ACPI: video: Use acpi_device's handle instead of driver's
[linux-2.6/verdex.git] / fs / reiserfs / stree.c
blobd2b25e1ba6e9739c5bd49b58945d50a7956fb74d
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 /*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
12 * This file contains functions dealing with S+tree
14 * B_IS_IN_TREE
15 * copy_item_head
16 * comp_short_keys
17 * comp_keys
18 * comp_short_le_keys
19 * le_key2cpu_key
20 * comp_le_keys
21 * bin_search
22 * get_lkey
23 * get_rkey
24 * key_in_buffer
25 * decrement_bcount
26 * decrement_counters_in_path
27 * reiserfs_check_path
28 * pathrelse_and_restore
29 * pathrelse
30 * search_by_key_reada
31 * search_by_key
32 * search_for_position_by_key
33 * comp_items
34 * prepare_for_direct_item
35 * prepare_for_direntry_item
36 * prepare_for_delete_or_cut
37 * calc_deleted_bytes_number
38 * init_tb_struct
39 * padd_item
40 * reiserfs_delete_item
41 * reiserfs_delete_solid_item
42 * reiserfs_delete_object
43 * maybe_indirect_to_direct
44 * indirect_to_direct_roll_back
45 * reiserfs_cut_from_item
46 * truncate_directory
47 * reiserfs_do_truncate
48 * reiserfs_paste_into_item
49 * reiserfs_insert_item
52 #include <linux/config.h>
53 #include <linux/time.h>
54 #include <linux/string.h>
55 #include <linux/pagemap.h>
56 #include <linux/reiserfs_fs.h>
57 #include <linux/smp_lock.h>
58 #include <linux/buffer_head.h>
59 #include <linux/quotaops.h>
61 /* Does the buffer contain a disk block which is in the tree. */
62 inline int B_IS_IN_TREE(const struct buffer_head *p_s_bh)
65 RFALSE(B_LEVEL(p_s_bh) > MAX_HEIGHT,
66 "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh);
68 return (B_LEVEL(p_s_bh) != FREE_LEVEL);
72 // to gets item head in le form
74 inline void copy_item_head(struct item_head *p_v_to,
75 const struct item_head *p_v_from)
77 memcpy(p_v_to, p_v_from, IH_SIZE);
80 /* k1 is pointer to on-disk structure which is stored in little-endian
81 form. k2 is pointer to cpu variable. For key of items of the same
82 object this returns 0.
83 Returns: -1 if key1 < key2
84 0 if key1 == key2
85 1 if key1 > key2 */
86 inline int comp_short_keys(const struct reiserfs_key *le_key,
87 const struct cpu_key *cpu_key)
89 __u32 n;
90 n = le32_to_cpu(le_key->k_dir_id);
91 if (n < cpu_key->on_disk_key.k_dir_id)
92 return -1;
93 if (n > cpu_key->on_disk_key.k_dir_id)
94 return 1;
95 n = le32_to_cpu(le_key->k_objectid);
96 if (n < cpu_key->on_disk_key.k_objectid)
97 return -1;
98 if (n > cpu_key->on_disk_key.k_objectid)
99 return 1;
100 return 0;
103 /* k1 is pointer to on-disk structure which is stored in little-endian
104 form. k2 is pointer to cpu variable.
105 Compare keys using all 4 key fields.
106 Returns: -1 if key1 < key2 0
107 if key1 = key2 1 if key1 > key2 */
108 static inline int comp_keys(const struct reiserfs_key *le_key,
109 const struct cpu_key *cpu_key)
111 int retval;
113 retval = comp_short_keys(le_key, cpu_key);
114 if (retval)
115 return retval;
116 if (le_key_k_offset(le_key_version(le_key), le_key) <
117 cpu_key_k_offset(cpu_key))
118 return -1;
119 if (le_key_k_offset(le_key_version(le_key), le_key) >
120 cpu_key_k_offset(cpu_key))
121 return 1;
123 if (cpu_key->key_length == 3)
124 return 0;
126 /* this part is needed only when tail conversion is in progress */
127 if (le_key_k_type(le_key_version(le_key), le_key) <
128 cpu_key_k_type(cpu_key))
129 return -1;
131 if (le_key_k_type(le_key_version(le_key), le_key) >
132 cpu_key_k_type(cpu_key))
133 return 1;
135 return 0;
138 inline int comp_short_le_keys(const struct reiserfs_key *key1,
139 const struct reiserfs_key *key2)
141 __u32 *p_s_1_u32, *p_s_2_u32;
142 int n_key_length = REISERFS_SHORT_KEY_LEN;
144 p_s_1_u32 = (__u32 *) key1;
145 p_s_2_u32 = (__u32 *) key2;
146 for (; n_key_length--; ++p_s_1_u32, ++p_s_2_u32) {
147 if (le32_to_cpu(*p_s_1_u32) < le32_to_cpu(*p_s_2_u32))
148 return -1;
149 if (le32_to_cpu(*p_s_1_u32) > le32_to_cpu(*p_s_2_u32))
150 return 1;
152 return 0;
155 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
157 int version;
158 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
159 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
161 // find out version of the key
162 version = le_key_version(from);
163 to->version = version;
164 to->on_disk_key.k_offset = le_key_k_offset(version, from);
165 to->on_disk_key.k_type = le_key_k_type(version, from);
168 // this does not say which one is bigger, it only returns 1 if keys
169 // are not equal, 0 otherwise
170 inline int comp_le_keys(const struct reiserfs_key *k1,
171 const struct reiserfs_key *k2)
173 return memcmp(k1, k2, sizeof(struct reiserfs_key));
176 /**************************************************************************
177 * Binary search toolkit function *
178 * Search for an item in the array by the item key *
179 * Returns: 1 if found, 0 if not found; *
180 * *p_n_pos = number of the searched element if found, else the *
181 * number of the first element that is larger than p_v_key. *
182 **************************************************************************/
183 /* For those not familiar with binary search: n_lbound is the leftmost item that it
184 could be, n_rbound the rightmost item that it could be. We examine the item
185 halfway between n_lbound and n_rbound, and that tells us either that we can increase
186 n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that
187 there are no possible items, and we have not found it. With each examination we
188 cut the number of possible items it could be by one more than half rounded down,
189 or we find it. */
190 static inline int bin_search(const void *p_v_key, /* Key to search for. */
191 const void *p_v_base, /* First item in the array. */
192 int p_n_num, /* Number of items in the array. */
193 int p_n_width, /* Item size in the array.
194 searched. Lest the reader be
195 confused, note that this is crafted
196 as a general function, and when it
197 is applied specifically to the array
198 of item headers in a node, p_n_width
199 is actually the item header size not
200 the item size. */
201 int *p_n_pos /* Number of the searched for element. */
204 int n_rbound, n_lbound, n_j;
206 for (n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0)) / 2;
207 n_lbound <= n_rbound; n_j = (n_rbound + n_lbound) / 2)
208 switch (comp_keys
209 ((struct reiserfs_key *)((char *)p_v_base +
210 n_j * p_n_width),
211 (struct cpu_key *)p_v_key)) {
212 case -1:
213 n_lbound = n_j + 1;
214 continue;
215 case 1:
216 n_rbound = n_j - 1;
217 continue;
218 case 0:
219 *p_n_pos = n_j;
220 return ITEM_FOUND; /* Key found in the array. */
223 /* bin_search did not find given key, it returns position of key,
224 that is minimal and greater than the given one. */
225 *p_n_pos = n_lbound;
226 return ITEM_NOT_FOUND;
229 #ifdef CONFIG_REISERFS_CHECK
230 extern struct tree_balance *cur_tb;
231 #endif
233 /* Minimal possible key. It is never in the tree. */
234 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
236 /* Maximal possible key. It is never in the tree. */
237 static const struct reiserfs_key MAX_KEY = {
238 __constant_cpu_to_le32(0xffffffff),
239 __constant_cpu_to_le32(0xffffffff),
240 {{__constant_cpu_to_le32(0xffffffff),
241 __constant_cpu_to_le32(0xffffffff)},}
244 /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
245 of the path, and going upwards. We must check the path's validity at each step. If the key is not in
246 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
247 case we return a special key, either MIN_KEY or MAX_KEY. */
248 static inline const struct reiserfs_key *get_lkey(const struct path
249 *p_s_chk_path,
250 const struct super_block
251 *p_s_sb)
253 int n_position, n_path_offset = p_s_chk_path->path_length;
254 struct buffer_head *p_s_parent;
256 RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
257 "PAP-5010: invalid offset in the path");
259 /* While not higher in path than first element. */
260 while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
262 RFALSE(!buffer_uptodate
263 (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
264 "PAP-5020: parent is not uptodate");
266 /* Parent at the path is not in the tree now. */
267 if (!B_IS_IN_TREE
268 (p_s_parent =
269 PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)))
270 return &MAX_KEY;
271 /* Check whether position in the parent is correct. */
272 if ((n_position =
273 PATH_OFFSET_POSITION(p_s_chk_path,
274 n_path_offset)) >
275 B_NR_ITEMS(p_s_parent))
276 return &MAX_KEY;
277 /* Check whether parent at the path really points to the child. */
278 if (B_N_CHILD_NUM(p_s_parent, n_position) !=
279 PATH_OFFSET_PBUFFER(p_s_chk_path,
280 n_path_offset + 1)->b_blocknr)
281 return &MAX_KEY;
282 /* Return delimiting key if position in the parent is not equal to zero. */
283 if (n_position)
284 return B_N_PDELIM_KEY(p_s_parent, n_position - 1);
286 /* Return MIN_KEY if we are in the root of the buffer tree. */
287 if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->
288 b_blocknr == SB_ROOT_BLOCK(p_s_sb))
289 return &MIN_KEY;
290 return &MAX_KEY;
293 /* Get delimiting key of the buffer at the path and its right neighbor. */
294 inline const struct reiserfs_key *get_rkey(const struct path *p_s_chk_path,
295 const struct super_block *p_s_sb)
297 int n_position, n_path_offset = p_s_chk_path->path_length;
298 struct buffer_head *p_s_parent;
300 RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
301 "PAP-5030: invalid offset in the path");
303 while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
305 RFALSE(!buffer_uptodate
306 (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
307 "PAP-5040: parent is not uptodate");
309 /* Parent at the path is not in the tree now. */
310 if (!B_IS_IN_TREE
311 (p_s_parent =
312 PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)))
313 return &MIN_KEY;
314 /* Check whether position in the parent is correct. */
315 if ((n_position =
316 PATH_OFFSET_POSITION(p_s_chk_path,
317 n_path_offset)) >
318 B_NR_ITEMS(p_s_parent))
319 return &MIN_KEY;
320 /* Check whether parent at the path really points to the child. */
321 if (B_N_CHILD_NUM(p_s_parent, n_position) !=
322 PATH_OFFSET_PBUFFER(p_s_chk_path,
323 n_path_offset + 1)->b_blocknr)
324 return &MIN_KEY;
325 /* Return delimiting key if position in the parent is not the last one. */
326 if (n_position != B_NR_ITEMS(p_s_parent))
327 return B_N_PDELIM_KEY(p_s_parent, n_position);
329 /* Return MAX_KEY if we are in the root of the buffer tree. */
330 if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->
331 b_blocknr == SB_ROOT_BLOCK(p_s_sb))
332 return &MAX_KEY;
333 return &MIN_KEY;
336 /* Check whether a key is contained in the tree rooted from a buffer at a path. */
337 /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
338 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
339 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
340 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
341 static inline int key_in_buffer(struct path *p_s_chk_path, /* Path which should be checked. */
342 const struct cpu_key *p_s_key, /* Key which should be checked. */
343 struct super_block *p_s_sb /* Super block pointer. */
347 RFALSE(!p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
348 || p_s_chk_path->path_length > MAX_HEIGHT,
349 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
350 p_s_key, p_s_chk_path->path_length);
351 RFALSE(!PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev,
352 "PAP-5060: device must not be NODEV");
354 if (comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1)
355 /* left delimiting key is bigger, that the key we look for */
356 return 0;
357 // if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 )
358 if (comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1)
359 /* p_s_key must be less than right delimitiing key */
360 return 0;
361 return 1;
364 inline void decrement_bcount(struct buffer_head *p_s_bh)
366 if (p_s_bh) {
367 if (atomic_read(&(p_s_bh->b_count))) {
368 put_bh(p_s_bh);
369 return;
371 reiserfs_panic(NULL,
372 "PAP-5070: decrement_bcount: trying to free free buffer %b",
373 p_s_bh);
377 /* Decrement b_count field of the all buffers in the path. */
378 void decrement_counters_in_path(struct path *p_s_search_path)
380 int n_path_offset = p_s_search_path->path_length;
382 RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET ||
383 n_path_offset > EXTENDED_MAX_HEIGHT - 1,
384 "PAP-5080: invalid path offset of %d", n_path_offset);
386 while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
387 struct buffer_head *bh;
389 bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
390 decrement_bcount(bh);
392 p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
395 int reiserfs_check_path(struct path *p)
397 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
398 "path not properly relsed");
399 return 0;
402 /* Release all buffers in the path. Restore dirty bits clean
403 ** when preparing the buffer for the log
405 ** only called from fix_nodes()
407 void pathrelse_and_restore(struct super_block *s, struct path *p_s_search_path)
409 int n_path_offset = p_s_search_path->path_length;
411 RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
412 "clm-4000: invalid path offset");
414 while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
415 reiserfs_restore_prepared_buffer(s,
416 PATH_OFFSET_PBUFFER
417 (p_s_search_path,
418 n_path_offset));
419 brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
421 p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
424 /* Release all buffers in the path. */
425 void pathrelse(struct path *p_s_search_path)
427 int n_path_offset = p_s_search_path->path_length;
429 RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
430 "PAP-5090: invalid path offset");
432 while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
433 brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
435 p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
438 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
440 struct block_head *blkh;
441 struct item_head *ih;
442 int used_space;
443 int prev_location;
444 int i;
445 int nr;
447 blkh = (struct block_head *)buf;
448 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
449 reiserfs_warning(NULL,
450 "is_leaf: this should be caught earlier");
451 return 0;
454 nr = blkh_nr_item(blkh);
455 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
456 /* item number is too big or too small */
457 reiserfs_warning(NULL, "is_leaf: nr_item seems wrong: %z", bh);
458 return 0;
460 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
461 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
462 if (used_space != blocksize - blkh_free_space(blkh)) {
463 /* free space does not match to calculated amount of use space */
464 reiserfs_warning(NULL, "is_leaf: free space seems wrong: %z",
465 bh);
466 return 0;
468 // FIXME: it is_leaf will hit performance too much - we may have
469 // return 1 here
471 /* check tables of item heads */
472 ih = (struct item_head *)(buf + BLKH_SIZE);
473 prev_location = blocksize;
474 for (i = 0; i < nr; i++, ih++) {
475 if (le_ih_k_type(ih) == TYPE_ANY) {
476 reiserfs_warning(NULL,
477 "is_leaf: wrong item type for item %h",
478 ih);
479 return 0;
481 if (ih_location(ih) >= blocksize
482 || ih_location(ih) < IH_SIZE * nr) {
483 reiserfs_warning(NULL,
484 "is_leaf: item location seems wrong: %h",
485 ih);
486 return 0;
488 if (ih_item_len(ih) < 1
489 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
490 reiserfs_warning(NULL,
491 "is_leaf: item length seems wrong: %h",
492 ih);
493 return 0;
495 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
496 reiserfs_warning(NULL,
497 "is_leaf: item location seems wrong (second one): %h",
498 ih);
499 return 0;
501 prev_location = ih_location(ih);
504 // one may imagine much more checks
505 return 1;
508 /* returns 1 if buf looks like an internal node, 0 otherwise */
509 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
511 struct block_head *blkh;
512 int nr;
513 int used_space;
515 blkh = (struct block_head *)buf;
516 nr = blkh_level(blkh);
517 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
518 /* this level is not possible for internal nodes */
519 reiserfs_warning(NULL,
520 "is_internal: this should be caught earlier");
521 return 0;
524 nr = blkh_nr_item(blkh);
525 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
526 /* for internal which is not root we might check min number of keys */
527 reiserfs_warning(NULL,
528 "is_internal: number of key seems wrong: %z",
529 bh);
530 return 0;
533 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
534 if (used_space != blocksize - blkh_free_space(blkh)) {
535 reiserfs_warning(NULL,
536 "is_internal: free space seems wrong: %z", bh);
537 return 0;
539 // one may imagine much more checks
540 return 1;
543 // make sure that bh contains formatted node of reiserfs tree of
544 // 'level'-th level
545 static int is_tree_node(struct buffer_head *bh, int level)
547 if (B_LEVEL(bh) != level) {
548 reiserfs_warning(NULL,
549 "is_tree_node: node level %d does not match to the expected one %d",
550 B_LEVEL(bh), level);
551 return 0;
553 if (level == DISK_LEAF_NODE_LEVEL)
554 return is_leaf(bh->b_data, bh->b_size, bh);
556 return is_internal(bh->b_data, bh->b_size, bh);
559 #define SEARCH_BY_KEY_READA 16
561 /* The function is NOT SCHEDULE-SAFE! */
562 static void search_by_key_reada(struct super_block *s,
563 struct buffer_head **bh,
564 unsigned long *b, int num)
566 int i, j;
568 for (i = 0; i < num; i++) {
569 bh[i] = sb_getblk(s, b[i]);
571 for (j = 0; j < i; j++) {
573 * note, this needs attention if we are getting rid of the BKL
574 * you have to make sure the prepared bit isn't set on this buffer
576 if (!buffer_uptodate(bh[j]))
577 ll_rw_block(READA, 1, bh + j);
578 brelse(bh[j]);
582 /**************************************************************************
583 * Algorithm SearchByKey *
584 * look for item in the Disk S+Tree by its key *
585 * Input: p_s_sb - super block *
586 * p_s_key - pointer to the key to search *
587 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
588 * p_s_search_path - path from the root to the needed leaf *
589 **************************************************************************/
591 /* This function fills up the path from the root to the leaf as it
592 descends the tree looking for the key. It uses reiserfs_bread to
593 try to find buffers in the cache given their block number. If it
594 does not find them in the cache it reads them from disk. For each
595 node search_by_key finds using reiserfs_bread it then uses
596 bin_search to look through that node. bin_search will find the
597 position of the block_number of the next node if it is looking
598 through an internal node. If it is looking through a leaf node
599 bin_search will find the position of the item which has key either
600 equal to given key, or which is the maximal key less than the given
601 key. search_by_key returns a path that must be checked for the
602 correctness of the top of the path but need not be checked for the
603 correctness of the bottom of the path */
604 /* The function is NOT SCHEDULE-SAFE! */
605 int search_by_key(struct super_block *p_s_sb, const struct cpu_key *p_s_key, /* Key to search. */
606 struct path *p_s_search_path, /* This structure was
607 allocated and initialized
608 by the calling
609 function. It is filled up
610 by this function. */
611 int n_stop_level /* How far down the tree to search. To
612 stop at leaf level - set to
613 DISK_LEAF_NODE_LEVEL */
616 int n_block_number;
617 int expected_level;
618 struct buffer_head *p_s_bh;
619 struct path_element *p_s_last_element;
620 int n_node_level, n_retval;
621 int right_neighbor_of_leaf_node;
622 int fs_gen;
623 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
624 unsigned long reada_blocks[SEARCH_BY_KEY_READA];
625 int reada_count = 0;
627 #ifdef CONFIG_REISERFS_CHECK
628 int n_repeat_counter = 0;
629 #endif
631 PROC_INFO_INC(p_s_sb, search_by_key);
633 /* As we add each node to a path we increase its count. This means that
634 we must be careful to release all nodes in a path before we either
635 discard the path struct or re-use the path struct, as we do here. */
637 decrement_counters_in_path(p_s_search_path);
639 right_neighbor_of_leaf_node = 0;
641 /* With each iteration of this loop we search through the items in the
642 current node, and calculate the next current node(next path element)
643 for the next iteration of this loop.. */
644 n_block_number = SB_ROOT_BLOCK(p_s_sb);
645 expected_level = -1;
646 while (1) {
648 #ifdef CONFIG_REISERFS_CHECK
649 if (!(++n_repeat_counter % 50000))
650 reiserfs_warning(p_s_sb, "PAP-5100: search_by_key: %s:"
651 "there were %d iterations of while loop "
652 "looking for key %K",
653 current->comm, n_repeat_counter,
654 p_s_key);
655 #endif
657 /* prep path to have another element added to it. */
658 p_s_last_element =
659 PATH_OFFSET_PELEMENT(p_s_search_path,
660 ++p_s_search_path->path_length);
661 fs_gen = get_generation(p_s_sb);
663 /* Read the next tree node, and set the last element in the path to
664 have a pointer to it. */
665 if ((p_s_bh = p_s_last_element->pe_buffer =
666 sb_getblk(p_s_sb, n_block_number))) {
667 if (!buffer_uptodate(p_s_bh) && reada_count > 1) {
668 search_by_key_reada(p_s_sb, reada_bh,
669 reada_blocks, reada_count);
671 ll_rw_block(READ, 1, &p_s_bh);
672 wait_on_buffer(p_s_bh);
673 if (!buffer_uptodate(p_s_bh))
674 goto io_error;
675 } else {
676 io_error:
677 p_s_search_path->path_length--;
678 pathrelse(p_s_search_path);
679 return IO_ERROR;
681 reada_count = 0;
682 if (expected_level == -1)
683 expected_level = SB_TREE_HEIGHT(p_s_sb);
684 expected_level--;
686 /* It is possible that schedule occurred. We must check whether the key
687 to search is still in the tree rooted from the current buffer. If
688 not then repeat search from the root. */
689 if (fs_changed(fs_gen, p_s_sb) &&
690 (!B_IS_IN_TREE(p_s_bh) ||
691 B_LEVEL(p_s_bh) != expected_level ||
692 !key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) {
693 PROC_INFO_INC(p_s_sb, search_by_key_fs_changed);
694 PROC_INFO_INC(p_s_sb, search_by_key_restarted);
695 PROC_INFO_INC(p_s_sb,
696 sbk_restarted[expected_level - 1]);
697 decrement_counters_in_path(p_s_search_path);
699 /* Get the root block number so that we can repeat the search
700 starting from the root. */
701 n_block_number = SB_ROOT_BLOCK(p_s_sb);
702 expected_level = -1;
703 right_neighbor_of_leaf_node = 0;
705 /* repeat search from the root */
706 continue;
709 /* only check that the key is in the buffer if p_s_key is not
710 equal to the MAX_KEY. Latter case is only possible in
711 "finish_unfinished()" processing during mount. */
712 RFALSE(comp_keys(&MAX_KEY, p_s_key) &&
713 !key_in_buffer(p_s_search_path, p_s_key, p_s_sb),
714 "PAP-5130: key is not in the buffer");
715 #ifdef CONFIG_REISERFS_CHECK
716 if (cur_tb) {
717 print_cur_tb("5140");
718 reiserfs_panic(p_s_sb,
719 "PAP-5140: search_by_key: schedule occurred in do_balance!");
721 #endif
723 // make sure, that the node contents look like a node of
724 // certain level
725 if (!is_tree_node(p_s_bh, expected_level)) {
726 reiserfs_warning(p_s_sb, "vs-5150: search_by_key: "
727 "invalid format found in block %ld. Fsck?",
728 p_s_bh->b_blocknr);
729 pathrelse(p_s_search_path);
730 return IO_ERROR;
733 /* ok, we have acquired next formatted node in the tree */
734 n_node_level = B_LEVEL(p_s_bh);
736 PROC_INFO_BH_STAT(p_s_sb, p_s_bh, n_node_level - 1);
738 RFALSE(n_node_level < n_stop_level,
739 "vs-5152: tree level (%d) is less than stop level (%d)",
740 n_node_level, n_stop_level);
742 n_retval = bin_search(p_s_key, B_N_PITEM_HEAD(p_s_bh, 0),
743 B_NR_ITEMS(p_s_bh),
744 (n_node_level ==
745 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
746 KEY_SIZE,
747 &(p_s_last_element->pe_position));
748 if (n_node_level == n_stop_level) {
749 return n_retval;
752 /* we are not in the stop level */
753 if (n_retval == ITEM_FOUND)
754 /* item has been found, so we choose the pointer which is to the right of the found one */
755 p_s_last_element->pe_position++;
757 /* if item was not found we choose the position which is to
758 the left of the found item. This requires no code,
759 bin_search did it already. */
761 /* So we have chosen a position in the current node which is
762 an internal node. Now we calculate child block number by
763 position in the node. */
764 n_block_number =
765 B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position);
767 /* if we are going to read leaf nodes, try for read ahead as well */
768 if ((p_s_search_path->reada & PATH_READA) &&
769 n_node_level == DISK_LEAF_NODE_LEVEL + 1) {
770 int pos = p_s_last_element->pe_position;
771 int limit = B_NR_ITEMS(p_s_bh);
772 struct reiserfs_key *le_key;
774 if (p_s_search_path->reada & PATH_READA_BACK)
775 limit = 0;
776 while (reada_count < SEARCH_BY_KEY_READA) {
777 if (pos == limit)
778 break;
779 reada_blocks[reada_count++] =
780 B_N_CHILD_NUM(p_s_bh, pos);
781 if (p_s_search_path->reada & PATH_READA_BACK)
782 pos--;
783 else
784 pos++;
787 * check to make sure we're in the same object
789 le_key = B_N_PDELIM_KEY(p_s_bh, pos);
790 if (le32_to_cpu(le_key->k_objectid) !=
791 p_s_key->on_disk_key.k_objectid) {
792 break;
799 /* Form the path to an item and position in this item which contains
800 file byte defined by p_s_key. If there is no such item
801 corresponding to the key, we point the path to the item with
802 maximal key less than p_s_key, and *p_n_pos_in_item is set to one
803 past the last entry/byte in the item. If searching for entry in a
804 directory item, and it is not found, *p_n_pos_in_item is set to one
805 entry more than the entry with maximal key which is less than the
806 sought key.
808 Note that if there is no entry in this same node which is one more,
809 then we point to an imaginary entry. for direct items, the
810 position is in units of bytes, for indirect items the position is
811 in units of blocknr entries, for directory items the position is in
812 units of directory entries. */
814 /* The function is NOT SCHEDULE-SAFE! */
815 int search_for_position_by_key(struct super_block *p_s_sb, /* Pointer to the super block. */
816 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */
817 struct path *p_s_search_path /* Filled up by this function. */
820 struct item_head *p_le_ih; /* pointer to on-disk structure */
821 int n_blk_size;
822 loff_t item_offset, offset;
823 struct reiserfs_dir_entry de;
824 int retval;
826 /* If searching for directory entry. */
827 if (is_direntry_cpu_key(p_cpu_key))
828 return search_by_entry_key(p_s_sb, p_cpu_key, p_s_search_path,
829 &de);
831 /* If not searching for directory entry. */
833 /* If item is found. */
834 retval = search_item(p_s_sb, p_cpu_key, p_s_search_path);
835 if (retval == IO_ERROR)
836 return retval;
837 if (retval == ITEM_FOUND) {
839 RFALSE(!ih_item_len
840 (B_N_PITEM_HEAD
841 (PATH_PLAST_BUFFER(p_s_search_path),
842 PATH_LAST_POSITION(p_s_search_path))),
843 "PAP-5165: item length equals zero");
845 pos_in_item(p_s_search_path) = 0;
846 return POSITION_FOUND;
849 RFALSE(!PATH_LAST_POSITION(p_s_search_path),
850 "PAP-5170: position equals zero");
852 /* Item is not found. Set path to the previous item. */
853 p_le_ih =
854 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path),
855 --PATH_LAST_POSITION(p_s_search_path));
856 n_blk_size = p_s_sb->s_blocksize;
858 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
859 return FILE_NOT_FOUND;
861 // FIXME: quite ugly this far
863 item_offset = le_ih_k_offset(p_le_ih);
864 offset = cpu_key_k_offset(p_cpu_key);
866 /* Needed byte is contained in the item pointed to by the path. */
867 if (item_offset <= offset &&
868 item_offset + op_bytes_number(p_le_ih, n_blk_size) > offset) {
869 pos_in_item(p_s_search_path) = offset - item_offset;
870 if (is_indirect_le_ih(p_le_ih)) {
871 pos_in_item(p_s_search_path) /= n_blk_size;
873 return POSITION_FOUND;
876 /* Needed byte is not contained in the item pointed to by the
877 path. Set pos_in_item out of the item. */
878 if (is_indirect_le_ih(p_le_ih))
879 pos_in_item(p_s_search_path) =
880 ih_item_len(p_le_ih) / UNFM_P_SIZE;
881 else
882 pos_in_item(p_s_search_path) = ih_item_len(p_le_ih);
884 return POSITION_NOT_FOUND;
887 /* Compare given item and item pointed to by the path. */
888 int comp_items(const struct item_head *stored_ih, const struct path *p_s_path)
890 struct buffer_head *p_s_bh;
891 struct item_head *ih;
893 /* Last buffer at the path is not in the tree. */
894 if (!B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path)))
895 return 1;
897 /* Last path position is invalid. */
898 if (PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh))
899 return 1;
901 /* we need only to know, whether it is the same item */
902 ih = get_ih(p_s_path);
903 return memcmp(stored_ih, ih, IH_SIZE);
906 /* unformatted nodes are not logged anymore, ever. This is safe
907 ** now
909 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
911 // block can not be forgotten as it is in I/O or held by someone
912 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
914 // prepare for delete or cut of direct item
915 static inline int prepare_for_direct_item(struct path *path,
916 struct item_head *le_ih,
917 struct inode *inode,
918 loff_t new_file_length, int *cut_size)
920 loff_t round_len;
922 if (new_file_length == max_reiserfs_offset(inode)) {
923 /* item has to be deleted */
924 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
925 return M_DELETE;
927 // new file gets truncated
928 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
930 round_len = ROUND_UP(new_file_length);
931 /* this was n_new_file_length < le_ih ... */
932 if (round_len < le_ih_k_offset(le_ih)) {
933 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
934 return M_DELETE; /* Delete this item. */
936 /* Calculate first position and size for cutting from item. */
937 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
938 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
940 return M_CUT; /* Cut from this item. */
943 // old file: items may have any length
945 if (new_file_length < le_ih_k_offset(le_ih)) {
946 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
947 return M_DELETE; /* Delete this item. */
949 /* Calculate first position and size for cutting from item. */
950 *cut_size = -(ih_item_len(le_ih) -
951 (pos_in_item(path) =
952 new_file_length + 1 - le_ih_k_offset(le_ih)));
953 return M_CUT; /* Cut from this item. */
956 static inline int prepare_for_direntry_item(struct path *path,
957 struct item_head *le_ih,
958 struct inode *inode,
959 loff_t new_file_length,
960 int *cut_size)
962 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
963 new_file_length == max_reiserfs_offset(inode)) {
964 RFALSE(ih_entry_count(le_ih) != 2,
965 "PAP-5220: incorrect empty directory item (%h)", le_ih);
966 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
967 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
970 if (ih_entry_count(le_ih) == 1) {
971 /* Delete the directory item such as there is one record only
972 in this item */
973 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
974 return M_DELETE;
977 /* Cut one record from the directory item. */
978 *cut_size =
979 -(DEH_SIZE +
980 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
981 return M_CUT;
984 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
986 /* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
987 If the path points to an indirect item, remove some number of its unformatted nodes.
988 In case of file truncate calculate whether this item must be deleted/truncated or last
989 unformatted node of this item will be converted to a direct item.
990 This function returns a determination of what balance mode the calling function should employ. */
991 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *p_s_path, const struct cpu_key *p_s_item_key, int *p_n_removed, /* Number of unformatted nodes which were removed
992 from end of the file. */
993 int *p_n_cut_size, unsigned long long n_new_file_length /* MAX_KEY_OFFSET in case of delete. */
996 struct super_block *p_s_sb = inode->i_sb;
997 struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_path);
998 struct buffer_head *p_s_bh = PATH_PLAST_BUFFER(p_s_path);
1000 BUG_ON(!th->t_trans_id);
1002 /* Stat_data item. */
1003 if (is_statdata_le_ih(p_le_ih)) {
1005 RFALSE(n_new_file_length != max_reiserfs_offset(inode),
1006 "PAP-5210: mode must be M_DELETE");
1008 *p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1009 return M_DELETE;
1012 /* Directory item. */
1013 if (is_direntry_le_ih(p_le_ih))
1014 return prepare_for_direntry_item(p_s_path, p_le_ih, inode,
1015 n_new_file_length,
1016 p_n_cut_size);
1018 /* Direct item. */
1019 if (is_direct_le_ih(p_le_ih))
1020 return prepare_for_direct_item(p_s_path, p_le_ih, inode,
1021 n_new_file_length, p_n_cut_size);
1023 /* Case of an indirect item. */
1025 int blk_size = p_s_sb->s_blocksize;
1026 struct item_head s_ih;
1027 int need_re_search;
1028 int delete = 0;
1029 int result = M_CUT;
1030 int pos = 0;
1032 if ( n_new_file_length == max_reiserfs_offset (inode) ) {
1033 /* prepare_for_delete_or_cut() is called by
1034 * reiserfs_delete_item() */
1035 n_new_file_length = 0;
1036 delete = 1;
1039 do {
1040 need_re_search = 0;
1041 *p_n_cut_size = 0;
1042 p_s_bh = PATH_PLAST_BUFFER(p_s_path);
1043 copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
1044 pos = I_UNFM_NUM(&s_ih);
1046 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > n_new_file_length) {
1047 __u32 *unfm, block;
1049 /* Each unformatted block deletion may involve one additional
1050 * bitmap block into the transaction, thereby the initial
1051 * journal space reservation might not be enough. */
1052 if (!delete && (*p_n_cut_size) != 0 &&
1053 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1054 break;
1057 unfm = (__u32 *)B_I_PITEM(p_s_bh, &s_ih) + pos - 1;
1058 block = get_block_num(unfm, 0);
1060 if (block != 0) {
1061 reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1);
1062 put_block_num(unfm, 0, 0);
1063 journal_mark_dirty (th, p_s_sb, p_s_bh);
1064 reiserfs_free_block(th, inode, block, 1);
1067 cond_resched();
1069 if (item_moved (&s_ih, p_s_path)) {
1070 need_re_search = 1;
1071 break;
1074 pos --;
1075 (*p_n_removed) ++;
1076 (*p_n_cut_size) -= UNFM_P_SIZE;
1078 if (pos == 0) {
1079 (*p_n_cut_size) -= IH_SIZE;
1080 result = M_DELETE;
1081 break;
1084 /* a trick. If the buffer has been logged, this will do nothing. If
1085 ** we've broken the loop without logging it, it will restore the
1086 ** buffer */
1087 reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh);
1088 } while (need_re_search &&
1089 search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND);
1090 pos_in_item(p_s_path) = pos * UNFM_P_SIZE;
1092 if (*p_n_cut_size == 0) {
1093 /* Nothing were cut. maybe convert last unformatted node to the
1094 * direct item? */
1095 result = M_CONVERT;
1097 return result;
1101 /* Calculate number of bytes which will be deleted or cut during balance */
1102 static int calc_deleted_bytes_number(struct tree_balance *p_s_tb, char c_mode)
1104 int n_del_size;
1105 struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path);
1107 if (is_statdata_le_ih(p_le_ih))
1108 return 0;
1110 n_del_size =
1111 (c_mode ==
1112 M_DELETE) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0];
1113 if (is_direntry_le_ih(p_le_ih)) {
1114 // return EMPTY_DIR_SIZE; /* We delete emty directoris only. */
1115 // we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1116 // empty size. ick. FIXME, is this right?
1118 return n_del_size;
1121 if (is_indirect_le_ih(p_le_ih))
1122 n_del_size = (n_del_size / UNFM_P_SIZE) * (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size); // - get_ih_free_space (p_le_ih);
1123 return n_del_size;
1126 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1127 struct tree_balance *p_s_tb,
1128 struct super_block *p_s_sb,
1129 struct path *p_s_path, int n_size)
1132 BUG_ON(!th->t_trans_id);
1134 memset(p_s_tb, '\0', sizeof(struct tree_balance));
1135 p_s_tb->transaction_handle = th;
1136 p_s_tb->tb_sb = p_s_sb;
1137 p_s_tb->tb_path = p_s_path;
1138 PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1139 PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1140 p_s_tb->insert_size[0] = n_size;
1143 void padd_item(char *item, int total_length, int length)
1145 int i;
1147 for (i = total_length; i > length;)
1148 item[--i] = 0;
1151 #ifdef REISERQUOTA_DEBUG
1152 char key2type(struct reiserfs_key *ih)
1154 if (is_direntry_le_key(2, ih))
1155 return 'd';
1156 if (is_direct_le_key(2, ih))
1157 return 'D';
1158 if (is_indirect_le_key(2, ih))
1159 return 'i';
1160 if (is_statdata_le_key(2, ih))
1161 return 's';
1162 return 'u';
1165 char head2type(struct item_head *ih)
1167 if (is_direntry_le_ih(ih))
1168 return 'd';
1169 if (is_direct_le_ih(ih))
1170 return 'D';
1171 if (is_indirect_le_ih(ih))
1172 return 'i';
1173 if (is_statdata_le_ih(ih))
1174 return 's';
1175 return 'u';
1177 #endif
1179 /* Delete object item. */
1180 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, struct path *p_s_path, /* Path to the deleted item. */
1181 const struct cpu_key *p_s_item_key, /* Key to search for the deleted item. */
1182 struct inode *p_s_inode, /* inode is here just to update i_blocks and quotas */
1183 struct buffer_head *p_s_un_bh)
1184 { /* NULL or unformatted node pointer. */
1185 struct super_block *p_s_sb = p_s_inode->i_sb;
1186 struct tree_balance s_del_balance;
1187 struct item_head s_ih;
1188 struct item_head *q_ih;
1189 int quota_cut_bytes;
1190 int n_ret_value, n_del_size, n_removed;
1192 #ifdef CONFIG_REISERFS_CHECK
1193 char c_mode;
1194 int n_iter = 0;
1195 #endif
1197 BUG_ON(!th->t_trans_id);
1199 init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path,
1200 0 /*size is unknown */ );
1202 while (1) {
1203 n_removed = 0;
1205 #ifdef CONFIG_REISERFS_CHECK
1206 n_iter++;
1207 c_mode =
1208 #endif
1209 prepare_for_delete_or_cut(th, p_s_inode, p_s_path,
1210 p_s_item_key, &n_removed,
1211 &n_del_size,
1212 max_reiserfs_offset(p_s_inode));
1214 RFALSE(c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1216 copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
1217 s_del_balance.insert_size[0] = n_del_size;
1219 n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1220 if (n_ret_value != REPEAT_SEARCH)
1221 break;
1223 PROC_INFO_INC(p_s_sb, delete_item_restarted);
1225 // file system changed, repeat search
1226 n_ret_value =
1227 search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
1228 if (n_ret_value == IO_ERROR)
1229 break;
1230 if (n_ret_value == FILE_NOT_FOUND) {
1231 reiserfs_warning(p_s_sb,
1232 "vs-5340: reiserfs_delete_item: "
1233 "no items of the file %K found",
1234 p_s_item_key);
1235 break;
1237 } /* while (1) */
1239 if (n_ret_value != CARRY_ON) {
1240 unfix_nodes(&s_del_balance);
1241 return 0;
1243 // reiserfs_delete_item returns item length when success
1244 n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1245 q_ih = get_ih(p_s_path);
1246 quota_cut_bytes = ih_item_len(q_ih);
1248 /* hack so the quota code doesn't have to guess if the file
1249 ** has a tail. On tail insert, we allocate quota for 1 unformatted node.
1250 ** We test the offset because the tail might have been
1251 ** split into multiple items, and we only want to decrement for
1252 ** the unfm node once
1254 if (!S_ISLNK(p_s_inode->i_mode) && is_direct_le_ih(q_ih)) {
1255 if ((le_ih_k_offset(q_ih) & (p_s_sb->s_blocksize - 1)) == 1) {
1256 quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE;
1257 } else {
1258 quota_cut_bytes = 0;
1262 if (p_s_un_bh) {
1263 int off;
1264 char *data;
1266 /* We are in direct2indirect conversion, so move tail contents
1267 to the unformatted node */
1268 /* note, we do the copy before preparing the buffer because we
1269 ** don't care about the contents of the unformatted node yet.
1270 ** the only thing we really care about is the direct item's data
1271 ** is in the unformatted node.
1273 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1274 ** the unformatted node, which might schedule, meaning we'd have to
1275 ** loop all the way back up to the start of the while loop.
1277 ** The unformatted node must be dirtied later on. We can't be
1278 ** sure here if the entire tail has been deleted yet.
1280 ** p_s_un_bh is from the page cache (all unformatted nodes are
1281 ** from the page cache) and might be a highmem page. So, we
1282 ** can't use p_s_un_bh->b_data.
1283 ** -clm
1286 data = kmap_atomic(p_s_un_bh->b_page, KM_USER0);
1287 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1288 memcpy(data + off,
1289 B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih),
1290 n_ret_value);
1291 kunmap_atomic(data, KM_USER0);
1293 /* Perform balancing after all resources have been collected at once. */
1294 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1296 #ifdef REISERQUOTA_DEBUG
1297 reiserfs_debug(p_s_sb, REISERFS_DEBUG_CODE,
1298 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1299 quota_cut_bytes, p_s_inode->i_uid, head2type(&s_ih));
1300 #endif
1301 DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes);
1303 /* Return deleted body length */
1304 return n_ret_value;
1307 /* Summary Of Mechanisms For Handling Collisions Between Processes:
1309 deletion of the body of the object is performed by iput(), with the
1310 result that if multiple processes are operating on a file, the
1311 deletion of the body of the file is deferred until the last process
1312 that has an open inode performs its iput().
1314 writes and truncates are protected from collisions by use of
1315 semaphores.
1317 creates, linking, and mknod are protected from collisions with other
1318 processes by making the reiserfs_add_entry() the last step in the
1319 creation, and then rolling back all changes if there was a collision.
1320 - Hans
1323 /* this deletes item which never gets split */
1324 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1325 struct inode *inode, struct reiserfs_key *key)
1327 struct tree_balance tb;
1328 INITIALIZE_PATH(path);
1329 int item_len = 0;
1330 int tb_init = 0;
1331 struct cpu_key cpu_key;
1332 int retval;
1333 int quota_cut_bytes = 0;
1335 BUG_ON(!th->t_trans_id);
1337 le_key2cpu_key(&cpu_key, key);
1339 while (1) {
1340 retval = search_item(th->t_super, &cpu_key, &path);
1341 if (retval == IO_ERROR) {
1342 reiserfs_warning(th->t_super,
1343 "vs-5350: reiserfs_delete_solid_item: "
1344 "i/o failure occurred trying to delete %K",
1345 &cpu_key);
1346 break;
1348 if (retval != ITEM_FOUND) {
1349 pathrelse(&path);
1350 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1351 if (!
1352 ((unsigned long long)
1353 GET_HASH_VALUE(le_key_k_offset
1354 (le_key_version(key), key)) == 0
1355 && (unsigned long long)
1356 GET_GENERATION_NUMBER(le_key_k_offset
1357 (le_key_version(key),
1358 key)) == 1))
1359 reiserfs_warning(th->t_super,
1360 "vs-5355: reiserfs_delete_solid_item: %k not found",
1361 key);
1362 break;
1364 if (!tb_init) {
1365 tb_init = 1;
1366 item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1367 init_tb_struct(th, &tb, th->t_super, &path,
1368 -(IH_SIZE + item_len));
1370 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1372 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1373 if (retval == REPEAT_SEARCH) {
1374 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1375 continue;
1378 if (retval == CARRY_ON) {
1379 do_balance(&tb, NULL, NULL, M_DELETE);
1380 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
1381 #ifdef REISERQUOTA_DEBUG
1382 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1383 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1384 quota_cut_bytes, inode->i_uid,
1385 key2type(key));
1386 #endif
1387 DQUOT_FREE_SPACE_NODIRTY(inode,
1388 quota_cut_bytes);
1390 break;
1392 // IO_ERROR, NO_DISK_SPACE, etc
1393 reiserfs_warning(th->t_super,
1394 "vs-5360: reiserfs_delete_solid_item: "
1395 "could not delete %K due to fix_nodes failure",
1396 &cpu_key);
1397 unfix_nodes(&tb);
1398 break;
1401 reiserfs_check_path(&path);
1404 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1405 struct inode *inode)
1407 int err;
1408 inode->i_size = 0;
1409 BUG_ON(!th->t_trans_id);
1411 /* for directory this deletes item containing "." and ".." */
1412 err =
1413 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1414 if (err)
1415 return err;
1417 #if defined( USE_INODE_GENERATION_COUNTER )
1418 if (!old_format_only(th->t_super)) {
1419 __le32 *inode_generation;
1421 inode_generation =
1422 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1423 *inode_generation =
1424 cpu_to_le32(le32_to_cpu(*inode_generation) + 1);
1426 /* USE_INODE_GENERATION_COUNTER */
1427 #endif
1428 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1430 return err;
1433 static void unmap_buffers(struct page *page, loff_t pos)
1435 struct buffer_head *bh;
1436 struct buffer_head *head;
1437 struct buffer_head *next;
1438 unsigned long tail_index;
1439 unsigned long cur_index;
1441 if (page) {
1442 if (page_has_buffers(page)) {
1443 tail_index = pos & (PAGE_CACHE_SIZE - 1);
1444 cur_index = 0;
1445 head = page_buffers(page);
1446 bh = head;
1447 do {
1448 next = bh->b_this_page;
1450 /* we want to unmap the buffers that contain the tail, and
1451 ** all the buffers after it (since the tail must be at the
1452 ** end of the file). We don't want to unmap file data
1453 ** before the tail, since it might be dirty and waiting to
1454 ** reach disk
1456 cur_index += bh->b_size;
1457 if (cur_index > tail_index) {
1458 reiserfs_unmap_buffer(bh);
1460 bh = next;
1461 } while (bh != head);
1462 if (PAGE_SIZE == bh->b_size) {
1463 clear_page_dirty(page);
1469 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1470 struct inode *p_s_inode,
1471 struct page *page,
1472 struct path *p_s_path,
1473 const struct cpu_key *p_s_item_key,
1474 loff_t n_new_file_size, char *p_c_mode)
1476 struct super_block *p_s_sb = p_s_inode->i_sb;
1477 int n_block_size = p_s_sb->s_blocksize;
1478 int cut_bytes;
1479 BUG_ON(!th->t_trans_id);
1481 if (n_new_file_size != p_s_inode->i_size)
1482 BUG();
1484 /* the page being sent in could be NULL if there was an i/o error
1485 ** reading in the last block. The user will hit problems trying to
1486 ** read the file, but for now we just skip the indirect2direct
1488 if (atomic_read(&p_s_inode->i_count) > 1 ||
1489 !tail_has_to_be_packed(p_s_inode) ||
1490 !page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) {
1491 // leave tail in an unformatted node
1492 *p_c_mode = M_SKIP_BALANCING;
1493 cut_bytes =
1494 n_block_size - (n_new_file_size & (n_block_size - 1));
1495 pathrelse(p_s_path);
1496 return cut_bytes;
1498 /* Permorm the conversion to a direct_item. */
1499 /*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode); */
1500 return indirect2direct(th, p_s_inode, page, p_s_path, p_s_item_key,
1501 n_new_file_size, p_c_mode);
1504 /* we did indirect_to_direct conversion. And we have inserted direct
1505 item successesfully, but there were no disk space to cut unfm
1506 pointer being converted. Therefore we have to delete inserted
1507 direct item(s) */
1508 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1509 struct inode *inode, struct path *path)
1511 struct cpu_key tail_key;
1512 int tail_len;
1513 int removed;
1514 BUG_ON(!th->t_trans_id);
1516 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!!
1517 tail_key.key_length = 4;
1519 tail_len =
1520 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1521 while (tail_len) {
1522 /* look for the last byte of the tail */
1523 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1524 POSITION_NOT_FOUND)
1525 reiserfs_panic(inode->i_sb,
1526 "vs-5615: indirect_to_direct_roll_back: found invalid item");
1527 RFALSE(path->pos_in_item !=
1528 ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1529 "vs-5616: appended bytes found");
1530 PATH_LAST_POSITION(path)--;
1532 removed =
1533 reiserfs_delete_item(th, path, &tail_key, inode,
1534 NULL /*unbh not needed */ );
1535 RFALSE(removed <= 0
1536 || removed > tail_len,
1537 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1538 tail_len, removed);
1539 tail_len -= removed;
1540 set_cpu_key_k_offset(&tail_key,
1541 cpu_key_k_offset(&tail_key) - removed);
1543 reiserfs_warning(inode->i_sb,
1544 "indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space");
1545 //mark_file_without_tail (inode);
1546 mark_inode_dirty(inode);
1549 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1550 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1551 struct path *p_s_path,
1552 struct cpu_key *p_s_item_key,
1553 struct inode *p_s_inode,
1554 struct page *page, loff_t n_new_file_size)
1556 struct super_block *p_s_sb = p_s_inode->i_sb;
1557 /* Every function which is going to call do_balance must first
1558 create a tree_balance structure. Then it must fill up this
1559 structure by using the init_tb_struct and fix_nodes functions.
1560 After that we can make tree balancing. */
1561 struct tree_balance s_cut_balance;
1562 struct item_head *p_le_ih;
1563 int n_cut_size = 0, /* Amount to be cut. */
1564 n_ret_value = CARRY_ON, n_removed = 0, /* Number of the removed unformatted nodes. */
1565 n_is_inode_locked = 0;
1566 char c_mode; /* Mode of the balance. */
1567 int retval2 = -1;
1568 int quota_cut_bytes;
1569 loff_t tail_pos = 0;
1571 BUG_ON(!th->t_trans_id);
1573 init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path,
1574 n_cut_size);
1576 /* Repeat this loop until we either cut the item without needing
1577 to balance, or we fix_nodes without schedule occurring */
1578 while (1) {
1579 /* Determine the balance mode, position of the first byte to
1580 be cut, and size to be cut. In case of the indirect item
1581 free unformatted nodes which are pointed to by the cut
1582 pointers. */
1584 c_mode =
1585 prepare_for_delete_or_cut(th, p_s_inode, p_s_path,
1586 p_s_item_key, &n_removed,
1587 &n_cut_size, n_new_file_size);
1588 if (c_mode == M_CONVERT) {
1589 /* convert last unformatted node to direct item or leave
1590 tail in the unformatted node */
1591 RFALSE(n_ret_value != CARRY_ON,
1592 "PAP-5570: can not convert twice");
1594 n_ret_value =
1595 maybe_indirect_to_direct(th, p_s_inode, page,
1596 p_s_path, p_s_item_key,
1597 n_new_file_size, &c_mode);
1598 if (c_mode == M_SKIP_BALANCING)
1599 /* tail has been left in the unformatted node */
1600 return n_ret_value;
1602 n_is_inode_locked = 1;
1604 /* removing of last unformatted node will change value we
1605 have to return to truncate. Save it */
1606 retval2 = n_ret_value;
1607 /*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1)); */
1609 /* So, we have performed the first part of the conversion:
1610 inserting the new direct item. Now we are removing the
1611 last unformatted node pointer. Set key to search for
1612 it. */
1613 set_cpu_key_k_type(p_s_item_key, TYPE_INDIRECT);
1614 p_s_item_key->key_length = 4;
1615 n_new_file_size -=
1616 (n_new_file_size & (p_s_sb->s_blocksize - 1));
1617 tail_pos = n_new_file_size;
1618 set_cpu_key_k_offset(p_s_item_key, n_new_file_size + 1);
1619 if (search_for_position_by_key
1620 (p_s_sb, p_s_item_key,
1621 p_s_path) == POSITION_NOT_FOUND) {
1622 print_block(PATH_PLAST_BUFFER(p_s_path), 3,
1623 PATH_LAST_POSITION(p_s_path) - 1,
1624 PATH_LAST_POSITION(p_s_path) + 1);
1625 reiserfs_panic(p_s_sb,
1626 "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)",
1627 p_s_item_key);
1629 continue;
1631 if (n_cut_size == 0) {
1632 pathrelse(p_s_path);
1633 return 0;
1636 s_cut_balance.insert_size[0] = n_cut_size;
1638 n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL);
1639 if (n_ret_value != REPEAT_SEARCH)
1640 break;
1642 PROC_INFO_INC(p_s_sb, cut_from_item_restarted);
1644 n_ret_value =
1645 search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
1646 if (n_ret_value == POSITION_FOUND)
1647 continue;
1649 reiserfs_warning(p_s_sb,
1650 "PAP-5610: reiserfs_cut_from_item: item %K not found",
1651 p_s_item_key);
1652 unfix_nodes(&s_cut_balance);
1653 return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT;
1654 } /* while */
1656 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1657 if (n_ret_value != CARRY_ON) {
1658 if (n_is_inode_locked) {
1659 // FIXME: this seems to be not needed: we are always able
1660 // to cut item
1661 indirect_to_direct_roll_back(th, p_s_inode, p_s_path);
1663 if (n_ret_value == NO_DISK_SPACE)
1664 reiserfs_warning(p_s_sb, "NO_DISK_SPACE");
1665 unfix_nodes(&s_cut_balance);
1666 return -EIO;
1669 /* go ahead and perform balancing */
1671 RFALSE(c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode");
1673 /* Calculate number of bytes that need to be cut from the item. */
1674 quota_cut_bytes =
1675 (c_mode ==
1676 M_DELETE) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance.
1677 insert_size[0];
1678 if (retval2 == -1)
1679 n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode);
1680 else
1681 n_ret_value = retval2;
1683 /* For direct items, we only change the quota when deleting the last
1684 ** item.
1686 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1687 if (!S_ISLNK(p_s_inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1688 if (c_mode == M_DELETE &&
1689 (le_ih_k_offset(p_le_ih) & (p_s_sb->s_blocksize - 1)) ==
1690 1) {
1691 // FIXME: this is to keep 3.5 happy
1692 REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX;
1693 quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE;
1694 } else {
1695 quota_cut_bytes = 0;
1698 #ifdef CONFIG_REISERFS_CHECK
1699 if (n_is_inode_locked) {
1700 struct item_head *le_ih =
1701 PATH_PITEM_HEAD(s_cut_balance.tb_path);
1702 /* we are going to complete indirect2direct conversion. Make
1703 sure, that we exactly remove last unformatted node pointer
1704 of the item */
1705 if (!is_indirect_le_ih(le_ih))
1706 reiserfs_panic(p_s_sb,
1707 "vs-5652: reiserfs_cut_from_item: "
1708 "item must be indirect %h", le_ih);
1710 if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1711 reiserfs_panic(p_s_sb,
1712 "vs-5653: reiserfs_cut_from_item: "
1713 "completing indirect2direct conversion indirect item %h "
1714 "being deleted must be of 4 byte long",
1715 le_ih);
1717 if (c_mode == M_CUT
1718 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1719 reiserfs_panic(p_s_sb,
1720 "vs-5654: reiserfs_cut_from_item: "
1721 "can not complete indirect2direct conversion of %h (CUT, insert_size==%d)",
1722 le_ih, s_cut_balance.insert_size[0]);
1724 /* it would be useful to make sure, that right neighboring
1725 item is direct item of this file */
1727 #endif
1729 do_balance(&s_cut_balance, NULL, NULL, c_mode);
1730 if (n_is_inode_locked) {
1731 /* we've done an indirect->direct conversion. when the data block
1732 ** was freed, it was removed from the list of blocks that must
1733 ** be flushed before the transaction commits, make sure to
1734 ** unmap and invalidate it
1736 unmap_buffers(page, tail_pos);
1737 REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask;
1739 #ifdef REISERQUOTA_DEBUG
1740 reiserfs_debug(p_s_inode->i_sb, REISERFS_DEBUG_CODE,
1741 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1742 quota_cut_bytes, p_s_inode->i_uid, '?');
1743 #endif
1744 DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes);
1745 return n_ret_value;
1748 static void truncate_directory(struct reiserfs_transaction_handle *th,
1749 struct inode *inode)
1751 BUG_ON(!th->t_trans_id);
1752 if (inode->i_nlink)
1753 reiserfs_warning(inode->i_sb,
1754 "vs-5655: truncate_directory: link count != 0");
1756 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1757 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1758 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1759 reiserfs_update_sd(th, inode);
1760 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1761 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1764 /* Truncate file to the new size. Note, this must be called with a transaction
1765 already started */
1766 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, struct inode *p_s_inode, /* ->i_size contains new
1767 size */
1768 struct page *page, /* up to date for last block */
1769 int update_timestamps /* when it is called by
1770 file_release to convert
1771 the tail - no timestamps
1772 should be updated */
1775 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1776 struct item_head *p_le_ih; /* Pointer to an item header. */
1777 struct cpu_key s_item_key; /* Key to search for a previous file item. */
1778 loff_t n_file_size, /* Old file size. */
1779 n_new_file_size; /* New file size. */
1780 int n_deleted; /* Number of deleted or truncated bytes. */
1781 int retval;
1782 int err = 0;
1784 BUG_ON(!th->t_trans_id);
1785 if (!
1786 (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode)
1787 || S_ISLNK(p_s_inode->i_mode)))
1788 return 0;
1790 if (S_ISDIR(p_s_inode->i_mode)) {
1791 // deletion of directory - no need to update timestamps
1792 truncate_directory(th, p_s_inode);
1793 return 0;
1796 /* Get new file size. */
1797 n_new_file_size = p_s_inode->i_size;
1799 // FIXME: note, that key type is unimportant here
1800 make_cpu_key(&s_item_key, p_s_inode, max_reiserfs_offset(p_s_inode),
1801 TYPE_DIRECT, 3);
1803 retval =
1804 search_for_position_by_key(p_s_inode->i_sb, &s_item_key,
1805 &s_search_path);
1806 if (retval == IO_ERROR) {
1807 reiserfs_warning(p_s_inode->i_sb,
1808 "vs-5657: reiserfs_do_truncate: "
1809 "i/o failure occurred trying to truncate %K",
1810 &s_item_key);
1811 err = -EIO;
1812 goto out;
1814 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1815 reiserfs_warning(p_s_inode->i_sb,
1816 "PAP-5660: reiserfs_do_truncate: "
1817 "wrong result %d of search for %K", retval,
1818 &s_item_key);
1820 err = -EIO;
1821 goto out;
1824 s_search_path.pos_in_item--;
1826 /* Get real file size (total length of all file items) */
1827 p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1828 if (is_statdata_le_ih(p_le_ih))
1829 n_file_size = 0;
1830 else {
1831 loff_t offset = le_ih_k_offset(p_le_ih);
1832 int bytes =
1833 op_bytes_number(p_le_ih, p_s_inode->i_sb->s_blocksize);
1835 /* this may mismatch with real file size: if last direct item
1836 had no padding zeros and last unformatted node had no free
1837 space, this file would have this file size */
1838 n_file_size = offset + bytes - 1;
1841 * are we doing a full truncate or delete, if so
1842 * kick in the reada code
1844 if (n_new_file_size == 0)
1845 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1847 if (n_file_size == 0 || n_file_size < n_new_file_size) {
1848 goto update_and_out;
1851 /* Update key to search for the last file item. */
1852 set_cpu_key_k_offset(&s_item_key, n_file_size);
1854 do {
1855 /* Cut or delete file item. */
1856 n_deleted =
1857 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1858 p_s_inode, page, n_new_file_size);
1859 if (n_deleted < 0) {
1860 reiserfs_warning(p_s_inode->i_sb,
1861 "vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed");
1862 reiserfs_check_path(&s_search_path);
1863 return 0;
1866 RFALSE(n_deleted > n_file_size,
1867 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1868 n_deleted, n_file_size, &s_item_key);
1870 /* Change key to search the last file item. */
1871 n_file_size -= n_deleted;
1873 set_cpu_key_k_offset(&s_item_key, n_file_size);
1875 /* While there are bytes to truncate and previous file item is presented in the tree. */
1878 ** This loop could take a really long time, and could log
1879 ** many more blocks than a transaction can hold. So, we do a polite
1880 ** journal end here, and if the transaction needs ending, we make
1881 ** sure the file is consistent before ending the current trans
1882 ** and starting a new one
1884 if (journal_transaction_should_end(th, 0) ||
1885 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1886 int orig_len_alloc = th->t_blocks_allocated;
1887 decrement_counters_in_path(&s_search_path);
1889 if (update_timestamps) {
1890 p_s_inode->i_mtime = p_s_inode->i_ctime =
1891 CURRENT_TIME_SEC;
1893 reiserfs_update_sd(th, p_s_inode);
1895 err = journal_end(th, p_s_inode->i_sb, orig_len_alloc);
1896 if (err)
1897 goto out;
1898 err = journal_begin(th, p_s_inode->i_sb,
1899 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1900 if (err)
1901 goto out;
1902 reiserfs_update_inode_transaction(p_s_inode);
1904 } while (n_file_size > ROUND_UP(n_new_file_size) &&
1905 search_for_position_by_key(p_s_inode->i_sb, &s_item_key,
1906 &s_search_path) == POSITION_FOUND);
1908 RFALSE(n_file_size > ROUND_UP(n_new_file_size),
1909 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1910 n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid);
1912 update_and_out:
1913 if (update_timestamps) {
1914 // this is truncate, not file closing
1915 p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC;
1917 reiserfs_update_sd(th, p_s_inode);
1919 out:
1920 pathrelse(&s_search_path);
1921 return err;
1924 #ifdef CONFIG_REISERFS_CHECK
1925 // this makes sure, that we __append__, not overwrite or add holes
1926 static void check_research_for_paste(struct path *path,
1927 const struct cpu_key *p_s_key)
1929 struct item_head *found_ih = get_ih(path);
1931 if (is_direct_le_ih(found_ih)) {
1932 if (le_ih_k_offset(found_ih) +
1933 op_bytes_number(found_ih,
1934 get_last_bh(path)->b_size) !=
1935 cpu_key_k_offset(p_s_key)
1936 || op_bytes_number(found_ih,
1937 get_last_bh(path)->b_size) !=
1938 pos_in_item(path))
1939 reiserfs_panic(NULL,
1940 "PAP-5720: check_research_for_paste: "
1941 "found direct item %h or position (%d) does not match to key %K",
1942 found_ih, pos_in_item(path), p_s_key);
1944 if (is_indirect_le_ih(found_ih)) {
1945 if (le_ih_k_offset(found_ih) +
1946 op_bytes_number(found_ih,
1947 get_last_bh(path)->b_size) !=
1948 cpu_key_k_offset(p_s_key)
1949 || I_UNFM_NUM(found_ih) != pos_in_item(path)
1950 || get_ih_free_space(found_ih) != 0)
1951 reiserfs_panic(NULL,
1952 "PAP-5730: check_research_for_paste: "
1953 "found indirect item (%h) or position (%d) does not match to key (%K)",
1954 found_ih, pos_in_item(path), p_s_key);
1957 #endif /* config reiserfs check */
1959 /* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1960 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct path *p_s_search_path, /* Path to the pasted item. */
1961 const struct cpu_key *p_s_key, /* Key to search for the needed item. */
1962 struct inode *inode, /* Inode item belongs to */
1963 const char *p_c_body, /* Pointer to the bytes to paste. */
1964 int n_pasted_size)
1965 { /* Size of pasted bytes. */
1966 struct tree_balance s_paste_balance;
1967 int retval;
1968 int fs_gen;
1970 BUG_ON(!th->t_trans_id);
1972 fs_gen = get_generation(inode->i_sb);
1974 #ifdef REISERQUOTA_DEBUG
1975 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1976 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1977 n_pasted_size, inode->i_uid,
1978 key2type(&(p_s_key->on_disk_key)));
1979 #endif
1981 if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) {
1982 pathrelse(p_s_search_path);
1983 return -EDQUOT;
1985 init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path,
1986 n_pasted_size);
1987 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1988 s_paste_balance.key = p_s_key->on_disk_key;
1989 #endif
1991 /* DQUOT_* can schedule, must check before the fix_nodes */
1992 if (fs_changed(fs_gen, inode->i_sb)) {
1993 goto search_again;
1996 while ((retval =
1997 fix_nodes(M_PASTE, &s_paste_balance, NULL,
1998 p_c_body)) == REPEAT_SEARCH) {
1999 search_again:
2000 /* file system changed while we were in the fix_nodes */
2001 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2002 retval =
2003 search_for_position_by_key(th->t_super, p_s_key,
2004 p_s_search_path);
2005 if (retval == IO_ERROR) {
2006 retval = -EIO;
2007 goto error_out;
2009 if (retval == POSITION_FOUND) {
2010 reiserfs_warning(inode->i_sb,
2011 "PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists",
2012 p_s_key);
2013 retval = -EEXIST;
2014 goto error_out;
2016 #ifdef CONFIG_REISERFS_CHECK
2017 check_research_for_paste(p_s_search_path, p_s_key);
2018 #endif
2021 /* Perform balancing after all resources are collected by fix_nodes, and
2022 accessing them will not risk triggering schedule. */
2023 if (retval == CARRY_ON) {
2024 do_balance(&s_paste_balance, NULL /*ih */ , p_c_body, M_PASTE);
2025 return 0;
2027 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2028 error_out:
2029 /* this also releases the path */
2030 unfix_nodes(&s_paste_balance);
2031 #ifdef REISERQUOTA_DEBUG
2032 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2033 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2034 n_pasted_size, inode->i_uid,
2035 key2type(&(p_s_key->on_disk_key)));
2036 #endif
2037 DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size);
2038 return retval;
2041 /* Insert new item into the buffer at the path. */
2042 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, struct path *p_s_path, /* Path to the inserteded item. */
2043 const struct cpu_key *key, struct item_head *p_s_ih, /* Pointer to the item header to insert. */
2044 struct inode *inode, const char *p_c_body)
2045 { /* Pointer to the bytes to insert. */
2046 struct tree_balance s_ins_balance;
2047 int retval;
2048 int fs_gen = 0;
2049 int quota_bytes = 0;
2051 BUG_ON(!th->t_trans_id);
2053 if (inode) { /* Do we count quotas for item? */
2054 fs_gen = get_generation(inode->i_sb);
2055 quota_bytes = ih_item_len(p_s_ih);
2057 /* hack so the quota code doesn't have to guess if the file has
2058 ** a tail, links are always tails, so there's no guessing needed
2060 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_s_ih)) {
2061 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2063 #ifdef REISERQUOTA_DEBUG
2064 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2065 "reiserquota insert_item(): allocating %u id=%u type=%c",
2066 quota_bytes, inode->i_uid, head2type(p_s_ih));
2067 #endif
2068 /* We can't dirty inode here. It would be immediately written but
2069 * appropriate stat item isn't inserted yet... */
2070 if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) {
2071 pathrelse(p_s_path);
2072 return -EDQUOT;
2075 init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path,
2076 IH_SIZE + ih_item_len(p_s_ih));
2077 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2078 s_ins_balance.key = key->on_disk_key;
2079 #endif
2080 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2081 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2082 goto search_again;
2085 while ((retval =
2086 fix_nodes(M_INSERT, &s_ins_balance, p_s_ih,
2087 p_c_body)) == REPEAT_SEARCH) {
2088 search_again:
2089 /* file system changed while we were in the fix_nodes */
2090 PROC_INFO_INC(th->t_super, insert_item_restarted);
2091 retval = search_item(th->t_super, key, p_s_path);
2092 if (retval == IO_ERROR) {
2093 retval = -EIO;
2094 goto error_out;
2096 if (retval == ITEM_FOUND) {
2097 reiserfs_warning(th->t_super,
2098 "PAP-5760: reiserfs_insert_item: "
2099 "key %K already exists in the tree",
2100 key);
2101 retval = -EEXIST;
2102 goto error_out;
2106 /* make balancing after all resources will be collected at a time */
2107 if (retval == CARRY_ON) {
2108 do_balance(&s_ins_balance, p_s_ih, p_c_body, M_INSERT);
2109 return 0;
2112 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2113 error_out:
2114 /* also releases the path */
2115 unfix_nodes(&s_ins_balance);
2116 #ifdef REISERQUOTA_DEBUG
2117 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2118 "reiserquota insert_item(): freeing %u id=%u type=%c",
2119 quota_bytes, inode->i_uid, head2type(p_s_ih));
2120 #endif
2121 if (inode)
2122 DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes);
2123 return retval;