[PATCH] update CREDITS
[linux-2.6/verdex.git] / drivers / net / wan / farsync.c
blob7575b799ce5368751c76323e61107d8766df2400
1 /*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/version.h>
21 #include <linux/pci.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/if.h>
25 #include <linux/hdlc.h>
26 #include <asm/io.h>
27 #include <asm/uaccess.h>
29 #include "farsync.h"
32 * Module info
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
38 /* Driver configuration and global parameters
39 * ==========================================
42 /* Number of ports (per card) and cards supported
44 #define FST_MAX_PORTS 4
45 #define FST_MAX_CARDS 32
47 /* Default parameters for the link
49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
50 * useful, the syncppp module forces
51 * this down assuming a slower line I
52 * guess.
54 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
55 * of frames on the way down to the card
56 * so that we can keep the card busy
57 * and maximise throughput
59 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
60 * network layer */
61 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
62 * control from network layer */
63 #define FST_MAX_MTU 8000 /* Huge but possible */
64 #define FST_DEF_MTU 1500 /* Common sane value */
66 #define FST_TX_TIMEOUT (2*HZ)
68 #ifdef ARPHRD_RAWHDLC
69 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
70 #else
71 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
72 #endif
75 * Modules parameters and associated varaibles
77 int fst_txq_low = FST_LOW_WATER_MARK;
78 int fst_txq_high = FST_HIGH_WATER_MARK;
79 int fst_max_reads = 7;
80 int fst_excluded_cards = 0;
81 int fst_excluded_list[FST_MAX_CARDS];
83 module_param(fst_txq_low, int, 0);
84 module_param(fst_txq_high, int, 0);
85 module_param(fst_max_reads, int, 0);
86 module_param(fst_excluded_cards, int, 0);
87 module_param_array(fst_excluded_list, int, NULL, 0);
89 /* Card shared memory layout
90 * =========================
92 #pragma pack(1)
94 /* This information is derived in part from the FarSite FarSync Smc.h
95 * file. Unfortunately various name clashes and the non-portability of the
96 * bit field declarations in that file have meant that I have chosen to
97 * recreate the information here.
99 * The SMC (Shared Memory Configuration) has a version number that is
100 * incremented every time there is a significant change. This number can
101 * be used to check that we have not got out of step with the firmware
102 * contained in the .CDE files.
104 #define SMC_VERSION 24
106 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
108 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
109 * configuration structure */
110 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
111 * buffers */
113 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
114 #define LEN_RX_BUFFER 8192
116 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
117 #define LEN_SMALL_RX_BUFFER 256
119 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
120 #define NUM_RX_BUFFER 8
122 /* Interrupt retry time in milliseconds */
123 #define INT_RETRY_TIME 2
125 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
126 * of buffer descriptors. The structure is almost identical to that used
127 * in the LANCE Ethernet controllers. Details available as PDF from the
128 * AMD web site: http://www.amd.com/products/epd/processors/\
129 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
131 struct txdesc { /* Transmit descriptor */
132 volatile u16 ladr; /* Low order address of packet. This is a
133 * linear address in the Am186 memory space
135 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
136 * bits must be zero
138 volatile u8 bits; /* Status and config */
139 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
140 * Transmit terminal count interrupt enable in
141 * top bit.
143 u16 unused; /* Not used in Tx */
146 struct rxdesc { /* Receive descriptor */
147 volatile u16 ladr; /* Low order address of packet */
148 volatile u8 hadr; /* High order address */
149 volatile u8 bits; /* Status and config */
150 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
151 * Receive terminal count interrupt enable in
152 * top bit.
154 volatile u16 mcnt; /* Message byte count (15 bits) */
157 /* Convert a length into the 15 bit 2's complement */
158 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
159 /* Since we need to set the high bit to enable the completion interrupt this
160 * can be made a lot simpler
162 #define cnv_bcnt(len) (-(len))
164 /* Status and config bits for the above */
165 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
166 #define TX_STP 0x02 /* Tx: start of packet */
167 #define TX_ENP 0x01 /* Tx: end of packet */
168 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
169 #define RX_FRAM 0x20 /* Rx: framing error */
170 #define RX_OFLO 0x10 /* Rx: overflow error */
171 #define RX_CRC 0x08 /* Rx: CRC error */
172 #define RX_HBUF 0x04 /* Rx: buffer error */
173 #define RX_STP 0x02 /* Rx: start of packet */
174 #define RX_ENP 0x01 /* Rx: end of packet */
176 /* Interrupts from the card are caused by various events which are presented
177 * in a circular buffer as several events may be processed on one physical int
179 #define MAX_CIRBUFF 32
181 struct cirbuff {
182 u8 rdindex; /* read, then increment and wrap */
183 u8 wrindex; /* write, then increment and wrap */
184 u8 evntbuff[MAX_CIRBUFF];
187 /* Interrupt event codes.
188 * Where appropriate the two low order bits indicate the port number
190 #define CTLA_CHG 0x18 /* Control signal changed */
191 #define CTLB_CHG 0x19
192 #define CTLC_CHG 0x1A
193 #define CTLD_CHG 0x1B
195 #define INIT_CPLT 0x20 /* Initialisation complete */
196 #define INIT_FAIL 0x21 /* Initialisation failed */
198 #define ABTA_SENT 0x24 /* Abort sent */
199 #define ABTB_SENT 0x25
200 #define ABTC_SENT 0x26
201 #define ABTD_SENT 0x27
203 #define TXA_UNDF 0x28 /* Transmission underflow */
204 #define TXB_UNDF 0x29
205 #define TXC_UNDF 0x2A
206 #define TXD_UNDF 0x2B
208 #define F56_INT 0x2C
209 #define M32_INT 0x2D
211 #define TE1_ALMA 0x30
213 /* Port physical configuration. See farsync.h for field values */
214 struct port_cfg {
215 u16 lineInterface; /* Physical interface type */
216 u8 x25op; /* Unused at present */
217 u8 internalClock; /* 1 => internal clock, 0 => external */
218 u8 transparentMode; /* 1 => on, 0 => off */
219 u8 invertClock; /* 0 => normal, 1 => inverted */
220 u8 padBytes[6]; /* Padding */
221 u32 lineSpeed; /* Speed in bps */
224 /* TE1 port physical configuration */
225 struct su_config {
226 u32 dataRate;
227 u8 clocking;
228 u8 framing;
229 u8 structure;
230 u8 interface;
231 u8 coding;
232 u8 lineBuildOut;
233 u8 equalizer;
234 u8 transparentMode;
235 u8 loopMode;
236 u8 range;
237 u8 txBufferMode;
238 u8 rxBufferMode;
239 u8 startingSlot;
240 u8 losThreshold;
241 u8 enableIdleCode;
242 u8 idleCode;
243 u8 spare[44];
246 /* TE1 Status */
247 struct su_status {
248 u32 receiveBufferDelay;
249 u32 framingErrorCount;
250 u32 codeViolationCount;
251 u32 crcErrorCount;
252 u32 lineAttenuation;
253 u8 portStarted;
254 u8 lossOfSignal;
255 u8 receiveRemoteAlarm;
256 u8 alarmIndicationSignal;
257 u8 spare[40];
260 /* Finally sling all the above together into the shared memory structure.
261 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
262 * evolving under NT for some time so I guess we're stuck with it.
263 * The structure starts at offset SMC_BASE.
264 * See farsync.h for some field values.
266 struct fst_shared {
267 /* DMA descriptor rings */
268 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
269 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
271 /* Obsolete small buffers */
272 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
273 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
275 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
276 * 0xFF => halted
279 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
280 * set to 0xEE by host to acknowledge interrupt
283 u16 smcVersion; /* Must match SMC_VERSION */
285 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
286 * version, RR = revision and BB = build
289 u16 txa_done; /* Obsolete completion flags */
290 u16 rxa_done;
291 u16 txb_done;
292 u16 rxb_done;
293 u16 txc_done;
294 u16 rxc_done;
295 u16 txd_done;
296 u16 rxd_done;
298 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
300 struct cirbuff interruptEvent; /* interrupt causes */
302 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
303 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
305 struct port_cfg portConfig[FST_MAX_PORTS];
307 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
309 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
311 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
312 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
314 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
315 u16 cardMailbox[4]; /* Not used */
317 /* Number of times the card thinks the host has
318 * missed an interrupt by not acknowledging
319 * within 2mS (I guess NT has problems)
321 u32 interruptRetryCount;
323 /* Driver private data used as an ID. We'll not
324 * use this as I'd rather keep such things
325 * in main memory rather than on the PCI bus
327 u32 portHandle[FST_MAX_PORTS];
329 /* Count of Tx underflows for stats */
330 u32 transmitBufferUnderflow[FST_MAX_PORTS];
332 /* Debounced V.24 control input status */
333 u32 v24DebouncedSts[FST_MAX_PORTS];
335 /* Adapter debounce timers. Don't touch */
336 u32 ctsTimer[FST_MAX_PORTS];
337 u32 ctsTimerRun[FST_MAX_PORTS];
338 u32 dcdTimer[FST_MAX_PORTS];
339 u32 dcdTimerRun[FST_MAX_PORTS];
341 u32 numberOfPorts; /* Number of ports detected at startup */
343 u16 _reserved[64];
345 u16 cardMode; /* Bit-mask to enable features:
346 * Bit 0: 1 enables LED identify mode
349 u16 portScheduleOffset;
351 struct su_config suConfig; /* TE1 Bits */
352 struct su_status suStatus;
354 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
355 * the structure and marks the end of shared
356 * memory. Adapter code initializes it as
357 * END_SIG.
361 /* endOfSmcSignature value */
362 #define END_SIG 0x12345678
364 /* Mailbox values. (portMailbox) */
365 #define NOP 0 /* No operation */
366 #define ACK 1 /* Positive acknowledgement to PC driver */
367 #define NAK 2 /* Negative acknowledgement to PC driver */
368 #define STARTPORT 3 /* Start an HDLC port */
369 #define STOPPORT 4 /* Stop an HDLC port */
370 #define ABORTTX 5 /* Abort the transmitter for a port */
371 #define SETV24O 6 /* Set V24 outputs */
373 /* PLX Chip Register Offsets */
374 #define CNTRL_9052 0x50 /* Control Register */
375 #define CNTRL_9054 0x6c /* Control Register */
377 #define INTCSR_9052 0x4c /* Interrupt control/status register */
378 #define INTCSR_9054 0x68 /* Interrupt control/status register */
380 /* 9054 DMA Registers */
382 * Note that we will be using DMA Channel 0 for copying rx data
383 * and Channel 1 for copying tx data
385 #define DMAMODE0 0x80
386 #define DMAPADR0 0x84
387 #define DMALADR0 0x88
388 #define DMASIZ0 0x8c
389 #define DMADPR0 0x90
390 #define DMAMODE1 0x94
391 #define DMAPADR1 0x98
392 #define DMALADR1 0x9c
393 #define DMASIZ1 0xa0
394 #define DMADPR1 0xa4
395 #define DMACSR0 0xa8
396 #define DMACSR1 0xa9
397 #define DMAARB 0xac
398 #define DMATHR 0xb0
399 #define DMADAC0 0xb4
400 #define DMADAC1 0xb8
401 #define DMAMARBR 0xac
403 #define FST_MIN_DMA_LEN 64
404 #define FST_RX_DMA_INT 0x01
405 #define FST_TX_DMA_INT 0x02
406 #define FST_CARD_INT 0x04
408 /* Larger buffers are positioned in memory at offset BFM_BASE */
409 struct buf_window {
410 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
414 /* Calculate offset of a buffer object within the shared memory window */
415 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
417 #pragma pack()
419 /* Device driver private information
420 * =================================
422 /* Per port (line or channel) information
424 struct fst_port_info {
425 struct net_device *dev; /* Device struct - must be first */
426 struct fst_card_info *card; /* Card we're associated with */
427 int index; /* Port index on the card */
428 int hwif; /* Line hardware (lineInterface copy) */
429 int run; /* Port is running */
430 int mode; /* Normal or FarSync raw */
431 int rxpos; /* Next Rx buffer to use */
432 int txpos; /* Next Tx buffer to use */
433 int txipos; /* Next Tx buffer to check for free */
434 int start; /* Indication of start/stop to network */
436 * A sixteen entry transmit queue
438 int txqs; /* index to get next buffer to tx */
439 int txqe; /* index to queue next packet */
440 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
441 int rxqdepth;
444 /* Per card information
446 struct fst_card_info {
447 char __iomem *mem; /* Card memory mapped to kernel space */
448 char __iomem *ctlmem; /* Control memory for PCI cards */
449 unsigned int phys_mem; /* Physical memory window address */
450 unsigned int phys_ctlmem; /* Physical control memory address */
451 unsigned int irq; /* Interrupt request line number */
452 unsigned int nports; /* Number of serial ports */
453 unsigned int type; /* Type index of card */
454 unsigned int state; /* State of card */
455 spinlock_t card_lock; /* Lock for SMP access */
456 unsigned short pci_conf; /* PCI card config in I/O space */
457 /* Per port info */
458 struct fst_port_info ports[FST_MAX_PORTS];
459 struct pci_dev *device; /* Information about the pci device */
460 int card_no; /* Inst of the card on the system */
461 int family; /* TxP or TxU */
462 int dmarx_in_progress;
463 int dmatx_in_progress;
464 unsigned long int_count;
465 unsigned long int_time_ave;
466 void *rx_dma_handle_host;
467 dma_addr_t rx_dma_handle_card;
468 void *tx_dma_handle_host;
469 dma_addr_t tx_dma_handle_card;
470 struct sk_buff *dma_skb_rx;
471 struct fst_port_info *dma_port_rx;
472 struct fst_port_info *dma_port_tx;
473 int dma_len_rx;
474 int dma_len_tx;
475 int dma_txpos;
476 int dma_rxpos;
479 /* Convert an HDLC device pointer into a port info pointer and similar */
480 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
481 #define port_to_dev(P) ((P)->dev)
485 * Shared memory window access macros
487 * We have a nice memory based structure above, which could be directly
488 * mapped on i386 but might not work on other architectures unless we use
489 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
490 * physical offsets so we have to convert. The only saving grace is that
491 * this should all collapse back to a simple indirection eventually.
493 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
495 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
497 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
499 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
501 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
504 * Debug support
506 #if FST_DEBUG
508 static int fst_debug_mask = { FST_DEBUG };
510 /* Most common debug activity is to print something if the corresponding bit
511 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
512 * support variable numbers of macro parameters. The inverted if prevents us
513 * eating someone else's else clause.
515 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
517 else \
518 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
520 #else
521 #define dbg(X...) /* NOP */
522 #endif
524 /* Printing short cuts
526 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
527 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
528 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
531 * PCI ID lookup table
533 static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
552 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554 {0,} /* End */
557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
560 * Device Driver Work Queues
562 * So that we don't spend too much time processing events in the
563 * Interrupt Service routine, we will declare a work queue per Card
564 * and make the ISR schedule a task in the queue for later execution.
565 * In the 2.4 Kernel we used to use the immediate queue for BH's
566 * Now that they are gone, tasklets seem to be much better than work
567 * queues.
570 static void do_bottom_half_tx(struct fst_card_info *card);
571 static void do_bottom_half_rx(struct fst_card_info *card);
572 static void fst_process_tx_work_q(unsigned long work_q);
573 static void fst_process_int_work_q(unsigned long work_q);
575 DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576 DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
578 struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579 spinlock_t fst_work_q_lock;
580 u64 fst_work_txq;
581 u64 fst_work_intq;
583 static void
584 fst_q_work_item(u64 * queue, int card_index)
586 unsigned long flags;
587 u64 mask;
590 * Grab the queue exclusively
592 spin_lock_irqsave(&fst_work_q_lock, flags);
595 * Making an entry in the queue is simply a matter of setting
596 * a bit for the card indicating that there is work to do in the
597 * bottom half for the card. Note the limitation of 64 cards.
598 * That ought to be enough
600 mask = 1 << card_index;
601 *queue |= mask;
602 spin_unlock_irqrestore(&fst_work_q_lock, flags);
605 static void
606 fst_process_tx_work_q(unsigned long /*void **/work_q)
608 unsigned long flags;
609 u64 work_txq;
610 int i;
613 * Grab the queue exclusively
615 dbg(DBG_TX, "fst_process_tx_work_q\n");
616 spin_lock_irqsave(&fst_work_q_lock, flags);
617 work_txq = fst_work_txq;
618 fst_work_txq = 0;
619 spin_unlock_irqrestore(&fst_work_q_lock, flags);
622 * Call the bottom half for each card with work waiting
624 for (i = 0; i < FST_MAX_CARDS; i++) {
625 if (work_txq & 0x01) {
626 if (fst_card_array[i] != NULL) {
627 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628 do_bottom_half_tx(fst_card_array[i]);
631 work_txq = work_txq >> 1;
635 static void
636 fst_process_int_work_q(unsigned long /*void **/work_q)
638 unsigned long flags;
639 u64 work_intq;
640 int i;
643 * Grab the queue exclusively
645 dbg(DBG_INTR, "fst_process_int_work_q\n");
646 spin_lock_irqsave(&fst_work_q_lock, flags);
647 work_intq = fst_work_intq;
648 fst_work_intq = 0;
649 spin_unlock_irqrestore(&fst_work_q_lock, flags);
652 * Call the bottom half for each card with work waiting
654 for (i = 0; i < FST_MAX_CARDS; i++) {
655 if (work_intq & 0x01) {
656 if (fst_card_array[i] != NULL) {
657 dbg(DBG_INTR,
658 "Calling rx & tx bh for card %d\n", i);
659 do_bottom_half_rx(fst_card_array[i]);
660 do_bottom_half_tx(fst_card_array[i]);
663 work_intq = work_intq >> 1;
667 /* Card control functions
668 * ======================
670 /* Place the processor in reset state
672 * Used to be a simple write to card control space but a glitch in the latest
673 * AMD Am186CH processor means that we now have to do it by asserting and de-
674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675 * at offset 9052_CNTRL. Note the updates for the TXU.
677 static inline void
678 fst_cpureset(struct fst_card_info *card)
680 unsigned char interrupt_line_register;
681 unsigned long j = jiffies + 1;
682 unsigned int regval;
684 if (card->family == FST_FAMILY_TXU) {
685 if (pci_read_config_byte
686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 dbg(DBG_ASS,
688 "Error in reading interrupt line register\n");
691 * Assert PLX software reset and Am186 hardware reset
692 * and then deassert the PLX software reset but 186 still in reset
694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
697 * We are delaying here to allow the 9054 to reset itself
699 j = jiffies + 1;
700 while (jiffies < j)
701 /* Do nothing */ ;
702 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
704 * We are delaying here to allow the 9054 to reload its eeprom
706 j = jiffies + 1;
707 while (jiffies < j)
708 /* Do nothing */ ;
709 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
711 if (pci_write_config_byte
712 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713 dbg(DBG_ASS,
714 "Error in writing interrupt line register\n");
717 } else {
718 regval = inl(card->pci_conf + CNTRL_9052);
720 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
725 /* Release the processor from reset
727 static inline void
728 fst_cpurelease(struct fst_card_info *card)
730 if (card->family == FST_FAMILY_TXU) {
732 * Force posted writes to complete
734 (void) readb(card->mem);
737 * Release LRESET DO = 1
738 * Then release Local Hold, DO = 1
740 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742 } else {
743 (void) readb(card->ctlmem);
747 /* Clear the cards interrupt flag
749 static inline void
750 fst_clear_intr(struct fst_card_info *card)
752 if (card->family == FST_FAMILY_TXU) {
753 (void) readb(card->ctlmem);
754 } else {
755 /* Poke the appropriate PLX chip register (same as enabling interrupts)
757 outw(0x0543, card->pci_conf + INTCSR_9052);
761 /* Enable card interrupts
763 static inline void
764 fst_enable_intr(struct fst_card_info *card)
766 if (card->family == FST_FAMILY_TXU) {
767 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768 } else {
769 outw(0x0543, card->pci_conf + INTCSR_9052);
773 /* Disable card interrupts
775 static inline void
776 fst_disable_intr(struct fst_card_info *card)
778 if (card->family == FST_FAMILY_TXU) {
779 outl(0x00000000, card->pci_conf + INTCSR_9054);
780 } else {
781 outw(0x0000, card->pci_conf + INTCSR_9052);
785 /* Process the result of trying to pass a received frame up the stack
787 static void
788 fst_process_rx_status(int rx_status, char *name)
790 switch (rx_status) {
791 case NET_RX_SUCCESS:
794 * Nothing to do here
796 break;
799 case NET_RX_CN_LOW:
801 dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
802 break;
805 case NET_RX_CN_MOD:
807 dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
808 break;
811 case NET_RX_CN_HIGH:
813 dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
814 break;
817 case NET_RX_DROP:
819 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
820 break;
825 /* Initilaise DMA for PLX 9054
827 static inline void
828 fst_init_dma(struct fst_card_info *card)
831 * This is only required for the PLX 9054
833 if (card->family == FST_FAMILY_TXU) {
834 pci_set_master(card->device);
835 outl(0x00020441, card->pci_conf + DMAMODE0);
836 outl(0x00020441, card->pci_conf + DMAMODE1);
837 outl(0x0, card->pci_conf + DMATHR);
841 /* Tx dma complete interrupt
843 static void
844 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
845 int len, int txpos)
847 struct net_device *dev = port_to_dev(port);
848 struct net_device_stats *stats = hdlc_stats(dev);
851 * Everything is now set, just tell the card to go
853 dbg(DBG_TX, "fst_tx_dma_complete\n");
854 FST_WRB(card, txDescrRing[port->index][txpos].bits,
855 DMA_OWN | TX_STP | TX_ENP);
856 stats->tx_packets++;
857 stats->tx_bytes += len;
858 dev->trans_start = jiffies;
862 * Mark it for our own raw sockets interface
864 static unsigned short farsync_type_trans(struct sk_buff *skb,
865 struct net_device *dev)
867 skb->dev = dev;
868 skb->mac.raw = skb->data;
869 skb->pkt_type = PACKET_HOST;
870 return htons(ETH_P_CUST);
873 /* Rx dma complete interrupt
875 static void
876 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
877 int len, struct sk_buff *skb, int rxp)
879 struct net_device *dev = port_to_dev(port);
880 struct net_device_stats *stats = hdlc_stats(dev);
881 int pi;
882 int rx_status;
884 dbg(DBG_TX, "fst_rx_dma_complete\n");
885 pi = port->index;
886 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
888 /* Reset buffer descriptor */
889 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
891 /* Update stats */
892 stats->rx_packets++;
893 stats->rx_bytes += len;
895 /* Push upstream */
896 dbg(DBG_RX, "Pushing the frame up the stack\n");
897 if (port->mode == FST_RAW)
898 skb->protocol = farsync_type_trans(skb, dev);
899 else
900 skb->protocol = hdlc_type_trans(skb, dev);
901 rx_status = netif_rx(skb);
902 fst_process_rx_status(rx_status, port_to_dev(port)->name);
903 if (rx_status == NET_RX_DROP)
904 stats->rx_dropped++;
905 dev->last_rx = jiffies;
909 * Receive a frame through the DMA
911 static inline void
912 fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
913 unsigned char *mem, int len)
916 * This routine will setup the DMA and start it
919 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
920 if (card->dmarx_in_progress) {
921 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
924 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */
925 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */
926 outl(len, card->pci_conf + DMASIZ0); /* for this length */
927 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
930 * We use the dmarx_in_progress flag to flag the channel as busy
932 card->dmarx_in_progress = 1;
933 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
937 * Send a frame through the DMA
939 static inline void
940 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
941 unsigned char *mem, int len)
944 * This routine will setup the DMA and start it.
947 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
948 if (card->dmatx_in_progress) {
949 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
952 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
953 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
954 outl(len, card->pci_conf + DMASIZ1); /* for this length */
955 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
958 * We use the dmatx_in_progress to flag the channel as busy
960 card->dmatx_in_progress = 1;
961 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
964 /* Issue a Mailbox command for a port.
965 * Note we issue them on a fire and forget basis, not expecting to see an
966 * error and not waiting for completion.
968 static void
969 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
971 struct fst_card_info *card;
972 unsigned short mbval;
973 unsigned long flags;
974 int safety;
976 card = port->card;
977 spin_lock_irqsave(&card->card_lock, flags);
978 mbval = FST_RDW(card, portMailbox[port->index][0]);
980 safety = 0;
981 /* Wait for any previous command to complete */
982 while (mbval > NAK) {
983 spin_unlock_irqrestore(&card->card_lock, flags);
984 schedule_timeout(1);
985 spin_lock_irqsave(&card->card_lock, flags);
987 if (++safety > 2000) {
988 printk_err("Mailbox safety timeout\n");
989 break;
992 mbval = FST_RDW(card, portMailbox[port->index][0]);
994 if (safety > 0) {
995 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
997 if (mbval == NAK) {
998 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
1001 FST_WRW(card, portMailbox[port->index][0], cmd);
1003 if (cmd == ABORTTX || cmd == STARTPORT) {
1004 port->txpos = 0;
1005 port->txipos = 0;
1006 port->start = 0;
1009 spin_unlock_irqrestore(&card->card_lock, flags);
1012 /* Port output signals control
1014 static inline void
1015 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
1017 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
1018 FST_WRL(port->card, v24OpSts[port->index], outputs);
1020 if (port->run)
1021 fst_issue_cmd(port, SETV24O);
1024 static inline void
1025 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1027 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1028 FST_WRL(port->card, v24OpSts[port->index], outputs);
1030 if (port->run)
1031 fst_issue_cmd(port, SETV24O);
1035 * Setup port Rx buffers
1037 static void
1038 fst_rx_config(struct fst_port_info *port)
1040 int i;
1041 int pi;
1042 unsigned int offset;
1043 unsigned long flags;
1044 struct fst_card_info *card;
1046 pi = port->index;
1047 card = port->card;
1048 spin_lock_irqsave(&card->card_lock, flags);
1049 for (i = 0; i < NUM_RX_BUFFER; i++) {
1050 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1052 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1053 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1054 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1055 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1056 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1058 port->rxpos = 0;
1059 spin_unlock_irqrestore(&card->card_lock, flags);
1063 * Setup port Tx buffers
1065 static void
1066 fst_tx_config(struct fst_port_info *port)
1068 int i;
1069 int pi;
1070 unsigned int offset;
1071 unsigned long flags;
1072 struct fst_card_info *card;
1074 pi = port->index;
1075 card = port->card;
1076 spin_lock_irqsave(&card->card_lock, flags);
1077 for (i = 0; i < NUM_TX_BUFFER; i++) {
1078 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1080 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1081 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1082 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1083 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1085 port->txpos = 0;
1086 port->txipos = 0;
1087 port->start = 0;
1088 spin_unlock_irqrestore(&card->card_lock, flags);
1091 /* TE1 Alarm change interrupt event
1093 static void
1094 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1096 u8 los;
1097 u8 rra;
1098 u8 ais;
1100 los = FST_RDB(card, suStatus.lossOfSignal);
1101 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1102 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1104 if (los) {
1106 * Lost the link
1108 if (netif_carrier_ok(port_to_dev(port))) {
1109 dbg(DBG_INTR, "Net carrier off\n");
1110 netif_carrier_off(port_to_dev(port));
1112 } else {
1114 * Link available
1116 if (!netif_carrier_ok(port_to_dev(port))) {
1117 dbg(DBG_INTR, "Net carrier on\n");
1118 netif_carrier_on(port_to_dev(port));
1122 if (los)
1123 dbg(DBG_INTR, "Assert LOS Alarm\n");
1124 else
1125 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1126 if (rra)
1127 dbg(DBG_INTR, "Assert RRA Alarm\n");
1128 else
1129 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1131 if (ais)
1132 dbg(DBG_INTR, "Assert AIS Alarm\n");
1133 else
1134 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1137 /* Control signal change interrupt event
1139 static void
1140 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1142 int signals;
1144 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1146 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1147 ? IPSTS_INDICATE : IPSTS_DCD)) {
1148 if (!netif_carrier_ok(port_to_dev(port))) {
1149 dbg(DBG_INTR, "DCD active\n");
1150 netif_carrier_on(port_to_dev(port));
1152 } else {
1153 if (netif_carrier_ok(port_to_dev(port))) {
1154 dbg(DBG_INTR, "DCD lost\n");
1155 netif_carrier_off(port_to_dev(port));
1160 /* Log Rx Errors
1162 static void
1163 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1164 unsigned char dmabits, int rxp, unsigned short len)
1166 struct net_device *dev = port_to_dev(port);
1167 struct net_device_stats *stats = hdlc_stats(dev);
1170 * Increment the appropriate error counter
1172 stats->rx_errors++;
1173 if (dmabits & RX_OFLO) {
1174 stats->rx_fifo_errors++;
1175 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1176 card->card_no, port->index, rxp);
1178 if (dmabits & RX_CRC) {
1179 stats->rx_crc_errors++;
1180 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1181 card->card_no, port->index);
1183 if (dmabits & RX_FRAM) {
1184 stats->rx_frame_errors++;
1185 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1186 card->card_no, port->index);
1188 if (dmabits == (RX_STP | RX_ENP)) {
1189 stats->rx_length_errors++;
1190 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1191 len, card->card_no, port->index);
1195 /* Rx Error Recovery
1197 static void
1198 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1199 unsigned char dmabits, int rxp, unsigned short len)
1201 int i;
1202 int pi;
1204 pi = port->index;
1206 * Discard buffer descriptors until we see the start of the
1207 * next frame. Note that for long frames this could be in
1208 * a subsequent interrupt.
1210 i = 0;
1211 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1212 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1213 rxp = (rxp+1) % NUM_RX_BUFFER;
1214 if (++i > NUM_RX_BUFFER) {
1215 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1216 " than we have\n");
1217 break;
1219 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1220 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1222 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1224 /* Discard the terminal buffer */
1225 if (!(dmabits & DMA_OWN)) {
1226 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1227 rxp = (rxp+1) % NUM_RX_BUFFER;
1229 port->rxpos = rxp;
1230 return;
1234 /* Rx complete interrupt
1236 static void
1237 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1239 unsigned char dmabits;
1240 int pi;
1241 int rxp;
1242 int rx_status;
1243 unsigned short len;
1244 struct sk_buff *skb;
1245 struct net_device *dev = port_to_dev(port);
1246 struct net_device_stats *stats = hdlc_stats(dev);
1248 /* Check we have a buffer to process */
1249 pi = port->index;
1250 rxp = port->rxpos;
1251 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1252 if (dmabits & DMA_OWN) {
1253 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1254 pi, rxp);
1255 return;
1257 if (card->dmarx_in_progress) {
1258 return;
1261 /* Get buffer length */
1262 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1263 /* Discard the CRC */
1264 len -= 2;
1265 if (len == 0) {
1267 * This seems to happen on the TE1 interface sometimes
1268 * so throw the frame away and log the event.
1270 printk_err("Frame received with 0 length. Card %d Port %d\n",
1271 card->card_no, port->index);
1272 /* Return descriptor to card */
1273 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275 rxp = (rxp+1) % NUM_RX_BUFFER;
1276 port->rxpos = rxp;
1277 return;
1280 /* Check buffer length and for other errors. We insist on one packet
1281 * in one buffer. This simplifies things greatly and since we've
1282 * allocated 8K it shouldn't be a real world limitation
1284 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1285 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1286 fst_log_rx_error(card, port, dmabits, rxp, len);
1287 fst_recover_rx_error(card, port, dmabits, rxp, len);
1288 return;
1291 /* Allocate SKB */
1292 if ((skb = dev_alloc_skb(len)) == NULL) {
1293 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1295 stats->rx_dropped++;
1297 /* Return descriptor to card */
1298 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1300 rxp = (rxp+1) % NUM_RX_BUFFER;
1301 port->rxpos = rxp;
1302 return;
1306 * We know the length we need to receive, len.
1307 * It's not worth using the DMA for reads of less than
1308 * FST_MIN_DMA_LEN
1311 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1312 memcpy_fromio(skb_put(skb, len),
1313 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1314 len);
1316 /* Reset buffer descriptor */
1317 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1319 /* Update stats */
1320 stats->rx_packets++;
1321 stats->rx_bytes += len;
1323 /* Push upstream */
1324 dbg(DBG_RX, "Pushing frame up the stack\n");
1325 if (port->mode == FST_RAW)
1326 skb->protocol = farsync_type_trans(skb, dev);
1327 else
1328 skb->protocol = hdlc_type_trans(skb, dev);
1329 rx_status = netif_rx(skb);
1330 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1331 if (rx_status == NET_RX_DROP) {
1332 stats->rx_dropped++;
1334 dev->last_rx = jiffies;
1335 } else {
1336 card->dma_skb_rx = skb;
1337 card->dma_port_rx = port;
1338 card->dma_len_rx = len;
1339 card->dma_rxpos = rxp;
1340 fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1341 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1343 if (rxp != port->rxpos) {
1344 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1345 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1347 rxp = (rxp+1) % NUM_RX_BUFFER;
1348 port->rxpos = rxp;
1352 * The bottom halfs to the ISR
1356 static void
1357 do_bottom_half_tx(struct fst_card_info *card)
1359 struct fst_port_info *port;
1360 int pi;
1361 int txq_length;
1362 struct sk_buff *skb;
1363 unsigned long flags;
1364 struct net_device *dev;
1365 struct net_device_stats *stats;
1368 * Find a free buffer for the transmit
1369 * Step through each port on this card
1372 dbg(DBG_TX, "do_bottom_half_tx\n");
1373 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1374 if (!port->run)
1375 continue;
1377 dev = port_to_dev(port);
1378 stats = hdlc_stats(dev);
1379 while (!
1380 (FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1381 DMA_OWN)
1382 && !(card->dmatx_in_progress)) {
1384 * There doesn't seem to be a txdone event per-se
1385 * We seem to have to deduce it, by checking the DMA_OWN
1386 * bit on the next buffer we think we can use
1388 spin_lock_irqsave(&card->card_lock, flags);
1389 if ((txq_length = port->txqe - port->txqs) < 0) {
1391 * This is the case where one has wrapped and the
1392 * maths gives us a negative number
1394 txq_length = txq_length + FST_TXQ_DEPTH;
1396 spin_unlock_irqrestore(&card->card_lock, flags);
1397 if (txq_length > 0) {
1399 * There is something to send
1401 spin_lock_irqsave(&card->card_lock, flags);
1402 skb = port->txq[port->txqs];
1403 port->txqs++;
1404 if (port->txqs == FST_TXQ_DEPTH) {
1405 port->txqs = 0;
1407 spin_unlock_irqrestore(&card->card_lock, flags);
1409 * copy the data and set the required indicators on the
1410 * card.
1412 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1413 cnv_bcnt(skb->len));
1414 if ((skb->len < FST_MIN_DMA_LEN)
1415 || (card->family == FST_FAMILY_TXP)) {
1416 /* Enqueue the packet with normal io */
1417 memcpy_toio(card->mem +
1418 BUF_OFFSET(txBuffer[pi]
1419 [port->
1420 txpos][0]),
1421 skb->data, skb->len);
1422 FST_WRB(card,
1423 txDescrRing[pi][port->txpos].
1424 bits,
1425 DMA_OWN | TX_STP | TX_ENP);
1426 stats->tx_packets++;
1427 stats->tx_bytes += skb->len;
1428 dev->trans_start = jiffies;
1429 } else {
1430 /* Or do it through dma */
1431 memcpy(card->tx_dma_handle_host,
1432 skb->data, skb->len);
1433 card->dma_port_tx = port;
1434 card->dma_len_tx = skb->len;
1435 card->dma_txpos = port->txpos;
1436 fst_tx_dma(card,
1437 (char *) card->
1438 tx_dma_handle_card,
1439 (char *)
1440 BUF_OFFSET(txBuffer[pi]
1441 [port->txpos][0]),
1442 skb->len);
1444 if (++port->txpos >= NUM_TX_BUFFER)
1445 port->txpos = 0;
1447 * If we have flow control on, can we now release it?
1449 if (port->start) {
1450 if (txq_length < fst_txq_low) {
1451 netif_wake_queue(port_to_dev
1452 (port));
1453 port->start = 0;
1456 dev_kfree_skb(skb);
1457 } else {
1459 * Nothing to send so break out of the while loop
1461 break;
1467 static void
1468 do_bottom_half_rx(struct fst_card_info *card)
1470 struct fst_port_info *port;
1471 int pi;
1472 int rx_count = 0;
1474 /* Check for rx completions on all ports on this card */
1475 dbg(DBG_RX, "do_bottom_half_rx\n");
1476 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1477 if (!port->run)
1478 continue;
1480 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1481 & DMA_OWN) && !(card->dmarx_in_progress)) {
1482 if (rx_count > fst_max_reads) {
1484 * Don't spend forever in receive processing
1485 * Schedule another event
1487 fst_q_work_item(&fst_work_intq, card->card_no);
1488 tasklet_schedule(&fst_int_task);
1489 break; /* Leave the loop */
1491 fst_intr_rx(card, port);
1492 rx_count++;
1498 * The interrupt service routine
1499 * Dev_id is our fst_card_info pointer
1501 irqreturn_t
1502 fst_intr(int irq, void *dev_id, struct pt_regs *regs)
1504 struct fst_card_info *card;
1505 struct fst_port_info *port;
1506 int rdidx; /* Event buffer indices */
1507 int wridx;
1508 int event; /* Actual event for processing */
1509 unsigned int dma_intcsr = 0;
1510 unsigned int do_card_interrupt;
1511 unsigned int int_retry_count;
1513 if ((card = dev_id) == NULL) {
1514 dbg(DBG_INTR, "intr: spurious %d\n", irq);
1515 return IRQ_NONE;
1519 * Check to see if the interrupt was for this card
1520 * return if not
1521 * Note that the call to clear the interrupt is important
1523 dbg(DBG_INTR, "intr: %d %p\n", irq, card);
1524 if (card->state != FST_RUNNING) {
1525 printk_err
1526 ("Interrupt received for card %d in a non running state (%d)\n",
1527 card->card_no, card->state);
1530 * It is possible to really be running, i.e. we have re-loaded
1531 * a running card
1532 * Clear and reprime the interrupt source
1534 fst_clear_intr(card);
1535 return IRQ_HANDLED;
1538 /* Clear and reprime the interrupt source */
1539 fst_clear_intr(card);
1542 * Is the interrupt for this card (handshake == 1)
1544 do_card_interrupt = 0;
1545 if (FST_RDB(card, interruptHandshake) == 1) {
1546 do_card_interrupt += FST_CARD_INT;
1547 /* Set the software acknowledge */
1548 FST_WRB(card, interruptHandshake, 0xEE);
1550 if (card->family == FST_FAMILY_TXU) {
1552 * Is it a DMA Interrupt
1554 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1555 if (dma_intcsr & 0x00200000) {
1557 * DMA Channel 0 (Rx transfer complete)
1559 dbg(DBG_RX, "DMA Rx xfer complete\n");
1560 outb(0x8, card->pci_conf + DMACSR0);
1561 fst_rx_dma_complete(card, card->dma_port_rx,
1562 card->dma_len_rx, card->dma_skb_rx,
1563 card->dma_rxpos);
1564 card->dmarx_in_progress = 0;
1565 do_card_interrupt += FST_RX_DMA_INT;
1567 if (dma_intcsr & 0x00400000) {
1569 * DMA Channel 1 (Tx transfer complete)
1571 dbg(DBG_TX, "DMA Tx xfer complete\n");
1572 outb(0x8, card->pci_conf + DMACSR1);
1573 fst_tx_dma_complete(card, card->dma_port_tx,
1574 card->dma_len_tx, card->dma_txpos);
1575 card->dmatx_in_progress = 0;
1576 do_card_interrupt += FST_TX_DMA_INT;
1581 * Have we been missing Interrupts
1583 int_retry_count = FST_RDL(card, interruptRetryCount);
1584 if (int_retry_count) {
1585 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1586 card->card_no, int_retry_count);
1587 FST_WRL(card, interruptRetryCount, 0);
1590 if (!do_card_interrupt) {
1591 return IRQ_HANDLED;
1594 /* Scehdule the bottom half of the ISR */
1595 fst_q_work_item(&fst_work_intq, card->card_no);
1596 tasklet_schedule(&fst_int_task);
1598 /* Drain the event queue */
1599 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1600 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1601 while (rdidx != wridx) {
1602 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1603 port = &card->ports[event & 0x03];
1605 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1607 switch (event) {
1608 case TE1_ALMA:
1609 dbg(DBG_INTR, "TE1 Alarm intr\n");
1610 if (port->run)
1611 fst_intr_te1_alarm(card, port);
1612 break;
1614 case CTLA_CHG:
1615 case CTLB_CHG:
1616 case CTLC_CHG:
1617 case CTLD_CHG:
1618 if (port->run)
1619 fst_intr_ctlchg(card, port);
1620 break;
1622 case ABTA_SENT:
1623 case ABTB_SENT:
1624 case ABTC_SENT:
1625 case ABTD_SENT:
1626 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1627 break;
1629 case TXA_UNDF:
1630 case TXB_UNDF:
1631 case TXC_UNDF:
1632 case TXD_UNDF:
1633 /* Difficult to see how we'd get this given that we
1634 * always load up the entire packet for DMA.
1636 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1637 hdlc_stats(port_to_dev(port))->tx_errors++;
1638 hdlc_stats(port_to_dev(port))->tx_fifo_errors++;
1639 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1640 card->card_no, port->index);
1641 break;
1643 case INIT_CPLT:
1644 dbg(DBG_INIT, "Card init OK intr\n");
1645 break;
1647 case INIT_FAIL:
1648 dbg(DBG_INIT, "Card init FAILED intr\n");
1649 card->state = FST_IFAILED;
1650 break;
1652 default:
1653 printk_err("intr: unknown card event %d. ignored\n",
1654 event);
1655 break;
1658 /* Bump and wrap the index */
1659 if (++rdidx >= MAX_CIRBUFF)
1660 rdidx = 0;
1662 FST_WRB(card, interruptEvent.rdindex, rdidx);
1663 return IRQ_HANDLED;
1666 /* Check that the shared memory configuration is one that we can handle
1667 * and that some basic parameters are correct
1669 static void
1670 check_started_ok(struct fst_card_info *card)
1672 int i;
1674 /* Check structure version and end marker */
1675 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1676 printk_err("Bad shared memory version %d expected %d\n",
1677 FST_RDW(card, smcVersion), SMC_VERSION);
1678 card->state = FST_BADVERSION;
1679 return;
1681 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1682 printk_err("Missing shared memory signature\n");
1683 card->state = FST_BADVERSION;
1684 return;
1686 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1687 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1688 card->state = FST_RUNNING;
1689 } else if (i == 0xFF) {
1690 printk_err("Firmware initialisation failed. Card halted\n");
1691 card->state = FST_HALTED;
1692 return;
1693 } else if (i != 0x00) {
1694 printk_err("Unknown firmware status 0x%x\n", i);
1695 card->state = FST_HALTED;
1696 return;
1699 /* Finally check the number of ports reported by firmware against the
1700 * number we assumed at card detection. Should never happen with
1701 * existing firmware etc so we just report it for the moment.
1703 if (FST_RDL(card, numberOfPorts) != card->nports) {
1704 printk_warn("Port count mismatch on card %d."
1705 " Firmware thinks %d we say %d\n", card->card_no,
1706 FST_RDL(card, numberOfPorts), card->nports);
1710 static int
1711 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1712 struct fstioc_info *info)
1714 int err;
1715 unsigned char my_framing;
1717 /* Set things according to the user set valid flags
1718 * Several of the old options have been invalidated/replaced by the
1719 * generic hdlc package.
1721 err = 0;
1722 if (info->valid & FSTVAL_PROTO) {
1723 if (info->proto == FST_RAW)
1724 port->mode = FST_RAW;
1725 else
1726 port->mode = FST_GEN_HDLC;
1729 if (info->valid & FSTVAL_CABLE)
1730 err = -EINVAL;
1732 if (info->valid & FSTVAL_SPEED)
1733 err = -EINVAL;
1735 if (info->valid & FSTVAL_PHASE)
1736 FST_WRB(card, portConfig[port->index].invertClock,
1737 info->invertClock);
1738 if (info->valid & FSTVAL_MODE)
1739 FST_WRW(card, cardMode, info->cardMode);
1740 if (info->valid & FSTVAL_TE1) {
1741 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1742 FST_WRB(card, suConfig.clocking, info->clockSource);
1743 my_framing = FRAMING_E1;
1744 if (info->framing == E1)
1745 my_framing = FRAMING_E1;
1746 if (info->framing == T1)
1747 my_framing = FRAMING_T1;
1748 if (info->framing == J1)
1749 my_framing = FRAMING_J1;
1750 FST_WRB(card, suConfig.framing, my_framing);
1751 FST_WRB(card, suConfig.structure, info->structure);
1752 FST_WRB(card, suConfig.interface, info->interface);
1753 FST_WRB(card, suConfig.coding, info->coding);
1754 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1755 FST_WRB(card, suConfig.equalizer, info->equalizer);
1756 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1757 FST_WRB(card, suConfig.loopMode, info->loopMode);
1758 FST_WRB(card, suConfig.range, info->range);
1759 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1760 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1761 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1762 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1763 if (info->idleCode)
1764 FST_WRB(card, suConfig.enableIdleCode, 1);
1765 else
1766 FST_WRB(card, suConfig.enableIdleCode, 0);
1767 FST_WRB(card, suConfig.idleCode, info->idleCode);
1768 #if FST_DEBUG
1769 if (info->valid & FSTVAL_TE1) {
1770 printk("Setting TE1 data\n");
1771 printk("Line Speed = %d\n", info->lineSpeed);
1772 printk("Start slot = %d\n", info->startingSlot);
1773 printk("Clock source = %d\n", info->clockSource);
1774 printk("Framing = %d\n", my_framing);
1775 printk("Structure = %d\n", info->structure);
1776 printk("interface = %d\n", info->interface);
1777 printk("Coding = %d\n", info->coding);
1778 printk("Line build out = %d\n", info->lineBuildOut);
1779 printk("Equaliser = %d\n", info->equalizer);
1780 printk("Transparent mode = %d\n",
1781 info->transparentMode);
1782 printk("Loop mode = %d\n", info->loopMode);
1783 printk("Range = %d\n", info->range);
1784 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1785 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1786 printk("LOS Threshold = %d\n", info->losThreshold);
1787 printk("Idle Code = %d\n", info->idleCode);
1789 #endif
1791 #if FST_DEBUG
1792 if (info->valid & FSTVAL_DEBUG) {
1793 fst_debug_mask = info->debug;
1795 #endif
1797 return err;
1800 static void
1801 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1802 struct fstioc_info *info)
1804 int i;
1806 memset(info, 0, sizeof (struct fstioc_info));
1808 i = port->index;
1809 info->kernelVersion = LINUX_VERSION_CODE;
1810 info->nports = card->nports;
1811 info->type = card->type;
1812 info->state = card->state;
1813 info->proto = FST_GEN_HDLC;
1814 info->index = i;
1815 #if FST_DEBUG
1816 info->debug = fst_debug_mask;
1817 #endif
1819 /* Only mark information as valid if card is running.
1820 * Copy the data anyway in case it is useful for diagnostics
1822 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1823 #if FST_DEBUG
1824 | FSTVAL_DEBUG
1825 #endif
1828 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1829 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1830 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1831 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1832 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1833 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1834 info->clockStatus = FST_RDW(card, clockStatus[i]);
1835 info->cableStatus = FST_RDW(card, cableStatus);
1836 info->cardMode = FST_RDW(card, cardMode);
1837 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1840 * The T2U can report cable presence for both A or B
1841 * in bits 0 and 1 of cableStatus. See which port we are and
1842 * do the mapping.
1844 if (card->family == FST_FAMILY_TXU) {
1845 if (port->index == 0) {
1847 * Port A
1849 info->cableStatus = info->cableStatus & 1;
1850 } else {
1852 * Port B
1854 info->cableStatus = info->cableStatus >> 1;
1855 info->cableStatus = info->cableStatus & 1;
1859 * Some additional bits if we are TE1
1861 if (card->type == FST_TYPE_TE1) {
1862 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1863 info->clockSource = FST_RDB(card, suConfig.clocking);
1864 info->framing = FST_RDB(card, suConfig.framing);
1865 info->structure = FST_RDB(card, suConfig.structure);
1866 info->interface = FST_RDB(card, suConfig.interface);
1867 info->coding = FST_RDB(card, suConfig.coding);
1868 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1869 info->equalizer = FST_RDB(card, suConfig.equalizer);
1870 info->loopMode = FST_RDB(card, suConfig.loopMode);
1871 info->range = FST_RDB(card, suConfig.range);
1872 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1873 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1874 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1875 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1876 if (FST_RDB(card, suConfig.enableIdleCode))
1877 info->idleCode = FST_RDB(card, suConfig.idleCode);
1878 else
1879 info->idleCode = 0;
1880 info->receiveBufferDelay =
1881 FST_RDL(card, suStatus.receiveBufferDelay);
1882 info->framingErrorCount =
1883 FST_RDL(card, suStatus.framingErrorCount);
1884 info->codeViolationCount =
1885 FST_RDL(card, suStatus.codeViolationCount);
1886 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1887 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1888 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1889 info->receiveRemoteAlarm =
1890 FST_RDB(card, suStatus.receiveRemoteAlarm);
1891 info->alarmIndicationSignal =
1892 FST_RDB(card, suStatus.alarmIndicationSignal);
1896 static int
1897 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1898 struct ifreq *ifr)
1900 sync_serial_settings sync;
1901 int i;
1903 if (ifr->ifr_settings.size != sizeof (sync)) {
1904 return -ENOMEM;
1907 if (copy_from_user
1908 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1909 return -EFAULT;
1912 if (sync.loopback)
1913 return -EINVAL;
1915 i = port->index;
1917 switch (ifr->ifr_settings.type) {
1918 case IF_IFACE_V35:
1919 FST_WRW(card, portConfig[i].lineInterface, V35);
1920 port->hwif = V35;
1921 break;
1923 case IF_IFACE_V24:
1924 FST_WRW(card, portConfig[i].lineInterface, V24);
1925 port->hwif = V24;
1926 break;
1928 case IF_IFACE_X21:
1929 FST_WRW(card, portConfig[i].lineInterface, X21);
1930 port->hwif = X21;
1931 break;
1933 case IF_IFACE_X21D:
1934 FST_WRW(card, portConfig[i].lineInterface, X21D);
1935 port->hwif = X21D;
1936 break;
1938 case IF_IFACE_T1:
1939 FST_WRW(card, portConfig[i].lineInterface, T1);
1940 port->hwif = T1;
1941 break;
1943 case IF_IFACE_E1:
1944 FST_WRW(card, portConfig[i].lineInterface, E1);
1945 port->hwif = E1;
1946 break;
1948 case IF_IFACE_SYNC_SERIAL:
1949 break;
1951 default:
1952 return -EINVAL;
1955 switch (sync.clock_type) {
1956 case CLOCK_EXT:
1957 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1958 break;
1960 case CLOCK_INT:
1961 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1962 break;
1964 default:
1965 return -EINVAL;
1967 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1968 return 0;
1971 static int
1972 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1973 struct ifreq *ifr)
1975 sync_serial_settings sync;
1976 int i;
1978 /* First check what line type is set, we'll default to reporting X.21
1979 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1980 * changed
1982 switch (port->hwif) {
1983 case E1:
1984 ifr->ifr_settings.type = IF_IFACE_E1;
1985 break;
1986 case T1:
1987 ifr->ifr_settings.type = IF_IFACE_T1;
1988 break;
1989 case V35:
1990 ifr->ifr_settings.type = IF_IFACE_V35;
1991 break;
1992 case V24:
1993 ifr->ifr_settings.type = IF_IFACE_V24;
1994 break;
1995 case X21D:
1996 ifr->ifr_settings.type = IF_IFACE_X21D;
1997 break;
1998 case X21:
1999 default:
2000 ifr->ifr_settings.type = IF_IFACE_X21;
2001 break;
2003 if (ifr->ifr_settings.size == 0) {
2004 return 0; /* only type requested */
2006 if (ifr->ifr_settings.size < sizeof (sync)) {
2007 return -ENOMEM;
2010 i = port->index;
2011 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
2012 /* Lucky card and linux use same encoding here */
2013 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
2014 INTCLK ? CLOCK_INT : CLOCK_EXT;
2015 sync.loopback = 0;
2017 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
2018 return -EFAULT;
2021 ifr->ifr_settings.size = sizeof (sync);
2022 return 0;
2025 static int
2026 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2028 struct fst_card_info *card;
2029 struct fst_port_info *port;
2030 struct fstioc_write wrthdr;
2031 struct fstioc_info info;
2032 unsigned long flags;
2034 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2036 port = dev_to_port(dev);
2037 card = port->card;
2039 if (!capable(CAP_NET_ADMIN))
2040 return -EPERM;
2042 switch (cmd) {
2043 case FSTCPURESET:
2044 fst_cpureset(card);
2045 card->state = FST_RESET;
2046 return 0;
2048 case FSTCPURELEASE:
2049 fst_cpurelease(card);
2050 card->state = FST_STARTING;
2051 return 0;
2053 case FSTWRITE: /* Code write (download) */
2055 /* First copy in the header with the length and offset of data
2056 * to write
2058 if (ifr->ifr_data == NULL) {
2059 return -EINVAL;
2061 if (copy_from_user(&wrthdr, ifr->ifr_data,
2062 sizeof (struct fstioc_write))) {
2063 return -EFAULT;
2066 /* Sanity check the parameters. We don't support partial writes
2067 * when going over the top
2069 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2070 || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2071 return -ENXIO;
2074 /* Now copy the data to the card.
2075 * This will probably break on some architectures.
2076 * I'll fix it when I have something to test on.
2078 if (copy_from_user(card->mem + wrthdr.offset,
2079 ifr->ifr_data + sizeof (struct fstioc_write),
2080 wrthdr.size)) {
2081 return -EFAULT;
2084 /* Writes to the memory of a card in the reset state constitute
2085 * a download
2087 if (card->state == FST_RESET) {
2088 card->state = FST_DOWNLOAD;
2090 return 0;
2092 case FSTGETCONF:
2094 /* If card has just been started check the shared memory config
2095 * version and marker
2097 if (card->state == FST_STARTING) {
2098 check_started_ok(card);
2100 /* If everything checked out enable card interrupts */
2101 if (card->state == FST_RUNNING) {
2102 spin_lock_irqsave(&card->card_lock, flags);
2103 fst_enable_intr(card);
2104 FST_WRB(card, interruptHandshake, 0xEE);
2105 spin_unlock_irqrestore(&card->card_lock, flags);
2109 if (ifr->ifr_data == NULL) {
2110 return -EINVAL;
2113 gather_conf_info(card, port, &info);
2115 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2116 return -EFAULT;
2118 return 0;
2120 case FSTSETCONF:
2123 * Most of the settings have been moved to the generic ioctls
2124 * this just covers debug and board ident now
2127 if (card->state != FST_RUNNING) {
2128 printk_err
2129 ("Attempt to configure card %d in non-running state (%d)\n",
2130 card->card_no, card->state);
2131 return -EIO;
2133 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2134 return -EFAULT;
2137 return set_conf_from_info(card, port, &info);
2139 case SIOCWANDEV:
2140 switch (ifr->ifr_settings.type) {
2141 case IF_GET_IFACE:
2142 return fst_get_iface(card, port, ifr);
2144 case IF_IFACE_SYNC_SERIAL:
2145 case IF_IFACE_V35:
2146 case IF_IFACE_V24:
2147 case IF_IFACE_X21:
2148 case IF_IFACE_X21D:
2149 case IF_IFACE_T1:
2150 case IF_IFACE_E1:
2151 return fst_set_iface(card, port, ifr);
2153 case IF_PROTO_RAW:
2154 port->mode = FST_RAW;
2155 return 0;
2157 case IF_GET_PROTO:
2158 if (port->mode == FST_RAW) {
2159 ifr->ifr_settings.type = IF_PROTO_RAW;
2160 return 0;
2162 return hdlc_ioctl(dev, ifr, cmd);
2164 default:
2165 port->mode = FST_GEN_HDLC;
2166 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2167 ifr->ifr_settings.type);
2168 return hdlc_ioctl(dev, ifr, cmd);
2171 default:
2172 /* Not one of ours. Pass through to HDLC package */
2173 return hdlc_ioctl(dev, ifr, cmd);
2177 static void
2178 fst_openport(struct fst_port_info *port)
2180 int signals;
2181 int txq_length;
2183 /* Only init things if card is actually running. This allows open to
2184 * succeed for downloads etc.
2186 if (port->card->state == FST_RUNNING) {
2187 if (port->run) {
2188 dbg(DBG_OPEN, "open: found port already running\n");
2190 fst_issue_cmd(port, STOPPORT);
2191 port->run = 0;
2194 fst_rx_config(port);
2195 fst_tx_config(port);
2196 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2198 fst_issue_cmd(port, STARTPORT);
2199 port->run = 1;
2201 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2202 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2203 ? IPSTS_INDICATE : IPSTS_DCD))
2204 netif_carrier_on(port_to_dev(port));
2205 else
2206 netif_carrier_off(port_to_dev(port));
2208 txq_length = port->txqe - port->txqs;
2209 port->txqe = 0;
2210 port->txqs = 0;
2215 static void
2216 fst_closeport(struct fst_port_info *port)
2218 if (port->card->state == FST_RUNNING) {
2219 if (port->run) {
2220 port->run = 0;
2221 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2223 fst_issue_cmd(port, STOPPORT);
2224 } else {
2225 dbg(DBG_OPEN, "close: port not running\n");
2230 static int
2231 fst_open(struct net_device *dev)
2233 int err;
2234 struct fst_port_info *port;
2236 port = dev_to_port(dev);
2237 if (!try_module_get(THIS_MODULE))
2238 return -EBUSY;
2240 if (port->mode != FST_RAW) {
2241 err = hdlc_open(dev);
2242 if (err)
2243 return err;
2246 fst_openport(port);
2247 netif_wake_queue(dev);
2248 return 0;
2251 static int
2252 fst_close(struct net_device *dev)
2254 struct fst_port_info *port;
2255 struct fst_card_info *card;
2256 unsigned char tx_dma_done;
2257 unsigned char rx_dma_done;
2259 port = dev_to_port(dev);
2260 card = port->card;
2262 tx_dma_done = inb(card->pci_conf + DMACSR1);
2263 rx_dma_done = inb(card->pci_conf + DMACSR0);
2264 dbg(DBG_OPEN,
2265 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2266 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2267 rx_dma_done);
2269 netif_stop_queue(dev);
2270 fst_closeport(dev_to_port(dev));
2271 if (port->mode != FST_RAW) {
2272 hdlc_close(dev);
2274 module_put(THIS_MODULE);
2275 return 0;
2278 static int
2279 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2282 * Setting currently fixed in FarSync card so we check and forget
2284 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2285 return -EINVAL;
2286 return 0;
2289 static void
2290 fst_tx_timeout(struct net_device *dev)
2292 struct fst_port_info *port;
2293 struct fst_card_info *card;
2294 struct net_device_stats *stats = hdlc_stats(dev);
2296 port = dev_to_port(dev);
2297 card = port->card;
2298 stats->tx_errors++;
2299 stats->tx_aborted_errors++;
2300 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2301 card->card_no, port->index);
2302 fst_issue_cmd(port, ABORTTX);
2304 dev->trans_start = jiffies;
2305 netif_wake_queue(dev);
2306 port->start = 0;
2309 static int
2310 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2312 struct fst_card_info *card;
2313 struct fst_port_info *port;
2314 struct net_device_stats *stats = hdlc_stats(dev);
2315 unsigned long flags;
2316 int txq_length;
2318 port = dev_to_port(dev);
2319 card = port->card;
2320 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2322 /* Drop packet with error if we don't have carrier */
2323 if (!netif_carrier_ok(dev)) {
2324 dev_kfree_skb(skb);
2325 stats->tx_errors++;
2326 stats->tx_carrier_errors++;
2327 dbg(DBG_ASS,
2328 "Tried to transmit but no carrier on card %d port %d\n",
2329 card->card_no, port->index);
2330 return 0;
2333 /* Drop it if it's too big! MTU failure ? */
2334 if (skb->len > LEN_TX_BUFFER) {
2335 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2336 LEN_TX_BUFFER);
2337 dev_kfree_skb(skb);
2338 stats->tx_errors++;
2339 return 0;
2343 * We are always going to queue the packet
2344 * so that the bottom half is the only place we tx from
2345 * Check there is room in the port txq
2347 spin_lock_irqsave(&card->card_lock, flags);
2348 if ((txq_length = port->txqe - port->txqs) < 0) {
2350 * This is the case where the next free has wrapped but the
2351 * last used hasn't
2353 txq_length = txq_length + FST_TXQ_DEPTH;
2355 spin_unlock_irqrestore(&card->card_lock, flags);
2356 if (txq_length > fst_txq_high) {
2358 * We have got enough buffers in the pipeline. Ask the network
2359 * layer to stop sending frames down
2361 netif_stop_queue(dev);
2362 port->start = 1; /* I'm using this to signal stop sent up */
2365 if (txq_length == FST_TXQ_DEPTH - 1) {
2367 * This shouldn't have happened but such is life
2369 dev_kfree_skb(skb);
2370 stats->tx_errors++;
2371 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2372 card->card_no, port->index);
2373 return 0;
2377 * queue the buffer
2379 spin_lock_irqsave(&card->card_lock, flags);
2380 port->txq[port->txqe] = skb;
2381 port->txqe++;
2382 if (port->txqe == FST_TXQ_DEPTH)
2383 port->txqe = 0;
2384 spin_unlock_irqrestore(&card->card_lock, flags);
2386 /* Scehdule the bottom half which now does transmit processing */
2387 fst_q_work_item(&fst_work_txq, card->card_no);
2388 tasklet_schedule(&fst_tx_task);
2390 return 0;
2394 * Card setup having checked hardware resources.
2395 * Should be pretty bizarre if we get an error here (kernel memory
2396 * exhaustion is one possibility). If we do see a problem we report it
2397 * via a printk and leave the corresponding interface and all that follow
2398 * disabled.
2400 static char *type_strings[] __devinitdata = {
2401 "no hardware", /* Should never be seen */
2402 "FarSync T2P",
2403 "FarSync T4P",
2404 "FarSync T1U",
2405 "FarSync T2U",
2406 "FarSync T4U",
2407 "FarSync TE1"
2410 static void __devinit
2411 fst_init_card(struct fst_card_info *card)
2413 int i;
2414 int err;
2416 /* We're working on a number of ports based on the card ID. If the
2417 * firmware detects something different later (should never happen)
2418 * we'll have to revise it in some way then.
2420 for (i = 0; i < card->nports; i++) {
2421 err = register_hdlc_device(card->ports[i].dev);
2422 if (err < 0) {
2423 int j;
2424 printk_err ("Cannot register HDLC device for port %d"
2425 " (errno %d)\n", i, -err );
2426 for (j = i; j < card->nports; j++) {
2427 free_netdev(card->ports[j].dev);
2428 card->ports[j].dev = NULL;
2430 card->nports = i;
2431 break;
2435 printk_info("%s-%s: %s IRQ%d, %d ports\n",
2436 port_to_dev(&card->ports[0])->name,
2437 port_to_dev(&card->ports[card->nports - 1])->name,
2438 type_strings[card->type], card->irq, card->nports);
2442 * Initialise card when detected.
2443 * Returns 0 to indicate success, or errno otherwise.
2445 static int __devinit
2446 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2448 static int firsttime_done = 0;
2449 static int no_of_cards_added = 0;
2450 struct fst_card_info *card;
2451 int err = 0;
2452 int i;
2454 if (!firsttime_done) {
2455 printk_info("FarSync WAN driver " FST_USER_VERSION
2456 " (c) 2001-2004 FarSite Communications Ltd.\n");
2457 firsttime_done = 1;
2458 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2462 * We are going to be clever and allow certain cards not to be
2463 * configured. An exclude list can be provided in /etc/modules.conf
2465 if (fst_excluded_cards != 0) {
2467 * There are cards to exclude
2470 for (i = 0; i < fst_excluded_cards; i++) {
2471 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2472 printk_info("FarSync PCI device %d not assigned\n",
2473 (pdev->devfn) >> 3);
2474 return -EBUSY;
2479 /* Allocate driver private data */
2480 card = kmalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2481 if (card == NULL) {
2482 printk_err("FarSync card found but insufficient memory for"
2483 " driver storage\n");
2484 return -ENOMEM;
2486 memset(card, 0, sizeof (struct fst_card_info));
2488 /* Try to enable the device */
2489 if ((err = pci_enable_device(pdev)) != 0) {
2490 printk_err("Failed to enable card. Err %d\n", -err);
2491 kfree(card);
2492 return err;
2495 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2496 printk_err("Failed to allocate regions. Err %d\n", -err);
2497 pci_disable_device(pdev);
2498 kfree(card);
2499 return err;
2502 /* Get virtual addresses of memory regions */
2503 card->pci_conf = pci_resource_start(pdev, 1);
2504 card->phys_mem = pci_resource_start(pdev, 2);
2505 card->phys_ctlmem = pci_resource_start(pdev, 3);
2506 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2507 printk_err("Physical memory remap failed\n");
2508 pci_release_regions(pdev);
2509 pci_disable_device(pdev);
2510 kfree(card);
2511 return -ENODEV;
2513 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2514 printk_err("Control memory remap failed\n");
2515 pci_release_regions(pdev);
2516 pci_disable_device(pdev);
2517 kfree(card);
2518 return -ENODEV;
2520 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2522 /* Register the interrupt handler */
2523 if (request_irq(pdev->irq, fst_intr, SA_SHIRQ, FST_DEV_NAME, card)) {
2524 printk_err("Unable to register interrupt %d\n", card->irq);
2525 pci_release_regions(pdev);
2526 pci_disable_device(pdev);
2527 iounmap(card->ctlmem);
2528 iounmap(card->mem);
2529 kfree(card);
2530 return -ENODEV;
2533 /* Record info we need */
2534 card->irq = pdev->irq;
2535 card->type = ent->driver_data;
2536 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2537 (ent->driver_data == FST_TYPE_T4P))
2538 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2539 if ((ent->driver_data == FST_TYPE_T1U) ||
2540 (ent->driver_data == FST_TYPE_TE1))
2541 card->nports = 1;
2542 else
2543 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2544 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2546 card->state = FST_UNINIT;
2547 spin_lock_init ( &card->card_lock );
2549 for ( i = 0 ; i < card->nports ; i++ ) {
2550 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2551 hdlc_device *hdlc;
2552 if (!dev) {
2553 while (i--)
2554 free_netdev(card->ports[i].dev);
2555 printk_err ("FarSync: out of memory\n");
2556 free_irq(card->irq, card);
2557 pci_release_regions(pdev);
2558 pci_disable_device(pdev);
2559 iounmap(card->ctlmem);
2560 iounmap(card->mem);
2561 kfree(card);
2562 return -ENODEV;
2564 card->ports[i].dev = dev;
2565 card->ports[i].card = card;
2566 card->ports[i].index = i;
2567 card->ports[i].run = 0;
2569 hdlc = dev_to_hdlc(dev);
2571 /* Fill in the net device info */
2572 /* Since this is a PCI setup this is purely
2573 * informational. Give them the buffer addresses
2574 * and basic card I/O.
2576 dev->mem_start = card->phys_mem
2577 + BUF_OFFSET ( txBuffer[i][0][0]);
2578 dev->mem_end = card->phys_mem
2579 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2580 dev->base_addr = card->pci_conf;
2581 dev->irq = card->irq;
2583 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2584 dev->open = fst_open;
2585 dev->stop = fst_close;
2586 dev->do_ioctl = fst_ioctl;
2587 dev->watchdog_timeo = FST_TX_TIMEOUT;
2588 dev->tx_timeout = fst_tx_timeout;
2589 hdlc->attach = fst_attach;
2590 hdlc->xmit = fst_start_xmit;
2593 card->device = pdev;
2595 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2596 card->nports, card->irq);
2597 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2598 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2600 /* Reset the card's processor */
2601 fst_cpureset(card);
2602 card->state = FST_RESET;
2604 /* Initialise DMA (if required) */
2605 fst_init_dma(card);
2607 /* Record driver data for later use */
2608 pci_set_drvdata(pdev, card);
2610 /* Remainder of card setup */
2611 fst_card_array[no_of_cards_added] = card;
2612 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2613 fst_init_card(card);
2614 if (card->family == FST_FAMILY_TXU) {
2616 * Allocate a dma buffer for transmit and receives
2618 card->rx_dma_handle_host =
2619 pci_alloc_consistent(card->device, FST_MAX_MTU,
2620 &card->rx_dma_handle_card);
2621 if (card->rx_dma_handle_host == NULL) {
2622 printk_err("Could not allocate rx dma buffer\n");
2623 fst_disable_intr(card);
2624 pci_release_regions(pdev);
2625 pci_disable_device(pdev);
2626 iounmap(card->ctlmem);
2627 iounmap(card->mem);
2628 kfree(card);
2629 return -ENOMEM;
2631 card->tx_dma_handle_host =
2632 pci_alloc_consistent(card->device, FST_MAX_MTU,
2633 &card->tx_dma_handle_card);
2634 if (card->tx_dma_handle_host == NULL) {
2635 printk_err("Could not allocate tx dma buffer\n");
2636 fst_disable_intr(card);
2637 pci_release_regions(pdev);
2638 pci_disable_device(pdev);
2639 iounmap(card->ctlmem);
2640 iounmap(card->mem);
2641 kfree(card);
2642 return -ENOMEM;
2645 return 0; /* Success */
2649 * Cleanup and close down a card
2651 static void __devexit
2652 fst_remove_one(struct pci_dev *pdev)
2654 struct fst_card_info *card;
2655 int i;
2657 card = pci_get_drvdata(pdev);
2659 for (i = 0; i < card->nports; i++) {
2660 struct net_device *dev = port_to_dev(&card->ports[i]);
2661 unregister_hdlc_device(dev);
2664 fst_disable_intr(card);
2665 free_irq(card->irq, card);
2667 iounmap(card->ctlmem);
2668 iounmap(card->mem);
2669 pci_release_regions(pdev);
2670 if (card->family == FST_FAMILY_TXU) {
2672 * Free dma buffers
2674 pci_free_consistent(card->device, FST_MAX_MTU,
2675 card->rx_dma_handle_host,
2676 card->rx_dma_handle_card);
2677 pci_free_consistent(card->device, FST_MAX_MTU,
2678 card->tx_dma_handle_host,
2679 card->tx_dma_handle_card);
2681 fst_card_array[card->card_no] = NULL;
2684 static struct pci_driver fst_driver = {
2685 .name = FST_NAME,
2686 .id_table = fst_pci_dev_id,
2687 .probe = fst_add_one,
2688 .remove = __devexit_p(fst_remove_one),
2689 .suspend = NULL,
2690 .resume = NULL,
2693 static int __init
2694 fst_init(void)
2696 int i;
2698 for (i = 0; i < FST_MAX_CARDS; i++)
2699 fst_card_array[i] = NULL;
2700 spin_lock_init(&fst_work_q_lock);
2701 return pci_module_init(&fst_driver);
2704 static void __exit
2705 fst_cleanup_module(void)
2707 printk_info("FarSync WAN driver unloading\n");
2708 pci_unregister_driver(&fst_driver);
2711 module_init(fst_init);
2712 module_exit(fst_cleanup_module);