reg)); \
383 } while (0)
384 #define cpw16_f(reg,val) do { \
385 writew((val), cp->regs + (reg)); \
386 readw(cp->regs + (reg)); \
387 } while (0)
388 #define cpw32_f(reg,val) do { \
389 writel((val), cp->regs + (reg)); \
390 readl(cp->regs + (reg)); \
391 } while (0)
394 static void __cp_set_rx_mode (struct net_device *dev);
395 static void cp_tx (struct cp_private *cp);
396 static void cp_clean_rings (struct cp_private *cp);
398 static struct pci_device_id cp_pci_tbl[] = {
399 { PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139,
400 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
401 { PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322,
402 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
403 { },
405 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
407 static struct {
408 const char str[ETH_GSTRING_LEN];
409 } ethtool_stats_keys[] = {
410 { "tx_ok" },
411 { "rx_ok" },
412 { "tx_err" },
413 { "rx_err" },
414 { "rx_fifo" },
415 { "frame_align" },
416 { "tx_ok_1col" },
417 { "tx_ok_mcol" },
418 { "rx_ok_phys" },
419 { "rx_ok_bcast" },
420 { "rx_ok_mcast" },
421 { "tx_abort" },
422 { "tx_underrun" },
423 { "rx_frags" },
427 #if CP_VLAN_TAG_USED
428 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
430 struct cp_private *cp = netdev_priv(dev);
431 unsigned long flags;
433 spin_lock_irqsave(&cp->lock, flags);
434 cp->vlgrp = grp;
435 cp->cpcmd |= RxVlanOn;
436 cpw16(CpCmd, cp->cpcmd);
437 spin_unlock_irqrestore(&cp->lock, flags);
440 static void cp_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
442 struct cp_private *cp = netdev_priv(dev);
443 unsigned long flags;
445 spin_lock_irqsave(&cp->lock, flags);
446 cp->cpcmd &= ~RxVlanOn;
447 cpw16(CpCmd, cp->cpcmd);
448 if (cp->vlgrp)
449 cp->vlgrp->vlan_devices[vid] = NULL;
450 spin_unlock_irqrestore(&cp->lock, flags);
452 #endif /* CP_VLAN_TAG_USED */
454 static inline void cp_set_rxbufsize (struct cp_private *cp)
456 unsigned int mtu = cp->dev->mtu;
458 if (mtu > ETH_DATA_LEN)
459 /* MTU + ethernet header + FCS + optional VLAN tag */
460 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
461 else
462 cp->rx_buf_sz = PKT_BUF_SZ;
465 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
466 struct cp_desc *desc)
468 skb->protocol = eth_type_trans (skb, cp->dev);
470 cp->net_stats.rx_packets++;
471 cp->net_stats.rx_bytes += skb->len;
472 cp->dev->last_rx = jiffies;
474 #if CP_VLAN_TAG_USED
475 if (cp->vlgrp && (desc->opts2 & RxVlanTagged)) {
476 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
477 be16_to_cpu(desc->opts2 & 0xffff));
478 } else
479 #endif
480 netif_receive_skb(skb);
483 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
484 u32 status, u32 len)
486 if (netif_msg_rx_err (cp))
487 printk (KERN_DEBUG
488 "%s: rx err, slot %d status 0x%x len %d\n",
489 cp->dev->name, rx_tail, status, len);
490 cp->net_stats.rx_errors++;
491 if (status & RxErrFrame)
492 cp->net_stats.rx_frame_errors++;
493 if (status & RxErrCRC)
494 cp->net_stats.rx_crc_errors++;
495 if ((status & RxErrRunt) || (status & RxErrLong))
496 cp->net_stats.rx_length_errors++;
497 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
498 cp->net_stats.rx_length_errors++;
499 if (status & RxErrFIFO)
500 cp->net_stats.rx_fifo_errors++;
503 static inline unsigned int cp_rx_csum_ok (u32 status)
505 unsigned int protocol = (status >> 16) & 0x3;
507 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
508 return 1;
509 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
510 return 1;
511 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
512 return 1;
513 return 0;
516 static int cp_rx_poll (struct net_device *dev, int *budget)
518 struct cp_private *cp = netdev_priv(dev);
519 unsigned rx_tail = cp->rx_tail;
520 unsigned rx_work = dev->quota;
521 unsigned rx;
523 rx_status_loop:
524 rx = 0;
525 cpw16(IntrStatus, cp_rx_intr_mask);
527 while (1) {
528 u32 status, len;
529 dma_addr_t mapping;
530 struct sk_buff *skb, *new_skb;
531 struct cp_desc *desc;
532 unsigned buflen;
534 skb = cp->rx_skb[rx_tail].skb;
535 if (!skb)
536 BUG();
538 desc = &cp->rx_ring[rx_tail];
539 status = le32_to_cpu(desc->opts1);
540 if (status & DescOwn)
541 break;
543 len = (status & 0x1fff) - 4;
544 mapping = cp->rx_skb[rx_tail].mapping;
546 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
547 /* we don't support incoming fragmented frames.
548 * instead, we attempt to ensure that the
549 * pre-allocated RX skbs are properly sized such
550 * that RX fragments are never encountered
552 cp_rx_err_acct(cp, rx_tail, status, len);
553 cp->net_stats.rx_dropped++;
554 cp->cp_stats.rx_frags++;
555 goto rx_next;
558 if (status & (RxError | RxErrFIFO)) {
559 cp_rx_err_acct(cp, rx_tail, status, len);
560 goto rx_next;
563 if (netif_msg_rx_status(cp))
564 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d\n",
565 cp->dev->name, rx_tail, status, len);
567 buflen = cp->rx_buf_sz + RX_OFFSET;
568 new_skb = dev_alloc_skb (buflen);
569 if (!new_skb) {
570 cp->net_stats.rx_dropped++;
571 goto rx_next;
574 skb_reserve(new_skb, RX_OFFSET);
575 new_skb->dev = cp->dev;
577 pci_unmap_single(cp->pdev, mapping,
578 buflen, PCI_DMA_FROMDEVICE);
580 /* Handle checksum offloading for incoming packets. */
581 if (cp_rx_csum_ok(status))
582 skb->ip_summed = CHECKSUM_UNNECESSARY;
583 else
584 skb->ip_summed = CHECKSUM_NONE;
586 skb_put(skb, len);
588 mapping =
589 cp->rx_skb[rx_tail].mapping =
590 pci_map_single(cp->pdev, new_skb->tail,
591 buflen, PCI_DMA_FROMDEVICE);
592 cp->rx_skb[rx_tail].skb = new_skb;
594 cp_rx_skb(cp, skb, desc);
595 rx++;
597 rx_next:
598 cp->rx_ring[rx_tail].opts2 = 0;
599 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
600 if (rx_tail == (CP_RX_RING_SIZE - 1))
601 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
602 cp->rx_buf_sz);
603 else
604 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
605 rx_tail = NEXT_RX(rx_tail);
607 if (!rx_work--)
608 break;
611 cp->rx_tail = rx_tail;
613 dev->quota -= rx;
614 *budget -= rx;
616 /* if we did not reach work limit, then we're done with
617 * this round of polling
619 if (rx_work) {
620 if (cpr16(IntrStatus) & cp_rx_intr_mask)
621 goto rx_status_loop;
623 local_irq_disable();
624 cpw16_f(IntrMask, cp_intr_mask);
625 __netif_rx_complete(dev);
626 local_irq_enable();
628 return 0; /* done */
631 return 1; /* not done */
634 static irqreturn_t
635 cp_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
637 struct net_device *dev = dev_instance;
638 struct cp_private *cp;
639 u16 status;
641 if (unlikely(dev == NULL))
642 return IRQ_NONE;
643 cp = netdev_priv(dev);
645 status = cpr16(IntrStatus);
646 if (!status || (status == 0xFFFF))
647 return IRQ_NONE;
649 if (netif_msg_intr(cp))
650 printk(KERN_DEBUG "%s: intr, status %04x cmd %02x cpcmd %04x\n",
651 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
653 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
655 spin_lock(&cp->lock);
657 /* close possible race's with dev_close */
658 if (unlikely(!netif_running(dev))) {
659 cpw16(IntrMask, 0);
660 spin_unlock(&cp->lock);
661 return IRQ_HANDLED;
664 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
665 if (netif_rx_schedule_prep(dev)) {
666 cpw16_f(IntrMask, cp_norx_intr_mask);
667 __netif_rx_schedule(dev);
670 if (status & (TxOK | TxErr | TxEmpty | SWInt))
671 cp_tx(cp);
672 if (status & LinkChg)
673 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE);
675 spin_unlock(&cp->lock);
677 if (status & PciErr) {
678 u16 pci_status;
680 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
681 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
682 printk(KERN_ERR "%s: PCI bus error, status=%04x, PCI status=%04x\n",
683 dev->name, status, pci_status);
685 /* TODO: reset hardware */
688 return IRQ_HANDLED;
691 static void cp_tx (struct cp_private *cp)
693 unsigned tx_head = cp->tx_head;
694 unsigned tx_tail = cp->tx_tail;
696 while (tx_tail != tx_head) {
697 struct sk_buff *skb;
698 u32 status;
700 rmb();
701 status = le32_to_cpu(cp->tx_ring[tx_tail].opts1);
702 if (status & DescOwn)
703 break;
705 skb = cp->tx_skb[tx_tail].skb;
706 if (!skb)
707 BUG();
709 pci_unmap_single(cp->pdev, cp->tx_skb[tx_tail].mapping,
710 skb->len, PCI_DMA_TODEVICE);
712 if (status & LastFrag) {
713 if (status & (TxError | TxFIFOUnder)) {
714 if (netif_msg_tx_err(cp))
715 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
716 cp->dev->name, status);
717 cp->net_stats.tx_errors++;
718 if (status & TxOWC)
719 cp->net_stats.tx_window_errors++;
720 if (status & TxMaxCol)
721 cp->net_stats.tx_aborted_errors++;
722 if (status & TxLinkFail)
723 cp->net_stats.tx_carrier_errors++;
724 if (status & TxFIFOUnder)
725 cp->net_stats.tx_fifo_errors++;
726 } else {
727 cp->net_stats.collisions +=
728 ((status >> TxColCntShift) & TxColCntMask);
729 cp->net_stats.tx_packets++;
730 cp->net_stats.tx_bytes += skb->len;
731 if (netif_msg_tx_done(cp))
732 printk(KERN_DEBUG "%s: tx done, slot %d\n", cp->dev->name, tx_tail);
734 dev_kfree_skb_irq(skb);
737 cp->tx_skb[tx_tail].skb = NULL;
739 tx_tail = NEXT_TX(tx_tail);
742 cp->tx_tail = tx_tail;
744 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
745 netif_wake_queue(cp->dev);
748 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
750 struct cp_private *cp = netdev_priv(dev);
751 unsigned entry;
752 u32 eor;
753 #if CP_VLAN_TAG_USED
754 u32 vlan_tag = 0;
755 #endif
757 spin_lock_irq(&cp->lock);
759 /* This is a hard error, log it. */
760 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
761 netif_stop_queue(dev);
762 spin_unlock_irq(&cp->lock);
763 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
764 dev->name);
765 return 1;
768 #if CP_VLAN_TAG_USED
769 if (cp->vlgrp && vlan_tx_tag_present(skb))
770 vlan_tag = TxVlanTag | cpu_to_be16(vlan_tx_tag_get(skb));
771 #endif
773 entry = cp->tx_head;
774 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
775 if (skb_shinfo(skb)->nr_frags == 0) {
776 struct cp_desc *txd = &cp->tx_ring[entry];
777 u32 len;
778 dma_addr_t mapping;
780 len = skb->len;
781 mapping = pci_map_single(cp->pdev, skb->data, len, PCI_DMA_TODEVICE);
782 CP_VLAN_TX_TAG(txd, vlan_tag);
783 txd->addr = cpu_to_le64(mapping);
784 wmb();
786 if (skb->ip_summed == CHECKSUM_HW) {
787 const struct iphdr *ip = skb->nh.iph;
788 if (ip->protocol == IPPROTO_TCP)
789 txd->opts1 = cpu_to_le32(eor | len | DescOwn |
790 FirstFrag | LastFrag |
791 IPCS | TCPCS);
792 else if (ip->protocol == IPPROTO_UDP)
793 txd->opts1 = cpu_to_le32(eor | len | DescOwn |
794 FirstFrag | LastFrag |
795 IPCS | UDPCS);
796 else
797 BUG();
798 } else
799 txd->opts1 = cpu_to_le32(eor | len | DescOwn |
800 FirstFrag | LastFrag);
801 wmb();
803 cp->tx_skb[entry].skb = skb;
804 cp->tx_skb[entry].mapping = mapping;
805 cp->tx_skb[entry].frag = 0;
806 entry = NEXT_TX(entry);
807 } else {
808 struct cp_desc *txd;
809 u32 first_len, first_eor;
810 dma_addr_t first_mapping;
811 int frag, first_entry = entry;
812 const struct iphdr *ip = skb->nh.iph;
814 /* We must give this initial chunk to the device last.
815 * Otherwise we could race with the device.
817 first_eor = eor;
818 first_len = skb_headlen(skb);
819 first_mapping = pci_map_single(cp->pdev, skb->data,
820 first_len, PCI_DMA_TODEVICE);
821 cp->tx_skb[entry].skb = skb;
822 cp->tx_skb[entry].mapping = first_mapping;
823 cp->tx_skb[entry].frag = 1;
824 entry = NEXT_TX(entry);
826 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
827 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
828 u32 len;
829 u32 ctrl;
830 dma_addr_t mapping;
832 len = this_frag->size;
833 mapping = pci_map_single(cp->pdev,
834 ((void *) page_address(this_frag->page) +
835 this_frag->page_offset),
836 len, PCI_DMA_TODEVICE);
837 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
839 if (skb->ip_summed == CHECKSUM_HW) {
840 ctrl = eor | len | DescOwn | IPCS;
841 if (ip->protocol == IPPROTO_TCP)
842 ctrl |= TCPCS;
843 else if (ip->protocol == IPPROTO_UDP)
844 ctrl |= UDPCS;
845 else
846 BUG();
847 } else
848 ctrl = eor | len | DescOwn;
850 if (frag == skb_shinfo(skb)->nr_frags - 1)
851 ctrl |= LastFrag;
853 txd = &cp->tx_ring[entry];
854 CP_VLAN_TX_TAG(txd, vlan_tag);
855 txd->addr = cpu_to_le64(mapping);
856 wmb();
858 txd->opts1 = cpu_to_le32(ctrl);
859 wmb();
861 cp->tx_skb[entry].skb = skb;
862 cp->tx_skb[entry].mapping = mapping;
863 cp->tx_skb[entry].frag = frag + 2;
864 entry = NEXT_TX(entry);
867 txd = &cp->tx_ring[first_entry];
868 CP_VLAN_TX_TAG(txd, vlan_tag);
869 txd->addr = cpu_to_le64(first_mapping);
870 wmb();
872 if (skb->ip_summed == CHECKSUM_HW) {
873 if (ip->protocol == IPPROTO_TCP)
874 txd->opts1 = cpu_to_le32(first_eor | first_len |
875 FirstFrag | DescOwn |
876 IPCS | TCPCS);
877 else if (ip->protocol == IPPROTO_UDP)
878 txd->opts1 = cpu_to_le32(first_eor | first_len |
879 FirstFrag | DescOwn |
880 IPCS | UDPCS);
881 else
882 BUG();
883 } else
884 txd->opts1 = cpu_to_le32(first_eor | first_len |
885 FirstFrag | DescOwn);
886 wmb();
888 cp->tx_head = entry;
889 if (netif_msg_tx_queued(cp))
890 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
891 dev->name, entry, skb->len);
892 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
893 netif_stop_queue(dev);
895 spin_unlock_irq(&cp->lock);
897 cpw8(TxPoll, NormalTxPoll);
898 dev->trans_start = jiffies;
900 return 0;
903 /* Set or clear the multicast filter for this adaptor.
904 This routine is not state sensitive and need not be SMP locked. */
906 static void __cp_set_rx_mode (struct net_device *dev)
908 struct cp_private *cp = netdev_priv(dev);
909 u32 mc_filter[2]; /* Multicast hash filter */
910 int i, rx_mode;
911 u32 tmp;
913 /* Note: do not reorder, GCC is clever about common statements. */
914 if (dev->flags & IFF_PROMISC) {
915 /* Unconditionally log net taps. */
916 printk (KERN_NOTICE "%s: Promiscuous mode enabled.\n",
917 dev->name);
918 rx_mode =
919 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
920 AcceptAllPhys;
921 mc_filter[1] = mc_filter[0] = 0xffffffff;
922 } else if ((dev->mc_count > multicast_filter_limit)
923 || (dev->flags & IFF_ALLMULTI)) {
924 /* Too many to filter perfectly -- accept all multicasts. */
925 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
926 mc_filter[1] = mc_filter[0] = 0xffffffff;
927 } else {
928 struct dev_mc_list *mclist;
929 rx_mode = AcceptBroadcast | AcceptMyPhys;
930 mc_filter[1] = mc_filter[0] = 0;
931 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
932 i++, mclist = mclist->next) {
933 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
935 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
936 rx_mode |= AcceptMulticast;
940 /* We can safely update without stopping the chip. */
941 tmp = cp_rx_config | rx_mode;
942 if (cp->rx_config != tmp) {
943 cpw32_f (RxConfig, tmp);
944 cp->rx_config = tmp;
946 cpw32_f (MAR0 + 0, mc_filter[0]);
947 cpw32_f (MAR0 + 4, mc_filter[1]);
950 static void cp_set_rx_mode (struct net_device *dev)
952 unsigned long flags;
953 struct cp_private *cp = netdev_priv(dev);
955 spin_lock_irqsave (&cp->lock, flags);
956 __cp_set_rx_mode(dev);
957 spin_unlock_irqrestore (&cp->lock, flags);
960 static void __cp_get_stats(struct cp_private *cp)
962 /* only lower 24 bits valid; write any value to clear */
963 cp->net_stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
964 cpw32 (RxMissed, 0);
967 static struct net_device_stats *cp_get_stats(struct net_device *dev)
969 struct cp_private *cp = netdev_priv(dev);
970 unsigned long flags;
972 /* The chip only need report frame silently dropped. */
973 spin_lock_irqsave(&cp->lock, flags);
974 if (netif_running(dev) && netif_device_present(dev))
975 __cp_get_stats(cp);
976 spin_unlock_irqrestore(&cp->lock, flags);
978 return &cp->net_stats;
981 static void cp_stop_hw (struct cp_private *cp)
983 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
984 cpw16_f(IntrMask, 0);
985 cpw8(Cmd, 0);
986 cpw16_f(CpCmd, 0);
987 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
989 cp->rx_tail = 0;
990 cp->tx_head = cp->tx_tail = 0;
993 static void cp_reset_hw (struct cp_private *cp)
995 unsigned work = 1000;
997 cpw8(Cmd, CmdReset);
999 while (work--) {
1000 if (!(cpr8(Cmd) & CmdReset))
1001 return;
1003 set_current_state(TASK_UNINTERRUPTIBLE);
1004 schedule_timeout(10);
1007 printk(KERN_ERR "%s: hardware reset timeout\n", cp->dev->name);
1010 static inline void cp_start_hw (struct cp_private *cp)
1012 cpw16(CpCmd, cp->cpcmd);
1013 cpw8(Cmd, RxOn | TxOn);
1016 static void cp_init_hw (struct cp_private *cp)
1018 struct net_device *dev = cp->dev;
1019 dma_addr_t ring_dma;
1021 cp_reset_hw(cp);
1023 cpw8_f (Cfg9346, Cfg9346_Unlock);
1025 /* Restore our idea of the MAC address. */
1026 cpw32_f (MAC0 + 0, cpu_to_le32 (*(u32 *) (dev->dev_addr + 0)));
1027 cpw32_f (MAC0 + 4, cpu_to_le32 (*(u32 *) (dev->dev_addr + 4)));
1029 cp_start_hw(cp);
1030 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1032 __cp_set_rx_mode(dev);
1033 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1035 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1036 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1037 cpw8(Config3, PARMEnable);
1038 cp->wol_enabled = 0;
1040 cpw8(Config5, cpr8(Config5) & PMEStatus);
1042 cpw32_f(HiTxRingAddr, 0);
1043 cpw32_f(HiTxRingAddr + 4, 0);
1045 ring_dma = cp->ring_dma;
1046 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1047 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1049 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1050 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1051 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1053 cpw16(MultiIntr, 0);
1055 cpw16_f(IntrMask, cp_intr_mask);
1057 cpw8_f(Cfg9346, Cfg9346_Lock);
1060 static int cp_refill_rx (struct cp_private *cp)
1062 unsigned i;
1064 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1065 struct sk_buff *skb;
1067 skb = dev_alloc_skb(cp->rx_buf_sz + RX_OFFSET);
1068 if (!skb)
1069 goto err_out;
1071 skb->dev = cp->dev;
1072 skb_reserve(skb, RX_OFFSET);
1074 cp->rx_skb[i].mapping = pci_map_single(cp->pdev,
1075 skb->tail, cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1076 cp->rx_skb[i].skb = skb;
1077 cp->rx_skb[i].frag = 0;
1079 cp->rx_ring[i].opts2 = 0;
1080 cp->rx_ring[i].addr = cpu_to_le64(cp->rx_skb[i].mapping);
1081 if (i == (CP_RX_RING_SIZE - 1))
1082 cp->rx_ring[i].opts1 =
1083 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1084 else
1085 cp->rx_ring[i].opts1 =
1086 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1089 return 0;
1091 err_out:
1092 cp_clean_rings(cp);
1093 return -ENOMEM;
1096 static int cp_init_rings (struct cp_private *cp)
1098 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1099 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1101 cp->rx_tail = 0;
1102 cp->tx_head = cp->tx_tail = 0;
1104 return cp_refill_rx (cp);
1107 static int cp_alloc_rings (struct cp_private *cp)
1109 void *mem;
1111 mem = pci_alloc_consistent(cp->pdev, CP_RING_BYTES, &cp->ring_dma);
1112 if (!mem)
1113 return -ENOMEM;
1115 cp->rx_ring = mem;
1116 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1118 mem += (CP_RING_BYTES - CP_STATS_SIZE);
1119 cp->nic_stats = mem;
1120 cp->nic_stats_dma = cp->ring_dma + (CP_RING_BYTES - CP_STATS_SIZE);
1122 return cp_init_rings(cp);
1125 static void cp_clean_rings (struct cp_private *cp)
1127 unsigned i;
1129 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1130 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1132 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1133 if (cp->rx_skb[i].skb) {
1134 pci_unmap_single(cp->pdev, cp->rx_skb[i].mapping,
1135 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1136 dev_kfree_skb(cp->rx_skb[i].skb);
1140 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1141 if (cp->tx_skb[i].skb) {
1142 struct sk_buff *skb = cp->tx_skb[i].skb;
1143 pci_unmap_single(cp->pdev, cp->tx_skb[i].mapping,
1144 skb->len, PCI_DMA_TODEVICE);
1145 dev_kfree_skb(skb);
1146 cp->net_stats.tx_dropped++;
1150 memset(&cp->rx_skb, 0, sizeof(struct ring_info) * CP_RX_RING_SIZE);
1151 memset(&cp->tx_skb, 0, sizeof(struct ring_info) * CP_TX_RING_SIZE);
1154 static void cp_free_rings (struct cp_private *cp)
1156 cp_clean_rings(cp);
1157 pci_free_consistent(cp->pdev, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1158 cp->rx_ring = NULL;
1159 cp->tx_ring = NULL;
1160 cp->nic_stats = NULL;
1163 static int cp_open (struct net_device *dev)
1165 struct cp_private *cp = netdev_priv(dev);
1166 int rc;
1168 if (netif_msg_ifup(cp))
1169 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1171 rc = cp_alloc_rings(cp);
1172 if (rc)
1173 return rc;
1175 cp_init_hw(cp);
1177 rc = request_irq(dev->irq, cp_interrupt, SA_SHIRQ, dev->name, dev);
1178 if (rc)
1179 goto err_out_hw;
1181 netif_carrier_off(dev);
1182 mii_check_media(&cp->mii_if, netif_msg_link(cp), TRUE);
1183 netif_start_queue(dev);
1185 return 0;
1187 err_out_hw:
1188 cp_stop_hw(cp);
1189 cp_free_rings(cp);
1190 return rc;
1193 static int cp_close (struct net_device *dev)
1195 struct cp_private *cp = netdev_priv(dev);
1196 unsigned long flags;
1198 if (netif_msg_ifdown(cp))
1199 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1201 spin_lock_irqsave(&cp->lock, flags);
1203 netif_stop_queue(dev);
1204 netif_carrier_off(dev);
1206 cp_stop_hw(cp);
1208 spin_unlock_irqrestore(&cp->lock, flags);
1210 synchronize_irq(dev->irq);
1211 free_irq(dev->irq, dev);
1213 cp_free_rings(cp);
1214 return 0;
1217 #ifdef BROKEN
1218 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1220 struct cp_private *cp = netdev_priv(dev);
1221 int rc;
1222 unsigned long flags;
1224 /* check for invalid MTU, according to hardware limits */
1225 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1226 return -EINVAL;
1228 /* if network interface not up, no need for complexity */
1229 if (!netif_running(dev)) {
1230 dev->mtu = new_mtu;
1231 cp_set_rxbufsize(cp); /* set new rx buf size */
1232 return 0;
1235 spin_lock_irqsave(&cp->lock, flags);
1237 cp_stop_hw(cp); /* stop h/w and free rings */
1238 cp_clean_rings(cp);
1240 dev->mtu = new_mtu;
1241 cp_set_rxbufsize(cp); /* set new rx buf size */
1243 rc = cp_init_rings(cp); /* realloc and restart h/w */
1244 cp_start_hw(cp);
1246 spin_unlock_irqrestore(&cp->lock, flags);
1248 return rc;
1250 #endif /* BROKEN */
1252 static char mii_2_8139_map[8] = {
1253 BasicModeCtrl,
1254 BasicModeStatus,
1257 NWayAdvert,
1258 NWayLPAR,
1259 NWayExpansion,
1263 static int mdio_read(struct net_device *dev, int phy_id, int location)
1265 struct cp_private *cp = netdev_priv(dev);
1267 return location < 8 && mii_2_8139_map[location] ?
1268 readw(cp->regs + mii_2_8139_map[location]) : 0;
1272 static void mdio_write(struct net_device *dev, int phy_id, int location,
1273 int value)
1275 struct cp_private *cp = netdev_priv(dev);
1277 if (location == 0) {
1278 cpw8(Cfg9346, Cfg9346_Unlock);
1279 cpw16(BasicModeCtrl, value);
1280 cpw8(Cfg9346, Cfg9346_Lock);
1281 } else if (location < 8 && mii_2_8139_map[location])
1282 cpw16(mii_2_8139_map[location], value);
1285 /* Set the ethtool Wake-on-LAN settings */
1286 static int netdev_set_wol (struct cp_private *cp,
1287 const struct ethtool_wolinfo *wol)
1289 u8 options;
1291 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1292 /* If WOL is being disabled, no need for complexity */
1293 if (wol->wolopts) {
1294 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1295 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1298 cpw8 (Cfg9346, Cfg9346_Unlock);
1299 cpw8 (Config3, options);
1300 cpw8 (Cfg9346, Cfg9346_Lock);
1302 options = 0; /* Paranoia setting */
1303 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1304 /* If WOL is being disabled, no need for complexity */
1305 if (wol->wolopts) {
1306 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1307 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1308 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1311 cpw8 (Config5, options);
1313 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1315 return 0;
1318 /* Get the ethtool Wake-on-LAN settings */
1319 static void netdev_get_wol (struct cp_private *cp,
1320 struct ethtool_wolinfo *wol)
1322 u8 options;
1324 wol->wolopts = 0; /* Start from scratch */
1325 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1326 WAKE_MCAST | WAKE_UCAST;
1327 /* We don't need to go on if WOL is disabled */
1328 if (!cp->wol_enabled) return;
1330 options = cpr8 (Config3);
1331 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1332 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1334 options = 0; /* Paranoia setting */
1335 options = cpr8 (Config5);
1336 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1337 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1338 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1341 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1343 struct cp_private *cp = netdev_priv(dev);
1345 strcpy (info->driver, DRV_NAME);
1346 strcpy (info->version, DRV_VERSION);
1347 strcpy (info->bus_info, pci_name(cp->pdev));
1350 static int cp_get_regs_len(struct net_device *dev)
1352 return CP_REGS_SIZE;
1355 static int cp_get_stats_count (struct net_device *dev)
1357 return CP_NUM_STATS;
1360 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1362 struct cp_private *cp = netdev_priv(dev);
1363 int rc;
1364 unsigned long flags;
1366 spin_lock_irqsave(&cp->lock, flags);
1367 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1368 spin_unlock_irqrestore(&cp->lock, flags);
1370 return rc;
1373 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1375 struct cp_private *cp = netdev_priv(dev);
1376 int rc;
1377 unsigned long flags;
1379 spin_lock_irqsave(&cp->lock, flags);
1380 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1381 spin_unlock_irqrestore(&cp->lock, flags);
1383 return rc;
1386 static int cp_nway_reset(struct net_device *dev)
1388 struct cp_private *cp = netdev_priv(dev);
1389 return mii_nway_restart(&cp->mii_if);
1392 static u32 cp_get_msglevel(struct net_device *dev)
1394 struct cp_private *cp = netdev_priv(dev);
1395 return cp->msg_enable;
1398 static void cp_set_msglevel(struct net_device *dev, u32 value)
1400 struct cp_private *cp = netdev_priv(dev);
1401 cp->msg_enable = value;
1404 static u32 cp_get_rx_csum(struct net_device *dev)
1406 struct cp_private *cp = netdev_priv(dev);
1407 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1410 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1412 struct cp_private *cp = netdev_priv(dev);
1413 u16 cmd = cp->cpcmd, newcmd;
1415 newcmd = cmd;
1417 if (data)
1418 newcmd |= RxChkSum;
1419 else
1420 newcmd &= ~RxChkSum;
1422 if (newcmd != cmd) {
1423 unsigned long flags;
1425 spin_lock_irqsave(&cp->lock, flags);
1426 cp->cpcmd = newcmd;
1427 cpw16_f(CpCmd, newcmd);
1428 spin_unlock_irqrestore(&cp->lock, flags);
1431 return 0;
1434 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1435 void *p)
1437 struct cp_private *cp = netdev_priv(dev);
1438 unsigned long flags;
1440 if (regs->len < CP_REGS_SIZE)
1441 return /* -EINVAL */;
1443 regs->version = CP_REGS_VER;
1445 spin_lock_irqsave(&cp->lock, flags);
1446 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1447 spin_unlock_irqrestore(&cp->lock, flags);
1450 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1452 struct cp_private *cp = netdev_priv(dev);
1453 unsigned long flags;
1455 spin_lock_irqsave (&cp->lock, flags);
1456 netdev_get_wol (cp, wol);
1457 spin_unlock_irqrestore (&cp->lock, flags);
1460 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1462 struct cp_private *cp = netdev_priv(dev);
1463 unsigned long flags;
1464 int rc;
1466 spin_lock_irqsave (&cp->lock, flags);
1467 rc = netdev_set_wol (cp, wol);
1468 spin_unlock_irqrestore (&cp->lock, flags);
1470 return rc;
1473 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1475 switch (stringset) {
1476 case ETH_SS_STATS:
1477 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1478 break;
1479 default:
1480 BUG();
1481 break;
1485 static void cp_get_ethtool_stats (struct net_device *dev,
1486 struct ethtool_stats *estats, u64 *tmp_stats)
1488 struct cp_private *cp = netdev_priv(dev);
1489 unsigned int work = 100;
1490 int i;
1492 /* begin NIC statistics dump */
1493 cpw32(StatsAddr + 4, (cp->nic_stats_dma >> 16) >> 16);
1494 cpw32(StatsAddr, (cp->nic_stats_dma & 0xffffffff) | DumpStats);
1495 cpr32(StatsAddr);
1497 while (work-- > 0) {
1498 if ((cpr32(StatsAddr) & DumpStats) == 0)
1499 break;
1500 cpu_relax();
1503 if (cpr32(StatsAddr) & DumpStats)
1504 return /* -EIO */;
1506 i = 0;
1507 tmp_stats[i++] = le64_to_cpu(cp->nic_stats->tx_ok);
1508 tmp_stats[i++] = le64_to_cpu(cp->nic_stats->rx_ok);
1509 tmp_stats[i++] = le64_to_cpu(cp->nic_stats->tx_err);
1510 tmp_stats[i++] = le32_to_cpu(cp->nic_stats->rx_err);
1511 tmp_stats[i++] = le16_to_cpu(cp->nic_stats->rx_fifo);
1512 tmp_stats[i++] = le16_to_cpu(cp->nic_stats->frame_align);
1513 tmp_stats[i++] = le32_to_cpu(cp->nic_stats->tx_ok_1col);
1514 tmp_stats[i++] = le32_to_cpu(cp->nic_stats->tx_ok_mcol);
1515 tmp_stats[i++] = le64_to_cpu(cp->nic_stats->rx_ok_phys);
1516 tmp_stats[i++] = le64_to_cpu(cp->nic_stats->rx_ok_bcast);
1517 tmp_stats[i++] = le32_to_cpu(cp->nic_stats->rx_ok_mcast);
1518 tmp_stats[i++] = le16_to_cpu(cp->nic_stats->tx_abort);
1519 tmp_stats[i++] = le16_to_cpu(cp->nic_stats->tx_underrun);
1520 tmp_stats[i++] = cp->cp_stats.rx_frags;
1521 if (i != CP_NUM_STATS)
1522 BUG();
1525 static struct ethtool_ops cp_ethtool_ops = {
1526 .get_drvinfo = cp_get_drvinfo,
1527 .get_regs_len = cp_get_regs_len,
1528 .get_stats_count = cp_get_stats_count,
1529 .get_settings = cp_get_settings,
1530 .set_settings = cp_set_settings,
1531 .nway_reset = cp_nway_reset,
1532 .get_link = ethtool_op_get_link,
1533 .get_msglevel = cp_get_msglevel,
1534 .set_msglevel = cp_set_msglevel,
1535 .get_rx_csum = cp_get_rx_csum,
1536 .set_rx_csum = cp_set_rx_csum,
1537 .get_tx_csum = ethtool_op_get_tx_csum,
1538 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1539 .get_sg = ethtool_op_get_sg,
1540 .set_sg = ethtool_op_set_sg,
1541 .get_regs = cp_get_regs,
1542 .get_wol = cp_get_wol,
1543 .set_wol = cp_set_wol,
1544 .get_strings = cp_get_strings,
1545 .get_ethtool_stats = cp_get_ethtool_stats,
1548 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1550 struct cp_private *cp = netdev_priv(dev);
1551 int rc;
1552 unsigned long flags;
1554 if (!netif_running(dev))
1555 return -EINVAL;
1557 spin_lock_irqsave(&cp->lock, flags);
1558 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1559 spin_unlock_irqrestore(&cp->lock, flags);
1560 return rc;
1563 /* Serial EEPROM section. */
1565 /* EEPROM_Ctrl bits. */
1566 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1567 #define EE_CS 0x08 /* EEPROM chip select. */
1568 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1569 #define EE_WRITE_0 0x00
1570 #define EE_WRITE_1 0x02
1571 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1572 #define EE_ENB (0x80 | EE_CS)
1574 /* Delay between EEPROM clock transitions.
1575 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1578 #define eeprom_delay() readl(ee_addr)
1580 /* The EEPROM commands include the alway-set leading bit. */
1581 #define EE_WRITE_CMD (5)
1582 #define EE_READ_CMD (6)
1583 #define EE_ERASE_CMD (7)
1585 static int read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1587 int i;
1588 unsigned retval = 0;
1589 void __iomem *ee_addr = ioaddr + Cfg9346;
1590 int read_cmd = location | (EE_READ_CMD << addr_len);
1592 writeb (EE_ENB & ~EE_CS, ee_addr);
1593 writeb (EE_ENB, ee_addr);
1594 eeprom_delay ();
1596 /* Shift the read command bits out. */
1597 for (i = 4 + addr_len; i >= 0; i--) {
1598 int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1599 writeb (EE_ENB | dataval, ee_addr);
1600 eeprom_delay ();
1601 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1602 eeprom_delay ();
1604 writeb (EE_ENB, ee_addr);
1605 eeprom_delay ();
1607 for (i = 16; i > 0; i--) {
1608 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1609 eeprom_delay ();
1610 retval =
1611 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1613 writeb (EE_ENB, ee_addr);
1614 eeprom_delay ();
1617 /* Terminate the EEPROM access. */
1618 writeb (~EE_CS, ee_addr);
1619 eeprom_delay ();
1621 return retval;
1624 /* Put the board into D3cold state and wait for WakeUp signal */
1625 static void cp_set_d3_state (struct cp_private *cp)
1627 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1628 pci_set_power_state (cp->pdev, PCI_D3hot);
1631 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1633 struct net_device *dev;
1634 struct cp_private *cp;
1635 int rc;
1636 void __iomem *regs;
1637 long pciaddr;
1638 unsigned int addr_len, i, pci_using_dac;
1639 u8 pci_rev;
1641 #ifndef MODULE
1642 static int version_printed;
1643 if (version_printed++ == 0)
1644 printk("%s", version);
1645 #endif
1647 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
1649 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1650 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pci_rev < 0x20) {
1651 printk(KERN_ERR PFX "pci dev %s (id %04x:%04x rev %02x) is not an 8139C+ compatible chip\n",
1652 pci_name(pdev), pdev->vendor, pdev->device, pci_rev);
1653 printk(KERN_ERR PFX "Try the \"8139too\" driver instead.\n");
1654 return -ENODEV;
1657 dev = alloc_etherdev(sizeof(struct cp_private));
1658 if (!dev)
1659 return -ENOMEM;
1660 SET_MODULE_OWNER(dev);
1661 SET_NETDEV_DEV(dev, &pdev->dev);
1663 cp = netdev_priv(dev);
1664 cp->pdev = pdev;
1665 cp->dev = dev;
1666 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1667 spin_lock_init (&cp->lock);
1668 cp->mii_if.dev = dev;
1669 cp->mii_if.mdio_read = mdio_read;
1670 cp->mii_if.mdio_write = mdio_write;
1671 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1672 cp->mii_if.phy_id_mask = 0x1f;
1673 cp->mii_if.reg_num_mask = 0x1f;
1674 cp_set_rxbufsize(cp);
1676 rc = pci_enable_device(pdev);
1677 if (rc)
1678 goto err_out_free;
1680 rc = pci_set_mwi(pdev);
1681 if (rc)
1682 goto err_out_disable;
1684 rc = pci_request_regions(pdev, DRV_NAME);
1685 if (rc)
1686 goto err_out_mwi;
1688 pciaddr = pci_resource_start(pdev, 1);
1689 if (!pciaddr) {
1690 rc = -EIO;
1691 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
1692 pci_name(pdev));
1693 goto err_out_res;
1695 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1696 rc = -EIO;
1697 printk(KERN_ERR PFX "MMIO resource (%lx) too small on pci dev %s\n",
1698 pci_resource_len(pdev, 1), pci_name(pdev));
1699 goto err_out_res;
1702 /* Configure DMA attributes. */
1703 if ((sizeof(dma_addr_t) > 4) &&
1704 !pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL) &&
1705 !pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) {
1706 pci_using_dac = 1;
1707 } else {
1708 pci_using_dac = 0;
1710 rc = pci_set_dma_mask(pdev, 0xffffffffULL);
1711 if (rc) {
1712 printk(KERN_ERR PFX "No usable DMA configuration, "
1713 "aborting.\n");
1714 goto err_out_res;
1716 rc = pci_set_consistent_dma_mask(pdev, 0xffffffffULL);
1717 if (rc) {
1718 printk(KERN_ERR PFX "No usable consistent DMA configuration, "
1719 "aborting.\n");
1720 goto err_out_res;
1724 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1725 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1727 regs = ioremap(pciaddr, CP_REGS_SIZE);
1728 if (!regs) {
1729 rc = -EIO;
1730 printk(KERN_ERR PFX "Cannot map PCI MMIO (%lx@%lx) on pci dev %s\n",
1731 pci_resource_len(pdev, 1), pciaddr, pci_name(pdev));
1732 goto err_out_res;
1734 dev->base_addr = (unsigned long) regs;
1735 cp->regs = regs;
1737 cp_stop_hw(cp);
1739 /* read MAC address from EEPROM */
1740 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1741 for (i = 0; i < 3; i++)
1742 ((u16 *) (dev->dev_addr))[i] =
1743 le16_to_cpu (read_eeprom (regs, i + 7, addr_len));
1745 dev->open = cp_open;
1746 dev->stop = cp_close;
1747 dev->set_multicast_list = cp_set_rx_mode;
1748 dev->hard_start_xmit = cp_start_xmit;
1749 dev->get_stats = cp_get_stats;
1750 dev->do_ioctl = cp_ioctl;
1751 dev->poll = cp_rx_poll;
1752 dev->weight = 16; /* arbitrary? from NAPI_HOWTO.txt. */
1753 #ifdef BROKEN
1754 dev->change_mtu = cp_change_mtu;
1755 #endif
1756 dev->ethtool_ops = &cp_ethtool_ops;
1757 #if 0
1758 dev->tx_timeout = cp_tx_timeout;
1759 dev->watchdog_timeo = TX_TIMEOUT;
1760 #endif
1762 #if CP_VLAN_TAG_USED
1763 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1764 dev->vlan_rx_register = cp_vlan_rx_register;
1765 dev->vlan_rx_kill_vid = cp_vlan_rx_kill_vid;
1766 #endif
1768 if (pci_using_dac)
1769 dev->features |= NETIF_F_HIGHDMA;
1771 dev->irq = pdev->irq;
1773 rc = register_netdev(dev);
1774 if (rc)
1775 goto err_out_iomap;
1777 printk (KERN_INFO "%s: RTL-8139C+ at 0x%lx, "
1778 "%02x:%02x:%02x:%02x:%02x:%02x, "
1779 "IRQ %d\n",
1780 dev->name,
1781 dev->base_addr,
1782 dev->dev_addr[0], dev->dev_addr[1],
1783 dev->dev_addr[2], dev->dev_addr[3],
1784 dev->dev_addr[4], dev->dev_addr[5],
1785 dev->irq);
1787 pci_set_drvdata(pdev, dev);
1789 /* enable busmastering and memory-write-invalidate */
1790 pci_set_master(pdev);
1792 if (cp->wol_enabled) cp_set_d3_state (cp);
1794 return 0;
1796 err_out_iomap:
1797 iounmap(regs);
1798 err_out_res:
1799 pci_release_regions(pdev);
1800 err_out_mwi:
1801 pci_clear_mwi(pdev);
1802 err_out_disable:
1803 pci_disable_device(pdev);
1804 err_out_free:
1805 free_netdev(dev);
1806 return rc;
1809 static void cp_remove_one (struct pci_dev *pdev)
1811 struct net_device *dev = pci_get_drvdata(pdev);
1812 struct cp_private *cp = netdev_priv(dev);
1814 if (!dev)
1815 BUG();
1816 unregister_netdev(dev);
1817 iounmap(cp->regs);
1818 if (cp->wol_enabled) pci_set_power_state (pdev, PCI_D0);
1819 pci_release_regions(pdev);
1820 pci_clear_mwi(pdev);
1821 pci_disable_device(pdev);
1822 pci_set_drvdata(pdev, NULL);
1823 free_netdev(dev);
1826 #ifdef CONFIG_PM
1827 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
1829 struct net_device *dev;
1830 struct cp_private *cp;
1831 unsigned long flags;
1833 dev = pci_get_drvdata (pdev);
1834 cp = netdev_priv(dev);
1836 if (!dev || !netif_running (dev)) return 0;
1838 netif_device_detach (dev);
1839 netif_stop_queue (dev);
1841 spin_lock_irqsave (&cp->lock, flags);
1843 /* Disable Rx and Tx */
1844 cpw16 (IntrMask, 0);
1845 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
1847 spin_unlock_irqrestore (&cp->lock, flags);
1849 if (cp->pdev && cp->wol_enabled) {
1850 pci_save_state (cp->pdev);
1851 cp_set_d3_state (cp);
1854 return 0;
1857 static int cp_resume (struct pci_dev *pdev)
1859 struct net_device *dev;
1860 struct cp_private *cp;
1862 dev = pci_get_drvdata (pdev);
1863 cp = netdev_priv(dev);
1865 netif_device_attach (dev);
1867 if (cp->pdev && cp->wol_enabled) {
1868 pci_set_power_state (cp->pdev, PCI_D0);
1869 pci_restore_state (cp->pdev);
1872 cp_init_hw (cp);
1873 netif_start_queue (dev);
1875 return 0;
1877 #endif /* CONFIG_PM */
1879 static struct pci_driver cp_driver = {
1880 .name = DRV_NAME,
1881 .id_table = cp_pci_tbl,
1882 .probe = cp_init_one,
1883 .remove = cp_remove_one,
1884 #ifdef CONFIG_PM
1885 .resume = cp_resume,
1886 .suspend = cp_suspend,
1887 #endif
1890 static int __init cp_init (void)
1892 #ifdef MODULE
1893 printk("%s", version);
1894 #endif
1895 return pci_module_init (&cp_driver);
1898 static void __exit cp_exit (void)
1900 pci_unregister_driver (&cp_driver);
1903 module_init(cp_init);
1904 module_exit(cp_exit);