ACPI: video: Use acpi_device's handle instead of driver's
[linux-2.6/verdex.git] / arch / arm26 / kernel / ptrace.c
blob282e24d793282324a4e4da8969d6cc2c5f2c11a9
1 /*
2 * linux/arch/arm26/kernel/ptrace.c
4 * By Ross Biro 1/23/92
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/config.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/ptrace.h>
19 #include <linux/user.h>
20 #include <linux/security.h>
21 #include <linux/signal.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgtable.h>
25 #include <asm/system.h>
26 //#include <asm/processor.h>
28 #include "ptrace.h"
30 #define REG_PC 15
31 #define REG_PSR 15
33 * does not yet catch signals sent when the child dies.
34 * in exit.c or in signal.c.
38 * Breakpoint SWI instruction: SWI &9F0001
40 #define BREAKINST_ARM 0xef9f0001
43 * this routine will get a word off of the processes privileged stack.
44 * the offset is how far from the base addr as stored in the THREAD.
45 * this routine assumes that all the privileged stacks are in our
46 * data space.
48 static inline long get_user_reg(struct task_struct *task, int offset)
50 return task_pt_regs(task)->uregs[offset];
54 * this routine will put a word on the processes privileged stack.
55 * the offset is how far from the base addr as stored in the THREAD.
56 * this routine assumes that all the privileged stacks are in our
57 * data space.
59 static inline int
60 put_user_reg(struct task_struct *task, int offset, long data)
62 struct pt_regs newregs, *regs = task_pt_regs(task);
63 int ret = -EINVAL;
65 newregs = *regs;
66 newregs.uregs[offset] = data;
68 if (valid_user_regs(&newregs)) {
69 regs->uregs[offset] = data;
70 ret = 0;
73 return ret;
76 static inline int
77 read_u32(struct task_struct *task, unsigned long addr, u32 *res)
79 int ret;
81 ret = access_process_vm(task, addr, res, sizeof(*res), 0);
83 return ret == sizeof(*res) ? 0 : -EIO;
86 static inline int
87 read_instr(struct task_struct *task, unsigned long addr, u32 *res)
89 int ret;
90 u32 val;
91 ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0);
92 ret = ret == sizeof(val) ? 0 : -EIO;
93 *res = val;
94 return ret;
98 * Get value of register `rn' (in the instruction)
100 static unsigned long
101 ptrace_getrn(struct task_struct *child, unsigned long insn)
103 unsigned int reg = (insn >> 16) & 15;
104 unsigned long val;
106 val = get_user_reg(child, reg);
107 if (reg == 15)
108 val = pc_pointer(val + 8); //FIXME - correct for arm26?
110 return val;
114 * Get value of operand 2 (in an ALU instruction)
116 static unsigned long
117 ptrace_getaluop2(struct task_struct *child, unsigned long insn)
119 unsigned long val;
120 int shift;
121 int type;
123 if (insn & 1 << 25) {
124 val = insn & 255;
125 shift = (insn >> 8) & 15;
126 type = 3;
127 } else {
128 val = get_user_reg (child, insn & 15);
130 if (insn & (1 << 4))
131 shift = (int)get_user_reg (child, (insn >> 8) & 15);
132 else
133 shift = (insn >> 7) & 31;
135 type = (insn >> 5) & 3;
138 switch (type) {
139 case 0: val <<= shift; break;
140 case 1: val >>= shift; break;
141 case 2:
142 val = (((signed long)val) >> shift);
143 break;
144 case 3:
145 val = (val >> shift) | (val << (32 - shift));
146 break;
148 return val;
152 * Get value of operand 2 (in a LDR instruction)
154 static unsigned long
155 ptrace_getldrop2(struct task_struct *child, unsigned long insn)
157 unsigned long val;
158 int shift;
159 int type;
161 val = get_user_reg(child, insn & 15);
162 shift = (insn >> 7) & 31;
163 type = (insn >> 5) & 3;
165 switch (type) {
166 case 0: val <<= shift; break;
167 case 1: val >>= shift; break;
168 case 2:
169 val = (((signed long)val) >> shift);
170 break;
171 case 3:
172 val = (val >> shift) | (val << (32 - shift));
173 break;
175 return val;
178 #define OP_MASK 0x01e00000
179 #define OP_AND 0x00000000
180 #define OP_EOR 0x00200000
181 #define OP_SUB 0x00400000
182 #define OP_RSB 0x00600000
183 #define OP_ADD 0x00800000
184 #define OP_ADC 0x00a00000
185 #define OP_SBC 0x00c00000
186 #define OP_RSC 0x00e00000
187 #define OP_ORR 0x01800000
188 #define OP_MOV 0x01a00000
189 #define OP_BIC 0x01c00000
190 #define OP_MVN 0x01e00000
192 static unsigned long
193 get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn)
195 u32 alt = 0;
197 switch (insn & 0x0e000000) {
198 case 0x00000000:
199 case 0x02000000: {
201 * data processing
203 long aluop1, aluop2, ccbit;
205 if ((insn & 0xf000) != 0xf000)
206 break;
208 aluop1 = ptrace_getrn(child, insn);
209 aluop2 = ptrace_getaluop2(child, insn);
210 ccbit = get_user_reg(child, REG_PSR) & PSR_C_BIT ? 1 : 0;
212 switch (insn & OP_MASK) {
213 case OP_AND: alt = aluop1 & aluop2; break;
214 case OP_EOR: alt = aluop1 ^ aluop2; break;
215 case OP_SUB: alt = aluop1 - aluop2; break;
216 case OP_RSB: alt = aluop2 - aluop1; break;
217 case OP_ADD: alt = aluop1 + aluop2; break;
218 case OP_ADC: alt = aluop1 + aluop2 + ccbit; break;
219 case OP_SBC: alt = aluop1 - aluop2 + ccbit; break;
220 case OP_RSC: alt = aluop2 - aluop1 + ccbit; break;
221 case OP_ORR: alt = aluop1 | aluop2; break;
222 case OP_MOV: alt = aluop2; break;
223 case OP_BIC: alt = aluop1 & ~aluop2; break;
224 case OP_MVN: alt = ~aluop2; break;
226 break;
229 case 0x04000000:
230 case 0x06000000:
232 * ldr
234 if ((insn & 0x0010f000) == 0x0010f000) {
235 unsigned long base;
237 base = ptrace_getrn(child, insn);
238 if (insn & 1 << 24) {
239 long aluop2;
241 if (insn & 0x02000000)
242 aluop2 = ptrace_getldrop2(child, insn);
243 else
244 aluop2 = insn & 0xfff;
246 if (insn & 1 << 23)
247 base += aluop2;
248 else
249 base -= aluop2;
251 if (read_u32(child, base, &alt) == 0)
252 alt = pc_pointer(alt);
254 break;
256 case 0x08000000:
258 * ldm
260 if ((insn & 0x00108000) == 0x00108000) {
261 unsigned long base;
262 unsigned int nr_regs;
264 if (insn & (1 << 23)) {
265 nr_regs = hweight16(insn & 65535) << 2;
267 if (!(insn & (1 << 24)))
268 nr_regs -= 4;
269 } else {
270 if (insn & (1 << 24))
271 nr_regs = -4;
272 else
273 nr_regs = 0;
276 base = ptrace_getrn(child, insn);
278 if (read_u32(child, base + nr_regs, &alt) == 0)
279 alt = pc_pointer(alt);
280 break;
282 break;
284 case 0x0a000000: {
286 * bl or b
288 signed long displ;
289 /* It's a branch/branch link: instead of trying to
290 * figure out whether the branch will be taken or not,
291 * we'll put a breakpoint at both locations. This is
292 * simpler, more reliable, and probably not a whole lot
293 * slower than the alternative approach of emulating the
294 * branch.
296 displ = (insn & 0x00ffffff) << 8;
297 displ = (displ >> 6) + 8;
298 if (displ != 0 && displ != 4)
299 alt = pc + displ;
301 break;
304 return alt;
307 static int
308 swap_insn(struct task_struct *task, unsigned long addr,
309 void *old_insn, void *new_insn, int size)
311 int ret;
313 ret = access_process_vm(task, addr, old_insn, size, 0);
314 if (ret == size)
315 ret = access_process_vm(task, addr, new_insn, size, 1);
316 return ret;
319 static void
320 add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr)
322 int nr = dbg->nsaved;
324 if (nr < 2) {
325 u32 new_insn = BREAKINST_ARM;
326 int res;
328 res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4);
330 if (res == 4) {
331 dbg->bp[nr].address = addr;
332 dbg->nsaved += 1;
334 } else
335 printk(KERN_ERR "ptrace: too many breakpoints\n");
339 * Clear one breakpoint in the user program. We copy what the hardware
340 * does and use bit 0 of the address to indicate whether this is a Thumb
341 * breakpoint or an ARM breakpoint.
343 static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp)
345 unsigned long addr = bp->address;
346 u32 old_insn;
347 int ret;
349 ret = swap_insn(task, addr & ~3, &old_insn,
350 &bp->insn, 4);
352 if (ret != 4 || old_insn != BREAKINST_ARM)
353 printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at "
354 "0x%08lx (0x%08x)\n", task->comm, task->pid,
355 addr, old_insn);
358 void ptrace_set_bpt(struct task_struct *child)
360 struct pt_regs *regs;
361 unsigned long pc;
362 u32 insn;
363 int res;
365 regs = task_pt_regs(child);
366 pc = instruction_pointer(regs);
368 res = read_instr(child, pc, &insn);
369 if (!res) {
370 struct debug_info *dbg = &child->thread.debug;
371 unsigned long alt;
373 dbg->nsaved = 0;
375 alt = get_branch_address(child, pc, insn);
376 if (alt)
377 add_breakpoint(child, dbg, alt);
380 * Note that we ignore the result of setting the above
381 * breakpoint since it may fail. When it does, this is
382 * not so much an error, but a forewarning that we may
383 * be receiving a prefetch abort shortly.
385 * If we don't set this breakpoint here, then we can
386 * lose control of the thread during single stepping.
388 if (!alt || predicate(insn) != PREDICATE_ALWAYS)
389 add_breakpoint(child, dbg, pc + 4);
394 * Ensure no single-step breakpoint is pending. Returns non-zero
395 * value if child was being single-stepped.
397 void ptrace_cancel_bpt(struct task_struct *child)
399 int i, nsaved = child->thread.debug.nsaved;
401 child->thread.debug.nsaved = 0;
403 if (nsaved > 2) {
404 printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved);
405 nsaved = 2;
408 for (i = 0; i < nsaved; i++)
409 clear_breakpoint(child, &child->thread.debug.bp[i]);
413 * Called by kernel/ptrace.c when detaching..
415 * Make sure the single step bit is not set.
417 void ptrace_disable(struct task_struct *child)
419 child->ptrace &= ~PT_SINGLESTEP;
420 ptrace_cancel_bpt(child);
424 * Handle hitting a breakpoint.
426 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
428 siginfo_t info;
431 * The PC is always left pointing at the next instruction. Fix this.
433 regs->ARM_pc -= 4;
435 if (tsk->thread.debug.nsaved == 0)
436 printk(KERN_ERR "ptrace: bogus breakpoint trap\n");
438 ptrace_cancel_bpt(tsk);
440 info.si_signo = SIGTRAP;
441 info.si_errno = 0;
442 info.si_code = TRAP_BRKPT;
443 info.si_addr = (void *)instruction_pointer(regs) - 4;
445 force_sig_info(SIGTRAP, &info, tsk);
449 * Read the word at offset "off" into the "struct user". We
450 * actually access the pt_regs stored on the kernel stack.
452 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
453 unsigned long *ret)
455 unsigned long tmp;
457 if (off & 3 || off >= sizeof(struct user))
458 return -EIO;
460 tmp = 0;
461 if (off < sizeof(struct pt_regs))
462 tmp = get_user_reg(tsk, off >> 2);
464 return put_user(tmp, ret);
468 * Write the word at offset "off" into "struct user". We
469 * actually access the pt_regs stored on the kernel stack.
471 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
472 unsigned long val)
474 if (off & 3 || off >= sizeof(struct user))
475 return -EIO;
477 if (off >= sizeof(struct pt_regs))
478 return 0;
480 return put_user_reg(tsk, off >> 2, val);
484 * Get all user integer registers.
486 static int ptrace_getregs(struct task_struct *tsk, void *uregs)
488 struct pt_regs *regs = task_pt_regs(tsk);
490 return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
494 * Set all user integer registers.
496 static int ptrace_setregs(struct task_struct *tsk, void *uregs)
498 struct pt_regs newregs;
499 int ret;
501 ret = -EFAULT;
502 if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
503 struct pt_regs *regs = task_pt_regs(tsk);
505 ret = -EINVAL;
506 if (valid_user_regs(&newregs)) {
507 *regs = newregs;
508 ret = 0;
512 return ret;
516 * Get the child FPU state.
518 static int ptrace_getfpregs(struct task_struct *tsk, void *ufp)
520 return copy_to_user(ufp, &task_thread_info(tsk)->fpstate,
521 sizeof(struct user_fp)) ? -EFAULT : 0;
525 * Set the child FPU state.
527 static int ptrace_setfpregs(struct task_struct *tsk, void *ufp)
529 set_stopped_child_used_math(tsk);
530 return copy_from_user(&task_thread_info(tsk)->fpstate, ufp,
531 sizeof(struct user_fp)) ? -EFAULT : 0;
534 long arch_ptrace(struct task_struct *child, long request, long addr, long data)
536 unsigned long tmp;
537 int ret;
539 switch (request) {
541 * read word at location "addr" in the child process.
543 case PTRACE_PEEKTEXT:
544 case PTRACE_PEEKDATA:
545 ret = access_process_vm(child, addr, &tmp,
546 sizeof(unsigned long), 0);
547 if (ret == sizeof(unsigned long))
548 ret = put_user(tmp, (unsigned long *) data);
549 else
550 ret = -EIO;
551 break;
553 case PTRACE_PEEKUSR:
554 ret = ptrace_read_user(child, addr, (unsigned long *)data);
555 break;
558 * write the word at location addr.
560 case PTRACE_POKETEXT:
561 case PTRACE_POKEDATA:
562 ret = access_process_vm(child, addr, &data,
563 sizeof(unsigned long), 1);
564 if (ret == sizeof(unsigned long))
565 ret = 0;
566 else
567 ret = -EIO;
568 break;
570 case PTRACE_POKEUSR:
571 ret = ptrace_write_user(child, addr, data);
572 break;
575 * continue/restart and stop at next (return from) syscall
577 case PTRACE_SYSCALL:
578 case PTRACE_CONT:
579 ret = -EIO;
580 if (!valid_signal(data))
581 break;
582 if (request == PTRACE_SYSCALL)
583 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
584 else
585 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
586 child->exit_code = data;
587 /* make sure single-step breakpoint is gone. */
588 child->ptrace &= ~PT_SINGLESTEP;
589 ptrace_cancel_bpt(child);
590 wake_up_process(child);
591 ret = 0;
592 break;
595 * make the child exit. Best I can do is send it a sigkill.
596 * perhaps it should be put in the status that it wants to
597 * exit.
599 case PTRACE_KILL:
600 /* make sure single-step breakpoint is gone. */
601 child->ptrace &= ~PT_SINGLESTEP;
602 ptrace_cancel_bpt(child);
603 if (child->exit_state != EXIT_ZOMBIE) {
604 child->exit_code = SIGKILL;
605 wake_up_process(child);
607 ret = 0;
608 break;
611 * execute single instruction.
613 case PTRACE_SINGLESTEP:
614 ret = -EIO;
615 if (!valid_signal(data))
616 break;
617 child->ptrace |= PT_SINGLESTEP;
618 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
619 child->exit_code = data;
620 /* give it a chance to run. */
621 wake_up_process(child);
622 ret = 0;
623 break;
625 case PTRACE_DETACH:
626 ret = ptrace_detach(child, data);
627 break;
629 case PTRACE_GETREGS:
630 ret = ptrace_getregs(child, (void *)data);
631 break;
633 case PTRACE_SETREGS:
634 ret = ptrace_setregs(child, (void *)data);
635 break;
637 case PTRACE_GETFPREGS:
638 ret = ptrace_getfpregs(child, (void *)data);
639 break;
641 case PTRACE_SETFPREGS:
642 ret = ptrace_setfpregs(child, (void *)data);
643 break;
645 default:
646 ret = ptrace_request(child, request, addr, data);
647 break;
650 return ret;
653 asmlinkage void syscall_trace(int why, struct pt_regs *regs)
655 unsigned long ip;
657 if (!test_thread_flag(TIF_SYSCALL_TRACE))
658 return;
659 if (!(current->ptrace & PT_PTRACED))
660 return;
663 * Save IP. IP is used to denote syscall entry/exit:
664 * IP = 0 -> entry, = 1 -> exit
666 ip = regs->ARM_ip;
667 regs->ARM_ip = why;
669 /* the 0x80 provides a way for the tracing parent to distinguish
670 between a syscall stop and SIGTRAP delivery */
671 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
672 ? 0x80 : 0));
674 * this isn't the same as continuing with a signal, but it will do
675 * for normal use. strace only continues with a signal if the
676 * stopping signal is not SIGTRAP. -brl
678 if (current->exit_code) {
679 send_sig(current->exit_code, current, 1);
680 current->exit_code = 0;
682 regs->ARM_ip = ip;