[PATCH] update CREDITS
[linux-2.6/verdex.git] / drivers / net / fec.c
blob2c7008491378fef4cf71050582e6f88fb9f3e3c7
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282.
22 * Copyrught (c) 2001-2004 Greg Ungerer (gerg@snapgear.com)
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/string.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/pci.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/spinlock.h>
41 #include <linux/workqueue.h>
42 #include <linux/bitops.h>
44 #include <asm/irq.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/pgtable.h>
49 #if defined(CONFIG_M527x) || defined(CONFIG_M5272) || defined(CONFIG_M528x)
50 #include <asm/coldfire.h>
51 #include <asm/mcfsim.h>
52 #include "fec.h"
53 #else
54 #include <asm/8xx_immap.h>
55 #include <asm/mpc8xx.h>
56 #include "commproc.h"
57 #endif
59 #if defined(CONFIG_FEC2)
60 #define FEC_MAX_PORTS 2
61 #else
62 #define FEC_MAX_PORTS 1
63 #endif
66 * Define the fixed address of the FEC hardware.
68 static unsigned int fec_hw[] = {
69 #if defined(CONFIG_M5272)
70 (MCF_MBAR + 0x840),
71 #elif defined(CONFIG_M527x)
72 (MCF_MBAR + 0x1000),
73 (MCF_MBAR + 0x1800),
74 #elif defined(CONFIG_M528x)
75 (MCF_MBAR + 0x1000),
76 #else
77 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
78 #endif
81 static unsigned char fec_mac_default[] = {
82 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
86 * Some hardware gets it MAC address out of local flash memory.
87 * if this is non-zero then assume it is the address to get MAC from.
89 #if defined(CONFIG_NETtel)
90 #define FEC_FLASHMAC 0xf0006006
91 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
92 #define FEC_FLASHMAC 0xf0006000
93 #elif defined (CONFIG_MTD_KeyTechnology)
94 #define FEC_FLASHMAC 0xffe04000
95 #elif defined(CONFIG_CANCam)
96 #define FEC_FLASHMAC 0xf0020000
97 #else
98 #define FEC_FLASHMAC 0
99 #endif
101 unsigned char *fec_flashmac = (unsigned char *) FEC_FLASHMAC;
103 /* Forward declarations of some structures to support different PHYs
106 typedef struct {
107 uint mii_data;
108 void (*funct)(uint mii_reg, struct net_device *dev);
109 } phy_cmd_t;
111 typedef struct {
112 uint id;
113 char *name;
115 const phy_cmd_t *config;
116 const phy_cmd_t *startup;
117 const phy_cmd_t *ack_int;
118 const phy_cmd_t *shutdown;
119 } phy_info_t;
121 /* The number of Tx and Rx buffers. These are allocated from the page
122 * pool. The code may assume these are power of two, so it it best
123 * to keep them that size.
124 * We don't need to allocate pages for the transmitter. We just use
125 * the skbuffer directly.
127 #define FEC_ENET_RX_PAGES 8
128 #define FEC_ENET_RX_FRSIZE 2048
129 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
130 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
131 #define FEC_ENET_TX_FRSIZE 2048
132 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
133 #define TX_RING_SIZE 16 /* Must be power of two */
134 #define TX_RING_MOD_MASK 15 /* for this to work */
136 /* Interrupt events/masks.
138 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
139 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
140 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
141 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
142 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
143 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
144 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
145 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
146 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
147 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
149 /* The FEC stores dest/src/type, data, and checksum for receive packets.
151 #define PKT_MAXBUF_SIZE 1518
152 #define PKT_MINBUF_SIZE 64
153 #define PKT_MAXBLR_SIZE 1520
157 * The 5270/5271/5280/5282 RX control register also contains maximum frame
158 * size bits. Other FEC hardware does not, so we need to take that into
159 * account when setting it.
161 #if defined(CONFIG_M527x) || defined(CONFIG_M528x)
162 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
163 #else
164 #define OPT_FRAME_SIZE 0
165 #endif
167 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
168 * tx_bd_base always point to the base of the buffer descriptors. The
169 * cur_rx and cur_tx point to the currently available buffer.
170 * The dirty_tx tracks the current buffer that is being sent by the
171 * controller. The cur_tx and dirty_tx are equal under both completely
172 * empty and completely full conditions. The empty/ready indicator in
173 * the buffer descriptor determines the actual condition.
175 struct fec_enet_private {
176 /* Hardware registers of the FEC device */
177 volatile fec_t *hwp;
179 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
180 unsigned char *tx_bounce[TX_RING_SIZE];
181 struct sk_buff* tx_skbuff[TX_RING_SIZE];
182 ushort skb_cur;
183 ushort skb_dirty;
185 /* CPM dual port RAM relative addresses.
187 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
188 cbd_t *tx_bd_base;
189 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
190 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
191 struct net_device_stats stats;
192 uint tx_full;
193 spinlock_t lock;
195 uint phy_id;
196 uint phy_id_done;
197 uint phy_status;
198 uint phy_speed;
199 phy_info_t *phy;
200 struct work_struct phy_task;
202 uint sequence_done;
203 uint mii_phy_task_queued;
205 uint phy_addr;
207 int index;
208 int opened;
209 int link;
210 int old_link;
211 int full_duplex;
212 unsigned char mac_addr[ETH_ALEN];
215 static int fec_enet_open(struct net_device *dev);
216 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
217 static void fec_enet_mii(struct net_device *dev);
218 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
219 static void fec_enet_tx(struct net_device *dev);
220 static void fec_enet_rx(struct net_device *dev);
221 static int fec_enet_close(struct net_device *dev);
222 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
223 static void set_multicast_list(struct net_device *dev);
224 static void fec_restart(struct net_device *dev, int duplex);
225 static void fec_stop(struct net_device *dev);
226 static void fec_set_mac_address(struct net_device *dev);
229 /* MII processing. We keep this as simple as possible. Requests are
230 * placed on the list (if there is room). When the request is finished
231 * by the MII, an optional function may be called.
233 typedef struct mii_list {
234 uint mii_regval;
235 void (*mii_func)(uint val, struct net_device *dev);
236 struct mii_list *mii_next;
237 } mii_list_t;
239 #define NMII 20
240 mii_list_t mii_cmds[NMII];
241 mii_list_t *mii_free;
242 mii_list_t *mii_head;
243 mii_list_t *mii_tail;
245 static int mii_queue(struct net_device *dev, int request,
246 void (*func)(uint, struct net_device *));
248 /* Make MII read/write commands for the FEC.
250 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
251 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
252 (VAL & 0xffff))
253 #define mk_mii_end 0
255 /* Transmitter timeout.
257 #define TX_TIMEOUT (2*HZ)
259 /* Register definitions for the PHY.
262 #define MII_REG_CR 0 /* Control Register */
263 #define MII_REG_SR 1 /* Status Register */
264 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
265 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
266 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
267 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
268 #define MII_REG_ANER 6 /* A-N Expansion Register */
269 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
270 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
272 /* values for phy_status */
274 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
275 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
276 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
277 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
278 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
279 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
280 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
282 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
283 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
284 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
285 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
286 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
287 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
288 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
289 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
292 static int
293 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
295 struct fec_enet_private *fep;
296 volatile fec_t *fecp;
297 volatile cbd_t *bdp;
299 fep = netdev_priv(dev);
300 fecp = (volatile fec_t*)dev->base_addr;
302 if (!fep->link) {
303 /* Link is down or autonegotiation is in progress. */
304 return 1;
307 /* Fill in a Tx ring entry */
308 bdp = fep->cur_tx;
310 #ifndef final_version
311 if (bdp->cbd_sc & BD_ENET_TX_READY) {
312 /* Ooops. All transmit buffers are full. Bail out.
313 * This should not happen, since dev->tbusy should be set.
315 printk("%s: tx queue full!.\n", dev->name);
316 return 1;
318 #endif
320 /* Clear all of the status flags.
322 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
324 /* Set buffer length and buffer pointer.
326 bdp->cbd_bufaddr = __pa(skb->data);
327 bdp->cbd_datlen = skb->len;
330 * On some FEC implementations data must be aligned on
331 * 4-byte boundaries. Use bounce buffers to copy data
332 * and get it aligned. Ugh.
334 if (bdp->cbd_bufaddr & 0x3) {
335 unsigned int index;
336 index = bdp - fep->tx_bd_base;
337 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
338 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
341 /* Save skb pointer.
343 fep->tx_skbuff[fep->skb_cur] = skb;
345 fep->stats.tx_bytes += skb->len;
346 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
348 /* Push the data cache so the CPM does not get stale memory
349 * data.
351 flush_dcache_range((unsigned long)skb->data,
352 (unsigned long)skb->data + skb->len);
354 spin_lock_irq(&fep->lock);
356 /* Send it on its way. Tell FEC its ready, interrupt when done,
357 * its the last BD of the frame, and to put the CRC on the end.
360 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
361 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
363 dev->trans_start = jiffies;
365 /* Trigger transmission start */
366 fecp->fec_x_des_active = 0x01000000;
368 /* If this was the last BD in the ring, start at the beginning again.
370 if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
371 bdp = fep->tx_bd_base;
372 } else {
373 bdp++;
376 if (bdp == fep->dirty_tx) {
377 fep->tx_full = 1;
378 netif_stop_queue(dev);
381 fep->cur_tx = (cbd_t *)bdp;
383 spin_unlock_irq(&fep->lock);
385 return 0;
388 static void
389 fec_timeout(struct net_device *dev)
391 struct fec_enet_private *fep = netdev_priv(dev);
393 printk("%s: transmit timed out.\n", dev->name);
394 fep->stats.tx_errors++;
395 #ifndef final_version
397 int i;
398 cbd_t *bdp;
400 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
401 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
402 (unsigned long)fep->dirty_tx,
403 (unsigned long)fep->cur_rx);
405 bdp = fep->tx_bd_base;
406 printk(" tx: %u buffers\n", TX_RING_SIZE);
407 for (i = 0 ; i < TX_RING_SIZE; i++) {
408 printk(" %08x: %04x %04x %08x\n",
409 (uint) bdp,
410 bdp->cbd_sc,
411 bdp->cbd_datlen,
412 (int) bdp->cbd_bufaddr);
413 bdp++;
416 bdp = fep->rx_bd_base;
417 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
418 for (i = 0 ; i < RX_RING_SIZE; i++) {
419 printk(" %08x: %04x %04x %08x\n",
420 (uint) bdp,
421 bdp->cbd_sc,
422 bdp->cbd_datlen,
423 (int) bdp->cbd_bufaddr);
424 bdp++;
427 #endif
428 fec_restart(dev, 0);
429 netif_wake_queue(dev);
432 /* The interrupt handler.
433 * This is called from the MPC core interrupt.
435 static irqreturn_t
436 fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
438 struct net_device *dev = dev_id;
439 volatile fec_t *fecp;
440 uint int_events;
441 int handled = 0;
443 fecp = (volatile fec_t*)dev->base_addr;
445 /* Get the interrupt events that caused us to be here.
447 while ((int_events = fecp->fec_ievent) != 0) {
448 fecp->fec_ievent = int_events;
450 /* Handle receive event in its own function.
452 if (int_events & FEC_ENET_RXF) {
453 handled = 1;
454 fec_enet_rx(dev);
457 /* Transmit OK, or non-fatal error. Update the buffer
458 descriptors. FEC handles all errors, we just discover
459 them as part of the transmit process.
461 if (int_events & FEC_ENET_TXF) {
462 handled = 1;
463 fec_enet_tx(dev);
466 if (int_events & FEC_ENET_MII) {
467 handled = 1;
468 fec_enet_mii(dev);
472 return IRQ_RETVAL(handled);
476 static void
477 fec_enet_tx(struct net_device *dev)
479 struct fec_enet_private *fep;
480 volatile cbd_t *bdp;
481 struct sk_buff *skb;
483 fep = netdev_priv(dev);
484 spin_lock(&fep->lock);
485 bdp = fep->dirty_tx;
487 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
488 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
490 skb = fep->tx_skbuff[fep->skb_dirty];
491 /* Check for errors. */
492 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
493 BD_ENET_TX_RL | BD_ENET_TX_UN |
494 BD_ENET_TX_CSL)) {
495 fep->stats.tx_errors++;
496 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
497 fep->stats.tx_heartbeat_errors++;
498 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
499 fep->stats.tx_window_errors++;
500 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
501 fep->stats.tx_aborted_errors++;
502 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
503 fep->stats.tx_fifo_errors++;
504 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
505 fep->stats.tx_carrier_errors++;
506 } else {
507 fep->stats.tx_packets++;
510 #ifndef final_version
511 if (bdp->cbd_sc & BD_ENET_TX_READY)
512 printk("HEY! Enet xmit interrupt and TX_READY.\n");
513 #endif
514 /* Deferred means some collisions occurred during transmit,
515 * but we eventually sent the packet OK.
517 if (bdp->cbd_sc & BD_ENET_TX_DEF)
518 fep->stats.collisions++;
520 /* Free the sk buffer associated with this last transmit.
522 dev_kfree_skb_any(skb);
523 fep->tx_skbuff[fep->skb_dirty] = NULL;
524 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
526 /* Update pointer to next buffer descriptor to be transmitted.
528 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
529 bdp = fep->tx_bd_base;
530 else
531 bdp++;
533 /* Since we have freed up a buffer, the ring is no longer
534 * full.
536 if (fep->tx_full) {
537 fep->tx_full = 0;
538 if (netif_queue_stopped(dev))
539 netif_wake_queue(dev);
542 fep->dirty_tx = (cbd_t *)bdp;
543 spin_unlock(&fep->lock);
547 /* During a receive, the cur_rx points to the current incoming buffer.
548 * When we update through the ring, if the next incoming buffer has
549 * not been given to the system, we just set the empty indicator,
550 * effectively tossing the packet.
552 static void
553 fec_enet_rx(struct net_device *dev)
555 struct fec_enet_private *fep;
556 volatile fec_t *fecp;
557 volatile cbd_t *bdp;
558 struct sk_buff *skb;
559 ushort pkt_len;
560 __u8 *data;
562 fep = netdev_priv(dev);
563 fecp = (volatile fec_t*)dev->base_addr;
565 /* First, grab all of the stats for the incoming packet.
566 * These get messed up if we get called due to a busy condition.
568 bdp = fep->cur_rx;
570 while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
572 #ifndef final_version
573 /* Since we have allocated space to hold a complete frame,
574 * the last indicator should be set.
576 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
577 printk("FEC ENET: rcv is not +last\n");
578 #endif
580 if (!fep->opened)
581 goto rx_processing_done;
583 /* Check for errors. */
584 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
585 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
586 fep->stats.rx_errors++;
587 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
588 /* Frame too long or too short. */
589 fep->stats.rx_length_errors++;
591 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
592 fep->stats.rx_frame_errors++;
593 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
594 fep->stats.rx_crc_errors++;
595 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
596 fep->stats.rx_crc_errors++;
599 /* Report late collisions as a frame error.
600 * On this error, the BD is closed, but we don't know what we
601 * have in the buffer. So, just drop this frame on the floor.
603 if (bdp->cbd_sc & BD_ENET_RX_CL) {
604 fep->stats.rx_errors++;
605 fep->stats.rx_frame_errors++;
606 goto rx_processing_done;
609 /* Process the incoming frame.
611 fep->stats.rx_packets++;
612 pkt_len = bdp->cbd_datlen;
613 fep->stats.rx_bytes += pkt_len;
614 data = (__u8*)__va(bdp->cbd_bufaddr);
616 /* This does 16 byte alignment, exactly what we need.
617 * The packet length includes FCS, but we don't want to
618 * include that when passing upstream as it messes up
619 * bridging applications.
621 skb = dev_alloc_skb(pkt_len-4);
623 if (skb == NULL) {
624 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
625 fep->stats.rx_dropped++;
626 } else {
627 skb->dev = dev;
628 skb_put(skb,pkt_len-4); /* Make room */
629 eth_copy_and_sum(skb,
630 (unsigned char *)__va(bdp->cbd_bufaddr),
631 pkt_len-4, 0);
632 skb->protocol=eth_type_trans(skb,dev);
633 netif_rx(skb);
635 rx_processing_done:
637 /* Clear the status flags for this buffer.
639 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
641 /* Mark the buffer empty.
643 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
645 /* Update BD pointer to next entry.
647 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
648 bdp = fep->rx_bd_base;
649 else
650 bdp++;
652 #if 1
653 /* Doing this here will keep the FEC running while we process
654 * incoming frames. On a heavily loaded network, we should be
655 * able to keep up at the expense of system resources.
657 fecp->fec_r_des_active = 0x01000000;
658 #endif
659 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
660 fep->cur_rx = (cbd_t *)bdp;
662 #if 0
663 /* Doing this here will allow us to process all frames in the
664 * ring before the FEC is allowed to put more there. On a heavily
665 * loaded network, some frames may be lost. Unfortunately, this
666 * increases the interrupt overhead since we can potentially work
667 * our way back to the interrupt return only to come right back
668 * here.
670 fecp->fec_r_des_active = 0x01000000;
671 #endif
675 static void
676 fec_enet_mii(struct net_device *dev)
678 struct fec_enet_private *fep;
679 volatile fec_t *ep;
680 mii_list_t *mip;
681 uint mii_reg;
683 fep = netdev_priv(dev);
684 ep = fep->hwp;
685 mii_reg = ep->fec_mii_data;
687 if ((mip = mii_head) == NULL) {
688 printk("MII and no head!\n");
689 return;
692 if (mip->mii_func != NULL)
693 (*(mip->mii_func))(mii_reg, dev);
695 mii_head = mip->mii_next;
696 mip->mii_next = mii_free;
697 mii_free = mip;
699 if ((mip = mii_head) != NULL)
700 ep->fec_mii_data = mip->mii_regval;
703 static int
704 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
706 struct fec_enet_private *fep;
707 unsigned long flags;
708 mii_list_t *mip;
709 int retval;
711 /* Add PHY address to register command.
713 fep = netdev_priv(dev);
714 regval |= fep->phy_addr << 23;
716 retval = 0;
718 save_flags(flags);
719 cli();
721 if ((mip = mii_free) != NULL) {
722 mii_free = mip->mii_next;
723 mip->mii_regval = regval;
724 mip->mii_func = func;
725 mip->mii_next = NULL;
726 if (mii_head) {
727 mii_tail->mii_next = mip;
728 mii_tail = mip;
730 else {
731 mii_head = mii_tail = mip;
732 fep->hwp->fec_mii_data = regval;
735 else {
736 retval = 1;
739 restore_flags(flags);
741 return(retval);
744 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
746 int k;
748 if(!c)
749 return;
751 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
752 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
756 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
758 struct fec_enet_private *fep = netdev_priv(dev);
759 volatile uint *s = &(fep->phy_status);
761 *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
763 if (mii_reg & 0x0004)
764 *s |= PHY_STAT_LINK;
765 if (mii_reg & 0x0010)
766 *s |= PHY_STAT_FAULT;
767 if (mii_reg & 0x0020)
768 *s |= PHY_STAT_ANC;
771 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
773 struct fec_enet_private *fep = netdev_priv(dev);
774 volatile uint *s = &(fep->phy_status);
776 *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
778 if (mii_reg & 0x1000)
779 *s |= PHY_CONF_ANE;
780 if (mii_reg & 0x4000)
781 *s |= PHY_CONF_LOOP;
784 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
786 struct fec_enet_private *fep = netdev_priv(dev);
787 volatile uint *s = &(fep->phy_status);
789 *s &= ~(PHY_CONF_SPMASK);
791 if (mii_reg & 0x0020)
792 *s |= PHY_CONF_10HDX;
793 if (mii_reg & 0x0040)
794 *s |= PHY_CONF_10FDX;
795 if (mii_reg & 0x0080)
796 *s |= PHY_CONF_100HDX;
797 if (mii_reg & 0x00100)
798 *s |= PHY_CONF_100FDX;
801 /* ------------------------------------------------------------------------- */
802 /* The Level one LXT970 is used by many boards */
804 #define MII_LXT970_MIRROR 16 /* Mirror register */
805 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
806 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
807 #define MII_LXT970_CONFIG 19 /* Configuration Register */
808 #define MII_LXT970_CSR 20 /* Chip Status Register */
810 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
812 struct fec_enet_private *fep = netdev_priv(dev);
813 volatile uint *s = &(fep->phy_status);
815 *s &= ~(PHY_STAT_SPMASK);
817 if (mii_reg & 0x0800) {
818 if (mii_reg & 0x1000)
819 *s |= PHY_STAT_100FDX;
820 else
821 *s |= PHY_STAT_100HDX;
822 } else {
823 if (mii_reg & 0x1000)
824 *s |= PHY_STAT_10FDX;
825 else
826 *s |= PHY_STAT_10HDX;
830 static phy_info_t phy_info_lxt970 = {
831 0x07810000,
832 "LXT970",
834 (const phy_cmd_t []) { /* config */
835 { mk_mii_read(MII_REG_CR), mii_parse_cr },
836 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
837 { mk_mii_end, }
839 (const phy_cmd_t []) { /* startup - enable interrupts */
840 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
841 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
842 { mk_mii_end, }
844 (const phy_cmd_t []) { /* ack_int */
845 /* read SR and ISR to acknowledge */
846 { mk_mii_read(MII_REG_SR), mii_parse_sr },
847 { mk_mii_read(MII_LXT970_ISR), NULL },
849 /* find out the current status */
850 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
851 { mk_mii_end, }
853 (const phy_cmd_t []) { /* shutdown - disable interrupts */
854 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
855 { mk_mii_end, }
859 /* ------------------------------------------------------------------------- */
860 /* The Level one LXT971 is used on some of my custom boards */
862 /* register definitions for the 971 */
864 #define MII_LXT971_PCR 16 /* Port Control Register */
865 #define MII_LXT971_SR2 17 /* Status Register 2 */
866 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
867 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
868 #define MII_LXT971_LCR 20 /* LED Control Register */
869 #define MII_LXT971_TCR 30 /* Transmit Control Register */
872 * I had some nice ideas of running the MDIO faster...
873 * The 971 should support 8MHz and I tried it, but things acted really
874 * weird, so 2.5 MHz ought to be enough for anyone...
877 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
879 struct fec_enet_private *fep = netdev_priv(dev);
880 volatile uint *s = &(fep->phy_status);
882 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
884 if (mii_reg & 0x0400) {
885 fep->link = 1;
886 *s |= PHY_STAT_LINK;
887 } else {
888 fep->link = 0;
890 if (mii_reg & 0x0080)
891 *s |= PHY_STAT_ANC;
892 if (mii_reg & 0x4000) {
893 if (mii_reg & 0x0200)
894 *s |= PHY_STAT_100FDX;
895 else
896 *s |= PHY_STAT_100HDX;
897 } else {
898 if (mii_reg & 0x0200)
899 *s |= PHY_STAT_10FDX;
900 else
901 *s |= PHY_STAT_10HDX;
903 if (mii_reg & 0x0008)
904 *s |= PHY_STAT_FAULT;
907 static phy_info_t phy_info_lxt971 = {
908 0x0001378e,
909 "LXT971",
911 (const phy_cmd_t []) { /* config */
912 /* limit to 10MBit because my protorype board
913 * doesn't work with 100. */
914 { mk_mii_read(MII_REG_CR), mii_parse_cr },
915 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
916 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
917 { mk_mii_end, }
919 (const phy_cmd_t []) { /* startup - enable interrupts */
920 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
921 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
922 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
923 /* Somehow does the 971 tell me that the link is down
924 * the first read after power-up.
925 * read here to get a valid value in ack_int */
926 { mk_mii_read(MII_REG_SR), mii_parse_sr },
927 { mk_mii_end, }
929 (const phy_cmd_t []) { /* ack_int */
930 /* find out the current status */
931 { mk_mii_read(MII_REG_SR), mii_parse_sr },
932 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
933 /* we only need to read ISR to acknowledge */
934 { mk_mii_read(MII_LXT971_ISR), NULL },
935 { mk_mii_end, }
937 (const phy_cmd_t []) { /* shutdown - disable interrupts */
938 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
939 { mk_mii_end, }
943 /* ------------------------------------------------------------------------- */
944 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
946 /* register definitions */
948 #define MII_QS6612_MCR 17 /* Mode Control Register */
949 #define MII_QS6612_FTR 27 /* Factory Test Register */
950 #define MII_QS6612_MCO 28 /* Misc. Control Register */
951 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
952 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
953 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
955 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
957 struct fec_enet_private *fep = netdev_priv(dev);
958 volatile uint *s = &(fep->phy_status);
960 *s &= ~(PHY_STAT_SPMASK);
962 switch((mii_reg >> 2) & 7) {
963 case 1: *s |= PHY_STAT_10HDX; break;
964 case 2: *s |= PHY_STAT_100HDX; break;
965 case 5: *s |= PHY_STAT_10FDX; break;
966 case 6: *s |= PHY_STAT_100FDX; break;
970 static phy_info_t phy_info_qs6612 = {
971 0x00181440,
972 "QS6612",
974 (const phy_cmd_t []) { /* config */
975 /* The PHY powers up isolated on the RPX,
976 * so send a command to allow operation.
978 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
980 /* parse cr and anar to get some info */
981 { mk_mii_read(MII_REG_CR), mii_parse_cr },
982 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
983 { mk_mii_end, }
985 (const phy_cmd_t []) { /* startup - enable interrupts */
986 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
987 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
988 { mk_mii_end, }
990 (const phy_cmd_t []) { /* ack_int */
991 /* we need to read ISR, SR and ANER to acknowledge */
992 { mk_mii_read(MII_QS6612_ISR), NULL },
993 { mk_mii_read(MII_REG_SR), mii_parse_sr },
994 { mk_mii_read(MII_REG_ANER), NULL },
996 /* read pcr to get info */
997 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
998 { mk_mii_end, }
1000 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1001 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1002 { mk_mii_end, }
1006 /* ------------------------------------------------------------------------- */
1007 /* AMD AM79C874 phy */
1009 /* register definitions for the 874 */
1011 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1012 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1013 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1014 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1015 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1016 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1017 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1019 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1021 struct fec_enet_private *fep = netdev_priv(dev);
1022 volatile uint *s = &(fep->phy_status);
1024 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1026 if (mii_reg & 0x0080)
1027 *s |= PHY_STAT_ANC;
1028 if (mii_reg & 0x0400)
1029 *s |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1030 else
1031 *s |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1034 static phy_info_t phy_info_am79c874 = {
1035 0x00022561,
1036 "AM79C874",
1038 (const phy_cmd_t []) { /* config */
1039 /* limit to 10MBit because my protorype board
1040 * doesn't work with 100. */
1041 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1042 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1043 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1044 { mk_mii_end, }
1046 (const phy_cmd_t []) { /* startup - enable interrupts */
1047 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1048 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1049 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1050 { mk_mii_end, }
1052 (const phy_cmd_t []) { /* ack_int */
1053 /* find out the current status */
1054 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1055 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1056 /* we only need to read ISR to acknowledge */
1057 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1058 { mk_mii_end, }
1060 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1061 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1062 { mk_mii_end, }
1066 /* ------------------------------------------------------------------------- */
1067 /* Kendin KS8721BL phy */
1069 /* register definitions for the 8721 */
1071 #define MII_KS8721BL_RXERCR 21
1072 #define MII_KS8721BL_ICSR 22
1073 #define MII_KS8721BL_PHYCR 31
1075 static phy_info_t phy_info_ks8721bl = {
1076 0x00022161,
1077 "KS8721BL",
1079 (const phy_cmd_t []) { /* config */
1080 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1081 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1082 { mk_mii_end, }
1084 (const phy_cmd_t []) { /* startup */
1085 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1086 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1087 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1088 { mk_mii_end, }
1090 (const phy_cmd_t []) { /* ack_int */
1091 /* find out the current status */
1092 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1093 /* we only need to read ISR to acknowledge */
1094 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1095 { mk_mii_end, }
1097 (const phy_cmd_t []) { /* shutdown */
1098 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1099 { mk_mii_end, }
1103 /* ------------------------------------------------------------------------- */
1105 static phy_info_t *phy_info[] = {
1106 &phy_info_lxt970,
1107 &phy_info_lxt971,
1108 &phy_info_qs6612,
1109 &phy_info_am79c874,
1110 &phy_info_ks8721bl,
1111 NULL
1114 /* ------------------------------------------------------------------------- */
1116 #ifdef CONFIG_RPXCLASSIC
1117 static void
1118 mii_link_interrupt(void *dev_id);
1119 #else
1120 static irqreturn_t
1121 mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
1122 #endif
1124 #if defined(CONFIG_M5272)
1127 * Code specific to Coldfire 5272 setup.
1129 static void __inline__ fec_request_intrs(struct net_device *dev)
1131 volatile unsigned long *icrp;
1133 /* Setup interrupt handlers. */
1134 if (request_irq(86, fec_enet_interrupt, 0, "fec(RX)", dev) != 0)
1135 printk("FEC: Could not allocate FEC(RC) IRQ(86)!\n");
1136 if (request_irq(87, fec_enet_interrupt, 0, "fec(TX)", dev) != 0)
1137 printk("FEC: Could not allocate FEC(RC) IRQ(87)!\n");
1138 if (request_irq(88, fec_enet_interrupt, 0, "fec(OTHER)", dev) != 0)
1139 printk("FEC: Could not allocate FEC(OTHER) IRQ(88)!\n");
1140 if (request_irq(66, mii_link_interrupt, 0, "fec(MII)", dev) != 0)
1141 printk("FEC: Could not allocate MII IRQ(66)!\n");
1143 /* Unmask interrupt at ColdFire 5272 SIM */
1144 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1145 *icrp = 0x00000ddd;
1146 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1147 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1150 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1152 volatile fec_t *fecp;
1154 fecp = fep->hwp;
1155 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1156 fecp->fec_x_cntrl = 0x00;
1159 * Set MII speed to 2.5 MHz
1160 * See 5272 manual section 11.5.8: MSCR
1162 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1163 fecp->fec_mii_speed = fep->phy_speed;
1165 fec_restart(dev, 0);
1168 static void __inline__ fec_get_mac(struct net_device *dev)
1170 struct fec_enet_private *fep = netdev_priv(dev);
1171 volatile fec_t *fecp;
1172 unsigned char *iap, tmpaddr[6];
1173 int i;
1175 fecp = fep->hwp;
1177 if (fec_flashmac) {
1179 * Get MAC address from FLASH.
1180 * If it is all 1's or 0's, use the default.
1182 iap = fec_flashmac;
1183 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1184 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1185 iap = fec_mac_default;
1186 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1187 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1188 iap = fec_mac_default;
1189 } else {
1190 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1191 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1192 iap = &tmpaddr[0];
1195 for (i=0; i<ETH_ALEN; i++)
1196 dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
1198 /* Adjust MAC if using default MAC address */
1199 if (iap == fec_mac_default) {
1200 dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
1201 iap[ETH_ALEN-1] + fep->index;
1205 static void __inline__ fec_enable_phy_intr(void)
1209 static void __inline__ fec_disable_phy_intr(void)
1211 volatile unsigned long *icrp;
1212 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1213 *icrp = (*icrp & 0x70777777) | 0x08000000;
1216 static void __inline__ fec_phy_ack_intr(void)
1218 volatile unsigned long *icrp;
1219 /* Acknowledge the interrupt */
1220 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1221 *icrp = (*icrp & 0x77777777) | 0x08000000;
1224 static void __inline__ fec_localhw_setup(void)
1229 * Do not need to make region uncached on 5272.
1231 static void __inline__ fec_uncache(unsigned long addr)
1235 /* ------------------------------------------------------------------------- */
1237 #elif defined(CONFIG_M527x) || defined(CONFIG_M528x)
1240 * Code specific to Coldfire 5270/5271/5274/5275 and 5280/5282 setups.
1242 static void __inline__ fec_request_intrs(struct net_device *dev)
1244 struct fec_enet_private *fep;
1245 int b;
1247 fep = netdev_priv(dev);
1248 b = (fep->index) ? 128 : 64;
1250 /* Setup interrupt handlers. */
1251 if (request_irq(b+23, fec_enet_interrupt, 0, "fec(TXF)", dev) != 0)
1252 printk("FEC: Could not allocate FEC(TXF) IRQ(%d+23)!\n", b);
1253 if (request_irq(b+24, fec_enet_interrupt, 0, "fec(TXB)", dev) != 0)
1254 printk("FEC: Could not allocate FEC(TXB) IRQ(%d+24)!\n", b);
1255 if (request_irq(b+25, fec_enet_interrupt, 0, "fec(TXFIFO)", dev) != 0)
1256 printk("FEC: Could not allocate FEC(TXFIFO) IRQ(%d+25)!\n", b);
1257 if (request_irq(b+26, fec_enet_interrupt, 0, "fec(TXCR)", dev) != 0)
1258 printk("FEC: Could not allocate FEC(TXCR) IRQ(%d+26)!\n", b);
1260 if (request_irq(b+27, fec_enet_interrupt, 0, "fec(RXF)", dev) != 0)
1261 printk("FEC: Could not allocate FEC(RXF) IRQ(%d+27)!\n", b);
1262 if (request_irq(b+28, fec_enet_interrupt, 0, "fec(RXB)", dev) != 0)
1263 printk("FEC: Could not allocate FEC(RXB) IRQ(%d+28)!\n", b);
1265 if (request_irq(b+29, fec_enet_interrupt, 0, "fec(MII)", dev) != 0)
1266 printk("FEC: Could not allocate FEC(MII) IRQ(%d+29)!\n", b);
1267 if (request_irq(b+30, fec_enet_interrupt, 0, "fec(LC)", dev) != 0)
1268 printk("FEC: Could not allocate FEC(LC) IRQ(%d+30)!\n", b);
1269 if (request_irq(b+31, fec_enet_interrupt, 0, "fec(HBERR)", dev) != 0)
1270 printk("FEC: Could not allocate FEC(HBERR) IRQ(%d+31)!\n", b);
1271 if (request_irq(b+32, fec_enet_interrupt, 0, "fec(GRA)", dev) != 0)
1272 printk("FEC: Could not allocate FEC(GRA) IRQ(%d+32)!\n", b);
1273 if (request_irq(b+33, fec_enet_interrupt, 0, "fec(EBERR)", dev) != 0)
1274 printk("FEC: Could not allocate FEC(EBERR) IRQ(%d+33)!\n", b);
1275 if (request_irq(b+34, fec_enet_interrupt, 0, "fec(BABT)", dev) != 0)
1276 printk("FEC: Could not allocate FEC(BABT) IRQ(%d+34)!\n", b);
1277 if (request_irq(b+35, fec_enet_interrupt, 0, "fec(BABR)", dev) != 0)
1278 printk("FEC: Could not allocate FEC(BABR) IRQ(%d+35)!\n", b);
1280 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1282 volatile unsigned char *icrp;
1283 volatile unsigned long *imrp;
1284 int i;
1286 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1287 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1288 MCFINTC_ICR0);
1289 for (i = 23; (i < 36); i++)
1290 icrp[i] = 0x23;
1292 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1293 MCFINTC_IMRH);
1294 *imrp &= ~0x0000000f;
1295 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1296 MCFINTC_IMRL);
1297 *imrp &= ~0xff800001;
1300 #if defined(CONFIG_M528x)
1301 /* Set up gpio outputs for MII lines */
1303 volatile unsigned short *gpio_paspar;
1305 gpio_paspar = (volatile unsigned short *) (MCF_IPSBAR +
1306 0x100056);
1307 *gpio_paspar = 0x0f00;
1309 #endif
1312 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1314 volatile fec_t *fecp;
1316 fecp = fep->hwp;
1317 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1318 fecp->fec_x_cntrl = 0x00;
1321 * Set MII speed to 2.5 MHz
1322 * See 5282 manual section 17.5.4.7: MSCR
1324 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1325 fecp->fec_mii_speed = fep->phy_speed;
1327 fec_restart(dev, 0);
1330 static void __inline__ fec_get_mac(struct net_device *dev)
1332 struct fec_enet_private *fep = netdev_priv(dev);
1333 volatile fec_t *fecp;
1334 unsigned char *iap, tmpaddr[6];
1335 int i;
1337 fecp = fep->hwp;
1339 if (fec_flashmac) {
1341 * Get MAC address from FLASH.
1342 * If it is all 1's or 0's, use the default.
1344 iap = fec_flashmac;
1345 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1346 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1347 iap = fec_mac_default;
1348 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1349 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1350 iap = fec_mac_default;
1351 } else {
1352 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1353 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1354 iap = &tmpaddr[0];
1357 for (i=0; i<ETH_ALEN; i++)
1358 dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
1360 /* Adjust MAC if using default MAC address */
1361 if (iap == fec_mac_default) {
1362 dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
1363 iap[ETH_ALEN-1] + fep->index;
1367 static void __inline__ fec_enable_phy_intr(void)
1371 static void __inline__ fec_disable_phy_intr(void)
1375 static void __inline__ fec_phy_ack_intr(void)
1379 static void __inline__ fec_localhw_setup(void)
1384 * Do not need to make region uncached on 5272.
1386 static void __inline__ fec_uncache(unsigned long addr)
1390 /* ------------------------------------------------------------------------- */
1392 #else
1395 * Code sepcific to the MPC860T setup.
1397 static void __inline__ fec_request_intrs(struct net_device *dev)
1399 volatile immap_t *immap;
1401 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1403 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1404 panic("Could not allocate FEC IRQ!");
1406 #ifdef CONFIG_RPXCLASSIC
1407 /* Make Port C, bit 15 an input that causes interrupts.
1409 immap->im_ioport.iop_pcpar &= ~0x0001;
1410 immap->im_ioport.iop_pcdir &= ~0x0001;
1411 immap->im_ioport.iop_pcso &= ~0x0001;
1412 immap->im_ioport.iop_pcint |= 0x0001;
1413 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1415 /* Make LEDS reflect Link status.
1417 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1418 #endif
1419 #ifdef CONFIG_FADS
1420 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1421 panic("Could not allocate MII IRQ!");
1422 #endif
1425 static void __inline__ fec_get_mac(struct net_device *dev)
1427 struct fec_enet_private *fep = netdev_priv(dev);
1428 unsigned char *iap, tmpaddr[6];
1429 bd_t *bd;
1430 int i;
1432 iap = bd->bi_enetaddr;
1433 bd = (bd_t *)__res;
1435 #ifdef CONFIG_RPXCLASSIC
1436 /* The Embedded Planet boards have only one MAC address in
1437 * the EEPROM, but can have two Ethernet ports. For the
1438 * FEC port, we create another address by setting one of
1439 * the address bits above something that would have (up to
1440 * now) been allocated.
1442 for (i=0; i<6; i++)
1443 tmpaddr[i] = *iap++;
1444 tmpaddr[3] |= 0x80;
1445 iap = tmpaddr;
1446 #endif
1448 for (i=0; i<6; i++)
1449 dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
1452 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1454 extern uint _get_IMMR(void);
1455 volatile immap_t *immap;
1456 volatile fec_t *fecp;
1458 fecp = fep->hwp;
1459 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1461 /* Configure all of port D for MII.
1463 immap->im_ioport.iop_pdpar = 0x1fff;
1465 /* Bits moved from Rev. D onward.
1467 if ((_get_IMMR() & 0xffff) < 0x0501)
1468 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1469 else
1470 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1472 /* Set MII speed to 2.5 MHz
1474 fecp->fec_mii_speed = fep->phy_speed =
1475 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1478 static void __inline__ fec_enable_phy_intr(void)
1480 volatile fec_t *fecp;
1482 fecp = fep->hwp;
1484 /* Enable MII command finished interrupt
1486 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1489 static void __inline__ fec_disable_phy_intr(void)
1493 static void __inline__ fec_phy_ack_intr(void)
1497 static void __inline__ fec_localhw_setup(void)
1499 volatile fec_t *fecp;
1501 fecp = fep->hwp;
1502 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1503 /* Enable big endian and don't care about SDMA FC.
1505 fecp->fec_fun_code = 0x78000000;
1508 static void __inline__ fec_uncache(unsigned long addr)
1510 pte_t *pte;
1511 pte = va_to_pte(mem_addr);
1512 pte_val(*pte) |= _PAGE_NO_CACHE;
1513 flush_tlb_page(init_mm.mmap, mem_addr);
1516 #endif
1518 /* ------------------------------------------------------------------------- */
1520 static void mii_display_status(struct net_device *dev)
1522 struct fec_enet_private *fep = netdev_priv(dev);
1523 volatile uint *s = &(fep->phy_status);
1525 if (!fep->link && !fep->old_link) {
1526 /* Link is still down - don't print anything */
1527 return;
1530 printk("%s: status: ", dev->name);
1532 if (!fep->link) {
1533 printk("link down");
1534 } else {
1535 printk("link up");
1537 switch(*s & PHY_STAT_SPMASK) {
1538 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1539 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1540 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1541 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1542 default:
1543 printk(", Unknown speed/duplex");
1546 if (*s & PHY_STAT_ANC)
1547 printk(", auto-negotiation complete");
1550 if (*s & PHY_STAT_FAULT)
1551 printk(", remote fault");
1553 printk(".\n");
1556 static void mii_display_config(struct net_device *dev)
1558 struct fec_enet_private *fep = netdev_priv(dev);
1559 volatile uint *s = &(fep->phy_status);
1562 ** When we get here, phy_task is already removed from
1563 ** the workqueue. It is thus safe to allow to reuse it.
1565 fep->mii_phy_task_queued = 0;
1566 printk("%s: config: auto-negotiation ", dev->name);
1568 if (*s & PHY_CONF_ANE)
1569 printk("on");
1570 else
1571 printk("off");
1573 if (*s & PHY_CONF_100FDX)
1574 printk(", 100FDX");
1575 if (*s & PHY_CONF_100HDX)
1576 printk(", 100HDX");
1577 if (*s & PHY_CONF_10FDX)
1578 printk(", 10FDX");
1579 if (*s & PHY_CONF_10HDX)
1580 printk(", 10HDX");
1581 if (!(*s & PHY_CONF_SPMASK))
1582 printk(", No speed/duplex selected?");
1584 if (*s & PHY_CONF_LOOP)
1585 printk(", loopback enabled");
1587 printk(".\n");
1589 fep->sequence_done = 1;
1592 static void mii_relink(struct net_device *dev)
1594 struct fec_enet_private *fep = netdev_priv(dev);
1595 int duplex;
1598 ** When we get here, phy_task is already removed from
1599 ** the workqueue. It is thus safe to allow to reuse it.
1601 fep->mii_phy_task_queued = 0;
1602 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1603 mii_display_status(dev);
1604 fep->old_link = fep->link;
1606 if (fep->link) {
1607 duplex = 0;
1608 if (fep->phy_status
1609 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1610 duplex = 1;
1611 fec_restart(dev, duplex);
1613 else
1614 fec_stop(dev);
1616 #if 0
1617 enable_irq(fep->mii_irq);
1618 #endif
1622 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1623 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1625 struct fec_enet_private *fep = netdev_priv(dev);
1628 ** We cannot queue phy_task twice in the workqueue. It
1629 ** would cause an endless loop in the workqueue.
1630 ** Fortunately, if the last mii_relink entry has not yet been
1631 ** executed now, it will do the job for the current interrupt,
1632 ** which is just what we want.
1634 if (fep->mii_phy_task_queued)
1635 return;
1637 fep->mii_phy_task_queued = 1;
1638 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
1639 schedule_work(&fep->phy_task);
1642 /* mii_queue_config is called in user context from fec_enet_open */
1643 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1645 struct fec_enet_private *fep = netdev_priv(dev);
1647 if (fep->mii_phy_task_queued)
1648 return;
1650 fep->mii_phy_task_queued = 1;
1651 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
1652 schedule_work(&fep->phy_task);
1657 phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
1658 { mk_mii_end, } };
1659 phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
1660 { mk_mii_end, } };
1664 /* Read remainder of PHY ID.
1666 static void
1667 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1669 struct fec_enet_private *fep;
1670 int i;
1672 fep = netdev_priv(dev);
1673 fep->phy_id |= (mii_reg & 0xffff);
1674 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1676 for(i = 0; phy_info[i]; i++) {
1677 if(phy_info[i]->id == (fep->phy_id >> 4))
1678 break;
1681 if (phy_info[i])
1682 printk(" -- %s\n", phy_info[i]->name);
1683 else
1684 printk(" -- unknown PHY!\n");
1686 fep->phy = phy_info[i];
1687 fep->phy_id_done = 1;
1690 /* Scan all of the MII PHY addresses looking for someone to respond
1691 * with a valid ID. This usually happens quickly.
1693 static void
1694 mii_discover_phy(uint mii_reg, struct net_device *dev)
1696 struct fec_enet_private *fep;
1697 volatile fec_t *fecp;
1698 uint phytype;
1700 fep = netdev_priv(dev);
1701 fecp = fep->hwp;
1703 if (fep->phy_addr < 32) {
1704 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1706 /* Got first part of ID, now get remainder.
1708 fep->phy_id = phytype << 16;
1709 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1710 mii_discover_phy3);
1712 else {
1713 fep->phy_addr++;
1714 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1715 mii_discover_phy);
1717 } else {
1718 printk("FEC: No PHY device found.\n");
1719 /* Disable external MII interface */
1720 fecp->fec_mii_speed = fep->phy_speed = 0;
1721 fec_disable_phy_intr();
1725 /* This interrupt occurs when the PHY detects a link change.
1727 #ifdef CONFIG_RPXCLASSIC
1728 static void
1729 mii_link_interrupt(void *dev_id)
1730 #else
1731 static irqreturn_t
1732 mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
1733 #endif
1735 struct net_device *dev = dev_id;
1736 struct fec_enet_private *fep = netdev_priv(dev);
1738 fec_phy_ack_intr();
1740 #if 0
1741 disable_irq(fep->mii_irq); /* disable now, enable later */
1742 #endif
1744 mii_do_cmd(dev, fep->phy->ack_int);
1745 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1747 return IRQ_HANDLED;
1750 static int
1751 fec_enet_open(struct net_device *dev)
1753 struct fec_enet_private *fep = netdev_priv(dev);
1755 /* I should reset the ring buffers here, but I don't yet know
1756 * a simple way to do that.
1758 fec_set_mac_address(dev);
1760 fep->sequence_done = 0;
1761 fep->link = 0;
1763 if (fep->phy) {
1764 mii_do_cmd(dev, fep->phy->ack_int);
1765 mii_do_cmd(dev, fep->phy->config);
1766 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1768 /* FIXME: use netif_carrier_{on,off} ; this polls
1769 * until link is up which is wrong... could be
1770 * 30 seconds or more we are trapped in here. -jgarzik
1772 while(!fep->sequence_done)
1773 schedule();
1775 mii_do_cmd(dev, fep->phy->startup);
1777 /* Set the initial link state to true. A lot of hardware
1778 * based on this device does not implement a PHY interrupt,
1779 * so we are never notified of link change.
1781 fep->link = 1;
1782 } else {
1783 fep->link = 1; /* lets just try it and see */
1784 /* no phy, go full duplex, it's most likely a hub chip */
1785 fec_restart(dev, 1);
1788 netif_start_queue(dev);
1789 fep->opened = 1;
1790 return 0; /* Success */
1793 static int
1794 fec_enet_close(struct net_device *dev)
1796 struct fec_enet_private *fep = netdev_priv(dev);
1798 /* Don't know what to do yet.
1800 fep->opened = 0;
1801 netif_stop_queue(dev);
1802 fec_stop(dev);
1804 return 0;
1807 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
1809 struct fec_enet_private *fep = netdev_priv(dev);
1811 return &fep->stats;
1814 /* Set or clear the multicast filter for this adaptor.
1815 * Skeleton taken from sunlance driver.
1816 * The CPM Ethernet implementation allows Multicast as well as individual
1817 * MAC address filtering. Some of the drivers check to make sure it is
1818 * a group multicast address, and discard those that are not. I guess I
1819 * will do the same for now, but just remove the test if you want
1820 * individual filtering as well (do the upper net layers want or support
1821 * this kind of feature?).
1824 #define HASH_BITS 6 /* #bits in hash */
1825 #define CRC32_POLY 0xEDB88320
1827 static void set_multicast_list(struct net_device *dev)
1829 struct fec_enet_private *fep;
1830 volatile fec_t *ep;
1831 struct dev_mc_list *dmi;
1832 unsigned int i, j, bit, data, crc;
1833 unsigned char hash;
1835 fep = netdev_priv(dev);
1836 ep = fep->hwp;
1838 if (dev->flags&IFF_PROMISC) {
1839 /* Log any net taps. */
1840 printk("%s: Promiscuous mode enabled.\n", dev->name);
1841 ep->fec_r_cntrl |= 0x0008;
1842 } else {
1844 ep->fec_r_cntrl &= ~0x0008;
1846 if (dev->flags & IFF_ALLMULTI) {
1847 /* Catch all multicast addresses, so set the
1848 * filter to all 1's.
1850 ep->fec_hash_table_high = 0xffffffff;
1851 ep->fec_hash_table_low = 0xffffffff;
1852 } else {
1853 /* Clear filter and add the addresses in hash register.
1855 ep->fec_hash_table_high = 0;
1856 ep->fec_hash_table_low = 0;
1858 dmi = dev->mc_list;
1860 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
1862 /* Only support group multicast for now.
1864 if (!(dmi->dmi_addr[0] & 1))
1865 continue;
1867 /* calculate crc32 value of mac address
1869 crc = 0xffffffff;
1871 for (i = 0; i < dmi->dmi_addrlen; i++)
1873 data = dmi->dmi_addr[i];
1874 for (bit = 0; bit < 8; bit++, data >>= 1)
1876 crc = (crc >> 1) ^
1877 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1881 /* only upper 6 bits (HASH_BITS) are used
1882 which point to specific bit in he hash registers
1884 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1886 if (hash > 31)
1887 ep->fec_hash_table_high |= 1 << (hash - 32);
1888 else
1889 ep->fec_hash_table_low |= 1 << hash;
1895 /* Set a MAC change in hardware.
1897 static void
1898 fec_set_mac_address(struct net_device *dev)
1900 struct fec_enet_private *fep;
1901 volatile fec_t *fecp;
1903 fep = netdev_priv(dev);
1904 fecp = fep->hwp;
1906 /* Set station address. */
1907 fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
1908 (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
1909 fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
1910 (fep->mac_addr[4] << 24);
1914 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
1917 * XXX: We need to clean up on failure exits here.
1919 int __init fec_enet_init(struct net_device *dev)
1921 struct fec_enet_private *fep = netdev_priv(dev);
1922 unsigned long mem_addr;
1923 volatile cbd_t *bdp;
1924 cbd_t *cbd_base;
1925 volatile fec_t *fecp;
1926 int i, j;
1927 static int index = 0;
1929 /* Only allow us to be probed once. */
1930 if (index >= FEC_MAX_PORTS)
1931 return -ENXIO;
1933 /* Create an Ethernet device instance.
1935 fecp = (volatile fec_t *) fec_hw[index];
1937 fep->index = index;
1938 fep->hwp = fecp;
1940 /* Whack a reset. We should wait for this.
1942 fecp->fec_ecntrl = 1;
1943 udelay(10);
1945 /* Clear and enable interrupts */
1946 fecp->fec_ievent = 0xffc0;
1947 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
1948 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
1949 fecp->fec_hash_table_high = 0;
1950 fecp->fec_hash_table_low = 0;
1951 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1952 fecp->fec_ecntrl = 2;
1953 fecp->fec_r_des_active = 0x01000000;
1955 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1956 * this needs some work to get unique addresses.
1958 * This is our default MAC address unless the user changes
1959 * it via eth_mac_addr (our dev->set_mac_addr handler).
1961 fec_get_mac(dev);
1963 /* Allocate memory for buffer descriptors.
1965 if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
1966 printk("FEC init error. Need more space.\n");
1967 printk("FEC initialization failed.\n");
1968 return 1;
1970 mem_addr = __get_free_page(GFP_KERNEL);
1971 cbd_base = (cbd_t *)mem_addr;
1972 /* XXX: missing check for allocation failure */
1974 fec_uncache(mem_addr);
1976 /* Set receive and transmit descriptor base.
1978 fep->rx_bd_base = cbd_base;
1979 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1981 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1982 fep->cur_rx = fep->rx_bd_base;
1984 fep->skb_cur = fep->skb_dirty = 0;
1986 /* Initialize the receive buffer descriptors.
1988 bdp = fep->rx_bd_base;
1989 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
1991 /* Allocate a page.
1993 mem_addr = __get_free_page(GFP_KERNEL);
1994 /* XXX: missing check for allocation failure */
1996 fec_uncache(mem_addr);
1998 /* Initialize the BD for every fragment in the page.
2000 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2001 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2002 bdp->cbd_bufaddr = __pa(mem_addr);
2003 mem_addr += FEC_ENET_RX_FRSIZE;
2004 bdp++;
2008 /* Set the last buffer to wrap.
2010 bdp--;
2011 bdp->cbd_sc |= BD_SC_WRAP;
2013 /* ...and the same for transmmit.
2015 bdp = fep->tx_bd_base;
2016 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2017 if (j >= FEC_ENET_TX_FRPPG) {
2018 mem_addr = __get_free_page(GFP_KERNEL);
2019 j = 1;
2020 } else {
2021 mem_addr += FEC_ENET_TX_FRSIZE;
2022 j++;
2024 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2026 /* Initialize the BD for every fragment in the page.
2028 bdp->cbd_sc = 0;
2029 bdp->cbd_bufaddr = 0;
2030 bdp++;
2033 /* Set the last buffer to wrap.
2035 bdp--;
2036 bdp->cbd_sc |= BD_SC_WRAP;
2038 /* Set receive and transmit descriptor base.
2040 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2041 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2043 /* Install our interrupt handlers. This varies depending on
2044 * the architecture.
2046 fec_request_intrs(dev);
2048 dev->base_addr = (unsigned long)fecp;
2050 /* The FEC Ethernet specific entries in the device structure. */
2051 dev->open = fec_enet_open;
2052 dev->hard_start_xmit = fec_enet_start_xmit;
2053 dev->tx_timeout = fec_timeout;
2054 dev->watchdog_timeo = TX_TIMEOUT;
2055 dev->stop = fec_enet_close;
2056 dev->get_stats = fec_enet_get_stats;
2057 dev->set_multicast_list = set_multicast_list;
2059 for (i=0; i<NMII-1; i++)
2060 mii_cmds[i].mii_next = &mii_cmds[i+1];
2061 mii_free = mii_cmds;
2063 /* setup MII interface */
2064 fec_set_mii(dev, fep);
2066 printk("%s: FEC ENET Version 0.2, ", dev->name);
2067 for (i=0; i<5; i++)
2068 printk("%02x:", dev->dev_addr[i]);
2069 printk("%02x\n", dev->dev_addr[5]);
2071 /* Queue up command to detect the PHY and initialize the
2072 * remainder of the interface.
2074 fep->phy_id_done = 0;
2075 fep->phy_addr = 0;
2076 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2078 index++;
2079 return 0;
2082 /* This function is called to start or restart the FEC during a link
2083 * change. This only happens when switching between half and full
2084 * duplex.
2086 static void
2087 fec_restart(struct net_device *dev, int duplex)
2089 struct fec_enet_private *fep;
2090 volatile cbd_t *bdp;
2091 volatile fec_t *fecp;
2092 int i;
2094 fep = netdev_priv(dev);
2095 fecp = fep->hwp;
2097 /* Whack a reset. We should wait for this.
2099 fecp->fec_ecntrl = 1;
2100 udelay(10);
2102 /* Enable interrupts we wish to service.
2104 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2105 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2107 /* Clear any outstanding interrupt.
2109 fecp->fec_ievent = 0xffc0;
2110 fec_enable_phy_intr();
2112 /* Set station address.
2114 fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
2115 (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
2116 fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
2117 (fep->mac_addr[4] << 24);
2119 for (i=0; i<ETH_ALEN; i++)
2120 dev->dev_addr[i] = fep->mac_addr[i];
2122 /* Reset all multicast.
2124 fecp->fec_hash_table_high = 0;
2125 fecp->fec_hash_table_low = 0;
2127 /* Set maximum receive buffer size.
2129 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2131 fec_localhw_setup();
2133 /* Set receive and transmit descriptor base.
2135 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2136 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2138 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2139 fep->cur_rx = fep->rx_bd_base;
2141 /* Reset SKB transmit buffers.
2143 fep->skb_cur = fep->skb_dirty = 0;
2144 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2145 if (fep->tx_skbuff[i] != NULL) {
2146 dev_kfree_skb_any(fep->tx_skbuff[i]);
2147 fep->tx_skbuff[i] = NULL;
2151 /* Initialize the receive buffer descriptors.
2153 bdp = fep->rx_bd_base;
2154 for (i=0; i<RX_RING_SIZE; i++) {
2156 /* Initialize the BD for every fragment in the page.
2158 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2159 bdp++;
2162 /* Set the last buffer to wrap.
2164 bdp--;
2165 bdp->cbd_sc |= BD_SC_WRAP;
2167 /* ...and the same for transmmit.
2169 bdp = fep->tx_bd_base;
2170 for (i=0; i<TX_RING_SIZE; i++) {
2172 /* Initialize the BD for every fragment in the page.
2174 bdp->cbd_sc = 0;
2175 bdp->cbd_bufaddr = 0;
2176 bdp++;
2179 /* Set the last buffer to wrap.
2181 bdp--;
2182 bdp->cbd_sc |= BD_SC_WRAP;
2184 /* Enable MII mode.
2186 if (duplex) {
2187 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2188 fecp->fec_x_cntrl = 0x04; /* FD enable */
2190 else {
2191 /* MII enable|No Rcv on Xmit */
2192 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2193 fecp->fec_x_cntrl = 0x00;
2195 fep->full_duplex = duplex;
2197 /* Set MII speed.
2199 fecp->fec_mii_speed = fep->phy_speed;
2201 /* And last, enable the transmit and receive processing.
2203 fecp->fec_ecntrl = 2;
2204 fecp->fec_r_des_active = 0x01000000;
2207 static void
2208 fec_stop(struct net_device *dev)
2210 volatile fec_t *fecp;
2211 struct fec_enet_private *fep;
2213 fep = netdev_priv(dev);
2214 fecp = fep->hwp;
2216 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2218 while(!(fecp->fec_ievent & 0x10000000));
2220 /* Whack a reset. We should wait for this.
2222 fecp->fec_ecntrl = 1;
2223 udelay(10);
2225 /* Clear outstanding MII command interrupts.
2227 fecp->fec_ievent = FEC_ENET_MII;
2228 fec_enable_phy_intr();
2230 fecp->fec_imask = FEC_ENET_MII;
2231 fecp->fec_mii_speed = fep->phy_speed;
2234 static int __init fec_enet_module_init(void)
2236 struct net_device *dev;
2237 int i, err;
2239 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2240 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2241 if (!dev)
2242 return -ENOMEM;
2243 err = fec_enet_init(dev);
2244 if (err) {
2245 free_netdev(dev);
2246 continue;
2248 if (register_netdev(dev) != 0) {
2249 /* XXX: missing cleanup here */
2250 free_netdev(dev);
2251 return -EIO;
2254 return 0;
2257 module_init(fec_enet_module_init);
2259 MODULE_LICENSE("GPL");