4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
17 #include <linux/uaccess.h>
18 #include <linux/aio.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
38 * FIXME: remove all knowledge of the buffer layer from the core VM
40 #include <linux/buffer_head.h> /* for generic_osync_inode */
45 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
46 loff_t offset
, unsigned long nr_segs
);
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * Shared mappings now work. 15.8.1995 Bruno.
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 * ->i_mmap_lock (vmtruncate)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
69 * ->i_mmap_lock (truncate->unmap_mapping_range)
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 * ->lock_page (access_process_vm)
83 * ->i_alloc_sem (various)
86 * ->sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
90 * ->anon_vma.lock (vma_adjust)
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone.lru_lock (follow_page->mark_page_accessed)
100 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->dcache_lock (proc_pid_lookup)
112 * Remove a page from the page cache and free it. Caller has to make
113 * sure the page is locked and that nobody else uses it - or that usage
114 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
116 void __remove_from_page_cache(struct page
*page
)
118 struct address_space
*mapping
= page
->mapping
;
120 radix_tree_delete(&mapping
->page_tree
, page
->index
);
121 page
->mapping
= NULL
;
126 void remove_from_page_cache(struct page
*page
)
128 struct address_space
*mapping
= page
->mapping
;
130 BUG_ON(!PageLocked(page
));
132 write_lock_irq(&mapping
->tree_lock
);
133 __remove_from_page_cache(page
);
134 write_unlock_irq(&mapping
->tree_lock
);
137 static int sync_page(void *word
)
139 struct address_space
*mapping
;
142 page
= container_of((unsigned long *)word
, struct page
, flags
);
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
166 mapping
= page_mapping(page
);
167 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
168 mapping
->a_ops
->sync_page(page
);
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
177 * @end: offset in bytes where the range ends (inclusive)
178 * @sync_mode: enable synchronous operation
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback. The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
188 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
189 loff_t end
, int sync_mode
)
192 struct writeback_control wbc
= {
193 .sync_mode
= sync_mode
,
194 .nr_to_write
= mapping
->nrpages
* 2,
195 .range_start
= start
,
199 if (!mapping_cap_writeback_dirty(mapping
))
202 ret
= do_writepages(mapping
, &wbc
);
206 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
209 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
212 int filemap_fdatawrite(struct address_space
*mapping
)
214 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
216 EXPORT_SYMBOL(filemap_fdatawrite
);
218 static int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
221 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
231 int filemap_flush(struct address_space
*mapping
)
233 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
235 EXPORT_SYMBOL(filemap_flush
);
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
243 * Wait for writeback to complete against pages indexed by start->end
246 int wait_on_page_writeback_range(struct address_space
*mapping
,
247 pgoff_t start
, pgoff_t end
)
257 pagevec_init(&pvec
, 0);
259 while ((index
<= end
) &&
260 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
261 PAGECACHE_TAG_WRITEBACK
,
262 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
265 for (i
= 0; i
< nr_pages
; i
++) {
266 struct page
*page
= pvec
.pages
[i
];
268 /* until radix tree lookup accepts end_index */
269 if (page
->index
> end
)
272 wait_on_page_writeback(page
);
276 pagevec_release(&pvec
);
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
283 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
303 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
304 loff_t pos
, loff_t count
)
306 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
307 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
310 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
312 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
314 mutex_lock(&inode
->i_mutex
);
315 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
316 mutex_unlock(&inode
->i_mutex
);
319 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
322 EXPORT_SYMBOL(sync_page_range
);
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
331 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
335 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
336 loff_t pos
, loff_t count
)
338 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
339 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
342 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
344 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
346 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
348 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
351 EXPORT_SYMBOL(sync_page_range_nolock
);
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
360 int filemap_fdatawait(struct address_space
*mapping
)
362 loff_t i_size
= i_size_read(mapping
->host
);
367 return wait_on_page_writeback_range(mapping
, 0,
368 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
370 EXPORT_SYMBOL(filemap_fdatawait
);
372 int filemap_write_and_wait(struct address_space
*mapping
)
376 if (mapping
->nrpages
) {
377 err
= filemap_fdatawrite(mapping
);
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
385 int err2
= filemap_fdatawait(mapping
);
392 EXPORT_SYMBOL(filemap_write_and_wait
);
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
400 * Write out and wait upon file offsets lstart->lend, inclusive.
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
405 int filemap_write_and_wait_range(struct address_space
*mapping
,
406 loff_t lstart
, loff_t lend
)
410 if (mapping
->nrpages
) {
411 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
413 /* See comment of filemap_write_and_wait() */
415 int err2
= wait_on_page_writeback_range(mapping
,
416 lstart
>> PAGE_CACHE_SHIFT
,
417 lend
>> PAGE_CACHE_SHIFT
);
426 * add_to_page_cache - add newly allocated pagecache pages
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
436 * This function does not add the page to the LRU. The caller must do that.
438 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
439 pgoff_t offset
, gfp_t gfp_mask
)
441 int error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
444 write_lock_irq(&mapping
->tree_lock
);
445 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
447 page_cache_get(page
);
449 page
->mapping
= mapping
;
450 page
->index
= offset
;
454 write_unlock_irq(&mapping
->tree_lock
);
455 radix_tree_preload_end();
459 EXPORT_SYMBOL(add_to_page_cache
);
461 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
462 pgoff_t offset
, gfp_t gfp_mask
)
464 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
471 struct page
*page_cache_alloc(struct address_space
*x
)
473 if (cpuset_do_page_mem_spread()) {
474 int n
= cpuset_mem_spread_node();
475 return alloc_pages_node(n
, mapping_gfp_mask(x
), 0);
477 return alloc_pages(mapping_gfp_mask(x
), 0);
479 EXPORT_SYMBOL(page_cache_alloc
);
481 struct page
*page_cache_alloc_cold(struct address_space
*x
)
483 if (cpuset_do_page_mem_spread()) {
484 int n
= cpuset_mem_spread_node();
485 return alloc_pages_node(n
, mapping_gfp_mask(x
)|__GFP_COLD
, 0);
487 return alloc_pages(mapping_gfp_mask(x
)|__GFP_COLD
, 0);
489 EXPORT_SYMBOL(page_cache_alloc_cold
);
493 * In order to wait for pages to become available there must be
494 * waitqueues associated with pages. By using a hash table of
495 * waitqueues where the bucket discipline is to maintain all
496 * waiters on the same queue and wake all when any of the pages
497 * become available, and for the woken contexts to check to be
498 * sure the appropriate page became available, this saves space
499 * at a cost of "thundering herd" phenomena during rare hash
502 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
504 const struct zone
*zone
= page_zone(page
);
506 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
509 static inline void wake_up_page(struct page
*page
, int bit
)
511 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
514 void fastcall
wait_on_page_bit(struct page
*page
, int bit_nr
)
516 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
518 if (test_bit(bit_nr
, &page
->flags
))
519 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
520 TASK_UNINTERRUPTIBLE
);
522 EXPORT_SYMBOL(wait_on_page_bit
);
525 * unlock_page - unlock a locked page
528 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
529 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
530 * mechananism between PageLocked pages and PageWriteback pages is shared.
531 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
533 * The first mb is necessary to safely close the critical section opened by the
534 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
535 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
536 * parallel wait_on_page_locked()).
538 void fastcall
unlock_page(struct page
*page
)
540 smp_mb__before_clear_bit();
541 if (!TestClearPageLocked(page
))
543 smp_mb__after_clear_bit();
544 wake_up_page(page
, PG_locked
);
546 EXPORT_SYMBOL(unlock_page
);
549 * end_page_writeback - end writeback against a page
552 void end_page_writeback(struct page
*page
)
554 if (!TestClearPageReclaim(page
) || rotate_reclaimable_page(page
)) {
555 if (!test_clear_page_writeback(page
))
558 smp_mb__after_clear_bit();
559 wake_up_page(page
, PG_writeback
);
561 EXPORT_SYMBOL(end_page_writeback
);
564 * __lock_page - get a lock on the page, assuming we need to sleep to get it
565 * @page: the page to lock
567 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
568 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
569 * chances are that on the second loop, the block layer's plug list is empty,
570 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
572 void fastcall
__lock_page(struct page
*page
)
574 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
576 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
577 TASK_UNINTERRUPTIBLE
);
579 EXPORT_SYMBOL(__lock_page
);
582 * find_get_page - find and get a page reference
583 * @mapping: the address_space to search
584 * @offset: the page index
586 * A rather lightweight function, finding and getting a reference to a
587 * hashed page atomically.
589 struct page
* find_get_page(struct address_space
*mapping
, unsigned long offset
)
593 read_lock_irq(&mapping
->tree_lock
);
594 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
596 page_cache_get(page
);
597 read_unlock_irq(&mapping
->tree_lock
);
600 EXPORT_SYMBOL(find_get_page
);
603 * find_trylock_page - find and lock a page
604 * @mapping: the address_space to search
605 * @offset: the page index
607 * Same as find_get_page(), but trylock it instead of incrementing the count.
609 struct page
*find_trylock_page(struct address_space
*mapping
, unsigned long offset
)
613 read_lock_irq(&mapping
->tree_lock
);
614 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
615 if (page
&& TestSetPageLocked(page
))
617 read_unlock_irq(&mapping
->tree_lock
);
620 EXPORT_SYMBOL(find_trylock_page
);
623 * find_lock_page - locate, pin and lock a pagecache page
624 * @mapping: the address_space to search
625 * @offset: the page index
627 * Locates the desired pagecache page, locks it, increments its reference
628 * count and returns its address.
630 * Returns zero if the page was not present. find_lock_page() may sleep.
632 struct page
*find_lock_page(struct address_space
*mapping
,
633 unsigned long offset
)
637 read_lock_irq(&mapping
->tree_lock
);
639 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
641 page_cache_get(page
);
642 if (TestSetPageLocked(page
)) {
643 read_unlock_irq(&mapping
->tree_lock
);
645 read_lock_irq(&mapping
->tree_lock
);
647 /* Has the page been truncated while we slept? */
648 if (unlikely(page
->mapping
!= mapping
||
649 page
->index
!= offset
)) {
651 page_cache_release(page
);
656 read_unlock_irq(&mapping
->tree_lock
);
659 EXPORT_SYMBOL(find_lock_page
);
662 * find_or_create_page - locate or add a pagecache page
663 * @mapping: the page's address_space
664 * @index: the page's index into the mapping
665 * @gfp_mask: page allocation mode
667 * Locates a page in the pagecache. If the page is not present, a new page
668 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
669 * LRU list. The returned page is locked and has its reference count
672 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
675 * find_or_create_page() returns the desired page's address, or zero on
678 struct page
*find_or_create_page(struct address_space
*mapping
,
679 unsigned long index
, gfp_t gfp_mask
)
681 struct page
*page
, *cached_page
= NULL
;
684 page
= find_lock_page(mapping
, index
);
687 cached_page
= alloc_page(gfp_mask
);
691 err
= add_to_page_cache_lru(cached_page
, mapping
,
696 } else if (err
== -EEXIST
)
700 page_cache_release(cached_page
);
703 EXPORT_SYMBOL(find_or_create_page
);
706 * find_get_pages - gang pagecache lookup
707 * @mapping: The address_space to search
708 * @start: The starting page index
709 * @nr_pages: The maximum number of pages
710 * @pages: Where the resulting pages are placed
712 * find_get_pages() will search for and return a group of up to
713 * @nr_pages pages in the mapping. The pages are placed at @pages.
714 * find_get_pages() takes a reference against the returned pages.
716 * The search returns a group of mapping-contiguous pages with ascending
717 * indexes. There may be holes in the indices due to not-present pages.
719 * find_get_pages() returns the number of pages which were found.
721 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
722 unsigned int nr_pages
, struct page
**pages
)
727 read_lock_irq(&mapping
->tree_lock
);
728 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
729 (void **)pages
, start
, nr_pages
);
730 for (i
= 0; i
< ret
; i
++)
731 page_cache_get(pages
[i
]);
732 read_unlock_irq(&mapping
->tree_lock
);
737 * find_get_pages_contig - gang contiguous pagecache lookup
738 * @mapping: The address_space to search
739 * @index: The starting page index
740 * @nr_pages: The maximum number of pages
741 * @pages: Where the resulting pages are placed
743 * find_get_pages_contig() works exactly like find_get_pages(), except
744 * that the returned number of pages are guaranteed to be contiguous.
746 * find_get_pages_contig() returns the number of pages which were found.
748 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
749 unsigned int nr_pages
, struct page
**pages
)
754 read_lock_irq(&mapping
->tree_lock
);
755 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
756 (void **)pages
, index
, nr_pages
);
757 for (i
= 0; i
< ret
; i
++) {
758 if (pages
[i
]->mapping
== NULL
|| pages
[i
]->index
!= index
)
761 page_cache_get(pages
[i
]);
764 read_unlock_irq(&mapping
->tree_lock
);
769 * find_get_pages_tag - find and return pages that match @tag
770 * @mapping: the address_space to search
771 * @index: the starting page index
772 * @tag: the tag index
773 * @nr_pages: the maximum number of pages
774 * @pages: where the resulting pages are placed
776 * Like find_get_pages, except we only return pages which are tagged with
777 * @tag. We update @index to index the next page for the traversal.
779 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
780 int tag
, unsigned int nr_pages
, struct page
**pages
)
785 read_lock_irq(&mapping
->tree_lock
);
786 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
787 (void **)pages
, *index
, nr_pages
, tag
);
788 for (i
= 0; i
< ret
; i
++)
789 page_cache_get(pages
[i
]);
791 *index
= pages
[ret
- 1]->index
+ 1;
792 read_unlock_irq(&mapping
->tree_lock
);
797 * grab_cache_page_nowait - returns locked page at given index in given cache
798 * @mapping: target address_space
799 * @index: the page index
801 * Same as grab_cache_page, but do not wait if the page is unavailable.
802 * This is intended for speculative data generators, where the data can
803 * be regenerated if the page couldn't be grabbed. This routine should
804 * be safe to call while holding the lock for another page.
806 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
807 * and deadlock against the caller's locked page.
810 grab_cache_page_nowait(struct address_space
*mapping
, unsigned long index
)
812 struct page
*page
= find_get_page(mapping
, index
);
816 if (!TestSetPageLocked(page
))
818 page_cache_release(page
);
821 gfp_mask
= mapping_gfp_mask(mapping
) & ~__GFP_FS
;
822 page
= alloc_pages(gfp_mask
, 0);
823 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
)) {
824 page_cache_release(page
);
829 EXPORT_SYMBOL(grab_cache_page_nowait
);
832 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
833 * a _large_ part of the i/o request. Imagine the worst scenario:
835 * ---R__________________________________________B__________
836 * ^ reading here ^ bad block(assume 4k)
838 * read(R) => miss => readahead(R...B) => media error => frustrating retries
839 * => failing the whole request => read(R) => read(R+1) =>
840 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
841 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
842 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
844 * It is going insane. Fix it by quickly scaling down the readahead size.
846 static void shrink_readahead_size_eio(struct file
*filp
,
847 struct file_ra_state
*ra
)
853 printk(KERN_WARNING
"Reducing readahead size to %luK\n",
854 ra
->ra_pages
<< (PAGE_CACHE_SHIFT
- 10));
858 * do_generic_mapping_read - generic file read routine
859 * @mapping: address_space to be read
860 * @_ra: file's readahead state
861 * @filp: the file to read
862 * @ppos: current file position
863 * @desc: read_descriptor
864 * @actor: read method
866 * This is a generic file read routine, and uses the
867 * mapping->a_ops->readpage() function for the actual low-level stuff.
869 * This is really ugly. But the goto's actually try to clarify some
870 * of the logic when it comes to error handling etc.
872 * Note the struct file* is only passed for the use of readpage.
875 void do_generic_mapping_read(struct address_space
*mapping
,
876 struct file_ra_state
*_ra
,
879 read_descriptor_t
*desc
,
882 struct inode
*inode
= mapping
->host
;
884 unsigned long end_index
;
885 unsigned long offset
;
886 unsigned long last_index
;
887 unsigned long next_index
;
888 unsigned long prev_index
;
890 struct page
*cached_page
;
892 struct file_ra_state ra
= *_ra
;
895 index
= *ppos
>> PAGE_CACHE_SHIFT
;
897 prev_index
= ra
.prev_page
;
898 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
899 offset
= *ppos
& ~PAGE_CACHE_MASK
;
901 isize
= i_size_read(inode
);
905 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
908 unsigned long nr
, ret
;
910 /* nr is the maximum number of bytes to copy from this page */
911 nr
= PAGE_CACHE_SIZE
;
912 if (index
>= end_index
) {
913 if (index
> end_index
)
915 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
923 if (index
== next_index
)
924 next_index
= page_cache_readahead(mapping
, &ra
, filp
,
925 index
, last_index
- index
);
928 page
= find_get_page(mapping
, index
);
929 if (unlikely(page
== NULL
)) {
930 handle_ra_miss(mapping
, &ra
, index
);
933 if (!PageUptodate(page
))
934 goto page_not_up_to_date
;
937 /* If users can be writing to this page using arbitrary
938 * virtual addresses, take care about potential aliasing
939 * before reading the page on the kernel side.
941 if (mapping_writably_mapped(mapping
))
942 flush_dcache_page(page
);
945 * When (part of) the same page is read multiple times
946 * in succession, only mark it as accessed the first time.
948 if (prev_index
!= index
)
949 mark_page_accessed(page
);
953 * Ok, we have the page, and it's up-to-date, so
954 * now we can copy it to user space...
956 * The actor routine returns how many bytes were actually used..
957 * NOTE! This may not be the same as how much of a user buffer
958 * we filled up (we may be padding etc), so we can only update
959 * "pos" here (the actor routine has to update the user buffer
960 * pointers and the remaining count).
962 ret
= actor(desc
, page
, offset
, nr
);
964 index
+= offset
>> PAGE_CACHE_SHIFT
;
965 offset
&= ~PAGE_CACHE_MASK
;
967 page_cache_release(page
);
968 if (ret
== nr
&& desc
->count
)
973 /* Get exclusive access to the page ... */
976 /* Did it get unhashed before we got the lock? */
977 if (!page
->mapping
) {
979 page_cache_release(page
);
983 /* Did somebody else fill it already? */
984 if (PageUptodate(page
)) {
990 /* Start the actual read. The read will unlock the page. */
991 error
= mapping
->a_ops
->readpage(filp
, page
);
993 if (unlikely(error
)) {
994 if (error
== AOP_TRUNCATED_PAGE
) {
995 page_cache_release(page
);
1001 if (!PageUptodate(page
)) {
1003 if (!PageUptodate(page
)) {
1004 if (page
->mapping
== NULL
) {
1006 * invalidate_inode_pages got it
1009 page_cache_release(page
);
1014 shrink_readahead_size_eio(filp
, &ra
);
1015 goto readpage_error
;
1021 * i_size must be checked after we have done ->readpage.
1023 * Checking i_size after the readpage allows us to calculate
1024 * the correct value for "nr", which means the zero-filled
1025 * part of the page is not copied back to userspace (unless
1026 * another truncate extends the file - this is desired though).
1028 isize
= i_size_read(inode
);
1029 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1030 if (unlikely(!isize
|| index
> end_index
)) {
1031 page_cache_release(page
);
1035 /* nr is the maximum number of bytes to copy from this page */
1036 nr
= PAGE_CACHE_SIZE
;
1037 if (index
== end_index
) {
1038 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1040 page_cache_release(page
);
1048 /* UHHUH! A synchronous read error occurred. Report it */
1049 desc
->error
= error
;
1050 page_cache_release(page
);
1055 * Ok, it wasn't cached, so we need to create a new
1059 cached_page
= page_cache_alloc_cold(mapping
);
1061 desc
->error
= -ENOMEM
;
1065 error
= add_to_page_cache_lru(cached_page
, mapping
,
1068 if (error
== -EEXIST
)
1070 desc
->error
= error
;
1081 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1083 page_cache_release(cached_page
);
1085 file_accessed(filp
);
1087 EXPORT_SYMBOL(do_generic_mapping_read
);
1089 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1090 unsigned long offset
, unsigned long size
)
1093 unsigned long left
, count
= desc
->count
;
1099 * Faults on the destination of a read are common, so do it before
1102 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1103 kaddr
= kmap_atomic(page
, KM_USER0
);
1104 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1105 kaddr
+ offset
, size
);
1106 kunmap_atomic(kaddr
, KM_USER0
);
1111 /* Do it the slow way */
1113 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1118 desc
->error
= -EFAULT
;
1121 desc
->count
= count
- size
;
1122 desc
->written
+= size
;
1123 desc
->arg
.buf
+= size
;
1128 * __generic_file_aio_read - generic filesystem read routine
1129 * @iocb: kernel I/O control block
1130 * @iov: io vector request
1131 * @nr_segs: number of segments in the iovec
1132 * @ppos: current file position
1134 * This is the "read()" routine for all filesystems
1135 * that can use the page cache directly.
1138 __generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1139 unsigned long nr_segs
, loff_t
*ppos
)
1141 struct file
*filp
= iocb
->ki_filp
;
1147 for (seg
= 0; seg
< nr_segs
; seg
++) {
1148 const struct iovec
*iv
= &iov
[seg
];
1151 * If any segment has a negative length, or the cumulative
1152 * length ever wraps negative then return -EINVAL.
1154 count
+= iv
->iov_len
;
1155 if (unlikely((ssize_t
)(count
|iv
->iov_len
) < 0))
1157 if (access_ok(VERIFY_WRITE
, iv
->iov_base
, iv
->iov_len
))
1162 count
-= iv
->iov_len
; /* This segment is no good */
1166 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1167 if (filp
->f_flags
& O_DIRECT
) {
1168 loff_t pos
= *ppos
, size
;
1169 struct address_space
*mapping
;
1170 struct inode
*inode
;
1172 mapping
= filp
->f_mapping
;
1173 inode
= mapping
->host
;
1176 goto out
; /* skip atime */
1177 size
= i_size_read(inode
);
1179 retval
= generic_file_direct_IO(READ
, iocb
,
1181 if (retval
> 0 && !is_sync_kiocb(iocb
))
1182 retval
= -EIOCBQUEUED
;
1184 *ppos
= pos
+ retval
;
1186 file_accessed(filp
);
1192 for (seg
= 0; seg
< nr_segs
; seg
++) {
1193 read_descriptor_t desc
;
1196 desc
.arg
.buf
= iov
[seg
].iov_base
;
1197 desc
.count
= iov
[seg
].iov_len
;
1198 if (desc
.count
== 0)
1201 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1202 retval
+= desc
.written
;
1204 retval
= retval
?: desc
.error
;
1212 EXPORT_SYMBOL(__generic_file_aio_read
);
1215 generic_file_aio_read(struct kiocb
*iocb
, char __user
*buf
, size_t count
, loff_t pos
)
1217 struct iovec local_iov
= { .iov_base
= buf
, .iov_len
= count
};
1219 BUG_ON(iocb
->ki_pos
!= pos
);
1220 return __generic_file_aio_read(iocb
, &local_iov
, 1, &iocb
->ki_pos
);
1222 EXPORT_SYMBOL(generic_file_aio_read
);
1225 generic_file_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1227 struct iovec local_iov
= { .iov_base
= buf
, .iov_len
= count
};
1231 init_sync_kiocb(&kiocb
, filp
);
1232 ret
= __generic_file_aio_read(&kiocb
, &local_iov
, 1, ppos
);
1233 if (-EIOCBQUEUED
== ret
)
1234 ret
= wait_on_sync_kiocb(&kiocb
);
1237 EXPORT_SYMBOL(generic_file_read
);
1239 int file_send_actor(read_descriptor_t
* desc
, struct page
*page
, unsigned long offset
, unsigned long size
)
1242 unsigned long count
= desc
->count
;
1243 struct file
*file
= desc
->arg
.data
;
1248 written
= file
->f_op
->sendpage(file
, page
, offset
,
1249 size
, &file
->f_pos
, size
<count
);
1251 desc
->error
= written
;
1254 desc
->count
= count
- written
;
1255 desc
->written
+= written
;
1259 ssize_t
generic_file_sendfile(struct file
*in_file
, loff_t
*ppos
,
1260 size_t count
, read_actor_t actor
, void *target
)
1262 read_descriptor_t desc
;
1269 desc
.arg
.data
= target
;
1272 do_generic_file_read(in_file
, ppos
, &desc
, actor
);
1274 return desc
.written
;
1277 EXPORT_SYMBOL(generic_file_sendfile
);
1280 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1281 unsigned long index
, unsigned long nr
)
1283 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1286 force_page_cache_readahead(mapping
, filp
, index
,
1287 max_sane_readahead(nr
));
1291 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1299 if (file
->f_mode
& FMODE_READ
) {
1300 struct address_space
*mapping
= file
->f_mapping
;
1301 unsigned long start
= offset
>> PAGE_CACHE_SHIFT
;
1302 unsigned long end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1303 unsigned long len
= end
- start
+ 1;
1304 ret
= do_readahead(mapping
, file
, start
, len
);
1312 static int FASTCALL(page_cache_read(struct file
* file
, unsigned long offset
));
1314 * page_cache_read - adds requested page to the page cache if not already there
1315 * @file: file to read
1316 * @offset: page index
1318 * This adds the requested page to the page cache if it isn't already there,
1319 * and schedules an I/O to read in its contents from disk.
1321 static int fastcall
page_cache_read(struct file
* file
, unsigned long offset
)
1323 struct address_space
*mapping
= file
->f_mapping
;
1328 page
= page_cache_alloc_cold(mapping
);
1332 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1334 ret
= mapping
->a_ops
->readpage(file
, page
);
1335 else if (ret
== -EEXIST
)
1336 ret
= 0; /* losing race to add is OK */
1338 page_cache_release(page
);
1340 } while (ret
== AOP_TRUNCATED_PAGE
);
1345 #define MMAP_LOTSAMISS (100)
1348 * filemap_nopage - read in file data for page fault handling
1349 * @area: the applicable vm_area
1350 * @address: target address to read in
1351 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1353 * filemap_nopage() is invoked via the vma operations vector for a
1354 * mapped memory region to read in file data during a page fault.
1356 * The goto's are kind of ugly, but this streamlines the normal case of having
1357 * it in the page cache, and handles the special cases reasonably without
1358 * having a lot of duplicated code.
1360 struct page
*filemap_nopage(struct vm_area_struct
*area
,
1361 unsigned long address
, int *type
)
1364 struct file
*file
= area
->vm_file
;
1365 struct address_space
*mapping
= file
->f_mapping
;
1366 struct file_ra_state
*ra
= &file
->f_ra
;
1367 struct inode
*inode
= mapping
->host
;
1369 unsigned long size
, pgoff
;
1370 int did_readaround
= 0, majmin
= VM_FAULT_MINOR
;
1372 pgoff
= ((address
-area
->vm_start
) >> PAGE_CACHE_SHIFT
) + area
->vm_pgoff
;
1375 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1377 goto outside_data_content
;
1379 /* If we don't want any read-ahead, don't bother */
1380 if (VM_RandomReadHint(area
))
1381 goto no_cached_page
;
1384 * The readahead code wants to be told about each and every page
1385 * so it can build and shrink its windows appropriately
1387 * For sequential accesses, we use the generic readahead logic.
1389 if (VM_SequentialReadHint(area
))
1390 page_cache_readahead(mapping
, ra
, file
, pgoff
, 1);
1393 * Do we have something in the page cache already?
1396 page
= find_get_page(mapping
, pgoff
);
1398 unsigned long ra_pages
;
1400 if (VM_SequentialReadHint(area
)) {
1401 handle_ra_miss(mapping
, ra
, pgoff
);
1402 goto no_cached_page
;
1407 * Do we miss much more than hit in this file? If so,
1408 * stop bothering with read-ahead. It will only hurt.
1410 if (ra
->mmap_miss
> ra
->mmap_hit
+ MMAP_LOTSAMISS
)
1411 goto no_cached_page
;
1414 * To keep the pgmajfault counter straight, we need to
1415 * check did_readaround, as this is an inner loop.
1417 if (!did_readaround
) {
1418 majmin
= VM_FAULT_MAJOR
;
1419 inc_page_state(pgmajfault
);
1422 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1426 if (pgoff
> ra_pages
/ 2)
1427 start
= pgoff
- ra_pages
/ 2;
1428 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1430 page
= find_get_page(mapping
, pgoff
);
1432 goto no_cached_page
;
1435 if (!did_readaround
)
1439 * Ok, found a page in the page cache, now we need to check
1440 * that it's up-to-date.
1442 if (!PageUptodate(page
))
1443 goto page_not_uptodate
;
1447 * Found the page and have a reference on it.
1449 mark_page_accessed(page
);
1454 outside_data_content
:
1456 * An external ptracer can access pages that normally aren't
1459 if (area
->vm_mm
== current
->mm
)
1461 /* Fall through to the non-read-ahead case */
1464 * We're only likely to ever get here if MADV_RANDOM is in
1467 error
= page_cache_read(file
, pgoff
);
1471 * The page we want has now been added to the page cache.
1472 * In the unlikely event that someone removed it in the
1473 * meantime, we'll just come back here and read it again.
1479 * An error return from page_cache_read can result if the
1480 * system is low on memory, or a problem occurs while trying
1483 if (error
== -ENOMEM
)
1488 if (!did_readaround
) {
1489 majmin
= VM_FAULT_MAJOR
;
1490 inc_page_state(pgmajfault
);
1494 /* Did it get unhashed while we waited for it? */
1495 if (!page
->mapping
) {
1497 page_cache_release(page
);
1501 /* Did somebody else get it up-to-date? */
1502 if (PageUptodate(page
)) {
1507 error
= mapping
->a_ops
->readpage(file
, page
);
1509 wait_on_page_locked(page
);
1510 if (PageUptodate(page
))
1512 } else if (error
== AOP_TRUNCATED_PAGE
) {
1513 page_cache_release(page
);
1518 * Umm, take care of errors if the page isn't up-to-date.
1519 * Try to re-read it _once_. We do this synchronously,
1520 * because there really aren't any performance issues here
1521 * and we need to check for errors.
1525 /* Somebody truncated the page on us? */
1526 if (!page
->mapping
) {
1528 page_cache_release(page
);
1532 /* Somebody else successfully read it in? */
1533 if (PageUptodate(page
)) {
1537 ClearPageError(page
);
1538 error
= mapping
->a_ops
->readpage(file
, page
);
1540 wait_on_page_locked(page
);
1541 if (PageUptodate(page
))
1543 } else if (error
== AOP_TRUNCATED_PAGE
) {
1544 page_cache_release(page
);
1549 * Things didn't work out. Return zero to tell the
1550 * mm layer so, possibly freeing the page cache page first.
1552 shrink_readahead_size_eio(file
, ra
);
1553 page_cache_release(page
);
1556 EXPORT_SYMBOL(filemap_nopage
);
1558 static struct page
* filemap_getpage(struct file
*file
, unsigned long pgoff
,
1561 struct address_space
*mapping
= file
->f_mapping
;
1566 * Do we have something in the page cache already?
1569 page
= find_get_page(mapping
, pgoff
);
1573 goto no_cached_page
;
1577 * Ok, found a page in the page cache, now we need to check
1578 * that it's up-to-date.
1580 if (!PageUptodate(page
)) {
1582 page_cache_release(page
);
1585 goto page_not_uptodate
;
1590 * Found the page and have a reference on it.
1592 mark_page_accessed(page
);
1596 error
= page_cache_read(file
, pgoff
);
1599 * The page we want has now been added to the page cache.
1600 * In the unlikely event that someone removed it in the
1601 * meantime, we'll just come back here and read it again.
1607 * An error return from page_cache_read can result if the
1608 * system is low on memory, or a problem occurs while trying
1616 /* Did it get unhashed while we waited for it? */
1617 if (!page
->mapping
) {
1622 /* Did somebody else get it up-to-date? */
1623 if (PageUptodate(page
)) {
1628 error
= mapping
->a_ops
->readpage(file
, page
);
1630 wait_on_page_locked(page
);
1631 if (PageUptodate(page
))
1633 } else if (error
== AOP_TRUNCATED_PAGE
) {
1634 page_cache_release(page
);
1639 * Umm, take care of errors if the page isn't up-to-date.
1640 * Try to re-read it _once_. We do this synchronously,
1641 * because there really aren't any performance issues here
1642 * and we need to check for errors.
1646 /* Somebody truncated the page on us? */
1647 if (!page
->mapping
) {
1651 /* Somebody else successfully read it in? */
1652 if (PageUptodate(page
)) {
1657 ClearPageError(page
);
1658 error
= mapping
->a_ops
->readpage(file
, page
);
1660 wait_on_page_locked(page
);
1661 if (PageUptodate(page
))
1663 } else if (error
== AOP_TRUNCATED_PAGE
) {
1664 page_cache_release(page
);
1669 * Things didn't work out. Return zero to tell the
1670 * mm layer so, possibly freeing the page cache page first.
1673 page_cache_release(page
);
1678 int filemap_populate(struct vm_area_struct
*vma
, unsigned long addr
,
1679 unsigned long len
, pgprot_t prot
, unsigned long pgoff
,
1682 struct file
*file
= vma
->vm_file
;
1683 struct address_space
*mapping
= file
->f_mapping
;
1684 struct inode
*inode
= mapping
->host
;
1686 struct mm_struct
*mm
= vma
->vm_mm
;
1691 force_page_cache_readahead(mapping
, vma
->vm_file
,
1692 pgoff
, len
>> PAGE_CACHE_SHIFT
);
1695 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1696 if (pgoff
+ (len
>> PAGE_CACHE_SHIFT
) > size
)
1699 page
= filemap_getpage(file
, pgoff
, nonblock
);
1701 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1702 * done in shmem_populate calling shmem_getpage */
1703 if (!page
&& !nonblock
)
1707 err
= install_page(mm
, vma
, addr
, page
, prot
);
1709 page_cache_release(page
);
1712 } else if (vma
->vm_flags
& VM_NONLINEAR
) {
1713 /* No page was found just because we can't read it in now (being
1714 * here implies nonblock != 0), but the page may exist, so set
1715 * the PTE to fault it in later. */
1716 err
= install_file_pte(mm
, vma
, addr
, pgoff
, prot
);
1729 EXPORT_SYMBOL(filemap_populate
);
1731 struct vm_operations_struct generic_file_vm_ops
= {
1732 .nopage
= filemap_nopage
,
1733 .populate
= filemap_populate
,
1736 /* This is used for a general mmap of a disk file */
1738 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1740 struct address_space
*mapping
= file
->f_mapping
;
1742 if (!mapping
->a_ops
->readpage
)
1744 file_accessed(file
);
1745 vma
->vm_ops
= &generic_file_vm_ops
;
1750 * This is for filesystems which do not implement ->writepage.
1752 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1754 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1756 return generic_file_mmap(file
, vma
);
1759 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1763 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1767 #endif /* CONFIG_MMU */
1769 EXPORT_SYMBOL(generic_file_mmap
);
1770 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1772 static inline struct page
*__read_cache_page(struct address_space
*mapping
,
1773 unsigned long index
,
1774 int (*filler
)(void *,struct page
*),
1777 struct page
*page
, *cached_page
= NULL
;
1780 page
= find_get_page(mapping
, index
);
1783 cached_page
= page_cache_alloc_cold(mapping
);
1785 return ERR_PTR(-ENOMEM
);
1787 err
= add_to_page_cache_lru(cached_page
, mapping
,
1792 /* Presumably ENOMEM for radix tree node */
1793 page_cache_release(cached_page
);
1794 return ERR_PTR(err
);
1798 err
= filler(data
, page
);
1800 page_cache_release(page
);
1801 page
= ERR_PTR(err
);
1805 page_cache_release(cached_page
);
1810 * read_cache_page - read into page cache, fill it if needed
1811 * @mapping: the page's address_space
1812 * @index: the page index
1813 * @filler: function to perform the read
1814 * @data: destination for read data
1816 * Read into the page cache. If a page already exists,
1817 * and PageUptodate() is not set, try to fill the page.
1819 struct page
*read_cache_page(struct address_space
*mapping
,
1820 unsigned long index
,
1821 int (*filler
)(void *,struct page
*),
1828 page
= __read_cache_page(mapping
, index
, filler
, data
);
1831 mark_page_accessed(page
);
1832 if (PageUptodate(page
))
1836 if (!page
->mapping
) {
1838 page_cache_release(page
);
1841 if (PageUptodate(page
)) {
1845 err
= filler(data
, page
);
1847 page_cache_release(page
);
1848 page
= ERR_PTR(err
);
1853 EXPORT_SYMBOL(read_cache_page
);
1856 * If the page was newly created, increment its refcount and add it to the
1857 * caller's lru-buffering pagevec. This function is specifically for
1858 * generic_file_write().
1860 static inline struct page
*
1861 __grab_cache_page(struct address_space
*mapping
, unsigned long index
,
1862 struct page
**cached_page
, struct pagevec
*lru_pvec
)
1867 page
= find_lock_page(mapping
, index
);
1869 if (!*cached_page
) {
1870 *cached_page
= page_cache_alloc(mapping
);
1874 err
= add_to_page_cache(*cached_page
, mapping
,
1879 page
= *cached_page
;
1880 page_cache_get(page
);
1881 if (!pagevec_add(lru_pvec
, page
))
1882 __pagevec_lru_add(lru_pvec
);
1883 *cached_page
= NULL
;
1890 * The logic we want is
1892 * if suid or (sgid and xgrp)
1895 int remove_suid(struct dentry
*dentry
)
1897 mode_t mode
= dentry
->d_inode
->i_mode
;
1901 /* suid always must be killed */
1902 if (unlikely(mode
& S_ISUID
))
1903 kill
= ATTR_KILL_SUID
;
1906 * sgid without any exec bits is just a mandatory locking mark; leave
1907 * it alone. If some exec bits are set, it's a real sgid; kill it.
1909 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1910 kill
|= ATTR_KILL_SGID
;
1912 if (unlikely(kill
&& !capable(CAP_FSETID
))) {
1913 struct iattr newattrs
;
1915 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1916 result
= notify_change(dentry
, &newattrs
);
1920 EXPORT_SYMBOL(remove_suid
);
1923 __filemap_copy_from_user_iovec_inatomic(char *vaddr
,
1924 const struct iovec
*iov
, size_t base
, size_t bytes
)
1926 size_t copied
= 0, left
= 0;
1929 char __user
*buf
= iov
->iov_base
+ base
;
1930 int copy
= min(bytes
, iov
->iov_len
- base
);
1933 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1942 return copied
- left
;
1946 * Performs necessary checks before doing a write
1948 * Can adjust writing position or amount of bytes to write.
1949 * Returns appropriate error code that caller should return or
1950 * zero in case that write should be allowed.
1952 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1954 struct inode
*inode
= file
->f_mapping
->host
;
1955 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1957 if (unlikely(*pos
< 0))
1961 /* FIXME: this is for backwards compatibility with 2.4 */
1962 if (file
->f_flags
& O_APPEND
)
1963 *pos
= i_size_read(inode
);
1965 if (limit
!= RLIM_INFINITY
) {
1966 if (*pos
>= limit
) {
1967 send_sig(SIGXFSZ
, current
, 0);
1970 if (*count
> limit
- (typeof(limit
))*pos
) {
1971 *count
= limit
- (typeof(limit
))*pos
;
1979 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1980 !(file
->f_flags
& O_LARGEFILE
))) {
1981 if (*pos
>= MAX_NON_LFS
) {
1982 send_sig(SIGXFSZ
, current
, 0);
1985 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1986 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1991 * Are we about to exceed the fs block limit ?
1993 * If we have written data it becomes a short write. If we have
1994 * exceeded without writing data we send a signal and return EFBIG.
1995 * Linus frestrict idea will clean these up nicely..
1997 if (likely(!isblk
)) {
1998 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1999 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2000 send_sig(SIGXFSZ
, current
, 0);
2003 /* zero-length writes at ->s_maxbytes are OK */
2006 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2007 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2010 if (bdev_read_only(I_BDEV(inode
)))
2012 isize
= i_size_read(inode
);
2013 if (*pos
>= isize
) {
2014 if (*count
|| *pos
> isize
)
2018 if (*pos
+ *count
> isize
)
2019 *count
= isize
- *pos
;
2023 EXPORT_SYMBOL(generic_write_checks
);
2026 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2027 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2028 size_t count
, size_t ocount
)
2030 struct file
*file
= iocb
->ki_filp
;
2031 struct address_space
*mapping
= file
->f_mapping
;
2032 struct inode
*inode
= mapping
->host
;
2035 if (count
!= ocount
)
2036 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2038 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2040 loff_t end
= pos
+ written
;
2041 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2042 i_size_write(inode
, end
);
2043 mark_inode_dirty(inode
);
2049 * Sync the fs metadata but not the minor inode changes and
2050 * of course not the data as we did direct DMA for the IO.
2051 * i_mutex is held, which protects generic_osync_inode() from
2054 if (written
>= 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2055 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
2059 if (written
== count
&& !is_sync_kiocb(iocb
))
2060 written
= -EIOCBQUEUED
;
2063 EXPORT_SYMBOL(generic_file_direct_write
);
2066 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2067 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2068 size_t count
, ssize_t written
)
2070 struct file
*file
= iocb
->ki_filp
;
2071 struct address_space
* mapping
= file
->f_mapping
;
2072 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2073 struct inode
*inode
= mapping
->host
;
2076 struct page
*cached_page
= NULL
;
2078 struct pagevec lru_pvec
;
2079 const struct iovec
*cur_iov
= iov
; /* current iovec */
2080 size_t iov_base
= 0; /* offset in the current iovec */
2083 pagevec_init(&lru_pvec
, 0);
2086 * handle partial DIO write. Adjust cur_iov if needed.
2088 if (likely(nr_segs
== 1))
2089 buf
= iov
->iov_base
+ written
;
2091 filemap_set_next_iovec(&cur_iov
, &iov_base
, written
);
2092 buf
= cur_iov
->iov_base
+ iov_base
;
2096 unsigned long index
;
2097 unsigned long offset
;
2100 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
2101 index
= pos
>> PAGE_CACHE_SHIFT
;
2102 bytes
= PAGE_CACHE_SIZE
- offset
;
2104 /* Limit the size of the copy to the caller's write size */
2105 bytes
= min(bytes
, count
);
2108 * Limit the size of the copy to that of the current segment,
2109 * because fault_in_pages_readable() doesn't know how to walk
2112 bytes
= min(bytes
, cur_iov
->iov_len
- iov_base
);
2115 * Bring in the user page that we will copy from _first_.
2116 * Otherwise there's a nasty deadlock on copying from the
2117 * same page as we're writing to, without it being marked
2120 fault_in_pages_readable(buf
, bytes
);
2122 page
= __grab_cache_page(mapping
,index
,&cached_page
,&lru_pvec
);
2128 if (unlikely(bytes
== 0)) {
2131 goto zero_length_segment
;
2134 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
2135 if (unlikely(status
)) {
2136 loff_t isize
= i_size_read(inode
);
2138 if (status
!= AOP_TRUNCATED_PAGE
)
2140 page_cache_release(page
);
2141 if (status
== AOP_TRUNCATED_PAGE
)
2144 * prepare_write() may have instantiated a few blocks
2145 * outside i_size. Trim these off again.
2147 if (pos
+ bytes
> isize
)
2148 vmtruncate(inode
, isize
);
2151 if (likely(nr_segs
== 1))
2152 copied
= filemap_copy_from_user(page
, offset
,
2155 copied
= filemap_copy_from_user_iovec(page
, offset
,
2156 cur_iov
, iov_base
, bytes
);
2157 flush_dcache_page(page
);
2158 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2159 if (status
== AOP_TRUNCATED_PAGE
) {
2160 page_cache_release(page
);
2163 zero_length_segment
:
2164 if (likely(copied
>= 0)) {
2173 if (unlikely(nr_segs
> 1)) {
2174 filemap_set_next_iovec(&cur_iov
,
2177 buf
= cur_iov
->iov_base
+
2184 if (unlikely(copied
!= bytes
))
2188 mark_page_accessed(page
);
2189 page_cache_release(page
);
2192 balance_dirty_pages_ratelimited(mapping
);
2198 page_cache_release(cached_page
);
2201 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2203 if (likely(status
>= 0)) {
2204 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2205 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2206 status
= generic_osync_inode(inode
, mapping
,
2207 OSYNC_METADATA
|OSYNC_DATA
);
2212 * If we get here for O_DIRECT writes then we must have fallen through
2213 * to buffered writes (block instantiation inside i_size). So we sync
2214 * the file data here, to try to honour O_DIRECT expectations.
2216 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2217 status
= filemap_write_and_wait(mapping
);
2219 pagevec_lru_add(&lru_pvec
);
2220 return written
? written
: status
;
2222 EXPORT_SYMBOL(generic_file_buffered_write
);
2225 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2226 unsigned long nr_segs
, loff_t
*ppos
)
2228 struct file
*file
= iocb
->ki_filp
;
2229 const struct address_space
* mapping
= file
->f_mapping
;
2230 size_t ocount
; /* original count */
2231 size_t count
; /* after file limit checks */
2232 struct inode
*inode
= mapping
->host
;
2239 for (seg
= 0; seg
< nr_segs
; seg
++) {
2240 const struct iovec
*iv
= &iov
[seg
];
2243 * If any segment has a negative length, or the cumulative
2244 * length ever wraps negative then return -EINVAL.
2246 ocount
+= iv
->iov_len
;
2247 if (unlikely((ssize_t
)(ocount
|iv
->iov_len
) < 0))
2249 if (access_ok(VERIFY_READ
, iv
->iov_base
, iv
->iov_len
))
2254 ocount
-= iv
->iov_len
; /* This segment is no good */
2261 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2263 /* We can write back this queue in page reclaim */
2264 current
->backing_dev_info
= mapping
->backing_dev_info
;
2267 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2274 err
= remove_suid(file
->f_dentry
);
2278 file_update_time(file
);
2280 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2281 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2282 written
= generic_file_direct_write(iocb
, iov
,
2283 &nr_segs
, pos
, ppos
, count
, ocount
);
2284 if (written
< 0 || written
== count
)
2287 * direct-io write to a hole: fall through to buffered I/O
2288 * for completing the rest of the request.
2294 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2295 pos
, ppos
, count
, written
);
2297 current
->backing_dev_info
= NULL
;
2298 return written
? written
: err
;
2300 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2303 generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2304 unsigned long nr_segs
, loff_t
*ppos
)
2306 struct file
*file
= iocb
->ki_filp
;
2307 struct address_space
*mapping
= file
->f_mapping
;
2308 struct inode
*inode
= mapping
->host
;
2312 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
, ppos
);
2314 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2317 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2325 __generic_file_write_nolock(struct file
*file
, const struct iovec
*iov
,
2326 unsigned long nr_segs
, loff_t
*ppos
)
2331 init_sync_kiocb(&kiocb
, file
);
2332 ret
= __generic_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2333 if (ret
== -EIOCBQUEUED
)
2334 ret
= wait_on_sync_kiocb(&kiocb
);
2339 generic_file_write_nolock(struct file
*file
, const struct iovec
*iov
,
2340 unsigned long nr_segs
, loff_t
*ppos
)
2345 init_sync_kiocb(&kiocb
, file
);
2346 ret
= generic_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2347 if (-EIOCBQUEUED
== ret
)
2348 ret
= wait_on_sync_kiocb(&kiocb
);
2351 EXPORT_SYMBOL(generic_file_write_nolock
);
2353 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const char __user
*buf
,
2354 size_t count
, loff_t pos
)
2356 struct file
*file
= iocb
->ki_filp
;
2357 struct address_space
*mapping
= file
->f_mapping
;
2358 struct inode
*inode
= mapping
->host
;
2360 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2363 BUG_ON(iocb
->ki_pos
!= pos
);
2365 mutex_lock(&inode
->i_mutex
);
2366 ret
= __generic_file_aio_write_nolock(iocb
, &local_iov
, 1,
2368 mutex_unlock(&inode
->i_mutex
);
2370 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2373 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2379 EXPORT_SYMBOL(generic_file_aio_write
);
2381 ssize_t
generic_file_write(struct file
*file
, const char __user
*buf
,
2382 size_t count
, loff_t
*ppos
)
2384 struct address_space
*mapping
= file
->f_mapping
;
2385 struct inode
*inode
= mapping
->host
;
2387 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2390 mutex_lock(&inode
->i_mutex
);
2391 ret
= __generic_file_write_nolock(file
, &local_iov
, 1, ppos
);
2392 mutex_unlock(&inode
->i_mutex
);
2394 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2397 err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2403 EXPORT_SYMBOL(generic_file_write
);
2405 ssize_t
generic_file_readv(struct file
*filp
, const struct iovec
*iov
,
2406 unsigned long nr_segs
, loff_t
*ppos
)
2411 init_sync_kiocb(&kiocb
, filp
);
2412 ret
= __generic_file_aio_read(&kiocb
, iov
, nr_segs
, ppos
);
2413 if (-EIOCBQUEUED
== ret
)
2414 ret
= wait_on_sync_kiocb(&kiocb
);
2417 EXPORT_SYMBOL(generic_file_readv
);
2419 ssize_t
generic_file_writev(struct file
*file
, const struct iovec
*iov
,
2420 unsigned long nr_segs
, loff_t
*ppos
)
2422 struct address_space
*mapping
= file
->f_mapping
;
2423 struct inode
*inode
= mapping
->host
;
2426 mutex_lock(&inode
->i_mutex
);
2427 ret
= __generic_file_write_nolock(file
, iov
, nr_segs
, ppos
);
2428 mutex_unlock(&inode
->i_mutex
);
2430 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2433 err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2439 EXPORT_SYMBOL(generic_file_writev
);
2442 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2443 * went wrong during pagecache shootdown.
2446 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2447 loff_t offset
, unsigned long nr_segs
)
2449 struct file
*file
= iocb
->ki_filp
;
2450 struct address_space
*mapping
= file
->f_mapping
;
2452 size_t write_len
= 0;
2455 * If it's a write, unmap all mmappings of the file up-front. This
2456 * will cause any pte dirty bits to be propagated into the pageframes
2457 * for the subsequent filemap_write_and_wait().
2460 write_len
= iov_length(iov
, nr_segs
);
2461 if (mapping_mapped(mapping
))
2462 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2465 retval
= filemap_write_and_wait(mapping
);
2467 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
,
2469 if (rw
== WRITE
&& mapping
->nrpages
) {
2470 pgoff_t end
= (offset
+ write_len
- 1)
2471 >> PAGE_CACHE_SHIFT
;
2472 int err
= invalidate_inode_pages2_range(mapping
,
2473 offset
>> PAGE_CACHE_SHIFT
, end
);