[PATCH] update CREDITS
[linux-2.6/verdex.git] / drivers / net / mv643xx_eth.c
blob0405e1f0d3df183fe004173091aed6ca103751e4
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani (lachwani@pmc-sierra.com)
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/tcp.h>
36 #include <linux/udp.h>
37 #include <linux/etherdevice.h>
39 #include <linux/bitops.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <asm/io.h>
43 #include <asm/types.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/delay.h>
47 #include "mv643xx_eth.h"
50 * The first part is the high level driver of the gigE ethernet ports.
53 /* Constants */
54 #define VLAN_HLEN 4
55 #define FCS_LEN 4
56 #define WRAP NET_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
57 #define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
59 #define INT_CAUSE_UNMASK_ALL 0x0007ffff
60 #define INT_CAUSE_UNMASK_ALL_EXT 0x0011ffff
61 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
62 #define INT_CAUSE_MASK_ALL 0x00000000
63 #define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
64 #define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
65 #endif
67 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
68 #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
69 #else
70 #define MAX_DESCS_PER_SKB 1
71 #endif
73 #define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
74 #define PHY_WAIT_MICRO_SECONDS 10
76 /* Static function declarations */
77 static int eth_port_link_is_up(unsigned int eth_port_num);
78 static void eth_port_uc_addr_get(struct net_device *dev,
79 unsigned char *MacAddr);
80 static int mv643xx_eth_real_open(struct net_device *);
81 static int mv643xx_eth_real_stop(struct net_device *);
82 static int mv643xx_eth_change_mtu(struct net_device *, int);
83 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
84 static void eth_port_init_mac_tables(unsigned int eth_port_num);
85 #ifdef MV643XX_NAPI
86 static int mv643xx_poll(struct net_device *dev, int *budget);
87 #endif
88 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
89 static int ethernet_phy_detect(unsigned int eth_port_num);
90 static struct ethtool_ops mv643xx_ethtool_ops;
92 static char mv643xx_driver_name[] = "mv643xx_eth";
93 static char mv643xx_driver_version[] = "1.0";
95 static void __iomem *mv643xx_eth_shared_base;
97 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
98 static spinlock_t mv643xx_eth_phy_lock = SPIN_LOCK_UNLOCKED;
100 static inline u32 mv_read(int offset)
102 void __iomem *reg_base;
104 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
106 return readl(reg_base + offset);
109 static inline void mv_write(int offset, u32 data)
111 void __iomem *reg_base;
113 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
114 writel(data, reg_base + offset);
118 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
120 * Input : pointer to ethernet interface network device structure
121 * new mtu size
122 * Output : 0 upon success, -EINVAL upon failure
124 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
126 struct mv643xx_private *mp = netdev_priv(dev);
127 unsigned long flags;
129 spin_lock_irqsave(&mp->lock, flags);
131 if ((new_mtu > 9500) || (new_mtu < 64)) {
132 spin_unlock_irqrestore(&mp->lock, flags);
133 return -EINVAL;
136 dev->mtu = new_mtu;
138 * Stop then re-open the interface. This will allocate RX skb's with
139 * the new MTU.
140 * There is a possible danger that the open will not successed, due
141 * to memory is full, which might fail the open function.
143 if (netif_running(dev)) {
144 if (mv643xx_eth_real_stop(dev))
145 printk(KERN_ERR
146 "%s: Fatal error on stopping device\n",
147 dev->name);
148 if (mv643xx_eth_real_open(dev))
149 printk(KERN_ERR
150 "%s: Fatal error on opening device\n",
151 dev->name);
154 spin_unlock_irqrestore(&mp->lock, flags);
155 return 0;
159 * mv643xx_eth_rx_task
161 * Fills / refills RX queue on a certain gigabit ethernet port
163 * Input : pointer to ethernet interface network device structure
164 * Output : N/A
166 static void mv643xx_eth_rx_task(void *data)
168 struct net_device *dev = (struct net_device *)data;
169 struct mv643xx_private *mp = netdev_priv(dev);
170 struct pkt_info pkt_info;
171 struct sk_buff *skb;
173 if (test_and_set_bit(0, &mp->rx_task_busy))
174 panic("%s: Error in test_set_bit / clear_bit", dev->name);
176 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
177 skb = dev_alloc_skb(RX_SKB_SIZE);
178 if (!skb)
179 break;
180 mp->rx_ring_skbs++;
181 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
182 pkt_info.byte_cnt = RX_SKB_SIZE;
183 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
184 DMA_FROM_DEVICE);
185 pkt_info.return_info = skb;
186 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
187 printk(KERN_ERR
188 "%s: Error allocating RX Ring\n", dev->name);
189 break;
191 skb_reserve(skb, 2);
193 clear_bit(0, &mp->rx_task_busy);
195 * If RX ring is empty of SKB, set a timer to try allocating
196 * again in a later time .
198 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
199 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
200 /* After 100mSec */
201 mp->timeout.expires = jiffies + (HZ / 10);
202 add_timer(&mp->timeout);
203 mp->rx_timer_flag = 1;
205 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
206 else {
207 /* Return interrupts */
208 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
209 INT_CAUSE_UNMASK_ALL);
211 #endif
215 * mv643xx_eth_rx_task_timer_wrapper
217 * Timer routine to wake up RX queue filling task. This function is
218 * used only in case the RX queue is empty, and all alloc_skb has
219 * failed (due to out of memory event).
221 * Input : pointer to ethernet interface network device structure
222 * Output : N/A
224 static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
226 struct net_device *dev = (struct net_device *)data;
227 struct mv643xx_private *mp = netdev_priv(dev);
229 mp->rx_timer_flag = 0;
230 mv643xx_eth_rx_task((void *)data);
234 * mv643xx_eth_update_mac_address
236 * Update the MAC address of the port in the address table
238 * Input : pointer to ethernet interface network device structure
239 * Output : N/A
241 static void mv643xx_eth_update_mac_address(struct net_device *dev)
243 struct mv643xx_private *mp = netdev_priv(dev);
244 unsigned int port_num = mp->port_num;
246 eth_port_init_mac_tables(port_num);
247 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
248 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
252 * mv643xx_eth_set_rx_mode
254 * Change from promiscuos to regular rx mode
256 * Input : pointer to ethernet interface network device structure
257 * Output : N/A
259 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
261 struct mv643xx_private *mp = netdev_priv(dev);
262 u32 config_reg;
264 config_reg = ethernet_get_config_reg(mp->port_num);
265 if (dev->flags & IFF_PROMISC)
266 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
267 else
268 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
269 ethernet_set_config_reg(mp->port_num, config_reg);
273 * mv643xx_eth_set_mac_address
275 * Change the interface's mac address.
276 * No special hardware thing should be done because interface is always
277 * put in promiscuous mode.
279 * Input : pointer to ethernet interface network device structure and
280 * a pointer to the designated entry to be added to the cache.
281 * Output : zero upon success, negative upon failure
283 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
285 int i;
287 for (i = 0; i < 6; i++)
288 /* +2 is for the offset of the HW addr type */
289 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
290 mv643xx_eth_update_mac_address(dev);
291 return 0;
295 * mv643xx_eth_tx_timeout
297 * Called upon a timeout on transmitting a packet
299 * Input : pointer to ethernet interface network device structure.
300 * Output : N/A
302 static void mv643xx_eth_tx_timeout(struct net_device *dev)
304 struct mv643xx_private *mp = netdev_priv(dev);
306 printk(KERN_INFO "%s: TX timeout ", dev->name);
308 /* Do the reset outside of interrupt context */
309 schedule_work(&mp->tx_timeout_task);
313 * mv643xx_eth_tx_timeout_task
315 * Actual routine to reset the adapter when a timeout on Tx has occurred
317 static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
319 struct mv643xx_private *mp = netdev_priv(dev);
321 netif_device_detach(dev);
322 eth_port_reset(mp->port_num);
323 eth_port_start(mp);
324 netif_device_attach(dev);
328 * mv643xx_eth_free_tx_queue
330 * Input : dev - a pointer to the required interface
332 * Output : 0 if was able to release skb , nonzero otherwise
334 static int mv643xx_eth_free_tx_queue(struct net_device *dev,
335 unsigned int eth_int_cause_ext)
337 struct mv643xx_private *mp = netdev_priv(dev);
338 struct net_device_stats *stats = &mp->stats;
339 struct pkt_info pkt_info;
340 int released = 1;
342 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
343 return released;
345 spin_lock(&mp->lock);
347 /* Check only queue 0 */
348 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
349 if (pkt_info.cmd_sts & BIT0) {
350 printk("%s: Error in TX\n", dev->name);
351 stats->tx_errors++;
355 * If return_info is different than 0, release the skb.
356 * The case where return_info is not 0 is only in case
357 * when transmitted a scatter/gather packet, where only
358 * last skb releases the whole chain.
360 if (pkt_info.return_info) {
361 if (skb_shinfo(pkt_info.return_info)->nr_frags)
362 dma_unmap_page(NULL, pkt_info.buf_ptr,
363 pkt_info.byte_cnt,
364 DMA_TO_DEVICE);
365 else
366 dma_unmap_single(NULL, pkt_info.buf_ptr,
367 pkt_info.byte_cnt,
368 DMA_TO_DEVICE);
370 dev_kfree_skb_irq(pkt_info.return_info);
371 released = 0;
374 * Decrement the number of outstanding skbs counter on
375 * the TX queue.
377 if (mp->tx_ring_skbs == 0)
378 panic("ERROR - TX outstanding SKBs"
379 " counter is corrupted");
380 mp->tx_ring_skbs--;
381 } else
382 dma_unmap_page(NULL, pkt_info.buf_ptr,
383 pkt_info.byte_cnt, DMA_TO_DEVICE);
386 spin_unlock(&mp->lock);
388 return released;
392 * mv643xx_eth_receive
394 * This function is forward packets that are received from the port's
395 * queues toward kernel core or FastRoute them to another interface.
397 * Input : dev - a pointer to the required interface
398 * max - maximum number to receive (0 means unlimted)
400 * Output : number of served packets
402 #ifdef MV643XX_NAPI
403 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
404 #else
405 static int mv643xx_eth_receive_queue(struct net_device *dev)
406 #endif
408 struct mv643xx_private *mp = netdev_priv(dev);
409 struct net_device_stats *stats = &mp->stats;
410 unsigned int received_packets = 0;
411 struct sk_buff *skb;
412 struct pkt_info pkt_info;
414 #ifdef MV643XX_NAPI
415 while (eth_port_receive(mp, &pkt_info) == ETH_OK && budget > 0) {
416 #else
417 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
418 #endif
419 mp->rx_ring_skbs--;
420 received_packets++;
421 #ifdef MV643XX_NAPI
422 budget--;
423 #endif
424 /* Update statistics. Note byte count includes 4 byte CRC count */
425 stats->rx_packets++;
426 stats->rx_bytes += pkt_info.byte_cnt;
427 skb = pkt_info.return_info;
429 * In case received a packet without first / last bits on OR
430 * the error summary bit is on, the packets needs to be dropeed.
432 if (((pkt_info.cmd_sts
433 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
434 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
435 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
436 stats->rx_dropped++;
437 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
438 ETH_RX_LAST_DESC)) !=
439 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
440 if (net_ratelimit())
441 printk(KERN_ERR
442 "%s: Received packet spread "
443 "on multiple descriptors\n",
444 dev->name);
446 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
447 stats->rx_errors++;
449 dev_kfree_skb_irq(skb);
450 } else {
452 * The -4 is for the CRC in the trailer of the
453 * received packet
455 skb_put(skb, pkt_info.byte_cnt - 4);
456 skb->dev = dev;
458 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
459 skb->ip_summed = CHECKSUM_UNNECESSARY;
460 skb->csum = htons(
461 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
463 skb->protocol = eth_type_trans(skb, dev);
464 #ifdef MV643XX_NAPI
465 netif_receive_skb(skb);
466 #else
467 netif_rx(skb);
468 #endif
472 return received_packets;
476 * mv643xx_eth_int_handler
478 * Main interrupt handler for the gigbit ethernet ports
480 * Input : irq - irq number (not used)
481 * dev_id - a pointer to the required interface's data structure
482 * regs - not used
483 * Output : N/A
486 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
487 struct pt_regs *regs)
489 struct net_device *dev = (struct net_device *)dev_id;
490 struct mv643xx_private *mp = netdev_priv(dev);
491 u32 eth_int_cause, eth_int_cause_ext = 0;
492 unsigned int port_num = mp->port_num;
494 /* Read interrupt cause registers */
495 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
496 INT_CAUSE_UNMASK_ALL;
498 if (eth_int_cause & BIT1)
499 eth_int_cause_ext = mv_read(
500 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
501 INT_CAUSE_UNMASK_ALL_EXT;
503 #ifdef MV643XX_NAPI
504 if (!(eth_int_cause & 0x0007fffd)) {
505 /* Dont ack the Rx interrupt */
506 #endif
508 * Clear specific ethernet port intrerrupt registers by
509 * acknowleding relevant bits.
511 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
512 ~eth_int_cause);
513 if (eth_int_cause_ext != 0x0)
514 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
515 (port_num), ~eth_int_cause_ext);
517 /* UDP change : We may need this */
518 if ((eth_int_cause_ext & 0x0000ffff) &&
519 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
520 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
521 netif_wake_queue(dev);
522 #ifdef MV643XX_NAPI
523 } else {
524 if (netif_rx_schedule_prep(dev)) {
525 /* Mask all the interrupts */
526 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
527 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG
528 (port_num), 0);
529 __netif_rx_schedule(dev);
531 #else
532 if (eth_int_cause & (BIT2 | BIT11))
533 mv643xx_eth_receive_queue(dev, 0);
536 * After forwarded received packets to upper layer, add a task
537 * in an interrupts enabled context that refills the RX ring
538 * with skb's.
540 #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
541 /* Unmask all interrupts on ethernet port */
542 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
543 INT_CAUSE_MASK_ALL);
544 queue_task(&mp->rx_task, &tq_immediate);
545 mark_bh(IMMEDIATE_BH);
546 #else
547 mp->rx_task.func(dev);
548 #endif
549 #endif
551 /* PHY status changed */
552 if (eth_int_cause_ext & (BIT16 | BIT20)) {
553 if (eth_port_link_is_up(port_num)) {
554 netif_carrier_on(dev);
555 netif_wake_queue(dev);
556 /* Start TX queue */
557 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
558 (port_num), 1);
559 } else {
560 netif_carrier_off(dev);
561 netif_stop_queue(dev);
566 * If no real interrupt occured, exit.
567 * This can happen when using gigE interrupt coalescing mechanism.
569 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
570 return IRQ_NONE;
572 return IRQ_HANDLED;
575 #ifdef MV643XX_COAL
578 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
580 * DESCRIPTION:
581 * This routine sets the RX coalescing interrupt mechanism parameter.
582 * This parameter is a timeout counter, that counts in 64 t_clk
583 * chunks ; that when timeout event occurs a maskable interrupt
584 * occurs.
585 * The parameter is calculated using the tClk of the MV-643xx chip
586 * , and the required delay of the interrupt in usec.
588 * INPUT:
589 * unsigned int eth_port_num Ethernet port number
590 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
591 * unsigned int delay Delay in usec
593 * OUTPUT:
594 * Interrupt coalescing mechanism value is set in MV-643xx chip.
596 * RETURN:
597 * The interrupt coalescing value set in the gigE port.
600 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
601 unsigned int t_clk, unsigned int delay)
603 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
605 /* Set RX Coalescing mechanism */
606 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
607 ((coal & 0x3fff) << 8) |
608 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
609 & 0xffc000ff));
611 return coal;
613 #endif
616 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
618 * DESCRIPTION:
619 * This routine sets the TX coalescing interrupt mechanism parameter.
620 * This parameter is a timeout counter, that counts in 64 t_clk
621 * chunks ; that when timeout event occurs a maskable interrupt
622 * occurs.
623 * The parameter is calculated using the t_cLK frequency of the
624 * MV-643xx chip and the required delay in the interrupt in uSec
626 * INPUT:
627 * unsigned int eth_port_num Ethernet port number
628 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
629 * unsigned int delay Delay in uSeconds
631 * OUTPUT:
632 * Interrupt coalescing mechanism value is set in MV-643xx chip.
634 * RETURN:
635 * The interrupt coalescing value set in the gigE port.
638 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
639 unsigned int t_clk, unsigned int delay)
641 unsigned int coal;
642 coal = ((t_clk / 1000000) * delay) / 64;
643 /* Set TX Coalescing mechanism */
644 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
645 coal << 4);
646 return coal;
650 * mv643xx_eth_open
652 * This function is called when openning the network device. The function
653 * should initialize all the hardware, initialize cyclic Rx/Tx
654 * descriptors chain and buffers and allocate an IRQ to the network
655 * device.
657 * Input : a pointer to the network device structure
659 * Output : zero of success , nonzero if fails.
662 static int mv643xx_eth_open(struct net_device *dev)
664 struct mv643xx_private *mp = netdev_priv(dev);
665 unsigned int port_num = mp->port_num;
666 int err;
668 spin_lock_irq(&mp->lock);
670 err = request_irq(dev->irq, mv643xx_eth_int_handler,
671 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
673 if (err) {
674 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
675 port_num);
676 err = -EAGAIN;
677 goto out;
680 if (mv643xx_eth_real_open(dev)) {
681 printk("%s: Error opening interface\n", dev->name);
682 err = -EBUSY;
683 goto out_free;
686 spin_unlock_irq(&mp->lock);
688 return 0;
690 out_free:
691 free_irq(dev->irq, dev);
693 out:
694 spin_unlock_irq(&mp->lock);
696 return err;
700 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
702 * DESCRIPTION:
703 * This function prepares a Rx chained list of descriptors and packet
704 * buffers in a form of a ring. The routine must be called after port
705 * initialization routine and before port start routine.
706 * The Ethernet SDMA engine uses CPU bus addresses to access the various
707 * devices in the system (i.e. DRAM). This function uses the ethernet
708 * struct 'virtual to physical' routine (set by the user) to set the ring
709 * with physical addresses.
711 * INPUT:
712 * struct mv643xx_private *mp Ethernet Port Control srtuct.
714 * OUTPUT:
715 * The routine updates the Ethernet port control struct with information
716 * regarding the Rx descriptors and buffers.
718 * RETURN:
719 * None.
721 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
723 volatile struct eth_rx_desc *p_rx_desc;
724 int rx_desc_num = mp->rx_ring_size;
725 int i;
727 /* initialize the next_desc_ptr links in the Rx descriptors ring */
728 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
729 for (i = 0; i < rx_desc_num; i++) {
730 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
731 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
734 /* Save Rx desc pointer to driver struct. */
735 mp->rx_curr_desc_q = 0;
736 mp->rx_used_desc_q = 0;
738 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
740 /* Add the queue to the list of RX queues of this port */
741 mp->port_rx_queue_command |= 1;
745 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
747 * DESCRIPTION:
748 * This function prepares a Tx chained list of descriptors and packet
749 * buffers in a form of a ring. The routine must be called after port
750 * initialization routine and before port start routine.
751 * The Ethernet SDMA engine uses CPU bus addresses to access the various
752 * devices in the system (i.e. DRAM). This function uses the ethernet
753 * struct 'virtual to physical' routine (set by the user) to set the ring
754 * with physical addresses.
756 * INPUT:
757 * struct mv643xx_private *mp Ethernet Port Control srtuct.
759 * OUTPUT:
760 * The routine updates the Ethernet port control struct with information
761 * regarding the Tx descriptors and buffers.
763 * RETURN:
764 * None.
766 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
768 int tx_desc_num = mp->tx_ring_size;
769 struct eth_tx_desc *p_tx_desc;
770 int i;
772 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
773 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
774 for (i = 0; i < tx_desc_num; i++) {
775 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
776 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
779 mp->tx_curr_desc_q = 0;
780 mp->tx_used_desc_q = 0;
781 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
782 mp->tx_first_desc_q = 0;
783 #endif
785 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
787 /* Add the queue to the list of Tx queues of this port */
788 mp->port_tx_queue_command |= 1;
791 /* Helper function for mv643xx_eth_open */
792 static int mv643xx_eth_real_open(struct net_device *dev)
794 struct mv643xx_private *mp = netdev_priv(dev);
795 unsigned int port_num = mp->port_num;
796 unsigned int size;
798 /* Stop RX Queues */
799 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
801 /* Clear the ethernet port interrupts */
802 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
803 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
805 /* Unmask RX buffer and TX end interrupt */
806 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
807 INT_CAUSE_UNMASK_ALL);
809 /* Unmask phy and link status changes interrupts */
810 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
811 INT_CAUSE_UNMASK_ALL_EXT);
813 /* Set the MAC Address */
814 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
816 eth_port_init(mp);
818 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
820 memset(&mp->timeout, 0, sizeof(struct timer_list));
821 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
822 mp->timeout.data = (unsigned long)dev;
824 mp->rx_task_busy = 0;
825 mp->rx_timer_flag = 0;
827 /* Allocate RX and TX skb rings */
828 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
829 GFP_KERNEL);
830 if (!mp->rx_skb) {
831 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
832 return -ENOMEM;
834 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
835 GFP_KERNEL);
836 if (!mp->tx_skb) {
837 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
838 kfree(mp->rx_skb);
839 return -ENOMEM;
842 /* Allocate TX ring */
843 mp->tx_ring_skbs = 0;
844 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
845 mp->tx_desc_area_size = size;
847 if (mp->tx_sram_size) {
848 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
849 mp->tx_sram_size);
850 mp->tx_desc_dma = mp->tx_sram_addr;
851 } else
852 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
853 &mp->tx_desc_dma,
854 GFP_KERNEL);
856 if (!mp->p_tx_desc_area) {
857 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
858 dev->name, size);
859 kfree(mp->rx_skb);
860 kfree(mp->tx_skb);
861 return -ENOMEM;
863 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
864 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
866 ether_init_tx_desc_ring(mp);
868 /* Allocate RX ring */
869 mp->rx_ring_skbs = 0;
870 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
871 mp->rx_desc_area_size = size;
873 if (mp->rx_sram_size) {
874 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
875 mp->rx_sram_size);
876 mp->rx_desc_dma = mp->rx_sram_addr;
877 } else
878 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
879 &mp->rx_desc_dma,
880 GFP_KERNEL);
882 if (!mp->p_rx_desc_area) {
883 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
884 dev->name, size);
885 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
886 dev->name);
887 if (mp->rx_sram_size)
888 iounmap(mp->p_rx_desc_area);
889 else
890 dma_free_coherent(NULL, mp->tx_desc_area_size,
891 mp->p_tx_desc_area, mp->tx_desc_dma);
892 kfree(mp->rx_skb);
893 kfree(mp->tx_skb);
894 return -ENOMEM;
896 memset((void *)mp->p_rx_desc_area, 0, size);
898 ether_init_rx_desc_ring(mp);
900 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
902 eth_port_start(mp);
904 /* Interrupt Coalescing */
906 #ifdef MV643XX_COAL
907 mp->rx_int_coal =
908 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
909 #endif
911 mp->tx_int_coal =
912 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
914 netif_start_queue(dev);
916 return 0;
919 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
921 struct mv643xx_private *mp = netdev_priv(dev);
922 unsigned int port_num = mp->port_num;
923 unsigned int curr;
925 /* Stop Tx Queues */
926 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
928 /* Free outstanding skb's on TX rings */
929 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
930 if (mp->tx_skb[curr]) {
931 dev_kfree_skb(mp->tx_skb[curr]);
932 mp->tx_ring_skbs--;
935 if (mp->tx_ring_skbs)
936 printk("%s: Error on Tx descriptor free - could not free %d"
937 " descriptors\n", dev->name, mp->tx_ring_skbs);
939 /* Free TX ring */
940 if (mp->tx_sram_size)
941 iounmap(mp->p_tx_desc_area);
942 else
943 dma_free_coherent(NULL, mp->tx_desc_area_size,
944 mp->p_tx_desc_area, mp->tx_desc_dma);
947 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
949 struct mv643xx_private *mp = netdev_priv(dev);
950 unsigned int port_num = mp->port_num;
951 int curr;
953 /* Stop RX Queues */
954 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
956 /* Free preallocated skb's on RX rings */
957 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
958 if (mp->rx_skb[curr]) {
959 dev_kfree_skb(mp->rx_skb[curr]);
960 mp->rx_ring_skbs--;
964 if (mp->rx_ring_skbs)
965 printk(KERN_ERR
966 "%s: Error in freeing Rx Ring. %d skb's still"
967 " stuck in RX Ring - ignoring them\n", dev->name,
968 mp->rx_ring_skbs);
969 /* Free RX ring */
970 if (mp->rx_sram_size)
971 iounmap(mp->p_rx_desc_area);
972 else
973 dma_free_coherent(NULL, mp->rx_desc_area_size,
974 mp->p_rx_desc_area, mp->rx_desc_dma);
978 * mv643xx_eth_stop
980 * This function is used when closing the network device.
981 * It updates the hardware,
982 * release all memory that holds buffers and descriptors and release the IRQ.
983 * Input : a pointer to the device structure
984 * Output : zero if success , nonzero if fails
987 /* Helper function for mv643xx_eth_stop */
989 static int mv643xx_eth_real_stop(struct net_device *dev)
991 struct mv643xx_private *mp = netdev_priv(dev);
992 unsigned int port_num = mp->port_num;
994 netif_carrier_off(dev);
995 netif_stop_queue(dev);
997 mv643xx_eth_free_tx_rings(dev);
998 mv643xx_eth_free_rx_rings(dev);
1000 eth_port_reset(mp->port_num);
1002 /* Disable ethernet port interrupts */
1003 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1004 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1006 /* Mask RX buffer and TX end interrupt */
1007 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
1009 /* Mask phy and link status changes interrupts */
1010 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), 0);
1012 return 0;
1015 static int mv643xx_eth_stop(struct net_device *dev)
1017 struct mv643xx_private *mp = netdev_priv(dev);
1019 spin_lock_irq(&mp->lock);
1021 mv643xx_eth_real_stop(dev);
1023 free_irq(dev->irq, dev);
1024 spin_unlock_irq(&mp->lock);
1026 return 0;
1029 #ifdef MV643XX_NAPI
1030 static void mv643xx_tx(struct net_device *dev)
1032 struct mv643xx_private *mp = netdev_priv(dev);
1033 struct pkt_info pkt_info;
1035 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
1036 if (pkt_info.return_info) {
1037 if (skb_shinfo(pkt_info.return_info)->nr_frags)
1038 dma_unmap_page(NULL, pkt_info.buf_ptr,
1039 pkt_info.byte_cnt,
1040 DMA_TO_DEVICE);
1041 else
1042 dma_unmap_single(NULL, pkt_info.buf_ptr,
1043 pkt_info.byte_cnt,
1044 DMA_TO_DEVICE);
1046 dev_kfree_skb_irq(pkt_info.return_info);
1048 if (mp->tx_ring_skbs)
1049 mp->tx_ring_skbs--;
1050 } else
1051 dma_unmap_page(NULL, pkt_info.buf_ptr,
1052 pkt_info.byte_cnt, DMA_TO_DEVICE);
1055 if (netif_queue_stopped(dev) &&
1056 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
1057 netif_wake_queue(dev);
1061 * mv643xx_poll
1063 * This function is used in case of NAPI
1065 static int mv643xx_poll(struct net_device *dev, int *budget)
1067 struct mv643xx_private *mp = netdev_priv(dev);
1068 int done = 1, orig_budget, work_done;
1069 unsigned int port_num = mp->port_num;
1070 unsigned long flags;
1072 #ifdef MV643XX_TX_FAST_REFILL
1073 if (++mp->tx_clean_threshold > 5) {
1074 spin_lock_irqsave(&mp->lock, flags);
1075 mv643xx_tx(dev);
1076 mp->tx_clean_threshold = 0;
1077 spin_unlock_irqrestore(&mp->lock, flags);
1079 #endif
1081 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1082 != (u32) mp->rx_used_desc_q) {
1083 orig_budget = *budget;
1084 if (orig_budget > dev->quota)
1085 orig_budget = dev->quota;
1086 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1087 mp->rx_task.func(dev);
1088 *budget -= work_done;
1089 dev->quota -= work_done;
1090 if (work_done >= orig_budget)
1091 done = 0;
1094 if (done) {
1095 spin_lock_irqsave(&mp->lock, flags);
1096 __netif_rx_complete(dev);
1097 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1098 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1099 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1100 INT_CAUSE_UNMASK_ALL);
1101 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1102 INT_CAUSE_UNMASK_ALL_EXT);
1103 spin_unlock_irqrestore(&mp->lock, flags);
1106 return done ? 0 : 1;
1108 #endif
1111 * mv643xx_eth_start_xmit
1113 * This function is queues a packet in the Tx descriptor for
1114 * required port.
1116 * Input : skb - a pointer to socket buffer
1117 * dev - a pointer to the required port
1119 * Output : zero upon success
1121 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1123 struct mv643xx_private *mp = netdev_priv(dev);
1124 struct net_device_stats *stats = &mp->stats;
1125 ETH_FUNC_RET_STATUS status;
1126 unsigned long flags;
1127 struct pkt_info pkt_info;
1129 if (netif_queue_stopped(dev)) {
1130 printk(KERN_ERR
1131 "%s: Tried sending packet when interface is stopped\n",
1132 dev->name);
1133 return 1;
1136 /* This is a hard error, log it. */
1137 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1138 (skb_shinfo(skb)->nr_frags + 1)) {
1139 netif_stop_queue(dev);
1140 printk(KERN_ERR
1141 "%s: Bug in mv643xx_eth - Trying to transmit when"
1142 " queue full !\n", dev->name);
1143 return 1;
1146 /* Paranoid check - this shouldn't happen */
1147 if (skb == NULL) {
1148 stats->tx_dropped++;
1149 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1150 return 1;
1153 spin_lock_irqsave(&mp->lock, flags);
1155 /* Update packet info data structure -- DMA owned, first last */
1156 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1157 if (!skb_shinfo(skb)->nr_frags) {
1158 linear:
1159 if (skb->ip_summed != CHECKSUM_HW) {
1160 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1161 ETH_TX_FIRST_DESC | ETH_TX_LAST_DESC;
1162 pkt_info.l4i_chk = 0;
1163 } else {
1164 u32 ipheader = skb->nh.iph->ihl << 11;
1166 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
1167 ETH_TX_FIRST_DESC | ETH_TX_LAST_DESC |
1168 ETH_GEN_TCP_UDP_CHECKSUM |
1169 ETH_GEN_IP_V_4_CHECKSUM | ipheader;
1170 /* CPU already calculated pseudo header checksum. */
1171 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1172 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1173 pkt_info.l4i_chk = skb->h.uh->check;
1174 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1175 pkt_info.l4i_chk = skb->h.th->check;
1176 else {
1177 printk(KERN_ERR
1178 "%s: chksum proto != TCP or UDP\n",
1179 dev->name);
1180 spin_unlock_irqrestore(&mp->lock, flags);
1181 return 1;
1184 pkt_info.byte_cnt = skb->len;
1185 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1186 DMA_TO_DEVICE);
1187 pkt_info.return_info = skb;
1188 mp->tx_ring_skbs++;
1189 status = eth_port_send(mp, &pkt_info);
1190 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1191 printk(KERN_ERR "%s: Error on transmitting packet\n",
1192 dev->name);
1193 stats->tx_bytes += pkt_info.byte_cnt;
1194 } else {
1195 unsigned int frag;
1196 u32 ipheader;
1198 /* Since hardware can't handle unaligned fragments smaller
1199 * than 9 bytes, if we find any, we linearize the skb
1200 * and start again. When I've seen it, it's always been
1201 * the first frag (probably near the end of the page),
1202 * but we check all frags to be safe.
1204 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1205 skb_frag_t *fragp;
1207 fragp = &skb_shinfo(skb)->frags[frag];
1208 if (fragp->size <= 8 && fragp->page_offset & 0x7) {
1209 skb_linearize(skb, GFP_ATOMIC);
1210 printk(KERN_DEBUG "%s: unaligned tiny fragment"
1211 "%d of %d, fixed\n",
1212 dev->name, frag,
1213 skb_shinfo(skb)->nr_frags);
1214 goto linear;
1218 /* first frag which is skb header */
1219 pkt_info.byte_cnt = skb_headlen(skb);
1220 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1221 skb_headlen(skb),
1222 DMA_TO_DEVICE);
1223 pkt_info.l4i_chk = 0;
1224 pkt_info.return_info = 0;
1225 pkt_info.cmd_sts = ETH_TX_FIRST_DESC;
1227 if (skb->ip_summed == CHECKSUM_HW) {
1228 ipheader = skb->nh.iph->ihl << 11;
1229 pkt_info.cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1230 ETH_GEN_IP_V_4_CHECKSUM | ipheader;
1231 /* CPU already calculated pseudo header checksum. */
1232 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1233 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1234 pkt_info.l4i_chk = skb->h.uh->check;
1235 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1236 pkt_info.l4i_chk = skb->h.th->check;
1237 else {
1238 printk(KERN_ERR
1239 "%s: chksum proto != TCP or UDP\n",
1240 dev->name);
1241 spin_unlock_irqrestore(&mp->lock, flags);
1242 return 1;
1246 status = eth_port_send(mp, &pkt_info);
1247 if (status != ETH_OK) {
1248 if ((status == ETH_ERROR))
1249 printk(KERN_ERR
1250 "%s: Error on transmitting packet\n",
1251 dev->name);
1252 if (status == ETH_QUEUE_FULL)
1253 printk("Error on Queue Full \n");
1254 if (status == ETH_QUEUE_LAST_RESOURCE)
1255 printk("Tx resource error \n");
1257 stats->tx_bytes += pkt_info.byte_cnt;
1259 /* Check for the remaining frags */
1260 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1261 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1262 pkt_info.l4i_chk = 0x0000;
1263 pkt_info.cmd_sts = 0x00000000;
1265 /* Last Frag enables interrupt and frees the skb */
1266 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1267 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1268 ETH_TX_LAST_DESC;
1269 pkt_info.return_info = skb;
1270 mp->tx_ring_skbs++;
1271 } else {
1272 pkt_info.return_info = 0;
1274 pkt_info.l4i_chk = 0;
1275 pkt_info.byte_cnt = this_frag->size;
1277 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1278 this_frag->page_offset,
1279 this_frag->size,
1280 DMA_TO_DEVICE);
1282 status = eth_port_send(mp, &pkt_info);
1284 if (status != ETH_OK) {
1285 if ((status == ETH_ERROR))
1286 printk(KERN_ERR "%s: Error on "
1287 "transmitting packet\n",
1288 dev->name);
1290 if (status == ETH_QUEUE_LAST_RESOURCE)
1291 printk("Tx resource error \n");
1293 if (status == ETH_QUEUE_FULL)
1294 printk("Queue is full \n");
1296 stats->tx_bytes += pkt_info.byte_cnt;
1299 #else
1300 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1301 ETH_TX_LAST_DESC;
1302 pkt_info.l4i_chk = 0;
1303 pkt_info.byte_cnt = skb->len;
1304 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1305 DMA_TO_DEVICE);
1306 pkt_info.return_info = skb;
1307 mp->tx_ring_skbs++;
1308 status = eth_port_send(mp, &pkt_info);
1309 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1310 printk(KERN_ERR "%s: Error on transmitting packet\n",
1311 dev->name);
1312 stats->tx_bytes += pkt_info.byte_cnt;
1313 #endif
1315 /* Check if TX queue can handle another skb. If not, then
1316 * signal higher layers to stop requesting TX
1318 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1320 * Stop getting skb's from upper layers.
1321 * Getting skb's from upper layers will be enabled again after
1322 * packets are released.
1324 netif_stop_queue(dev);
1326 /* Update statistics and start of transmittion time */
1327 stats->tx_packets++;
1328 dev->trans_start = jiffies;
1330 spin_unlock_irqrestore(&mp->lock, flags);
1332 return 0; /* success */
1336 * mv643xx_eth_get_stats
1338 * Returns a pointer to the interface statistics.
1340 * Input : dev - a pointer to the required interface
1342 * Output : a pointer to the interface's statistics
1345 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1347 struct mv643xx_private *mp = netdev_priv(dev);
1349 return &mp->stats;
1353 * mv643xx_eth_probe
1355 * First function called after registering the network device.
1356 * It's purpose is to initialize the device as an ethernet device,
1357 * fill the ethernet device structure with pointers * to functions,
1358 * and set the MAC address of the interface
1360 * Input : struct device *
1361 * Output : -ENOMEM if failed , 0 if success
1363 static int mv643xx_eth_probe(struct device *ddev)
1365 struct platform_device *pdev = to_platform_device(ddev);
1366 struct mv643xx_eth_platform_data *pd;
1367 int port_num = pdev->id;
1368 struct mv643xx_private *mp;
1369 struct net_device *dev;
1370 u8 *p;
1371 struct resource *res;
1372 int err;
1374 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1375 if (!dev)
1376 return -ENOMEM;
1378 dev_set_drvdata(ddev, dev);
1380 mp = netdev_priv(dev);
1382 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1383 BUG_ON(!res);
1384 dev->irq = res->start;
1386 mp->port_num = port_num;
1388 dev->open = mv643xx_eth_open;
1389 dev->stop = mv643xx_eth_stop;
1390 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1391 dev->get_stats = mv643xx_eth_get_stats;
1392 dev->set_mac_address = mv643xx_eth_set_mac_address;
1393 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1395 /* No need to Tx Timeout */
1396 dev->tx_timeout = mv643xx_eth_tx_timeout;
1397 #ifdef MV643XX_NAPI
1398 dev->poll = mv643xx_poll;
1399 dev->weight = 64;
1400 #endif
1402 dev->watchdog_timeo = 2 * HZ;
1403 dev->tx_queue_len = mp->tx_ring_size;
1404 dev->base_addr = 0;
1405 dev->change_mtu = mv643xx_eth_change_mtu;
1406 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1408 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1409 #ifdef MAX_SKB_FRAGS
1411 * Zero copy can only work if we use Discovery II memory. Else, we will
1412 * have to map the buffers to ISA memory which is only 16 MB
1414 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HW_CSUM;
1415 #endif
1416 #endif
1418 /* Configure the timeout task */
1419 INIT_WORK(&mp->tx_timeout_task,
1420 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1422 spin_lock_init(&mp->lock);
1424 /* set default config values */
1425 eth_port_uc_addr_get(dev, dev->dev_addr);
1426 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1427 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1428 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1429 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1430 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1431 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1433 pd = pdev->dev.platform_data;
1434 if (pd) {
1435 if (pd->mac_addr != NULL)
1436 memcpy(dev->dev_addr, pd->mac_addr, 6);
1438 if (pd->phy_addr || pd->force_phy_addr)
1439 ethernet_phy_set(port_num, pd->phy_addr);
1441 if (pd->port_config || pd->force_port_config)
1442 mp->port_config = pd->port_config;
1444 if (pd->port_config_extend || pd->force_port_config_extend)
1445 mp->port_config_extend = pd->port_config_extend;
1447 if (pd->port_sdma_config || pd->force_port_sdma_config)
1448 mp->port_sdma_config = pd->port_sdma_config;
1450 if (pd->port_serial_control || pd->force_port_serial_control)
1451 mp->port_serial_control = pd->port_serial_control;
1453 if (pd->rx_queue_size)
1454 mp->rx_ring_size = pd->rx_queue_size;
1456 if (pd->tx_queue_size)
1457 mp->tx_ring_size = pd->tx_queue_size;
1459 if (pd->tx_sram_size) {
1460 mp->tx_sram_size = pd->tx_sram_size;
1461 mp->tx_sram_addr = pd->tx_sram_addr;
1464 if (pd->rx_sram_size) {
1465 mp->rx_sram_size = pd->rx_sram_size;
1466 mp->rx_sram_addr = pd->rx_sram_addr;
1470 err = ethernet_phy_detect(port_num);
1471 if (err) {
1472 pr_debug("MV643xx ethernet port %d: "
1473 "No PHY detected at addr %d\n",
1474 port_num, ethernet_phy_get(port_num));
1475 return err;
1478 err = register_netdev(dev);
1479 if (err)
1480 goto out;
1482 p = dev->dev_addr;
1483 printk(KERN_NOTICE
1484 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1485 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1487 if (dev->features & NETIF_F_SG)
1488 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1490 if (dev->features & NETIF_F_IP_CSUM)
1491 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1492 dev->name);
1494 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1495 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1496 #endif
1498 #ifdef MV643XX_COAL
1499 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1500 dev->name);
1501 #endif
1503 #ifdef MV643XX_NAPI
1504 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1505 #endif
1507 return 0;
1509 out:
1510 free_netdev(dev);
1512 return err;
1515 static int mv643xx_eth_remove(struct device *ddev)
1517 struct net_device *dev = dev_get_drvdata(ddev);
1519 unregister_netdev(dev);
1520 flush_scheduled_work();
1522 free_netdev(dev);
1523 dev_set_drvdata(ddev, NULL);
1524 return 0;
1527 static int mv643xx_eth_shared_probe(struct device *ddev)
1529 struct platform_device *pdev = to_platform_device(ddev);
1530 struct resource *res;
1532 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1534 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1535 if (res == NULL)
1536 return -ENODEV;
1538 mv643xx_eth_shared_base = ioremap(res->start,
1539 MV643XX_ETH_SHARED_REGS_SIZE);
1540 if (mv643xx_eth_shared_base == NULL)
1541 return -ENOMEM;
1543 return 0;
1547 static int mv643xx_eth_shared_remove(struct device *ddev)
1549 iounmap(mv643xx_eth_shared_base);
1550 mv643xx_eth_shared_base = NULL;
1552 return 0;
1555 static struct device_driver mv643xx_eth_driver = {
1556 .name = MV643XX_ETH_NAME,
1557 .bus = &platform_bus_type,
1558 .probe = mv643xx_eth_probe,
1559 .remove = mv643xx_eth_remove,
1562 static struct device_driver mv643xx_eth_shared_driver = {
1563 .name = MV643XX_ETH_SHARED_NAME,
1564 .bus = &platform_bus_type,
1565 .probe = mv643xx_eth_shared_probe,
1566 .remove = mv643xx_eth_shared_remove,
1570 * mv643xx_init_module
1572 * Registers the network drivers into the Linux kernel
1574 * Input : N/A
1576 * Output : N/A
1578 static int __init mv643xx_init_module(void)
1580 int rc;
1582 rc = driver_register(&mv643xx_eth_shared_driver);
1583 if (!rc) {
1584 rc = driver_register(&mv643xx_eth_driver);
1585 if (rc)
1586 driver_unregister(&mv643xx_eth_shared_driver);
1588 return rc;
1592 * mv643xx_cleanup_module
1594 * Registers the network drivers into the Linux kernel
1596 * Input : N/A
1598 * Output : N/A
1600 static void __exit mv643xx_cleanup_module(void)
1602 driver_unregister(&mv643xx_eth_driver);
1603 driver_unregister(&mv643xx_eth_shared_driver);
1606 module_init(mv643xx_init_module);
1607 module_exit(mv643xx_cleanup_module);
1609 MODULE_LICENSE("GPL");
1610 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1611 " and Dale Farnsworth");
1612 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1615 * The second part is the low level driver of the gigE ethernet ports.
1619 * Marvell's Gigabit Ethernet controller low level driver
1621 * DESCRIPTION:
1622 * This file introduce low level API to Marvell's Gigabit Ethernet
1623 * controller. This Gigabit Ethernet Controller driver API controls
1624 * 1) Operations (i.e. port init, start, reset etc').
1625 * 2) Data flow (i.e. port send, receive etc').
1626 * Each Gigabit Ethernet port is controlled via
1627 * struct mv643xx_private.
1628 * This struct includes user configuration information as well as
1629 * driver internal data needed for its operations.
1631 * Supported Features:
1632 * - This low level driver is OS independent. Allocating memory for
1633 * the descriptor rings and buffers are not within the scope of
1634 * this driver.
1635 * - The user is free from Rx/Tx queue managing.
1636 * - This low level driver introduce functionality API that enable
1637 * the to operate Marvell's Gigabit Ethernet Controller in a
1638 * convenient way.
1639 * - Simple Gigabit Ethernet port operation API.
1640 * - Simple Gigabit Ethernet port data flow API.
1641 * - Data flow and operation API support per queue functionality.
1642 * - Support cached descriptors for better performance.
1643 * - Enable access to all four DRAM banks and internal SRAM memory
1644 * spaces.
1645 * - PHY access and control API.
1646 * - Port control register configuration API.
1647 * - Full control over Unicast and Multicast MAC configurations.
1649 * Operation flow:
1651 * Initialization phase
1652 * This phase complete the initialization of the the
1653 * mv643xx_private struct.
1654 * User information regarding port configuration has to be set
1655 * prior to calling the port initialization routine.
1657 * In this phase any port Tx/Rx activity is halted, MIB counters
1658 * are cleared, PHY address is set according to user parameter and
1659 * access to DRAM and internal SRAM memory spaces.
1661 * Driver ring initialization
1662 * Allocating memory for the descriptor rings and buffers is not
1663 * within the scope of this driver. Thus, the user is required to
1664 * allocate memory for the descriptors ring and buffers. Those
1665 * memory parameters are used by the Rx and Tx ring initialization
1666 * routines in order to curve the descriptor linked list in a form
1667 * of a ring.
1668 * Note: Pay special attention to alignment issues when using
1669 * cached descriptors/buffers. In this phase the driver store
1670 * information in the mv643xx_private struct regarding each queue
1671 * ring.
1673 * Driver start
1674 * This phase prepares the Ethernet port for Rx and Tx activity.
1675 * It uses the information stored in the mv643xx_private struct to
1676 * initialize the various port registers.
1678 * Data flow:
1679 * All packet references to/from the driver are done using
1680 * struct pkt_info.
1681 * This struct is a unified struct used with Rx and Tx operations.
1682 * This way the user is not required to be familiar with neither
1683 * Tx nor Rx descriptors structures.
1684 * The driver's descriptors rings are management by indexes.
1685 * Those indexes controls the ring resources and used to indicate
1686 * a SW resource error:
1687 * 'current'
1688 * This index points to the current available resource for use. For
1689 * example in Rx process this index will point to the descriptor
1690 * that will be passed to the user upon calling the receive
1691 * routine. In Tx process, this index will point to the descriptor
1692 * that will be assigned with the user packet info and transmitted.
1693 * 'used'
1694 * This index points to the descriptor that need to restore its
1695 * resources. For example in Rx process, using the Rx buffer return
1696 * API will attach the buffer returned in packet info to the
1697 * descriptor pointed by 'used'. In Tx process, using the Tx
1698 * descriptor return will merely return the user packet info with
1699 * the command status of the transmitted buffer pointed by the
1700 * 'used' index. Nevertheless, it is essential to use this routine
1701 * to update the 'used' index.
1702 * 'first'
1703 * This index supports Tx Scatter-Gather. It points to the first
1704 * descriptor of a packet assembled of multiple buffers. For
1705 * example when in middle of Such packet we have a Tx resource
1706 * error the 'curr' index get the value of 'first' to indicate
1707 * that the ring returned to its state before trying to transmit
1708 * this packet.
1710 * Receive operation:
1711 * The eth_port_receive API set the packet information struct,
1712 * passed by the caller, with received information from the
1713 * 'current' SDMA descriptor.
1714 * It is the user responsibility to return this resource back
1715 * to the Rx descriptor ring to enable the reuse of this source.
1716 * Return Rx resource is done using the eth_rx_return_buff API.
1718 * Transmit operation:
1719 * The eth_port_send API supports Scatter-Gather which enables to
1720 * send a packet spanned over multiple buffers. This means that
1721 * for each packet info structure given by the user and put into
1722 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1723 * bit will be set in the packet info command status field. This
1724 * API also consider restriction regarding buffer alignments and
1725 * sizes.
1726 * The user must return a Tx resource after ensuring the buffer
1727 * has been transmitted to enable the Tx ring indexes to update.
1729 * BOARD LAYOUT
1730 * This device is on-board. No jumper diagram is necessary.
1732 * EXTERNAL INTERFACE
1734 * Prior to calling the initialization routine eth_port_init() the user
1735 * must set the following fields under mv643xx_private struct:
1736 * port_num User Ethernet port number.
1737 * port_mac_addr[6] User defined port MAC address.
1738 * port_config User port configuration value.
1739 * port_config_extend User port config extend value.
1740 * port_sdma_config User port SDMA config value.
1741 * port_serial_control User port serial control value.
1743 * This driver data flow is done using the struct pkt_info which
1744 * is a unified struct for Rx and Tx operations:
1746 * byte_cnt Tx/Rx descriptor buffer byte count.
1747 * l4i_chk CPU provided TCP Checksum. For Tx operation
1748 * only.
1749 * cmd_sts Tx/Rx descriptor command status.
1750 * buf_ptr Tx/Rx descriptor buffer pointer.
1751 * return_info Tx/Rx user resource return information.
1754 /* defines */
1755 /* SDMA command macros */
1756 #define ETH_ENABLE_TX_QUEUE(eth_port) \
1757 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1759 /* locals */
1761 /* PHY routines */
1762 static int ethernet_phy_get(unsigned int eth_port_num);
1763 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1765 /* Ethernet Port routines */
1766 static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1767 int option);
1770 * eth_port_init - Initialize the Ethernet port driver
1772 * DESCRIPTION:
1773 * This function prepares the ethernet port to start its activity:
1774 * 1) Completes the ethernet port driver struct initialization toward port
1775 * start routine.
1776 * 2) Resets the device to a quiescent state in case of warm reboot.
1777 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1778 * 4) Clean MAC tables. The reset status of those tables is unknown.
1779 * 5) Set PHY address.
1780 * Note: Call this routine prior to eth_port_start routine and after
1781 * setting user values in the user fields of Ethernet port control
1782 * struct.
1784 * INPUT:
1785 * struct mv643xx_private *mp Ethernet port control struct
1787 * OUTPUT:
1788 * See description.
1790 * RETURN:
1791 * None.
1793 static void eth_port_init(struct mv643xx_private *mp)
1795 mp->port_rx_queue_command = 0;
1796 mp->port_tx_queue_command = 0;
1798 mp->rx_resource_err = 0;
1799 mp->tx_resource_err = 0;
1801 eth_port_reset(mp->port_num);
1803 eth_port_init_mac_tables(mp->port_num);
1805 ethernet_phy_reset(mp->port_num);
1809 * eth_port_start - Start the Ethernet port activity.
1811 * DESCRIPTION:
1812 * This routine prepares the Ethernet port for Rx and Tx activity:
1813 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1814 * has been initialized a descriptor's ring (using
1815 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1816 * 2. Initialize and enable the Ethernet configuration port by writing to
1817 * the port's configuration and command registers.
1818 * 3. Initialize and enable the SDMA by writing to the SDMA's
1819 * configuration and command registers. After completing these steps,
1820 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1822 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1823 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1824 * and ether_init_rx_desc_ring for Rx queues).
1826 * INPUT:
1827 * struct mv643xx_private *mp Ethernet port control struct
1829 * OUTPUT:
1830 * Ethernet port is ready to receive and transmit.
1832 * RETURN:
1833 * None.
1835 static void eth_port_start(struct mv643xx_private *mp)
1837 unsigned int port_num = mp->port_num;
1838 int tx_curr_desc, rx_curr_desc;
1840 /* Assignment of Tx CTRP of given queue */
1841 tx_curr_desc = mp->tx_curr_desc_q;
1842 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1843 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1845 /* Assignment of Rx CRDP of given queue */
1846 rx_curr_desc = mp->rx_curr_desc_q;
1847 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1848 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1850 /* Add the assigned Ethernet address to the port's address table */
1851 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1853 /* Assign port configuration and command. */
1854 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1856 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1857 mp->port_config_extend);
1860 /* Increase the Rx side buffer size if supporting GigE */
1861 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1862 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1863 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1864 else
1865 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1866 mp->port_serial_control);
1868 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1869 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1870 MV643XX_ETH_SERIAL_PORT_ENABLE);
1872 /* Assign port SDMA configuration */
1873 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1874 mp->port_sdma_config);
1876 /* Enable port Rx. */
1877 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1878 mp->port_rx_queue_command);
1882 * eth_port_uc_addr_set - This function Set the port Unicast address.
1884 * DESCRIPTION:
1885 * This function Set the port Ethernet MAC address.
1887 * INPUT:
1888 * unsigned int eth_port_num Port number.
1889 * char * p_addr Address to be set
1891 * OUTPUT:
1892 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1893 * To set the unicast table with the proper information.
1895 * RETURN:
1896 * N/A.
1899 static void eth_port_uc_addr_set(unsigned int eth_port_num,
1900 unsigned char *p_addr)
1902 unsigned int mac_h;
1903 unsigned int mac_l;
1905 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1906 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1907 (p_addr[3] << 0);
1909 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1910 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1912 /* Accept frames of this address */
1913 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1915 return;
1919 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1920 * (MAC address) from the ethernet hw registers.
1922 * DESCRIPTION:
1923 * This function retrieves the port Ethernet MAC address.
1925 * INPUT:
1926 * unsigned int eth_port_num Port number.
1927 * char *MacAddr pointer where the MAC address is stored
1929 * OUTPUT:
1930 * Copy the MAC address to the location pointed to by MacAddr
1932 * RETURN:
1933 * N/A.
1936 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1938 struct mv643xx_private *mp = netdev_priv(dev);
1939 unsigned int mac_h;
1940 unsigned int mac_l;
1942 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1943 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1945 p_addr[0] = (mac_h >> 24) & 0xff;
1946 p_addr[1] = (mac_h >> 16) & 0xff;
1947 p_addr[2] = (mac_h >> 8) & 0xff;
1948 p_addr[3] = mac_h & 0xff;
1949 p_addr[4] = (mac_l >> 8) & 0xff;
1950 p_addr[5] = mac_l & 0xff;
1954 * eth_port_uc_addr - This function Set the port unicast address table
1956 * DESCRIPTION:
1957 * This function locates the proper entry in the Unicast table for the
1958 * specified MAC nibble and sets its properties according to function
1959 * parameters.
1961 * INPUT:
1962 * unsigned int eth_port_num Port number.
1963 * unsigned char uc_nibble Unicast MAC Address last nibble.
1964 * int option 0 = Add, 1 = remove address.
1966 * OUTPUT:
1967 * This function add/removes MAC addresses from the port unicast address
1968 * table.
1970 * RETURN:
1971 * true is output succeeded.
1972 * false if option parameter is invalid.
1975 static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1976 int option)
1978 unsigned int unicast_reg;
1979 unsigned int tbl_offset;
1980 unsigned int reg_offset;
1982 /* Locate the Unicast table entry */
1983 uc_nibble = (0xf & uc_nibble);
1984 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
1985 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
1987 switch (option) {
1988 case REJECT_MAC_ADDR:
1989 /* Clear accepts frame bit at given unicast DA table entry */
1990 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1991 (eth_port_num) + tbl_offset));
1993 unicast_reg &= (0x0E << (8 * reg_offset));
1995 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1996 (eth_port_num) + tbl_offset), unicast_reg);
1997 break;
1999 case ACCEPT_MAC_ADDR:
2000 /* Set accepts frame bit at unicast DA filter table entry */
2001 unicast_reg =
2002 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2003 (eth_port_num) + tbl_offset));
2005 unicast_reg |= (0x01 << (8 * reg_offset));
2007 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2008 (eth_port_num) + tbl_offset), unicast_reg);
2010 break;
2012 default:
2013 return 0;
2016 return 1;
2020 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2022 * DESCRIPTION:
2023 * Go through all the DA filter tables (Unicast, Special Multicast &
2024 * Other Multicast) and set each entry to 0.
2026 * INPUT:
2027 * unsigned int eth_port_num Ethernet Port number.
2029 * OUTPUT:
2030 * Multicast and Unicast packets are rejected.
2032 * RETURN:
2033 * None.
2035 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2037 int table_index;
2039 /* Clear DA filter unicast table (Ex_dFUT) */
2040 for (table_index = 0; table_index <= 0xC; table_index += 4)
2041 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2042 (eth_port_num) + table_index), 0);
2044 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2045 /* Clear DA filter special multicast table (Ex_dFSMT) */
2046 mv_write((MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2047 (eth_port_num) + table_index), 0);
2048 /* Clear DA filter other multicast table (Ex_dFOMT) */
2049 mv_write((MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2050 (eth_port_num) + table_index), 0);
2055 * eth_clear_mib_counters - Clear all MIB counters
2057 * DESCRIPTION:
2058 * This function clears all MIB counters of a specific ethernet port.
2059 * A read from the MIB counter will reset the counter.
2061 * INPUT:
2062 * unsigned int eth_port_num Ethernet Port number.
2064 * OUTPUT:
2065 * After reading all MIB counters, the counters resets.
2067 * RETURN:
2068 * MIB counter value.
2071 static void eth_clear_mib_counters(unsigned int eth_port_num)
2073 int i;
2075 /* Perform dummy reads from MIB counters */
2076 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2077 i += 4)
2078 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2081 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2083 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2086 static void eth_update_mib_counters(struct mv643xx_private *mp)
2088 struct mv643xx_mib_counters *p = &mp->mib_counters;
2089 int offset;
2091 p->good_octets_received +=
2092 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2093 p->good_octets_received +=
2094 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2096 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2097 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2098 offset += 4)
2099 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2101 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2102 p->good_octets_sent +=
2103 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2105 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2106 offset <= ETH_MIB_LATE_COLLISION;
2107 offset += 4)
2108 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2112 * ethernet_phy_detect - Detect whether a phy is present
2114 * DESCRIPTION:
2115 * This function tests whether there is a PHY present on
2116 * the specified port.
2118 * INPUT:
2119 * unsigned int eth_port_num Ethernet Port number.
2121 * OUTPUT:
2122 * None
2124 * RETURN:
2125 * 0 on success
2126 * -ENODEV on failure
2129 static int ethernet_phy_detect(unsigned int port_num)
2131 unsigned int phy_reg_data0;
2132 int auto_neg;
2134 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2135 auto_neg = phy_reg_data0 & 0x1000;
2136 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2137 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2139 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2140 if ((phy_reg_data0 & 0x1000) == auto_neg)
2141 return -ENODEV; /* change didn't take */
2143 phy_reg_data0 ^= 0x1000;
2144 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2145 return 0;
2149 * ethernet_phy_get - Get the ethernet port PHY address.
2151 * DESCRIPTION:
2152 * This routine returns the given ethernet port PHY address.
2154 * INPUT:
2155 * unsigned int eth_port_num Ethernet Port number.
2157 * OUTPUT:
2158 * None.
2160 * RETURN:
2161 * PHY address.
2164 static int ethernet_phy_get(unsigned int eth_port_num)
2166 unsigned int reg_data;
2168 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2170 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2174 * ethernet_phy_set - Set the ethernet port PHY address.
2176 * DESCRIPTION:
2177 * This routine sets the given ethernet port PHY address.
2179 * INPUT:
2180 * unsigned int eth_port_num Ethernet Port number.
2181 * int phy_addr PHY address.
2183 * OUTPUT:
2184 * None.
2186 * RETURN:
2187 * None.
2190 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2192 u32 reg_data;
2193 int addr_shift = 5 * eth_port_num;
2195 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2196 reg_data &= ~(0x1f << addr_shift);
2197 reg_data |= (phy_addr & 0x1f) << addr_shift;
2198 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2202 * ethernet_phy_reset - Reset Ethernet port PHY.
2204 * DESCRIPTION:
2205 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2207 * INPUT:
2208 * unsigned int eth_port_num Ethernet Port number.
2210 * OUTPUT:
2211 * The PHY is reset.
2213 * RETURN:
2214 * None.
2217 static void ethernet_phy_reset(unsigned int eth_port_num)
2219 unsigned int phy_reg_data;
2221 /* Reset the PHY */
2222 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2223 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2224 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2228 * eth_port_reset - Reset Ethernet port
2230 * DESCRIPTION:
2231 * This routine resets the chip by aborting any SDMA engine activity and
2232 * clearing the MIB counters. The Receiver and the Transmit unit are in
2233 * idle state after this command is performed and the port is disabled.
2235 * INPUT:
2236 * unsigned int eth_port_num Ethernet Port number.
2238 * OUTPUT:
2239 * Channel activity is halted.
2241 * RETURN:
2242 * None.
2245 static void eth_port_reset(unsigned int port_num)
2247 unsigned int reg_data;
2249 /* Stop Tx port activity. Check port Tx activity. */
2250 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2252 if (reg_data & 0xFF) {
2253 /* Issue stop command for active channels only */
2254 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2255 (reg_data << 8));
2257 /* Wait for all Tx activity to terminate. */
2258 /* Check port cause register that all Tx queues are stopped */
2259 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2260 & 0xFF)
2261 udelay(10);
2264 /* Stop Rx port activity. Check port Rx activity. */
2265 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2267 if (reg_data & 0xFF) {
2268 /* Issue stop command for active channels only */
2269 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2270 (reg_data << 8));
2272 /* Wait for all Rx activity to terminate. */
2273 /* Check port cause register that all Rx queues are stopped */
2274 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2275 & 0xFF)
2276 udelay(10);
2279 /* Clear all MIB counters */
2280 eth_clear_mib_counters(port_num);
2282 /* Reset the Enable bit in the Configuration Register */
2283 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2284 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2285 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2289 * ethernet_set_config_reg - Set specified bits in configuration register.
2291 * DESCRIPTION:
2292 * This function sets specified bits in the given ethernet
2293 * configuration register.
2295 * INPUT:
2296 * unsigned int eth_port_num Ethernet Port number.
2297 * unsigned int value 32 bit value.
2299 * OUTPUT:
2300 * The set bits in the value parameter are set in the configuration
2301 * register.
2303 * RETURN:
2304 * None.
2307 static void ethernet_set_config_reg(unsigned int eth_port_num,
2308 unsigned int value)
2310 unsigned int eth_config_reg;
2312 eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num));
2313 eth_config_reg |= value;
2314 mv_write(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num), eth_config_reg);
2317 static int eth_port_autoneg_supported(unsigned int eth_port_num)
2319 unsigned int phy_reg_data0;
2321 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2323 return phy_reg_data0 & 0x1000;
2326 static int eth_port_link_is_up(unsigned int eth_port_num)
2328 unsigned int phy_reg_data1;
2330 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2332 if (eth_port_autoneg_supported(eth_port_num)) {
2333 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2334 return 1;
2335 } else if (phy_reg_data1 & 0x4) /* link up */
2336 return 1;
2338 return 0;
2342 * ethernet_get_config_reg - Get the port configuration register
2344 * DESCRIPTION:
2345 * This function returns the configuration register value of the given
2346 * ethernet port.
2348 * INPUT:
2349 * unsigned int eth_port_num Ethernet Port number.
2351 * OUTPUT:
2352 * None.
2354 * RETURN:
2355 * Port configuration register value.
2357 static unsigned int ethernet_get_config_reg(unsigned int eth_port_num)
2359 unsigned int eth_config_reg;
2361 eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_EXTEND_REG
2362 (eth_port_num));
2363 return eth_config_reg;
2367 * eth_port_read_smi_reg - Read PHY registers
2369 * DESCRIPTION:
2370 * This routine utilize the SMI interface to interact with the PHY in
2371 * order to perform PHY register read.
2373 * INPUT:
2374 * unsigned int port_num Ethernet Port number.
2375 * unsigned int phy_reg PHY register address offset.
2376 * unsigned int *value Register value buffer.
2378 * OUTPUT:
2379 * Write the value of a specified PHY register into given buffer.
2381 * RETURN:
2382 * false if the PHY is busy or read data is not in valid state.
2383 * true otherwise.
2386 static void eth_port_read_smi_reg(unsigned int port_num,
2387 unsigned int phy_reg, unsigned int *value)
2389 int phy_addr = ethernet_phy_get(port_num);
2390 unsigned long flags;
2391 int i;
2393 /* the SMI register is a shared resource */
2394 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2396 /* wait for the SMI register to become available */
2397 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2398 if (i == PHY_WAIT_ITERATIONS) {
2399 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2400 goto out;
2402 udelay(PHY_WAIT_MICRO_SECONDS);
2405 mv_write(MV643XX_ETH_SMI_REG,
2406 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2408 /* now wait for the data to be valid */
2409 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2410 if (i == PHY_WAIT_ITERATIONS) {
2411 printk("mv643xx PHY read timeout, port %d\n", port_num);
2412 goto out;
2414 udelay(PHY_WAIT_MICRO_SECONDS);
2417 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2418 out:
2419 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2423 * eth_port_write_smi_reg - Write to PHY registers
2425 * DESCRIPTION:
2426 * This routine utilize the SMI interface to interact with the PHY in
2427 * order to perform writes to PHY registers.
2429 * INPUT:
2430 * unsigned int eth_port_num Ethernet Port number.
2431 * unsigned int phy_reg PHY register address offset.
2432 * unsigned int value Register value.
2434 * OUTPUT:
2435 * Write the given value to the specified PHY register.
2437 * RETURN:
2438 * false if the PHY is busy.
2439 * true otherwise.
2442 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2443 unsigned int phy_reg, unsigned int value)
2445 int phy_addr;
2446 int i;
2447 unsigned long flags;
2449 phy_addr = ethernet_phy_get(eth_port_num);
2451 /* the SMI register is a shared resource */
2452 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2454 /* wait for the SMI register to become available */
2455 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2456 if (i == PHY_WAIT_ITERATIONS) {
2457 printk("mv643xx PHY busy timeout, port %d\n",
2458 eth_port_num);
2459 goto out;
2461 udelay(PHY_WAIT_MICRO_SECONDS);
2464 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2465 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2466 out:
2467 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2471 * eth_port_send - Send an Ethernet packet
2473 * DESCRIPTION:
2474 * This routine send a given packet described by p_pktinfo parameter. It
2475 * supports transmitting of a packet spaned over multiple buffers. The
2476 * routine updates 'curr' and 'first' indexes according to the packet
2477 * segment passed to the routine. In case the packet segment is first,
2478 * the 'first' index is update. In any case, the 'curr' index is updated.
2479 * If the routine get into Tx resource error it assigns 'curr' index as
2480 * 'first'. This way the function can abort Tx process of multiple
2481 * descriptors per packet.
2483 * INPUT:
2484 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2485 * struct pkt_info *p_pkt_info User packet buffer.
2487 * OUTPUT:
2488 * Tx ring 'curr' and 'first' indexes are updated.
2490 * RETURN:
2491 * ETH_QUEUE_FULL in case of Tx resource error.
2492 * ETH_ERROR in case the routine can not access Tx desc ring.
2493 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2494 * ETH_OK otherwise.
2497 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2499 * Modified to include the first descriptor pointer in case of SG
2501 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2502 struct pkt_info *p_pkt_info)
2504 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2505 struct eth_tx_desc *current_descriptor;
2506 struct eth_tx_desc *first_descriptor;
2507 u32 command;
2509 /* Do not process Tx ring in case of Tx ring resource error */
2510 if (mp->tx_resource_err)
2511 return ETH_QUEUE_FULL;
2514 * The hardware requires that each buffer that is <= 8 bytes
2515 * in length must be aligned on an 8 byte boundary.
2517 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2518 printk(KERN_ERR
2519 "mv643xx_eth port %d: packet size <= 8 problem\n",
2520 mp->port_num);
2521 return ETH_ERROR;
2524 /* Get the Tx Desc ring indexes */
2525 tx_desc_curr = mp->tx_curr_desc_q;
2526 tx_desc_used = mp->tx_used_desc_q;
2528 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2530 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2532 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2533 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2534 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2535 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2537 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2538 ETH_BUFFER_OWNED_BY_DMA;
2539 if (command & ETH_TX_FIRST_DESC) {
2540 tx_first_desc = tx_desc_curr;
2541 mp->tx_first_desc_q = tx_first_desc;
2542 first_descriptor = current_descriptor;
2543 mp->tx_first_command = command;
2544 } else {
2545 tx_first_desc = mp->tx_first_desc_q;
2546 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2547 BUG_ON(first_descriptor == NULL);
2548 current_descriptor->cmd_sts = command;
2551 if (command & ETH_TX_LAST_DESC) {
2552 wmb();
2553 first_descriptor->cmd_sts = mp->tx_first_command;
2555 wmb();
2556 ETH_ENABLE_TX_QUEUE(mp->port_num);
2559 * Finish Tx packet. Update first desc in case of Tx resource
2560 * error */
2561 tx_first_desc = tx_next_desc;
2562 mp->tx_first_desc_q = tx_first_desc;
2565 /* Check for ring index overlap in the Tx desc ring */
2566 if (tx_next_desc == tx_desc_used) {
2567 mp->tx_resource_err = 1;
2568 mp->tx_curr_desc_q = tx_first_desc;
2570 return ETH_QUEUE_LAST_RESOURCE;
2573 mp->tx_curr_desc_q = tx_next_desc;
2575 return ETH_OK;
2577 #else
2578 static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2579 struct pkt_info *p_pkt_info)
2581 int tx_desc_curr;
2582 int tx_desc_used;
2583 struct eth_tx_desc *current_descriptor;
2584 unsigned int command_status;
2586 /* Do not process Tx ring in case of Tx ring resource error */
2587 if (mp->tx_resource_err)
2588 return ETH_QUEUE_FULL;
2590 /* Get the Tx Desc ring indexes */
2591 tx_desc_curr = mp->tx_curr_desc_q;
2592 tx_desc_used = mp->tx_used_desc_q;
2593 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2595 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2596 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2597 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2598 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2600 /* Set last desc with DMA ownership and interrupt enable. */
2601 wmb();
2602 current_descriptor->cmd_sts = command_status |
2603 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2605 wmb();
2606 ETH_ENABLE_TX_QUEUE(mp->port_num);
2608 /* Finish Tx packet. Update first desc in case of Tx resource error */
2609 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2611 /* Update the current descriptor */
2612 mp->tx_curr_desc_q = tx_desc_curr;
2614 /* Check for ring index overlap in the Tx desc ring */
2615 if (tx_desc_curr == tx_desc_used) {
2616 mp->tx_resource_err = 1;
2617 return ETH_QUEUE_LAST_RESOURCE;
2620 return ETH_OK;
2622 #endif
2625 * eth_tx_return_desc - Free all used Tx descriptors
2627 * DESCRIPTION:
2628 * This routine returns the transmitted packet information to the caller.
2629 * It uses the 'first' index to support Tx desc return in case a transmit
2630 * of a packet spanned over multiple buffer still in process.
2631 * In case the Tx queue was in "resource error" condition, where there are
2632 * no available Tx resources, the function resets the resource error flag.
2634 * INPUT:
2635 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2636 * struct pkt_info *p_pkt_info User packet buffer.
2638 * OUTPUT:
2639 * Tx ring 'first' and 'used' indexes are updated.
2641 * RETURN:
2642 * ETH_ERROR in case the routine can not access Tx desc ring.
2643 * ETH_RETRY in case there is transmission in process.
2644 * ETH_END_OF_JOB if the routine has nothing to release.
2645 * ETH_OK otherwise.
2648 static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2649 struct pkt_info *p_pkt_info)
2651 int tx_desc_used;
2652 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2653 int tx_busy_desc = mp->tx_first_desc_q;
2654 #else
2655 int tx_busy_desc = mp->tx_curr_desc_q;
2656 #endif
2657 struct eth_tx_desc *p_tx_desc_used;
2658 unsigned int command_status;
2660 /* Get the Tx Desc ring indexes */
2661 tx_desc_used = mp->tx_used_desc_q;
2663 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2665 /* Sanity check */
2666 if (p_tx_desc_used == NULL)
2667 return ETH_ERROR;
2669 /* Stop release. About to overlap the current available Tx descriptor */
2670 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err)
2671 return ETH_END_OF_JOB;
2673 command_status = p_tx_desc_used->cmd_sts;
2675 /* Still transmitting... */
2676 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2677 return ETH_RETRY;
2679 /* Pass the packet information to the caller */
2680 p_pkt_info->cmd_sts = command_status;
2681 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
2682 mp->tx_skb[tx_desc_used] = NULL;
2684 /* Update the next descriptor to release. */
2685 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2687 /* Any Tx return cancels the Tx resource error status */
2688 mp->tx_resource_err = 0;
2690 return ETH_OK;
2694 * eth_port_receive - Get received information from Rx ring.
2696 * DESCRIPTION:
2697 * This routine returns the received data to the caller. There is no
2698 * data copying during routine operation. All information is returned
2699 * using pointer to packet information struct passed from the caller.
2700 * If the routine exhausts Rx ring resources then the resource error flag
2701 * is set.
2703 * INPUT:
2704 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2705 * struct pkt_info *p_pkt_info User packet buffer.
2707 * OUTPUT:
2708 * Rx ring current and used indexes are updated.
2710 * RETURN:
2711 * ETH_ERROR in case the routine can not access Rx desc ring.
2712 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2713 * ETH_END_OF_JOB if there is no received data.
2714 * ETH_OK otherwise.
2716 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2717 struct pkt_info *p_pkt_info)
2719 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2720 volatile struct eth_rx_desc *p_rx_desc;
2721 unsigned int command_status;
2723 /* Do not process Rx ring in case of Rx ring resource error */
2724 if (mp->rx_resource_err)
2725 return ETH_QUEUE_FULL;
2727 /* Get the Rx Desc ring 'curr and 'used' indexes */
2728 rx_curr_desc = mp->rx_curr_desc_q;
2729 rx_used_desc = mp->rx_used_desc_q;
2731 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2733 /* The following parameters are used to save readings from memory */
2734 command_status = p_rx_desc->cmd_sts;
2735 rmb();
2737 /* Nothing to receive... */
2738 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2739 return ETH_END_OF_JOB;
2741 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2742 p_pkt_info->cmd_sts = command_status;
2743 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2744 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2745 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2747 /* Clean the return info field to indicate that the packet has been */
2748 /* moved to the upper layers */
2749 mp->rx_skb[rx_curr_desc] = NULL;
2751 /* Update current index in data structure */
2752 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2753 mp->rx_curr_desc_q = rx_next_curr_desc;
2755 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2756 if (rx_next_curr_desc == rx_used_desc)
2757 mp->rx_resource_err = 1;
2759 return ETH_OK;
2763 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2765 * DESCRIPTION:
2766 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2767 * next 'used' descriptor and attached the returned buffer to it.
2768 * In case the Rx ring was in "resource error" condition, where there are
2769 * no available Rx resources, the function resets the resource error flag.
2771 * INPUT:
2772 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2773 * struct pkt_info *p_pkt_info Information on returned buffer.
2775 * OUTPUT:
2776 * New available Rx resource in Rx descriptor ring.
2778 * RETURN:
2779 * ETH_ERROR in case the routine can not access Rx desc ring.
2780 * ETH_OK otherwise.
2782 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2783 struct pkt_info *p_pkt_info)
2785 int used_rx_desc; /* Where to return Rx resource */
2786 volatile struct eth_rx_desc *p_used_rx_desc;
2788 /* Get 'used' Rx descriptor */
2789 used_rx_desc = mp->rx_used_desc_q;
2790 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2792 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2793 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2794 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2796 /* Flush the write pipe */
2798 /* Return the descriptor to DMA ownership */
2799 wmb();
2800 p_used_rx_desc->cmd_sts =
2801 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2802 wmb();
2804 /* Move the used descriptor pointer to the next descriptor */
2805 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2807 /* Any Rx return cancels the Rx resource error status */
2808 mp->rx_resource_err = 0;
2810 return ETH_OK;
2813 /************* Begin ethtool support *************************/
2815 struct mv643xx_stats {
2816 char stat_string[ETH_GSTRING_LEN];
2817 int sizeof_stat;
2818 int stat_offset;
2821 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2822 offsetof(struct mv643xx_private, m)
2824 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2825 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2826 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2827 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2828 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2829 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2830 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2831 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2832 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2833 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2834 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2835 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2836 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2837 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2838 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2839 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2840 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2841 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2842 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2843 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2844 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2845 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2846 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2847 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2848 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2849 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2850 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2851 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2852 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2853 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2854 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2855 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2856 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2857 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2858 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2859 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2860 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2861 { "collision", MV643XX_STAT(mib_counters.collision) },
2862 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2865 #define MV643XX_STATS_LEN \
2866 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2868 static int
2869 mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2871 struct mv643xx_private *mp = netdev->priv;
2872 int port_num = mp->port_num;
2873 int autoneg = eth_port_autoneg_supported(port_num);
2874 int mode_10_bit;
2875 int auto_duplex;
2876 int half_duplex = 0;
2877 int full_duplex = 0;
2878 int auto_speed;
2879 int speed_10 = 0;
2880 int speed_100 = 0;
2881 int speed_1000 = 0;
2883 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2884 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
2886 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
2888 if (mode_10_bit) {
2889 ecmd->supported = SUPPORTED_10baseT_Half;
2890 } else {
2891 ecmd->supported = (SUPPORTED_10baseT_Half |
2892 SUPPORTED_10baseT_Full |
2893 SUPPORTED_100baseT_Half |
2894 SUPPORTED_100baseT_Full |
2895 SUPPORTED_1000baseT_Full |
2896 (autoneg ? SUPPORTED_Autoneg : 0) |
2897 SUPPORTED_TP);
2899 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
2900 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
2902 ecmd->advertising = ADVERTISED_TP;
2904 if (autoneg) {
2905 ecmd->advertising |= ADVERTISED_Autoneg;
2907 if (auto_duplex) {
2908 half_duplex = 1;
2909 full_duplex = 1;
2910 } else {
2911 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
2912 full_duplex = 1;
2913 else
2914 half_duplex = 1;
2917 if (auto_speed) {
2918 speed_10 = 1;
2919 speed_100 = 1;
2920 speed_1000 = 1;
2921 } else {
2922 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
2923 speed_1000 = 1;
2924 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
2925 speed_100 = 1;
2926 else
2927 speed_10 = 1;
2930 if (speed_10 & half_duplex)
2931 ecmd->advertising |= ADVERTISED_10baseT_Half;
2932 if (speed_10 & full_duplex)
2933 ecmd->advertising |= ADVERTISED_10baseT_Full;
2934 if (speed_100 & half_duplex)
2935 ecmd->advertising |= ADVERTISED_100baseT_Half;
2936 if (speed_100 & full_duplex)
2937 ecmd->advertising |= ADVERTISED_100baseT_Full;
2938 if (speed_1000)
2939 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2943 ecmd->port = PORT_TP;
2944 ecmd->phy_address = ethernet_phy_get(port_num);
2946 ecmd->transceiver = XCVR_EXTERNAL;
2948 if (netif_carrier_ok(netdev)) {
2949 if (mode_10_bit)
2950 ecmd->speed = SPEED_10;
2951 else {
2952 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
2953 ecmd->speed = SPEED_1000;
2954 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
2955 ecmd->speed = SPEED_100;
2956 else
2957 ecmd->speed = SPEED_10;
2960 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
2961 ecmd->duplex = DUPLEX_FULL;
2962 else
2963 ecmd->duplex = DUPLEX_HALF;
2964 } else {
2965 ecmd->speed = -1;
2966 ecmd->duplex = -1;
2969 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2970 return 0;
2973 static void
2974 mv643xx_get_drvinfo(struct net_device *netdev,
2975 struct ethtool_drvinfo *drvinfo)
2977 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2978 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2979 strncpy(drvinfo->fw_version, "N/A", 32);
2980 strncpy(drvinfo->bus_info, "mv643xx", 32);
2981 drvinfo->n_stats = MV643XX_STATS_LEN;
2984 static int
2985 mv643xx_get_stats_count(struct net_device *netdev)
2987 return MV643XX_STATS_LEN;
2990 static void
2991 mv643xx_get_ethtool_stats(struct net_device *netdev,
2992 struct ethtool_stats *stats, uint64_t *data)
2994 struct mv643xx_private *mp = netdev->priv;
2995 int i;
2997 eth_update_mib_counters(mp);
2999 for(i = 0; i < MV643XX_STATS_LEN; i++) {
3000 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3001 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3002 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3006 static void
3007 mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
3009 int i;
3011 switch(stringset) {
3012 case ETH_SS_STATS:
3013 for (i=0; i < MV643XX_STATS_LEN; i++) {
3014 memcpy(data + i * ETH_GSTRING_LEN,
3015 mv643xx_gstrings_stats[i].stat_string,
3016 ETH_GSTRING_LEN);
3018 break;
3022 static struct ethtool_ops mv643xx_ethtool_ops = {
3023 .get_settings = mv643xx_get_settings,
3024 .get_drvinfo = mv643xx_get_drvinfo,
3025 .get_link = ethtool_op_get_link,
3026 .get_sg = ethtool_op_get_sg,
3027 .set_sg = ethtool_op_set_sg,
3028 .get_strings = mv643xx_get_strings,
3029 .get_stats_count = mv643xx_get_stats_count,
3030 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3033 /************* End ethtool support *************************/