[PATCH] Driver Core: pm diagnostics update, check for errors
[linux-2.6/verdex.git] / kernel / power / swsusp.c
blob90b3b68dee3f71df12ad9b7b370e9b001a403630
1 /*
2 * linux/kernel/power/swsusp.c
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
10 * This file is released under the GPLv2.
12 * I'd like to thank the following people for their work:
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
18 * Steve Doddi <dirk@loth.demon.co.uk>:
19 * Support the possibility of hardware state restoring.
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
29 * Andreas Mohr <a.mohr@mailto.de>
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
34 * More state savers are welcome. Especially for the scsi layer...
36 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/suspend.h>
42 #include <linux/smp_lock.h>
43 #include <linux/file.h>
44 #include <linux/utsname.h>
45 #include <linux/version.h>
46 #include <linux/delay.h>
47 #include <linux/reboot.h>
48 #include <linux/bitops.h>
49 #include <linux/vt_kern.h>
50 #include <linux/kbd_kern.h>
51 #include <linux/keyboard.h>
52 #include <linux/spinlock.h>
53 #include <linux/genhd.h>
54 #include <linux/kernel.h>
55 #include <linux/major.h>
56 #include <linux/swap.h>
57 #include <linux/pm.h>
58 #include <linux/device.h>
59 #include <linux/buffer_head.h>
60 #include <linux/swapops.h>
61 #include <linux/bootmem.h>
62 #include <linux/syscalls.h>
63 #include <linux/console.h>
64 #include <linux/highmem.h>
65 #include <linux/bio.h>
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/io.h>
73 #include "power.h"
75 /* References to section boundaries */
76 extern const void __nosave_begin, __nosave_end;
78 /* Variables to be preserved over suspend */
79 static int nr_copy_pages_check;
81 extern char resume_file[];
83 /* Local variables that should not be affected by save */
84 unsigned int nr_copy_pages __nosavedata = 0;
86 /* Suspend pagedir is allocated before final copy, therefore it
87 must be freed after resume
89 Warning: this is evil. There are actually two pagedirs at time of
90 resume. One is "pagedir_save", which is empty frame allocated at
91 time of suspend, that must be freed. Second is "pagedir_nosave",
92 allocated at time of resume, that travels through memory not to
93 collide with anything.
95 Warning: this is even more evil than it seems. Pagedirs this file
96 talks about are completely different from page directories used by
97 MMU hardware.
99 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
100 static suspend_pagedir_t *pagedir_save;
102 #define SWSUSP_SIG "S1SUSPEND"
104 static struct swsusp_header {
105 char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
106 swp_entry_t swsusp_info;
107 char orig_sig[10];
108 char sig[10];
109 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
111 static struct swsusp_info swsusp_info;
114 * XXX: We try to keep some more pages free so that I/O operations succeed
115 * without paging. Might this be more?
117 #define PAGES_FOR_IO 512
120 * Saving part...
123 /* We memorize in swapfile_used what swap devices are used for suspension */
124 #define SWAPFILE_UNUSED 0
125 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
126 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
128 static unsigned short swapfile_used[MAX_SWAPFILES];
129 static unsigned short root_swap;
131 static int mark_swapfiles(swp_entry_t prev)
133 int error;
135 rw_swap_page_sync(READ,
136 swp_entry(root_swap, 0),
137 virt_to_page((unsigned long)&swsusp_header));
138 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
139 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
140 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
141 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
142 swsusp_header.swsusp_info = prev;
143 error = rw_swap_page_sync(WRITE,
144 swp_entry(root_swap, 0),
145 virt_to_page((unsigned long)
146 &swsusp_header));
147 } else {
148 pr_debug("swsusp: Partition is not swap space.\n");
149 error = -ENODEV;
151 return error;
155 * Check whether the swap device is the specified resume
156 * device, irrespective of whether they are specified by
157 * identical names.
159 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
160 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
161 * and they'll be considered the same device. This is *necessary* for
162 * devfs, since the resume code can only recognize the form /dev/hda4,
163 * but the suspend code would see the long name.)
165 static int is_resume_device(const struct swap_info_struct *swap_info)
167 struct file *file = swap_info->swap_file;
168 struct inode *inode = file->f_dentry->d_inode;
170 return S_ISBLK(inode->i_mode) &&
171 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
174 static int swsusp_swap_check(void) /* This is called before saving image */
176 int i, len;
178 len=strlen(resume_file);
179 root_swap = 0xFFFF;
181 swap_list_lock();
182 for(i=0; i<MAX_SWAPFILES; i++) {
183 if (swap_info[i].flags == 0) {
184 swapfile_used[i]=SWAPFILE_UNUSED;
185 } else {
186 if(!len) {
187 printk(KERN_WARNING "resume= option should be used to set suspend device" );
188 if(root_swap == 0xFFFF) {
189 swapfile_used[i] = SWAPFILE_SUSPEND;
190 root_swap = i;
191 } else
192 swapfile_used[i] = SWAPFILE_IGNORED;
193 } else {
194 /* we ignore all swap devices that are not the resume_file */
195 if (is_resume_device(&swap_info[i])) {
196 swapfile_used[i] = SWAPFILE_SUSPEND;
197 root_swap = i;
198 } else {
199 swapfile_used[i] = SWAPFILE_IGNORED;
204 swap_list_unlock();
205 return (root_swap != 0xffff) ? 0 : -ENODEV;
209 * This is called after saving image so modification
210 * will be lost after resume... and that's what we want.
211 * we make the device unusable. A new call to
212 * lock_swapdevices can unlock the devices.
214 static void lock_swapdevices(void)
216 int i;
218 swap_list_lock();
219 for(i = 0; i< MAX_SWAPFILES; i++)
220 if(swapfile_used[i] == SWAPFILE_IGNORED) {
221 swap_info[i].flags ^= 0xFF;
223 swap_list_unlock();
227 * write_swap_page - Write one page to a fresh swap location.
228 * @addr: Address we're writing.
229 * @loc: Place to store the entry we used.
231 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
232 * errors. That is an artifact left over from swsusp. It did not
233 * check the return of rw_swap_page_sync() at all, since most pages
234 * written back to swap would return -EIO.
235 * This is a partial improvement, since we will at least return other
236 * errors, though we need to eventually fix the damn code.
238 static int write_page(unsigned long addr, swp_entry_t * loc)
240 swp_entry_t entry;
241 int error = 0;
243 entry = get_swap_page();
244 if (swp_offset(entry) &&
245 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
246 error = rw_swap_page_sync(WRITE, entry,
247 virt_to_page(addr));
248 if (error == -EIO)
249 error = 0;
250 if (!error)
251 *loc = entry;
252 } else
253 error = -ENOSPC;
254 return error;
258 * data_free - Free the swap entries used by the saved image.
260 * Walk the list of used swap entries and free each one.
261 * This is only used for cleanup when suspend fails.
263 static void data_free(void)
265 swp_entry_t entry;
266 int i;
268 for (i = 0; i < nr_copy_pages; i++) {
269 entry = (pagedir_nosave + i)->swap_address;
270 if (entry.val)
271 swap_free(entry);
272 else
273 break;
274 (pagedir_nosave + i)->swap_address = (swp_entry_t){0};
279 * data_write - Write saved image to swap.
281 * Walk the list of pages in the image and sync each one to swap.
283 static int data_write(void)
285 int error = 0, i = 0;
286 unsigned int mod = nr_copy_pages / 100;
287 struct pbe *p;
289 if (!mod)
290 mod = 1;
292 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
293 for_each_pbe(p, pagedir_nosave) {
294 if (!(i%mod))
295 printk( "\b\b\b\b%3d%%", i / mod );
296 if ((error = write_page(p->address, &(p->swap_address))))
297 return error;
298 i++;
300 printk("\b\b\b\bdone\n");
301 return error;
304 static void dump_info(void)
306 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
307 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
308 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
309 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
310 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
311 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
312 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
313 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
314 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
315 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
316 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
319 static void init_header(void)
321 memset(&swsusp_info, 0, sizeof(swsusp_info));
322 swsusp_info.version_code = LINUX_VERSION_CODE;
323 swsusp_info.num_physpages = num_physpages;
324 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
326 swsusp_info.suspend_pagedir = pagedir_nosave;
327 swsusp_info.cpus = num_online_cpus();
328 swsusp_info.image_pages = nr_copy_pages;
331 static int close_swap(void)
333 swp_entry_t entry;
334 int error;
336 dump_info();
337 error = write_page((unsigned long)&swsusp_info, &entry);
338 if (!error) {
339 printk( "S" );
340 error = mark_swapfiles(entry);
341 printk( "|\n" );
343 return error;
347 * free_pagedir_entries - Free pages used by the page directory.
349 * This is used during suspend for error recovery.
352 static void free_pagedir_entries(void)
354 int i;
356 for (i = 0; i < swsusp_info.pagedir_pages; i++)
357 swap_free(swsusp_info.pagedir[i]);
362 * write_pagedir - Write the array of pages holding the page directory.
363 * @last: Last swap entry we write (needed for header).
366 static int write_pagedir(void)
368 int error = 0;
369 unsigned n = 0;
370 struct pbe * pbe;
372 printk( "Writing pagedir...");
373 for_each_pb_page(pbe, pagedir_nosave) {
374 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
375 return error;
378 swsusp_info.pagedir_pages = n;
379 printk("done (%u pages)\n", n);
380 return error;
384 * write_suspend_image - Write entire image and metadata.
388 static int write_suspend_image(void)
390 int error;
392 init_header();
393 if ((error = data_write()))
394 goto FreeData;
396 if ((error = write_pagedir()))
397 goto FreePagedir;
399 if ((error = close_swap()))
400 goto FreePagedir;
401 Done:
402 return error;
403 FreePagedir:
404 free_pagedir_entries();
405 FreeData:
406 data_free();
407 goto Done;
411 #ifdef CONFIG_HIGHMEM
412 struct highmem_page {
413 char *data;
414 struct page *page;
415 struct highmem_page *next;
418 static struct highmem_page *highmem_copy;
420 static int save_highmem_zone(struct zone *zone)
422 unsigned long zone_pfn;
423 mark_free_pages(zone);
424 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
425 struct page *page;
426 struct highmem_page *save;
427 void *kaddr;
428 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
430 if (!(pfn%1000))
431 printk(".");
432 if (!pfn_valid(pfn))
433 continue;
434 page = pfn_to_page(pfn);
436 * This condition results from rvmalloc() sans vmalloc_32()
437 * and architectural memory reservations. This should be
438 * corrected eventually when the cases giving rise to this
439 * are better understood.
441 if (PageReserved(page)) {
442 printk("highmem reserved page?!\n");
443 continue;
445 BUG_ON(PageNosave(page));
446 if (PageNosaveFree(page))
447 continue;
448 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
449 if (!save)
450 return -ENOMEM;
451 save->next = highmem_copy;
452 save->page = page;
453 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
454 if (!save->data) {
455 kfree(save);
456 return -ENOMEM;
458 kaddr = kmap_atomic(page, KM_USER0);
459 memcpy(save->data, kaddr, PAGE_SIZE);
460 kunmap_atomic(kaddr, KM_USER0);
461 highmem_copy = save;
463 return 0;
465 #endif /* CONFIG_HIGHMEM */
468 static int save_highmem(void)
470 #ifdef CONFIG_HIGHMEM
471 struct zone *zone;
472 int res = 0;
474 pr_debug("swsusp: Saving Highmem\n");
475 for_each_zone(zone) {
476 if (is_highmem(zone))
477 res = save_highmem_zone(zone);
478 if (res)
479 return res;
481 #endif
482 return 0;
485 static int restore_highmem(void)
487 #ifdef CONFIG_HIGHMEM
488 printk("swsusp: Restoring Highmem\n");
489 while (highmem_copy) {
490 struct highmem_page *save = highmem_copy;
491 void *kaddr;
492 highmem_copy = save->next;
494 kaddr = kmap_atomic(save->page, KM_USER0);
495 memcpy(kaddr, save->data, PAGE_SIZE);
496 kunmap_atomic(kaddr, KM_USER0);
497 free_page((long) save->data);
498 kfree(save);
500 #endif
501 return 0;
505 static int pfn_is_nosave(unsigned long pfn)
507 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
508 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
509 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
513 * saveable - Determine whether a page should be cloned or not.
514 * @pfn: The page
516 * We save a page if it's Reserved, and not in the range of pages
517 * statically defined as 'unsaveable', or if it isn't reserved, and
518 * isn't part of a free chunk of pages.
521 static int saveable(struct zone * zone, unsigned long * zone_pfn)
523 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
524 struct page * page;
526 if (!pfn_valid(pfn))
527 return 0;
529 page = pfn_to_page(pfn);
530 BUG_ON(PageReserved(page) && PageNosave(page));
531 if (PageNosave(page))
532 return 0;
533 if (PageReserved(page) && pfn_is_nosave(pfn)) {
534 pr_debug("[nosave pfn 0x%lx]", pfn);
535 return 0;
537 if (PageNosaveFree(page))
538 return 0;
540 return 1;
543 static void count_data_pages(void)
545 struct zone *zone;
546 unsigned long zone_pfn;
548 nr_copy_pages = 0;
550 for_each_zone(zone) {
551 if (is_highmem(zone))
552 continue;
553 mark_free_pages(zone);
554 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
555 nr_copy_pages += saveable(zone, &zone_pfn);
560 static void copy_data_pages(void)
562 struct zone *zone;
563 unsigned long zone_pfn;
564 struct pbe * pbe = pagedir_nosave;
566 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
567 for_each_zone(zone) {
568 if (is_highmem(zone))
569 continue;
570 mark_free_pages(zone);
571 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
572 if (saveable(zone, &zone_pfn)) {
573 struct page * page;
574 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
575 BUG_ON(!pbe);
576 pbe->orig_address = (long) page_address(page);
577 /* copy_page is not usable for copying task structs. */
578 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
579 pbe = pbe->next;
583 BUG_ON(pbe);
588 * calc_nr - Determine the number of pages needed for a pbe list.
591 static int calc_nr(int nr_copy)
593 int extra = 0;
594 int mod = !!(nr_copy % PBES_PER_PAGE);
595 int diff = (nr_copy / PBES_PER_PAGE) + mod;
597 do {
598 extra += diff;
599 nr_copy += diff;
600 mod = !!(nr_copy % PBES_PER_PAGE);
601 diff = (nr_copy / PBES_PER_PAGE) + mod - extra;
602 } while (diff > 0);
604 return nr_copy;
608 * free_pagedir - free pages allocated with alloc_pagedir()
611 static inline void free_pagedir(struct pbe *pblist)
613 struct pbe *pbe;
615 while (pblist) {
616 pbe = (pblist + PB_PAGE_SKIP)->next;
617 free_page((unsigned long)pblist);
618 pblist = pbe;
623 * fill_pb_page - Create a list of PBEs on a given memory page
626 static inline void fill_pb_page(struct pbe *pbpage)
628 struct pbe *p;
630 p = pbpage;
631 pbpage += PB_PAGE_SKIP;
633 p->next = p + 1;
634 while (++p < pbpage);
638 * create_pbe_list - Create a list of PBEs on top of a given chain
639 * of memory pages allocated with alloc_pagedir()
642 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
644 struct pbe *pbpage, *p;
645 unsigned num = PBES_PER_PAGE;
647 for_each_pb_page (pbpage, pblist) {
648 if (num >= nr_pages)
649 break;
651 fill_pb_page(pbpage);
652 num += PBES_PER_PAGE;
654 if (pbpage) {
655 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
656 p->next = p + 1;
657 p->next = NULL;
659 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
663 * alloc_pagedir - Allocate the page directory.
665 * First, determine exactly how many pages we need and
666 * allocate them.
668 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
669 * struct pbe elements (pbes) and the last element in the page points
670 * to the next page.
672 * On each page we set up a list of struct_pbe elements.
675 static struct pbe * alloc_pagedir(unsigned nr_pages)
677 unsigned num;
678 struct pbe *pblist, *pbe;
680 if (!nr_pages)
681 return NULL;
683 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
684 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
685 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
686 pbe = pbe->next, num += PBES_PER_PAGE) {
687 pbe += PB_PAGE_SKIP;
688 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
690 if (!pbe) { /* get_zeroed_page() failed */
691 free_pagedir(pblist);
692 pblist = NULL;
694 return pblist;
698 * free_image_pages - Free pages allocated for snapshot
701 static void free_image_pages(void)
703 struct pbe * p;
705 for_each_pbe(p, pagedir_save) {
706 if (p->address) {
707 ClearPageNosave(virt_to_page(p->address));
708 free_page(p->address);
709 p->address = 0;
715 * alloc_image_pages - Allocate pages for the snapshot.
718 static int alloc_image_pages(void)
720 struct pbe * p;
722 for_each_pbe(p, pagedir_save) {
723 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
724 if (!p->address)
725 return -ENOMEM;
726 SetPageNosave(virt_to_page(p->address));
728 return 0;
731 void swsusp_free(void)
733 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
734 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
735 free_image_pages();
736 free_pagedir(pagedir_save);
741 * enough_free_mem - Make sure we enough free memory to snapshot.
743 * Returns TRUE or FALSE after checking the number of available
744 * free pages.
747 static int enough_free_mem(void)
749 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
750 pr_debug("swsusp: Not enough free pages: Have %d\n",
751 nr_free_pages());
752 return 0;
754 return 1;
759 * enough_swap - Make sure we have enough swap to save the image.
761 * Returns TRUE or FALSE after checking the total amount of swap
762 * space avaiable.
764 * FIXME: si_swapinfo(&i) returns all swap devices information.
765 * We should only consider resume_device.
768 static int enough_swap(void)
770 struct sysinfo i;
772 si_swapinfo(&i);
773 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
774 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
775 return 0;
777 return 1;
780 static int swsusp_alloc(void)
782 int error;
784 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
785 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
787 pagedir_nosave = NULL;
788 if (!enough_free_mem())
789 return -ENOMEM;
791 if (!enough_swap())
792 return -ENOSPC;
794 nr_copy_pages = calc_nr(nr_copy_pages);
796 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
797 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
798 return -ENOMEM;
800 create_pbe_list(pagedir_save, nr_copy_pages);
801 pagedir_nosave = pagedir_save;
802 if ((error = alloc_image_pages())) {
803 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
804 swsusp_free();
805 return error;
808 nr_copy_pages_check = nr_copy_pages;
809 return 0;
812 static int suspend_prepare_image(void)
814 int error;
816 pr_debug("swsusp: critical section: \n");
817 if (save_highmem()) {
818 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
819 restore_highmem();
820 return -ENOMEM;
823 drain_local_pages();
824 count_data_pages();
825 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
827 error = swsusp_alloc();
828 if (error)
829 return error;
831 /* During allocating of suspend pagedir, new cold pages may appear.
832 * Kill them.
834 drain_local_pages();
835 copy_data_pages();
838 * End of critical section. From now on, we can write to memory,
839 * but we should not touch disk. This specially means we must _not_
840 * touch swap space! Except we must write out our image of course.
843 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
844 return 0;
848 /* It is important _NOT_ to umount filesystems at this point. We want
849 * them synced (in case something goes wrong) but we DO not want to mark
850 * filesystem clean: it is not. (And it does not matter, if we resume
851 * correctly, we'll mark system clean, anyway.)
853 int swsusp_write(void)
855 int error;
856 device_resume();
857 lock_swapdevices();
858 error = write_suspend_image();
859 /* This will unlock ignored swap devices since writing is finished */
860 lock_swapdevices();
861 return error;
866 extern asmlinkage int swsusp_arch_suspend(void);
867 extern asmlinkage int swsusp_arch_resume(void);
870 asmlinkage int swsusp_save(void)
872 int error = 0;
874 if ((error = swsusp_swap_check())) {
875 printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try "
876 "swapon -a!\n");
877 return error;
879 return suspend_prepare_image();
882 int swsusp_suspend(void)
884 int error;
885 if ((error = arch_prepare_suspend()))
886 return error;
887 local_irq_disable();
888 /* At this point, device_suspend() has been called, but *not*
889 * device_power_down(). We *must* device_power_down() now.
890 * Otherwise, drivers for some devices (e.g. interrupt controllers)
891 * become desynchronized with the actual state of the hardware
892 * at resume time, and evil weirdness ensues.
894 if ((error = device_power_down(PMSG_FREEZE))) {
895 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
896 local_irq_enable();
897 swsusp_free();
898 return error;
900 save_processor_state();
901 if ((error = swsusp_arch_suspend()))
902 swsusp_free();
903 /* Restore control flow magically appears here */
904 restore_processor_state();
905 BUG_ON (nr_copy_pages_check != nr_copy_pages);
906 restore_highmem();
907 device_power_up();
908 local_irq_enable();
909 return error;
912 int swsusp_resume(void)
914 int error;
915 local_irq_disable();
916 if (device_power_down(PMSG_FREEZE))
917 printk(KERN_ERR "Some devices failed to power down, very bad\n");
918 /* We'll ignore saved state, but this gets preempt count (etc) right */
919 save_processor_state();
920 error = swsusp_arch_resume();
921 /* Code below is only ever reached in case of failure. Otherwise
922 * execution continues at place where swsusp_arch_suspend was called
924 BUG_ON(!error);
925 restore_processor_state();
926 restore_highmem();
927 device_power_up();
928 local_irq_enable();
929 return error;
932 /* More restore stuff */
935 * Returns true if given address/order collides with any orig_address
937 static int does_collide_order(unsigned long addr, int order)
939 int i;
941 for (i=0; i < (1<<order); i++)
942 if (!PageNosaveFree(virt_to_page(addr + i * PAGE_SIZE)))
943 return 1;
944 return 0;
948 * On resume, for storing the PBE list and the image,
949 * we can only use memory pages that do not conflict with the pages
950 * which had been used before suspend.
952 * We don't know which pages are usable until we allocate them.
954 * Allocated but unusable (ie eaten) memory pages are linked together
955 * to create a list, so that we can free them easily
957 * We could have used a type other than (void *)
958 * for this purpose, but ...
960 static void **eaten_memory = NULL;
962 static inline void eat_page(void *page)
964 void **c;
966 c = eaten_memory;
967 eaten_memory = page;
968 *eaten_memory = c;
971 static unsigned long get_usable_page(unsigned gfp_mask)
973 unsigned long m;
975 m = get_zeroed_page(gfp_mask);
976 while (does_collide_order(m, 0)) {
977 eat_page((void *)m);
978 m = get_zeroed_page(gfp_mask);
979 if (!m)
980 break;
982 return m;
985 static void free_eaten_memory(void)
987 unsigned long m;
988 void **c;
989 int i = 0;
991 c = eaten_memory;
992 while (c) {
993 m = (unsigned long)c;
994 c = *c;
995 free_page(m);
996 i++;
998 eaten_memory = NULL;
999 pr_debug("swsusp: %d unused pages freed\n", i);
1003 * check_pagedir - We ensure here that pages that the PBEs point to
1004 * won't collide with pages where we're going to restore from the loaded
1005 * pages later
1008 static int check_pagedir(struct pbe *pblist)
1010 struct pbe *p;
1012 /* This is necessary, so that we can free allocated pages
1013 * in case of failure
1015 for_each_pbe (p, pblist)
1016 p->address = 0UL;
1018 for_each_pbe (p, pblist) {
1019 p->address = get_usable_page(GFP_ATOMIC);
1020 if (!p->address)
1021 return -ENOMEM;
1023 return 0;
1027 * swsusp_pagedir_relocate - It is possible, that some memory pages
1028 * occupied by the list of PBEs collide with pages where we're going to
1029 * restore from the loaded pages later. We relocate them here.
1032 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1034 struct zone *zone;
1035 unsigned long zone_pfn;
1036 struct pbe *pbpage, *tail, *p;
1037 void *m;
1038 int rel = 0, error = 0;
1040 if (!pblist) /* a sanity check */
1041 return NULL;
1043 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1044 swsusp_info.pagedir_pages);
1046 /* Set page flags */
1048 for_each_zone(zone) {
1049 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1050 SetPageNosaveFree(pfn_to_page(zone_pfn +
1051 zone->zone_start_pfn));
1054 /* Clear orig addresses */
1056 for_each_pbe (p, pblist)
1057 ClearPageNosaveFree(virt_to_page(p->orig_address));
1059 tail = pblist + PB_PAGE_SKIP;
1061 /* Relocate colliding pages */
1063 for_each_pb_page (pbpage, pblist) {
1064 if (does_collide_order((unsigned long)pbpage, 0)) {
1065 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1066 if (!m) {
1067 error = -ENOMEM;
1068 break;
1070 memcpy(m, (void *)pbpage, PAGE_SIZE);
1071 if (pbpage == pblist)
1072 pblist = (struct pbe *)m;
1073 else
1074 tail->next = (struct pbe *)m;
1076 eat_page((void *)pbpage);
1077 pbpage = (struct pbe *)m;
1079 /* We have to link the PBEs again */
1081 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1082 if (p->next) /* needed to save the end */
1083 p->next = p + 1;
1085 rel++;
1087 tail = pbpage + PB_PAGE_SKIP;
1090 if (error) {
1091 printk("\nswsusp: Out of memory\n\n");
1092 free_pagedir(pblist);
1093 free_eaten_memory();
1094 pblist = NULL;
1096 else
1097 printk("swsusp: Relocated %d pages\n", rel);
1099 return pblist;
1103 * Using bio to read from swap.
1104 * This code requires a bit more work than just using buffer heads
1105 * but, it is the recommended way for 2.5/2.6.
1106 * The following are to signal the beginning and end of I/O. Bios
1107 * finish asynchronously, while we want them to happen synchronously.
1108 * A simple atomic_t, and a wait loop take care of this problem.
1111 static atomic_t io_done = ATOMIC_INIT(0);
1113 static int end_io(struct bio * bio, unsigned int num, int err)
1115 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1116 panic("I/O error reading memory image");
1117 atomic_set(&io_done, 0);
1118 return 0;
1121 static struct block_device * resume_bdev;
1124 * submit - submit BIO request.
1125 * @rw: READ or WRITE.
1126 * @off physical offset of page.
1127 * @page: page we're reading or writing.
1129 * Straight from the textbook - allocate and initialize the bio.
1130 * If we're writing, make sure the page is marked as dirty.
1131 * Then submit it and wait.
1134 static int submit(int rw, pgoff_t page_off, void * page)
1136 int error = 0;
1137 struct bio * bio;
1139 bio = bio_alloc(GFP_ATOMIC, 1);
1140 if (!bio)
1141 return -ENOMEM;
1142 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1143 bio_get(bio);
1144 bio->bi_bdev = resume_bdev;
1145 bio->bi_end_io = end_io;
1147 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1148 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1149 error = -EFAULT;
1150 goto Done;
1153 if (rw == WRITE)
1154 bio_set_pages_dirty(bio);
1156 atomic_set(&io_done, 1);
1157 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1158 while (atomic_read(&io_done))
1159 yield();
1161 Done:
1162 bio_put(bio);
1163 return error;
1166 static int bio_read_page(pgoff_t page_off, void * page)
1168 return submit(READ, page_off, page);
1171 static int bio_write_page(pgoff_t page_off, void * page)
1173 return submit(WRITE, page_off, page);
1177 * Sanity check if this image makes sense with this kernel/swap context
1178 * I really don't think that it's foolproof but more than nothing..
1181 static const char * sanity_check(void)
1183 dump_info();
1184 if(swsusp_info.version_code != LINUX_VERSION_CODE)
1185 return "kernel version";
1186 if(swsusp_info.num_physpages != num_physpages)
1187 return "memory size";
1188 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1189 return "system type";
1190 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1191 return "kernel release";
1192 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1193 return "version";
1194 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1195 return "machine";
1196 if(swsusp_info.cpus != num_online_cpus())
1197 return "number of cpus";
1198 return NULL;
1202 static int check_header(void)
1204 const char * reason = NULL;
1205 int error;
1207 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1208 return error;
1210 /* Is this same machine? */
1211 if ((reason = sanity_check())) {
1212 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1213 return -EPERM;
1215 nr_copy_pages = swsusp_info.image_pages;
1216 return error;
1219 static int check_sig(void)
1221 int error;
1223 memset(&swsusp_header, 0, sizeof(swsusp_header));
1224 if ((error = bio_read_page(0, &swsusp_header)))
1225 return error;
1226 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1227 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1230 * Reset swap signature now.
1232 error = bio_write_page(0, &swsusp_header);
1233 } else {
1234 printk(KERN_ERR "swsusp: Suspend partition has wrong signature?\n");
1235 return -EINVAL;
1237 if (!error)
1238 pr_debug("swsusp: Signature found, resuming\n");
1239 return error;
1243 * data_read - Read image pages from swap.
1245 * You do not need to check for overlaps, check_pagedir()
1246 * already did that.
1249 static int data_read(struct pbe *pblist)
1251 struct pbe * p;
1252 int error = 0;
1253 int i = 0;
1254 int mod = swsusp_info.image_pages / 100;
1256 if (!mod)
1257 mod = 1;
1259 printk("swsusp: Reading image data (%lu pages): ",
1260 swsusp_info.image_pages);
1262 for_each_pbe (p, pblist) {
1263 if (!(i % mod))
1264 printk("\b\b\b\b%3d%%", i / mod);
1266 error = bio_read_page(swp_offset(p->swap_address),
1267 (void *)p->address);
1268 if (error)
1269 return error;
1271 i++;
1273 printk("\b\b\b\bdone\n");
1274 return error;
1277 extern dev_t name_to_dev_t(const char *line);
1280 * read_pagedir - Read page backup list pages from swap
1283 static int read_pagedir(struct pbe *pblist)
1285 struct pbe *pbpage, *p;
1286 unsigned i = 0;
1287 int error;
1289 if (!pblist)
1290 return -EFAULT;
1292 printk("swsusp: Reading pagedir (%lu pages)\n",
1293 swsusp_info.pagedir_pages);
1295 for_each_pb_page (pbpage, pblist) {
1296 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1298 error = -EFAULT;
1299 if (offset) {
1300 p = (pbpage + PB_PAGE_SKIP)->next;
1301 error = bio_read_page(offset, (void *)pbpage);
1302 (pbpage + PB_PAGE_SKIP)->next = p;
1304 if (error)
1305 break;
1308 if (error)
1309 free_page((unsigned long)pblist);
1311 BUG_ON(i != swsusp_info.pagedir_pages);
1313 return error;
1317 static int check_suspend_image(void)
1319 int error = 0;
1321 if ((error = check_sig()))
1322 return error;
1324 if ((error = check_header()))
1325 return error;
1327 return 0;
1330 static int read_suspend_image(void)
1332 int error = 0;
1333 struct pbe *p;
1335 if (!(p = alloc_pagedir(nr_copy_pages)))
1336 return -ENOMEM;
1338 if ((error = read_pagedir(p)))
1339 return error;
1341 create_pbe_list(p, nr_copy_pages);
1343 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1344 return -ENOMEM;
1346 /* Allocate memory for the image and read the data from swap */
1348 error = check_pagedir(pagedir_nosave);
1349 free_eaten_memory();
1350 if (!error)
1351 error = data_read(pagedir_nosave);
1353 if (error) { /* We fail cleanly */
1354 for_each_pbe (p, pagedir_nosave)
1355 if (p->address) {
1356 free_page(p->address);
1357 p->address = 0UL;
1359 free_pagedir(pagedir_nosave);
1361 return error;
1365 * swsusp_check - Check for saved image in swap
1368 int swsusp_check(void)
1370 int error;
1372 if (!swsusp_resume_device) {
1373 if (!strlen(resume_file))
1374 return -ENOENT;
1375 swsusp_resume_device = name_to_dev_t(resume_file);
1376 pr_debug("swsusp: Resume From Partition %s\n", resume_file);
1377 } else {
1378 pr_debug("swsusp: Resume From Partition %d:%d\n",
1379 MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device));
1382 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1383 if (!IS_ERR(resume_bdev)) {
1384 set_blocksize(resume_bdev, PAGE_SIZE);
1385 error = check_suspend_image();
1386 if (error)
1387 blkdev_put(resume_bdev);
1388 } else
1389 error = PTR_ERR(resume_bdev);
1391 if (!error)
1392 pr_debug("swsusp: resume file found\n");
1393 else
1394 pr_debug("swsusp: Error %d check for resume file\n", error);
1395 return error;
1399 * swsusp_read - Read saved image from swap.
1402 int swsusp_read(void)
1404 int error;
1406 if (IS_ERR(resume_bdev)) {
1407 pr_debug("swsusp: block device not initialised\n");
1408 return PTR_ERR(resume_bdev);
1411 error = read_suspend_image();
1412 blkdev_put(resume_bdev);
1414 if (!error)
1415 pr_debug("swsusp: Reading resume file was successful\n");
1416 else
1417 pr_debug("swsusp: Error %d resuming\n", error);
1418 return error;
1422 * swsusp_close - close swap device.
1425 void swsusp_close(void)
1427 if (IS_ERR(resume_bdev)) {
1428 pr_debug("swsusp: block device not initialised\n");
1429 return;
1432 blkdev_put(resume_bdev);