3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/rtmutex.h>
112 #include <asm/uaccess.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 #include <asm/page.h>
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
154 #define ARCH_KMALLOC_MINALIGN 0
157 #ifndef ARCH_SLAB_MINALIGN
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
165 #define ARCH_SLAB_MINALIGN 0
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 /* Legal flag mask for kmem_cache_create(). */
174 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
190 * Bufctl's are used for linking objs within a slab
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 typedef unsigned int kmem_bufctl_t
;
207 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
209 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct list_head list
;
221 unsigned long colouroff
;
222 void *s_mem
; /* including colour offset */
223 unsigned int inuse
; /* num of objs active in slab */
225 unsigned short nodeid
;
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct rcu_head head
;
246 struct kmem_cache
*cachep
;
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
265 unsigned int batchcount
;
266 unsigned int touched
;
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
272 * [0] is for gcc 2.95. It should really be [].
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init
{
282 struct array_cache cache
;
283 void *entries
[BOOT_CPUCACHE_ENTRIES
];
287 * The slab lists for all objects.
290 struct list_head slabs_partial
; /* partial list first, better asm code */
291 struct list_head slabs_full
;
292 struct list_head slabs_free
;
293 unsigned long free_objects
;
294 unsigned int free_limit
;
295 unsigned int colour_next
; /* Per-node cache coloring */
296 spinlock_t list_lock
;
297 struct array_cache
*shared
; /* shared per node */
298 struct array_cache
**alien
; /* on other nodes */
299 unsigned long next_reap
; /* updated without locking */
300 int free_touched
; /* updated without locking */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
308 #define CACHE_CACHE 0
310 #define SIZE_L3 (1 + MAX_NUMNODES)
313 * This function must be completely optimized away if a constant is passed to
314 * it. Mostly the same as what is in linux/slab.h except it returns an index.
316 static __always_inline
int index_of(const size_t size
)
318 extern void __bad_size(void);
320 if (__builtin_constant_p(size
)) {
328 #include "linux/kmalloc_sizes.h"
336 static int slab_early_init
= 1;
338 #define INDEX_AC index_of(sizeof(struct arraycache_init))
339 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
341 static void kmem_list3_init(struct kmem_list3
*parent
)
343 INIT_LIST_HEAD(&parent
->slabs_full
);
344 INIT_LIST_HEAD(&parent
->slabs_partial
);
345 INIT_LIST_HEAD(&parent
->slabs_free
);
346 parent
->shared
= NULL
;
347 parent
->alien
= NULL
;
348 parent
->colour_next
= 0;
349 spin_lock_init(&parent
->list_lock
);
350 parent
->free_objects
= 0;
351 parent
->free_touched
= 0;
354 #define MAKE_LIST(cachep, listp, slab, nodeid) \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
360 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 /* 1) per-cpu data, touched during every alloc/free */
375 struct array_cache
*array
[NR_CPUS
];
376 /* 2) Cache tunables. Protected by cache_chain_mutex */
377 unsigned int batchcount
;
381 unsigned int buffer_size
;
382 /* 3) touched by every alloc & free from the backend */
383 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
385 unsigned int flags
; /* constant flags */
386 unsigned int num
; /* # of objs per slab */
388 /* 4) cache_grow/shrink */
389 /* order of pgs per slab (2^n) */
390 unsigned int gfporder
;
392 /* force GFP flags, e.g. GFP_DMA */
395 size_t colour
; /* cache colouring range */
396 unsigned int colour_off
; /* colour offset */
397 struct kmem_cache
*slabp_cache
;
398 unsigned int slab_size
;
399 unsigned int dflags
; /* dynamic flags */
401 /* constructor func */
402 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
404 /* de-constructor func */
405 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
407 /* 5) cache creation/removal */
409 struct list_head next
;
413 unsigned long num_active
;
414 unsigned long num_allocations
;
415 unsigned long high_mark
;
417 unsigned long reaped
;
418 unsigned long errors
;
419 unsigned long max_freeable
;
420 unsigned long node_allocs
;
421 unsigned long node_frees
;
422 unsigned long node_overflow
;
430 * If debugging is enabled, then the allocator can add additional
431 * fields and/or padding to every object. buffer_size contains the total
432 * object size including these internal fields, the following two
433 * variables contain the offset to the user object and its size.
440 #define CFLGS_OFF_SLAB (0x80000000UL)
441 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
443 #define BATCHREFILL_LIMIT 16
445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
448 * OTOH the cpuarrays can contain lots of objects,
449 * which could lock up otherwise freeable slabs.
451 #define REAPTIMEOUT_CPUC (2*HZ)
452 #define REAPTIMEOUT_LIST3 (4*HZ)
455 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
456 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
457 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
458 #define STATS_INC_GROWN(x) ((x)->grown++)
459 #define STATS_INC_REAPED(x) ((x)->reaped++)
460 #define STATS_SET_HIGH(x) \
462 if ((x)->num_active > (x)->high_mark) \
463 (x)->high_mark = (x)->num_active; \
465 #define STATS_INC_ERR(x) ((x)->errors++)
466 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
467 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
468 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
469 #define STATS_SET_FREEABLE(x, i) \
471 if ((x)->max_freeable < i) \
472 (x)->max_freeable = i; \
474 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
475 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
476 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
477 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
479 #define STATS_INC_ACTIVE(x) do { } while (0)
480 #define STATS_DEC_ACTIVE(x) do { } while (0)
481 #define STATS_INC_ALLOCED(x) do { } while (0)
482 #define STATS_INC_GROWN(x) do { } while (0)
483 #define STATS_INC_REAPED(x) do { } while (0)
484 #define STATS_SET_HIGH(x) do { } while (0)
485 #define STATS_INC_ERR(x) do { } while (0)
486 #define STATS_INC_NODEALLOCS(x) do { } while (0)
487 #define STATS_INC_NODEFREES(x) do { } while (0)
488 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
489 #define STATS_SET_FREEABLE(x, i) do { } while (0)
490 #define STATS_INC_ALLOCHIT(x) do { } while (0)
491 #define STATS_INC_ALLOCMISS(x) do { } while (0)
492 #define STATS_INC_FREEHIT(x) do { } while (0)
493 #define STATS_INC_FREEMISS(x) do { } while (0)
499 * memory layout of objects:
501 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
502 * the end of an object is aligned with the end of the real
503 * allocation. Catches writes behind the end of the allocation.
504 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
506 * cachep->obj_offset: The real object.
507 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
508 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
509 * [BYTES_PER_WORD long]
511 static int obj_offset(struct kmem_cache
*cachep
)
513 return cachep
->obj_offset
;
516 static int obj_size(struct kmem_cache
*cachep
)
518 return cachep
->obj_size
;
521 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
523 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
524 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
527 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
529 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
530 if (cachep
->flags
& SLAB_STORE_USER
)
531 return (unsigned long *)(objp
+ cachep
->buffer_size
-
533 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
536 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
538 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
539 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
544 #define obj_offset(x) 0
545 #define obj_size(cachep) (cachep->buffer_size)
546 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
547 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
548 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
553 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
556 #if defined(CONFIG_LARGE_ALLOCS)
557 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
558 #define MAX_GFP_ORDER 13 /* up to 32Mb */
559 #elif defined(CONFIG_MMU)
560 #define MAX_OBJ_ORDER 5 /* 32 pages */
561 #define MAX_GFP_ORDER 5 /* 32 pages */
563 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
564 #define MAX_GFP_ORDER 8 /* up to 1Mb */
568 * Do not go above this order unless 0 objects fit into the slab.
570 #define BREAK_GFP_ORDER_HI 1
571 #define BREAK_GFP_ORDER_LO 0
572 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
575 * Functions for storing/retrieving the cachep and or slab from the page
576 * allocator. These are used to find the slab an obj belongs to. With kfree(),
577 * these are used to find the cache which an obj belongs to.
579 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
581 page
->lru
.next
= (struct list_head
*)cache
;
584 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
586 if (unlikely(PageCompound(page
)))
587 page
= (struct page
*)page_private(page
);
588 BUG_ON(!PageSlab(page
));
589 return (struct kmem_cache
*)page
->lru
.next
;
592 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
594 page
->lru
.prev
= (struct list_head
*)slab
;
597 static inline struct slab
*page_get_slab(struct page
*page
)
599 if (unlikely(PageCompound(page
)))
600 page
= (struct page
*)page_private(page
);
601 BUG_ON(!PageSlab(page
));
602 return (struct slab
*)page
->lru
.prev
;
605 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
607 struct page
*page
= virt_to_page(obj
);
608 return page_get_cache(page
);
611 static inline struct slab
*virt_to_slab(const void *obj
)
613 struct page
*page
= virt_to_page(obj
);
614 return page_get_slab(page
);
617 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
620 return slab
->s_mem
+ cache
->buffer_size
* idx
;
623 static inline unsigned int obj_to_index(struct kmem_cache
*cache
,
624 struct slab
*slab
, void *obj
)
626 return (unsigned)(obj
- slab
->s_mem
) / cache
->buffer_size
;
630 * These are the default caches for kmalloc. Custom caches can have other sizes.
632 struct cache_sizes malloc_sizes
[] = {
633 #define CACHE(x) { .cs_size = (x) },
634 #include <linux/kmalloc_sizes.h>
638 EXPORT_SYMBOL(malloc_sizes
);
640 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
646 static struct cache_names __initdata cache_names
[] = {
647 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
648 #include <linux/kmalloc_sizes.h>
653 static struct arraycache_init initarray_cache __initdata
=
654 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
655 static struct arraycache_init initarray_generic
=
656 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
658 /* internal cache of cache description objs */
659 static struct kmem_cache cache_cache
= {
661 .limit
= BOOT_CPUCACHE_ENTRIES
,
663 .buffer_size
= sizeof(struct kmem_cache
),
664 .name
= "kmem_cache",
666 .obj_size
= sizeof(struct kmem_cache
),
670 /* Guard access to the cache-chain. */
671 static DEFINE_MUTEX(cache_chain_mutex
);
672 static struct list_head cache_chain
;
675 * vm_enough_memory() looks at this to determine how many slab-allocated pages
676 * are possibly freeable under pressure
678 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
680 atomic_t slab_reclaim_pages
;
683 * chicken and egg problem: delay the per-cpu array allocation
684 * until the general caches are up.
694 * used by boot code to determine if it can use slab based allocator
696 int slab_is_available(void)
698 return g_cpucache_up
== FULL
;
701 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
703 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
705 static void enable_cpucache(struct kmem_cache
*cachep
);
706 static void cache_reap(void *unused
);
707 static int __node_shrink(struct kmem_cache
*cachep
, int node
);
709 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
711 return cachep
->array
[smp_processor_id()];
714 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
717 struct cache_sizes
*csizep
= malloc_sizes
;
720 /* This happens if someone tries to call
721 * kmem_cache_create(), or __kmalloc(), before
722 * the generic caches are initialized.
724 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
726 while (size
> csizep
->cs_size
)
730 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
731 * has cs_{dma,}cachep==NULL. Thus no special case
732 * for large kmalloc calls required.
734 if (unlikely(gfpflags
& GFP_DMA
))
735 return csizep
->cs_dmacachep
;
736 return csizep
->cs_cachep
;
739 struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
741 return __find_general_cachep(size
, gfpflags
);
743 EXPORT_SYMBOL(kmem_find_general_cachep
);
745 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
747 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
751 * Calculate the number of objects and left-over bytes for a given buffer size.
753 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
754 size_t align
, int flags
, size_t *left_over
,
759 size_t slab_size
= PAGE_SIZE
<< gfporder
;
762 * The slab management structure can be either off the slab or
763 * on it. For the latter case, the memory allocated for a
767 * - One kmem_bufctl_t for each object
768 * - Padding to respect alignment of @align
769 * - @buffer_size bytes for each object
771 * If the slab management structure is off the slab, then the
772 * alignment will already be calculated into the size. Because
773 * the slabs are all pages aligned, the objects will be at the
774 * correct alignment when allocated.
776 if (flags
& CFLGS_OFF_SLAB
) {
778 nr_objs
= slab_size
/ buffer_size
;
780 if (nr_objs
> SLAB_LIMIT
)
781 nr_objs
= SLAB_LIMIT
;
784 * Ignore padding for the initial guess. The padding
785 * is at most @align-1 bytes, and @buffer_size is at
786 * least @align. In the worst case, this result will
787 * be one greater than the number of objects that fit
788 * into the memory allocation when taking the padding
791 nr_objs
= (slab_size
- sizeof(struct slab
)) /
792 (buffer_size
+ sizeof(kmem_bufctl_t
));
795 * This calculated number will be either the right
796 * amount, or one greater than what we want.
798 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
802 if (nr_objs
> SLAB_LIMIT
)
803 nr_objs
= SLAB_LIMIT
;
805 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
808 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
811 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
813 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
816 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
817 function
, cachep
->name
, msg
);
823 * Special reaping functions for NUMA systems called from cache_reap().
824 * These take care of doing round robin flushing of alien caches (containing
825 * objects freed on different nodes from which they were allocated) and the
826 * flushing of remote pcps by calling drain_node_pages.
828 static DEFINE_PER_CPU(unsigned long, reap_node
);
830 static void init_reap_node(int cpu
)
834 node
= next_node(cpu_to_node(cpu
), node_online_map
);
835 if (node
== MAX_NUMNODES
)
836 node
= first_node(node_online_map
);
838 __get_cpu_var(reap_node
) = node
;
841 static void next_reap_node(void)
843 int node
= __get_cpu_var(reap_node
);
846 * Also drain per cpu pages on remote zones
848 if (node
!= numa_node_id())
849 drain_node_pages(node
);
851 node
= next_node(node
, node_online_map
);
852 if (unlikely(node
>= MAX_NUMNODES
))
853 node
= first_node(node_online_map
);
854 __get_cpu_var(reap_node
) = node
;
858 #define init_reap_node(cpu) do { } while (0)
859 #define next_reap_node(void) do { } while (0)
863 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
864 * via the workqueue/eventd.
865 * Add the CPU number into the expiration time to minimize the possibility of
866 * the CPUs getting into lockstep and contending for the global cache chain
869 static void __devinit
start_cpu_timer(int cpu
)
871 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
874 * When this gets called from do_initcalls via cpucache_init(),
875 * init_workqueues() has already run, so keventd will be setup
878 if (keventd_up() && reap_work
->func
== NULL
) {
880 INIT_WORK(reap_work
, cache_reap
, NULL
);
881 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
885 static struct array_cache
*alloc_arraycache(int node
, int entries
,
888 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
889 struct array_cache
*nc
= NULL
;
891 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
895 nc
->batchcount
= batchcount
;
897 spin_lock_init(&nc
->lock
);
903 * Transfer objects in one arraycache to another.
904 * Locking must be handled by the caller.
906 * Return the number of entries transferred.
908 static int transfer_objects(struct array_cache
*to
,
909 struct array_cache
*from
, unsigned int max
)
911 /* Figure out how many entries to transfer */
912 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
917 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
927 static void *__cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
928 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
930 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
932 struct array_cache
**ac_ptr
;
933 int memsize
= sizeof(void *) * MAX_NUMNODES
;
938 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
941 if (i
== node
|| !node_online(i
)) {
945 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
947 for (i
--; i
<= 0; i
--)
957 static void free_alien_cache(struct array_cache
**ac_ptr
)
968 static void __drain_alien_cache(struct kmem_cache
*cachep
,
969 struct array_cache
*ac
, int node
)
971 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
974 spin_lock(&rl3
->list_lock
);
976 * Stuff objects into the remote nodes shared array first.
977 * That way we could avoid the overhead of putting the objects
978 * into the free lists and getting them back later.
981 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
983 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
985 spin_unlock(&rl3
->list_lock
);
990 * Called from cache_reap() to regularly drain alien caches round robin.
992 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
994 int node
= __get_cpu_var(reap_node
);
997 struct array_cache
*ac
= l3
->alien
[node
];
999 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1000 __drain_alien_cache(cachep
, ac
, node
);
1001 spin_unlock_irq(&ac
->lock
);
1006 static void drain_alien_cache(struct kmem_cache
*cachep
,
1007 struct array_cache
**alien
)
1010 struct array_cache
*ac
;
1011 unsigned long flags
;
1013 for_each_online_node(i
) {
1016 spin_lock_irqsave(&ac
->lock
, flags
);
1017 __drain_alien_cache(cachep
, ac
, i
);
1018 spin_unlock_irqrestore(&ac
->lock
, flags
);
1023 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1025 struct slab
*slabp
= virt_to_slab(objp
);
1026 int nodeid
= slabp
->nodeid
;
1027 struct kmem_list3
*l3
;
1028 struct array_cache
*alien
= NULL
;
1031 * Make sure we are not freeing a object from another node to the array
1032 * cache on this cpu.
1034 if (likely(slabp
->nodeid
== numa_node_id()))
1037 l3
= cachep
->nodelists
[numa_node_id()];
1038 STATS_INC_NODEFREES(cachep
);
1039 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1040 alien
= l3
->alien
[nodeid
];
1041 spin_lock(&alien
->lock
);
1042 if (unlikely(alien
->avail
== alien
->limit
)) {
1043 STATS_INC_ACOVERFLOW(cachep
);
1044 __drain_alien_cache(cachep
, alien
, nodeid
);
1046 alien
->entry
[alien
->avail
++] = objp
;
1047 spin_unlock(&alien
->lock
);
1049 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1050 free_block(cachep
, &objp
, 1, nodeid
);
1051 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1058 #define drain_alien_cache(cachep, alien) do { } while (0)
1059 #define reap_alien(cachep, l3) do { } while (0)
1061 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1063 return (struct array_cache
**) 0x01020304ul
;
1066 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1070 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1077 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
1078 unsigned long action
, void *hcpu
)
1080 long cpu
= (long)hcpu
;
1081 struct kmem_cache
*cachep
;
1082 struct kmem_list3
*l3
= NULL
;
1083 int node
= cpu_to_node(cpu
);
1084 int memsize
= sizeof(struct kmem_list3
);
1087 case CPU_UP_PREPARE
:
1088 mutex_lock(&cache_chain_mutex
);
1090 * We need to do this right in the beginning since
1091 * alloc_arraycache's are going to use this list.
1092 * kmalloc_node allows us to add the slab to the right
1093 * kmem_list3 and not this cpu's kmem_list3
1096 list_for_each_entry(cachep
, &cache_chain
, next
) {
1098 * Set up the size64 kmemlist for cpu before we can
1099 * begin anything. Make sure some other cpu on this
1100 * node has not already allocated this
1102 if (!cachep
->nodelists
[node
]) {
1103 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1106 kmem_list3_init(l3
);
1107 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1108 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1111 * The l3s don't come and go as CPUs come and
1112 * go. cache_chain_mutex is sufficient
1115 cachep
->nodelists
[node
] = l3
;
1118 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1119 cachep
->nodelists
[node
]->free_limit
=
1120 (1 + nr_cpus_node(node
)) *
1121 cachep
->batchcount
+ cachep
->num
;
1122 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1126 * Now we can go ahead with allocating the shared arrays and
1129 list_for_each_entry(cachep
, &cache_chain
, next
) {
1130 struct array_cache
*nc
;
1131 struct array_cache
*shared
;
1132 struct array_cache
**alien
;
1134 nc
= alloc_arraycache(node
, cachep
->limit
,
1135 cachep
->batchcount
);
1138 shared
= alloc_arraycache(node
,
1139 cachep
->shared
* cachep
->batchcount
,
1144 alien
= alloc_alien_cache(node
, cachep
->limit
);
1147 cachep
->array
[cpu
] = nc
;
1148 l3
= cachep
->nodelists
[node
];
1151 spin_lock_irq(&l3
->list_lock
);
1154 * We are serialised from CPU_DEAD or
1155 * CPU_UP_CANCELLED by the cpucontrol lock
1157 l3
->shared
= shared
;
1166 spin_unlock_irq(&l3
->list_lock
);
1168 free_alien_cache(alien
);
1170 mutex_unlock(&cache_chain_mutex
);
1173 start_cpu_timer(cpu
);
1175 #ifdef CONFIG_HOTPLUG_CPU
1178 * Even if all the cpus of a node are down, we don't free the
1179 * kmem_list3 of any cache. This to avoid a race between
1180 * cpu_down, and a kmalloc allocation from another cpu for
1181 * memory from the node of the cpu going down. The list3
1182 * structure is usually allocated from kmem_cache_create() and
1183 * gets destroyed at kmem_cache_destroy().
1186 case CPU_UP_CANCELED
:
1187 mutex_lock(&cache_chain_mutex
);
1188 list_for_each_entry(cachep
, &cache_chain
, next
) {
1189 struct array_cache
*nc
;
1190 struct array_cache
*shared
;
1191 struct array_cache
**alien
;
1194 mask
= node_to_cpumask(node
);
1195 /* cpu is dead; no one can alloc from it. */
1196 nc
= cachep
->array
[cpu
];
1197 cachep
->array
[cpu
] = NULL
;
1198 l3
= cachep
->nodelists
[node
];
1201 goto free_array_cache
;
1203 spin_lock_irq(&l3
->list_lock
);
1205 /* Free limit for this kmem_list3 */
1206 l3
->free_limit
-= cachep
->batchcount
;
1208 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1210 if (!cpus_empty(mask
)) {
1211 spin_unlock_irq(&l3
->list_lock
);
1212 goto free_array_cache
;
1215 shared
= l3
->shared
;
1217 free_block(cachep
, l3
->shared
->entry
,
1218 l3
->shared
->avail
, node
);
1225 spin_unlock_irq(&l3
->list_lock
);
1229 drain_alien_cache(cachep
, alien
);
1230 free_alien_cache(alien
);
1236 * In the previous loop, all the objects were freed to
1237 * the respective cache's slabs, now we can go ahead and
1238 * shrink each nodelist to its limit.
1240 list_for_each_entry(cachep
, &cache_chain
, next
) {
1241 l3
= cachep
->nodelists
[node
];
1244 spin_lock_irq(&l3
->list_lock
);
1245 /* free slabs belonging to this node */
1246 __node_shrink(cachep
, node
);
1247 spin_unlock_irq(&l3
->list_lock
);
1249 mutex_unlock(&cache_chain_mutex
);
1255 mutex_unlock(&cache_chain_mutex
);
1259 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1260 &cpuup_callback
, NULL
, 0
1264 * swap the static kmem_list3 with kmalloced memory
1266 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1269 struct kmem_list3
*ptr
;
1271 BUG_ON(cachep
->nodelists
[nodeid
] != list
);
1272 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1275 local_irq_disable();
1276 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1277 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1278 cachep
->nodelists
[nodeid
] = ptr
;
1283 * Initialisation. Called after the page allocator have been initialised and
1284 * before smp_init().
1286 void __init
kmem_cache_init(void)
1289 struct cache_sizes
*sizes
;
1290 struct cache_names
*names
;
1294 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1295 kmem_list3_init(&initkmem_list3
[i
]);
1296 if (i
< MAX_NUMNODES
)
1297 cache_cache
.nodelists
[i
] = NULL
;
1301 * Fragmentation resistance on low memory - only use bigger
1302 * page orders on machines with more than 32MB of memory.
1304 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1305 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1307 /* Bootstrap is tricky, because several objects are allocated
1308 * from caches that do not exist yet:
1309 * 1) initialize the cache_cache cache: it contains the struct
1310 * kmem_cache structures of all caches, except cache_cache itself:
1311 * cache_cache is statically allocated.
1312 * Initially an __init data area is used for the head array and the
1313 * kmem_list3 structures, it's replaced with a kmalloc allocated
1314 * array at the end of the bootstrap.
1315 * 2) Create the first kmalloc cache.
1316 * The struct kmem_cache for the new cache is allocated normally.
1317 * An __init data area is used for the head array.
1318 * 3) Create the remaining kmalloc caches, with minimally sized
1320 * 4) Replace the __init data head arrays for cache_cache and the first
1321 * kmalloc cache with kmalloc allocated arrays.
1322 * 5) Replace the __init data for kmem_list3 for cache_cache and
1323 * the other cache's with kmalloc allocated memory.
1324 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1327 /* 1) create the cache_cache */
1328 INIT_LIST_HEAD(&cache_chain
);
1329 list_add(&cache_cache
.next
, &cache_chain
);
1330 cache_cache
.colour_off
= cache_line_size();
1331 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1332 cache_cache
.nodelists
[numa_node_id()] = &initkmem_list3
[CACHE_CACHE
];
1334 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1337 for (order
= 0; order
< MAX_ORDER
; order
++) {
1338 cache_estimate(order
, cache_cache
.buffer_size
,
1339 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1340 if (cache_cache
.num
)
1343 BUG_ON(!cache_cache
.num
);
1344 cache_cache
.gfporder
= order
;
1345 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1346 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1347 sizeof(struct slab
), cache_line_size());
1349 /* 2+3) create the kmalloc caches */
1350 sizes
= malloc_sizes
;
1351 names
= cache_names
;
1354 * Initialize the caches that provide memory for the array cache and the
1355 * kmem_list3 structures first. Without this, further allocations will
1359 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1360 sizes
[INDEX_AC
].cs_size
,
1361 ARCH_KMALLOC_MINALIGN
,
1362 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1365 if (INDEX_AC
!= INDEX_L3
) {
1366 sizes
[INDEX_L3
].cs_cachep
=
1367 kmem_cache_create(names
[INDEX_L3
].name
,
1368 sizes
[INDEX_L3
].cs_size
,
1369 ARCH_KMALLOC_MINALIGN
,
1370 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1374 slab_early_init
= 0;
1376 while (sizes
->cs_size
!= ULONG_MAX
) {
1378 * For performance, all the general caches are L1 aligned.
1379 * This should be particularly beneficial on SMP boxes, as it
1380 * eliminates "false sharing".
1381 * Note for systems short on memory removing the alignment will
1382 * allow tighter packing of the smaller caches.
1384 if (!sizes
->cs_cachep
) {
1385 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1387 ARCH_KMALLOC_MINALIGN
,
1388 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1392 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1394 ARCH_KMALLOC_MINALIGN
,
1395 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1401 /* 4) Replace the bootstrap head arrays */
1405 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1407 local_irq_disable();
1408 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1409 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1410 sizeof(struct arraycache_init
));
1411 cache_cache
.array
[smp_processor_id()] = ptr
;
1414 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1416 local_irq_disable();
1417 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1418 != &initarray_generic
.cache
);
1419 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1420 sizeof(struct arraycache_init
));
1421 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1425 /* 5) Replace the bootstrap kmem_list3's */
1428 /* Replace the static kmem_list3 structures for the boot cpu */
1429 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
],
1432 for_each_online_node(node
) {
1433 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1434 &initkmem_list3
[SIZE_AC
+ node
], node
);
1436 if (INDEX_AC
!= INDEX_L3
) {
1437 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1438 &initkmem_list3
[SIZE_L3
+ node
],
1444 /* 6) resize the head arrays to their final sizes */
1446 struct kmem_cache
*cachep
;
1447 mutex_lock(&cache_chain_mutex
);
1448 list_for_each_entry(cachep
, &cache_chain
, next
)
1449 enable_cpucache(cachep
);
1450 mutex_unlock(&cache_chain_mutex
);
1454 g_cpucache_up
= FULL
;
1457 * Register a cpu startup notifier callback that initializes
1458 * cpu_cache_get for all new cpus
1460 register_cpu_notifier(&cpucache_notifier
);
1463 * The reap timers are started later, with a module init call: That part
1464 * of the kernel is not yet operational.
1468 static int __init
cpucache_init(void)
1473 * Register the timers that return unneeded pages to the page allocator
1475 for_each_online_cpu(cpu
)
1476 start_cpu_timer(cpu
);
1479 __initcall(cpucache_init
);
1482 * Interface to system's page allocator. No need to hold the cache-lock.
1484 * If we requested dmaable memory, we will get it. Even if we
1485 * did not request dmaable memory, we might get it, but that
1486 * would be relatively rare and ignorable.
1488 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1496 * Nommu uses slab's for process anonymous memory allocations, and thus
1497 * requires __GFP_COMP to properly refcount higher order allocations
1499 flags
|= __GFP_COMP
;
1501 flags
|= cachep
->gfpflags
;
1503 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1507 nr_pages
= (1 << cachep
->gfporder
);
1508 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1509 atomic_add(nr_pages
, &slab_reclaim_pages
);
1510 add_page_state(nr_slab
, nr_pages
);
1511 for (i
= 0; i
< nr_pages
; i
++)
1512 __SetPageSlab(page
+ i
);
1513 return page_address(page
);
1517 * Interface to system's page release.
1519 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1521 unsigned long i
= (1 << cachep
->gfporder
);
1522 struct page
*page
= virt_to_page(addr
);
1523 const unsigned long nr_freed
= i
;
1526 BUG_ON(!PageSlab(page
));
1527 __ClearPageSlab(page
);
1530 sub_page_state(nr_slab
, nr_freed
);
1531 if (current
->reclaim_state
)
1532 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1533 free_pages((unsigned long)addr
, cachep
->gfporder
);
1534 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1535 atomic_sub(1 << cachep
->gfporder
, &slab_reclaim_pages
);
1538 static void kmem_rcu_free(struct rcu_head
*head
)
1540 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1541 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1543 kmem_freepages(cachep
, slab_rcu
->addr
);
1544 if (OFF_SLAB(cachep
))
1545 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1550 #ifdef CONFIG_DEBUG_PAGEALLOC
1551 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1552 unsigned long caller
)
1554 int size
= obj_size(cachep
);
1556 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1558 if (size
< 5 * sizeof(unsigned long))
1561 *addr
++ = 0x12345678;
1563 *addr
++ = smp_processor_id();
1564 size
-= 3 * sizeof(unsigned long);
1566 unsigned long *sptr
= &caller
;
1567 unsigned long svalue
;
1569 while (!kstack_end(sptr
)) {
1571 if (kernel_text_address(svalue
)) {
1573 size
-= sizeof(unsigned long);
1574 if (size
<= sizeof(unsigned long))
1580 *addr
++ = 0x87654321;
1584 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1586 int size
= obj_size(cachep
);
1587 addr
= &((char *)addr
)[obj_offset(cachep
)];
1589 memset(addr
, val
, size
);
1590 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1593 static void dump_line(char *data
, int offset
, int limit
)
1596 printk(KERN_ERR
"%03x:", offset
);
1597 for (i
= 0; i
< limit
; i
++)
1598 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1605 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1610 if (cachep
->flags
& SLAB_RED_ZONE
) {
1611 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1612 *dbg_redzone1(cachep
, objp
),
1613 *dbg_redzone2(cachep
, objp
));
1616 if (cachep
->flags
& SLAB_STORE_USER
) {
1617 printk(KERN_ERR
"Last user: [<%p>]",
1618 *dbg_userword(cachep
, objp
));
1619 print_symbol("(%s)",
1620 (unsigned long)*dbg_userword(cachep
, objp
));
1623 realobj
= (char *)objp
+ obj_offset(cachep
);
1624 size
= obj_size(cachep
);
1625 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1628 if (i
+ limit
> size
)
1630 dump_line(realobj
, i
, limit
);
1634 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1640 realobj
= (char *)objp
+ obj_offset(cachep
);
1641 size
= obj_size(cachep
);
1643 for (i
= 0; i
< size
; i
++) {
1644 char exp
= POISON_FREE
;
1647 if (realobj
[i
] != exp
) {
1653 "Slab corruption: start=%p, len=%d\n",
1655 print_objinfo(cachep
, objp
, 0);
1657 /* Hexdump the affected line */
1660 if (i
+ limit
> size
)
1662 dump_line(realobj
, i
, limit
);
1665 /* Limit to 5 lines */
1671 /* Print some data about the neighboring objects, if they
1674 struct slab
*slabp
= virt_to_slab(objp
);
1677 objnr
= obj_to_index(cachep
, slabp
, objp
);
1679 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1680 realobj
= (char *)objp
+ obj_offset(cachep
);
1681 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1683 print_objinfo(cachep
, objp
, 2);
1685 if (objnr
+ 1 < cachep
->num
) {
1686 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1687 realobj
= (char *)objp
+ obj_offset(cachep
);
1688 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1690 print_objinfo(cachep
, objp
, 2);
1698 * slab_destroy_objs - destroy a slab and its objects
1699 * @cachep: cache pointer being destroyed
1700 * @slabp: slab pointer being destroyed
1702 * Call the registered destructor for each object in a slab that is being
1705 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1708 for (i
= 0; i
< cachep
->num
; i
++) {
1709 void *objp
= index_to_obj(cachep
, slabp
, i
);
1711 if (cachep
->flags
& SLAB_POISON
) {
1712 #ifdef CONFIG_DEBUG_PAGEALLOC
1713 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1715 kernel_map_pages(virt_to_page(objp
),
1716 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1718 check_poison_obj(cachep
, objp
);
1720 check_poison_obj(cachep
, objp
);
1723 if (cachep
->flags
& SLAB_RED_ZONE
) {
1724 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1725 slab_error(cachep
, "start of a freed object "
1727 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1728 slab_error(cachep
, "end of a freed object "
1731 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1732 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1736 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1740 for (i
= 0; i
< cachep
->num
; i
++) {
1741 void *objp
= index_to_obj(cachep
, slabp
, i
);
1742 (cachep
->dtor
) (objp
, cachep
, 0);
1749 * slab_destroy - destroy and release all objects in a slab
1750 * @cachep: cache pointer being destroyed
1751 * @slabp: slab pointer being destroyed
1753 * Destroy all the objs in a slab, and release the mem back to the system.
1754 * Before calling the slab must have been unlinked from the cache. The
1755 * cache-lock is not held/needed.
1757 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1759 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1761 slab_destroy_objs(cachep
, slabp
);
1762 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1763 struct slab_rcu
*slab_rcu
;
1765 slab_rcu
= (struct slab_rcu
*)slabp
;
1766 slab_rcu
->cachep
= cachep
;
1767 slab_rcu
->addr
= addr
;
1768 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1770 kmem_freepages(cachep
, addr
);
1771 if (OFF_SLAB(cachep
))
1772 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1777 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1778 * size of kmem_list3.
1780 static void set_up_list3s(struct kmem_cache
*cachep
, int index
)
1784 for_each_online_node(node
) {
1785 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1786 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1788 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1793 * calculate_slab_order - calculate size (page order) of slabs
1794 * @cachep: pointer to the cache that is being created
1795 * @size: size of objects to be created in this cache.
1796 * @align: required alignment for the objects.
1797 * @flags: slab allocation flags
1799 * Also calculates the number of objects per slab.
1801 * This could be made much more intelligent. For now, try to avoid using
1802 * high order pages for slabs. When the gfp() functions are more friendly
1803 * towards high-order requests, this should be changed.
1805 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1806 size_t size
, size_t align
, unsigned long flags
)
1808 unsigned long offslab_limit
;
1809 size_t left_over
= 0;
1812 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
1816 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1820 if (flags
& CFLGS_OFF_SLAB
) {
1822 * Max number of objs-per-slab for caches which
1823 * use off-slab slabs. Needed to avoid a possible
1824 * looping condition in cache_grow().
1826 offslab_limit
= size
- sizeof(struct slab
);
1827 offslab_limit
/= sizeof(kmem_bufctl_t
);
1829 if (num
> offslab_limit
)
1833 /* Found something acceptable - save it away */
1835 cachep
->gfporder
= gfporder
;
1836 left_over
= remainder
;
1839 * A VFS-reclaimable slab tends to have most allocations
1840 * as GFP_NOFS and we really don't want to have to be allocating
1841 * higher-order pages when we are unable to shrink dcache.
1843 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1847 * Large number of objects is good, but very large slabs are
1848 * currently bad for the gfp()s.
1850 if (gfporder
>= slab_break_gfp_order
)
1854 * Acceptable internal fragmentation?
1856 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1862 static void setup_cpu_cache(struct kmem_cache
*cachep
)
1864 if (g_cpucache_up
== FULL
) {
1865 enable_cpucache(cachep
);
1868 if (g_cpucache_up
== NONE
) {
1870 * Note: the first kmem_cache_create must create the cache
1871 * that's used by kmalloc(24), otherwise the creation of
1872 * further caches will BUG().
1874 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1877 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1878 * the first cache, then we need to set up all its list3s,
1879 * otherwise the creation of further caches will BUG().
1881 set_up_list3s(cachep
, SIZE_AC
);
1882 if (INDEX_AC
== INDEX_L3
)
1883 g_cpucache_up
= PARTIAL_L3
;
1885 g_cpucache_up
= PARTIAL_AC
;
1887 cachep
->array
[smp_processor_id()] =
1888 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1890 if (g_cpucache_up
== PARTIAL_AC
) {
1891 set_up_list3s(cachep
, SIZE_L3
);
1892 g_cpucache_up
= PARTIAL_L3
;
1895 for_each_online_node(node
) {
1896 cachep
->nodelists
[node
] =
1897 kmalloc_node(sizeof(struct kmem_list3
),
1899 BUG_ON(!cachep
->nodelists
[node
]);
1900 kmem_list3_init(cachep
->nodelists
[node
]);
1904 cachep
->nodelists
[numa_node_id()]->next_reap
=
1905 jiffies
+ REAPTIMEOUT_LIST3
+
1906 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1908 cpu_cache_get(cachep
)->avail
= 0;
1909 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1910 cpu_cache_get(cachep
)->batchcount
= 1;
1911 cpu_cache_get(cachep
)->touched
= 0;
1912 cachep
->batchcount
= 1;
1913 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1917 * kmem_cache_create - Create a cache.
1918 * @name: A string which is used in /proc/slabinfo to identify this cache.
1919 * @size: The size of objects to be created in this cache.
1920 * @align: The required alignment for the objects.
1921 * @flags: SLAB flags
1922 * @ctor: A constructor for the objects.
1923 * @dtor: A destructor for the objects.
1925 * Returns a ptr to the cache on success, NULL on failure.
1926 * Cannot be called within a int, but can be interrupted.
1927 * The @ctor is run when new pages are allocated by the cache
1928 * and the @dtor is run before the pages are handed back.
1930 * @name must be valid until the cache is destroyed. This implies that
1931 * the module calling this has to destroy the cache before getting unloaded.
1935 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1936 * to catch references to uninitialised memory.
1938 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1939 * for buffer overruns.
1941 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1942 * cacheline. This can be beneficial if you're counting cycles as closely
1946 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1947 unsigned long flags
,
1948 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
1949 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
1951 size_t left_over
, slab_size
, ralign
;
1952 struct kmem_cache
*cachep
= NULL
, *pc
;
1955 * Sanity checks... these are all serious usage bugs.
1957 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
1958 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
1959 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
1965 * Prevent CPUs from coming and going.
1966 * lock_cpu_hotplug() nests outside cache_chain_mutex
1970 mutex_lock(&cache_chain_mutex
);
1972 list_for_each_entry(pc
, &cache_chain
, next
) {
1973 mm_segment_t old_fs
= get_fs();
1978 * This happens when the module gets unloaded and doesn't
1979 * destroy its slab cache and no-one else reuses the vmalloc
1980 * area of the module. Print a warning.
1983 res
= __get_user(tmp
, pc
->name
);
1986 printk("SLAB: cache with size %d has lost its name\n",
1991 if (!strcmp(pc
->name
, name
)) {
1992 printk("kmem_cache_create: duplicate cache %s\n", name
);
1999 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2000 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
2001 /* No constructor, but inital state check requested */
2002 printk(KERN_ERR
"%s: No con, but init state check "
2003 "requested - %s\n", __FUNCTION__
, name
);
2004 flags
&= ~SLAB_DEBUG_INITIAL
;
2008 * Enable redzoning and last user accounting, except for caches with
2009 * large objects, if the increased size would increase the object size
2010 * above the next power of two: caches with object sizes just above a
2011 * power of two have a significant amount of internal fragmentation.
2013 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
2014 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2015 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2016 flags
|= SLAB_POISON
;
2018 if (flags
& SLAB_DESTROY_BY_RCU
)
2019 BUG_ON(flags
& SLAB_POISON
);
2021 if (flags
& SLAB_DESTROY_BY_RCU
)
2025 * Always checks flags, a caller might be expecting debug support which
2028 BUG_ON(flags
& ~CREATE_MASK
);
2031 * Check that size is in terms of words. This is needed to avoid
2032 * unaligned accesses for some archs when redzoning is used, and makes
2033 * sure any on-slab bufctl's are also correctly aligned.
2035 if (size
& (BYTES_PER_WORD
- 1)) {
2036 size
+= (BYTES_PER_WORD
- 1);
2037 size
&= ~(BYTES_PER_WORD
- 1);
2040 /* calculate the final buffer alignment: */
2042 /* 1) arch recommendation: can be overridden for debug */
2043 if (flags
& SLAB_HWCACHE_ALIGN
) {
2045 * Default alignment: as specified by the arch code. Except if
2046 * an object is really small, then squeeze multiple objects into
2049 ralign
= cache_line_size();
2050 while (size
<= ralign
/ 2)
2053 ralign
= BYTES_PER_WORD
;
2055 /* 2) arch mandated alignment: disables debug if necessary */
2056 if (ralign
< ARCH_SLAB_MINALIGN
) {
2057 ralign
= ARCH_SLAB_MINALIGN
;
2058 if (ralign
> BYTES_PER_WORD
)
2059 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2061 /* 3) caller mandated alignment: disables debug if necessary */
2062 if (ralign
< align
) {
2064 if (ralign
> BYTES_PER_WORD
)
2065 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2068 * 4) Store it. Note that the debug code below can reduce
2069 * the alignment to BYTES_PER_WORD.
2073 /* Get cache's description obj. */
2074 cachep
= kmem_cache_zalloc(&cache_cache
, SLAB_KERNEL
);
2079 cachep
->obj_size
= size
;
2081 if (flags
& SLAB_RED_ZONE
) {
2082 /* redzoning only works with word aligned caches */
2083 align
= BYTES_PER_WORD
;
2085 /* add space for red zone words */
2086 cachep
->obj_offset
+= BYTES_PER_WORD
;
2087 size
+= 2 * BYTES_PER_WORD
;
2089 if (flags
& SLAB_STORE_USER
) {
2090 /* user store requires word alignment and
2091 * one word storage behind the end of the real
2094 align
= BYTES_PER_WORD
;
2095 size
+= BYTES_PER_WORD
;
2097 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2098 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2099 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2100 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2107 * Determine if the slab management is 'on' or 'off' slab.
2108 * (bootstrapping cannot cope with offslab caches so don't do
2111 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2113 * Size is large, assume best to place the slab management obj
2114 * off-slab (should allow better packing of objs).
2116 flags
|= CFLGS_OFF_SLAB
;
2118 size
= ALIGN(size
, align
);
2120 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2123 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
2124 kmem_cache_free(&cache_cache
, cachep
);
2128 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2129 + sizeof(struct slab
), align
);
2132 * If the slab has been placed off-slab, and we have enough space then
2133 * move it on-slab. This is at the expense of any extra colouring.
2135 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2136 flags
&= ~CFLGS_OFF_SLAB
;
2137 left_over
-= slab_size
;
2140 if (flags
& CFLGS_OFF_SLAB
) {
2141 /* really off slab. No need for manual alignment */
2143 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2146 cachep
->colour_off
= cache_line_size();
2147 /* Offset must be a multiple of the alignment. */
2148 if (cachep
->colour_off
< align
)
2149 cachep
->colour_off
= align
;
2150 cachep
->colour
= left_over
/ cachep
->colour_off
;
2151 cachep
->slab_size
= slab_size
;
2152 cachep
->flags
= flags
;
2153 cachep
->gfpflags
= 0;
2154 if (flags
& SLAB_CACHE_DMA
)
2155 cachep
->gfpflags
|= GFP_DMA
;
2156 cachep
->buffer_size
= size
;
2158 if (flags
& CFLGS_OFF_SLAB
)
2159 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2160 cachep
->ctor
= ctor
;
2161 cachep
->dtor
= dtor
;
2162 cachep
->name
= name
;
2165 setup_cpu_cache(cachep
);
2167 /* cache setup completed, link it into the list */
2168 list_add(&cachep
->next
, &cache_chain
);
2170 if (!cachep
&& (flags
& SLAB_PANIC
))
2171 panic("kmem_cache_create(): failed to create slab `%s'\n",
2173 mutex_unlock(&cache_chain_mutex
);
2174 unlock_cpu_hotplug();
2177 EXPORT_SYMBOL(kmem_cache_create
);
2180 static void check_irq_off(void)
2182 BUG_ON(!irqs_disabled());
2185 static void check_irq_on(void)
2187 BUG_ON(irqs_disabled());
2190 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2194 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2198 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2202 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2207 #define check_irq_off() do { } while(0)
2208 #define check_irq_on() do { } while(0)
2209 #define check_spinlock_acquired(x) do { } while(0)
2210 #define check_spinlock_acquired_node(x, y) do { } while(0)
2213 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2214 struct array_cache
*ac
,
2215 int force
, int node
);
2217 static void do_drain(void *arg
)
2219 struct kmem_cache
*cachep
= arg
;
2220 struct array_cache
*ac
;
2221 int node
= numa_node_id();
2224 ac
= cpu_cache_get(cachep
);
2225 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2226 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2227 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2231 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2233 struct kmem_list3
*l3
;
2236 on_each_cpu(do_drain
, cachep
, 1, 1);
2238 for_each_online_node(node
) {
2239 l3
= cachep
->nodelists
[node
];
2240 if (l3
&& l3
->alien
)
2241 drain_alien_cache(cachep
, l3
->alien
);
2244 for_each_online_node(node
) {
2245 l3
= cachep
->nodelists
[node
];
2247 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2251 static int __node_shrink(struct kmem_cache
*cachep
, int node
)
2254 struct kmem_list3
*l3
= cachep
->nodelists
[node
];
2258 struct list_head
*p
;
2260 p
= l3
->slabs_free
.prev
;
2261 if (p
== &l3
->slabs_free
)
2264 slabp
= list_entry(l3
->slabs_free
.prev
, struct slab
, list
);
2266 BUG_ON(slabp
->inuse
);
2268 list_del(&slabp
->list
);
2270 l3
->free_objects
-= cachep
->num
;
2271 spin_unlock_irq(&l3
->list_lock
);
2272 slab_destroy(cachep
, slabp
);
2273 spin_lock_irq(&l3
->list_lock
);
2275 ret
= !list_empty(&l3
->slabs_full
) || !list_empty(&l3
->slabs_partial
);
2279 static int __cache_shrink(struct kmem_cache
*cachep
)
2282 struct kmem_list3
*l3
;
2284 drain_cpu_caches(cachep
);
2287 for_each_online_node(i
) {
2288 l3
= cachep
->nodelists
[i
];
2290 spin_lock_irq(&l3
->list_lock
);
2291 ret
+= __node_shrink(cachep
, i
);
2292 spin_unlock_irq(&l3
->list_lock
);
2295 return (ret
? 1 : 0);
2299 * kmem_cache_shrink - Shrink a cache.
2300 * @cachep: The cache to shrink.
2302 * Releases as many slabs as possible for a cache.
2303 * To help debugging, a zero exit status indicates all slabs were released.
2305 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2307 BUG_ON(!cachep
|| in_interrupt());
2309 return __cache_shrink(cachep
);
2311 EXPORT_SYMBOL(kmem_cache_shrink
);
2314 * kmem_cache_destroy - delete a cache
2315 * @cachep: the cache to destroy
2317 * Remove a struct kmem_cache object from the slab cache.
2318 * Returns 0 on success.
2320 * It is expected this function will be called by a module when it is
2321 * unloaded. This will remove the cache completely, and avoid a duplicate
2322 * cache being allocated each time a module is loaded and unloaded, if the
2323 * module doesn't have persistent in-kernel storage across loads and unloads.
2325 * The cache must be empty before calling this function.
2327 * The caller must guarantee that noone will allocate memory from the cache
2328 * during the kmem_cache_destroy().
2330 int kmem_cache_destroy(struct kmem_cache
*cachep
)
2333 struct kmem_list3
*l3
;
2335 BUG_ON(!cachep
|| in_interrupt());
2337 /* Don't let CPUs to come and go */
2340 /* Find the cache in the chain of caches. */
2341 mutex_lock(&cache_chain_mutex
);
2343 * the chain is never empty, cache_cache is never destroyed
2345 list_del(&cachep
->next
);
2346 mutex_unlock(&cache_chain_mutex
);
2348 if (__cache_shrink(cachep
)) {
2349 slab_error(cachep
, "Can't free all objects");
2350 mutex_lock(&cache_chain_mutex
);
2351 list_add(&cachep
->next
, &cache_chain
);
2352 mutex_unlock(&cache_chain_mutex
);
2353 unlock_cpu_hotplug();
2357 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2360 for_each_online_cpu(i
)
2361 kfree(cachep
->array
[i
]);
2363 /* NUMA: free the list3 structures */
2364 for_each_online_node(i
) {
2365 l3
= cachep
->nodelists
[i
];
2368 free_alien_cache(l3
->alien
);
2372 kmem_cache_free(&cache_cache
, cachep
);
2373 unlock_cpu_hotplug();
2376 EXPORT_SYMBOL(kmem_cache_destroy
);
2378 /* Get the memory for a slab management obj. */
2379 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2380 int colour_off
, gfp_t local_flags
,
2385 if (OFF_SLAB(cachep
)) {
2386 /* Slab management obj is off-slab. */
2387 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2388 local_flags
, nodeid
);
2392 slabp
= objp
+ colour_off
;
2393 colour_off
+= cachep
->slab_size
;
2396 slabp
->colouroff
= colour_off
;
2397 slabp
->s_mem
= objp
+ colour_off
;
2398 slabp
->nodeid
= nodeid
;
2402 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2404 return (kmem_bufctl_t
*) (slabp
+ 1);
2407 static void cache_init_objs(struct kmem_cache
*cachep
,
2408 struct slab
*slabp
, unsigned long ctor_flags
)
2412 for (i
= 0; i
< cachep
->num
; i
++) {
2413 void *objp
= index_to_obj(cachep
, slabp
, i
);
2415 /* need to poison the objs? */
2416 if (cachep
->flags
& SLAB_POISON
)
2417 poison_obj(cachep
, objp
, POISON_FREE
);
2418 if (cachep
->flags
& SLAB_STORE_USER
)
2419 *dbg_userword(cachep
, objp
) = NULL
;
2421 if (cachep
->flags
& SLAB_RED_ZONE
) {
2422 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2423 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2426 * Constructors are not allowed to allocate memory from the same
2427 * cache which they are a constructor for. Otherwise, deadlock.
2428 * They must also be threaded.
2430 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2431 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2434 if (cachep
->flags
& SLAB_RED_ZONE
) {
2435 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2436 slab_error(cachep
, "constructor overwrote the"
2437 " end of an object");
2438 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2439 slab_error(cachep
, "constructor overwrote the"
2440 " start of an object");
2442 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2443 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2444 kernel_map_pages(virt_to_page(objp
),
2445 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2448 cachep
->ctor(objp
, cachep
, ctor_flags
);
2450 slab_bufctl(slabp
)[i
] = i
+ 1;
2452 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2456 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2458 if (flags
& SLAB_DMA
)
2459 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2461 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2464 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2467 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2471 next
= slab_bufctl(slabp
)[slabp
->free
];
2473 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2474 WARN_ON(slabp
->nodeid
!= nodeid
);
2481 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2482 void *objp
, int nodeid
)
2484 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2487 /* Verify that the slab belongs to the intended node */
2488 WARN_ON(slabp
->nodeid
!= nodeid
);
2490 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2491 printk(KERN_ERR
"slab: double free detected in cache "
2492 "'%s', objp %p\n", cachep
->name
, objp
);
2496 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2497 slabp
->free
= objnr
;
2502 * Map pages beginning at addr to the given cache and slab. This is required
2503 * for the slab allocator to be able to lookup the cache and slab of a
2504 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2506 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2512 page
= virt_to_page(addr
);
2515 if (likely(!PageCompound(page
)))
2516 nr_pages
<<= cache
->gfporder
;
2519 page_set_cache(page
, cache
);
2520 page_set_slab(page
, slab
);
2522 } while (--nr_pages
);
2526 * Grow (by 1) the number of slabs within a cache. This is called by
2527 * kmem_cache_alloc() when there are no active objs left in a cache.
2529 static int cache_grow(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
2535 unsigned long ctor_flags
;
2536 struct kmem_list3
*l3
;
2539 * Be lazy and only check for valid flags here, keeping it out of the
2540 * critical path in kmem_cache_alloc().
2542 BUG_ON(flags
& ~(SLAB_DMA
| SLAB_LEVEL_MASK
| SLAB_NO_GROW
));
2543 if (flags
& SLAB_NO_GROW
)
2546 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2547 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2548 if (!(local_flags
& __GFP_WAIT
))
2550 * Not allowed to sleep. Need to tell a constructor about
2551 * this - it might need to know...
2553 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2555 /* Take the l3 list lock to change the colour_next on this node */
2557 l3
= cachep
->nodelists
[nodeid
];
2558 spin_lock(&l3
->list_lock
);
2560 /* Get colour for the slab, and cal the next value. */
2561 offset
= l3
->colour_next
;
2563 if (l3
->colour_next
>= cachep
->colour
)
2564 l3
->colour_next
= 0;
2565 spin_unlock(&l3
->list_lock
);
2567 offset
*= cachep
->colour_off
;
2569 if (local_flags
& __GFP_WAIT
)
2573 * The test for missing atomic flag is performed here, rather than
2574 * the more obvious place, simply to reduce the critical path length
2575 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2576 * will eventually be caught here (where it matters).
2578 kmem_flagcheck(cachep
, flags
);
2581 * Get mem for the objs. Attempt to allocate a physical page from
2584 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2588 /* Get slab management. */
2589 slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
, nodeid
);
2593 slabp
->nodeid
= nodeid
;
2594 slab_map_pages(cachep
, slabp
, objp
);
2596 cache_init_objs(cachep
, slabp
, ctor_flags
);
2598 if (local_flags
& __GFP_WAIT
)
2599 local_irq_disable();
2601 spin_lock(&l3
->list_lock
);
2603 /* Make slab active. */
2604 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2605 STATS_INC_GROWN(cachep
);
2606 l3
->free_objects
+= cachep
->num
;
2607 spin_unlock(&l3
->list_lock
);
2610 kmem_freepages(cachep
, objp
);
2612 if (local_flags
& __GFP_WAIT
)
2613 local_irq_disable();
2620 * Perform extra freeing checks:
2621 * - detect bad pointers.
2622 * - POISON/RED_ZONE checking
2623 * - destructor calls, for caches with POISON+dtor
2625 static void kfree_debugcheck(const void *objp
)
2629 if (!virt_addr_valid(objp
)) {
2630 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2631 (unsigned long)objp
);
2634 page
= virt_to_page(objp
);
2635 if (!PageSlab(page
)) {
2636 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n",
2637 (unsigned long)objp
);
2642 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2644 unsigned long redzone1
, redzone2
;
2646 redzone1
= *dbg_redzone1(cache
, obj
);
2647 redzone2
= *dbg_redzone2(cache
, obj
);
2652 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2655 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2656 slab_error(cache
, "double free detected");
2658 slab_error(cache
, "memory outside object was overwritten");
2660 printk(KERN_ERR
"%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2661 obj
, redzone1
, redzone2
);
2664 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2671 objp
-= obj_offset(cachep
);
2672 kfree_debugcheck(objp
);
2673 page
= virt_to_page(objp
);
2675 slabp
= page_get_slab(page
);
2677 if (cachep
->flags
& SLAB_RED_ZONE
) {
2678 verify_redzone_free(cachep
, objp
);
2679 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2680 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2682 if (cachep
->flags
& SLAB_STORE_USER
)
2683 *dbg_userword(cachep
, objp
) = caller
;
2685 objnr
= obj_to_index(cachep
, slabp
, objp
);
2687 BUG_ON(objnr
>= cachep
->num
);
2688 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2690 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2692 * Need to call the slab's constructor so the caller can
2693 * perform a verify of its state (debugging). Called without
2694 * the cache-lock held.
2696 cachep
->ctor(objp
+ obj_offset(cachep
),
2697 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2699 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2700 /* we want to cache poison the object,
2701 * call the destruction callback
2703 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2705 #ifdef CONFIG_DEBUG_SLAB_LEAK
2706 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2708 if (cachep
->flags
& SLAB_POISON
) {
2709 #ifdef CONFIG_DEBUG_PAGEALLOC
2710 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2711 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2712 kernel_map_pages(virt_to_page(objp
),
2713 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2715 poison_obj(cachep
, objp
, POISON_FREE
);
2718 poison_obj(cachep
, objp
, POISON_FREE
);
2724 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2729 /* Check slab's freelist to see if this obj is there. */
2730 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2732 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2735 if (entries
!= cachep
->num
- slabp
->inuse
) {
2737 printk(KERN_ERR
"slab: Internal list corruption detected in "
2738 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2739 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2741 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2744 printk("\n%03x:", i
);
2745 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2752 #define kfree_debugcheck(x) do { } while(0)
2753 #define cache_free_debugcheck(x,objp,z) (objp)
2754 #define check_slabp(x,y) do { } while(0)
2757 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2760 struct kmem_list3
*l3
;
2761 struct array_cache
*ac
;
2764 ac
= cpu_cache_get(cachep
);
2766 batchcount
= ac
->batchcount
;
2767 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2769 * If there was little recent activity on this cache, then
2770 * perform only a partial refill. Otherwise we could generate
2773 batchcount
= BATCHREFILL_LIMIT
;
2775 l3
= cachep
->nodelists
[numa_node_id()];
2777 BUG_ON(ac
->avail
> 0 || !l3
);
2778 spin_lock(&l3
->list_lock
);
2780 /* See if we can refill from the shared array */
2781 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2784 while (batchcount
> 0) {
2785 struct list_head
*entry
;
2787 /* Get slab alloc is to come from. */
2788 entry
= l3
->slabs_partial
.next
;
2789 if (entry
== &l3
->slabs_partial
) {
2790 l3
->free_touched
= 1;
2791 entry
= l3
->slabs_free
.next
;
2792 if (entry
== &l3
->slabs_free
)
2796 slabp
= list_entry(entry
, struct slab
, list
);
2797 check_slabp(cachep
, slabp
);
2798 check_spinlock_acquired(cachep
);
2799 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2800 STATS_INC_ALLOCED(cachep
);
2801 STATS_INC_ACTIVE(cachep
);
2802 STATS_SET_HIGH(cachep
);
2804 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2807 check_slabp(cachep
, slabp
);
2809 /* move slabp to correct slabp list: */
2810 list_del(&slabp
->list
);
2811 if (slabp
->free
== BUFCTL_END
)
2812 list_add(&slabp
->list
, &l3
->slabs_full
);
2814 list_add(&slabp
->list
, &l3
->slabs_partial
);
2818 l3
->free_objects
-= ac
->avail
;
2820 spin_unlock(&l3
->list_lock
);
2822 if (unlikely(!ac
->avail
)) {
2824 x
= cache_grow(cachep
, flags
, numa_node_id());
2826 /* cache_grow can reenable interrupts, then ac could change. */
2827 ac
= cpu_cache_get(cachep
);
2828 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
2831 if (!ac
->avail
) /* objects refilled by interrupt? */
2835 return ac
->entry
[--ac
->avail
];
2838 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2841 might_sleep_if(flags
& __GFP_WAIT
);
2843 kmem_flagcheck(cachep
, flags
);
2848 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2849 gfp_t flags
, void *objp
, void *caller
)
2853 if (cachep
->flags
& SLAB_POISON
) {
2854 #ifdef CONFIG_DEBUG_PAGEALLOC
2855 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2856 kernel_map_pages(virt_to_page(objp
),
2857 cachep
->buffer_size
/ PAGE_SIZE
, 1);
2859 check_poison_obj(cachep
, objp
);
2861 check_poison_obj(cachep
, objp
);
2863 poison_obj(cachep
, objp
, POISON_INUSE
);
2865 if (cachep
->flags
& SLAB_STORE_USER
)
2866 *dbg_userword(cachep
, objp
) = caller
;
2868 if (cachep
->flags
& SLAB_RED_ZONE
) {
2869 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2870 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2871 slab_error(cachep
, "double free, or memory outside"
2872 " object was overwritten");
2874 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2875 objp
, *dbg_redzone1(cachep
, objp
),
2876 *dbg_redzone2(cachep
, objp
));
2878 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2879 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2881 #ifdef CONFIG_DEBUG_SLAB_LEAK
2886 slabp
= page_get_slab(virt_to_page(objp
));
2887 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
2888 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
2891 objp
+= obj_offset(cachep
);
2892 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2893 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2895 if (!(flags
& __GFP_WAIT
))
2896 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2898 cachep
->ctor(objp
, cachep
, ctor_flags
);
2903 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2906 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2909 struct array_cache
*ac
;
2912 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
2913 objp
= alternate_node_alloc(cachep
, flags
);
2920 ac
= cpu_cache_get(cachep
);
2921 if (likely(ac
->avail
)) {
2922 STATS_INC_ALLOCHIT(cachep
);
2924 objp
= ac
->entry
[--ac
->avail
];
2926 STATS_INC_ALLOCMISS(cachep
);
2927 objp
= cache_alloc_refill(cachep
, flags
);
2932 static __always_inline
void *__cache_alloc(struct kmem_cache
*cachep
,
2933 gfp_t flags
, void *caller
)
2935 unsigned long save_flags
;
2938 cache_alloc_debugcheck_before(cachep
, flags
);
2940 local_irq_save(save_flags
);
2941 objp
= ____cache_alloc(cachep
, flags
);
2942 local_irq_restore(save_flags
);
2943 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
2951 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2953 * If we are in_interrupt, then process context, including cpusets and
2954 * mempolicy, may not apply and should not be used for allocation policy.
2956 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2958 int nid_alloc
, nid_here
;
2962 nid_alloc
= nid_here
= numa_node_id();
2963 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
2964 nid_alloc
= cpuset_mem_spread_node();
2965 else if (current
->mempolicy
)
2966 nid_alloc
= slab_node(current
->mempolicy
);
2967 if (nid_alloc
!= nid_here
)
2968 return __cache_alloc_node(cachep
, flags
, nid_alloc
);
2973 * A interface to enable slab creation on nodeid
2975 static void *__cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
2978 struct list_head
*entry
;
2980 struct kmem_list3
*l3
;
2984 l3
= cachep
->nodelists
[nodeid
];
2989 spin_lock(&l3
->list_lock
);
2990 entry
= l3
->slabs_partial
.next
;
2991 if (entry
== &l3
->slabs_partial
) {
2992 l3
->free_touched
= 1;
2993 entry
= l3
->slabs_free
.next
;
2994 if (entry
== &l3
->slabs_free
)
2998 slabp
= list_entry(entry
, struct slab
, list
);
2999 check_spinlock_acquired_node(cachep
, nodeid
);
3000 check_slabp(cachep
, slabp
);
3002 STATS_INC_NODEALLOCS(cachep
);
3003 STATS_INC_ACTIVE(cachep
);
3004 STATS_SET_HIGH(cachep
);
3006 BUG_ON(slabp
->inuse
== cachep
->num
);
3008 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3009 check_slabp(cachep
, slabp
);
3011 /* move slabp to correct slabp list: */
3012 list_del(&slabp
->list
);
3014 if (slabp
->free
== BUFCTL_END
)
3015 list_add(&slabp
->list
, &l3
->slabs_full
);
3017 list_add(&slabp
->list
, &l3
->slabs_partial
);
3019 spin_unlock(&l3
->list_lock
);
3023 spin_unlock(&l3
->list_lock
);
3024 x
= cache_grow(cachep
, flags
, nodeid
);
3036 * Caller needs to acquire correct kmem_list's list_lock
3038 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3042 struct kmem_list3
*l3
;
3044 for (i
= 0; i
< nr_objects
; i
++) {
3045 void *objp
= objpp
[i
];
3048 slabp
= virt_to_slab(objp
);
3049 l3
= cachep
->nodelists
[node
];
3050 list_del(&slabp
->list
);
3051 check_spinlock_acquired_node(cachep
, node
);
3052 check_slabp(cachep
, slabp
);
3053 slab_put_obj(cachep
, slabp
, objp
, node
);
3054 STATS_DEC_ACTIVE(cachep
);
3056 check_slabp(cachep
, slabp
);
3058 /* fixup slab chains */
3059 if (slabp
->inuse
== 0) {
3060 if (l3
->free_objects
> l3
->free_limit
) {
3061 l3
->free_objects
-= cachep
->num
;
3062 slab_destroy(cachep
, slabp
);
3064 list_add(&slabp
->list
, &l3
->slabs_free
);
3067 /* Unconditionally move a slab to the end of the
3068 * partial list on free - maximum time for the
3069 * other objects to be freed, too.
3071 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3076 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3079 struct kmem_list3
*l3
;
3080 int node
= numa_node_id();
3082 batchcount
= ac
->batchcount
;
3084 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3087 l3
= cachep
->nodelists
[node
];
3088 spin_lock(&l3
->list_lock
);
3090 struct array_cache
*shared_array
= l3
->shared
;
3091 int max
= shared_array
->limit
- shared_array
->avail
;
3093 if (batchcount
> max
)
3095 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3096 ac
->entry
, sizeof(void *) * batchcount
);
3097 shared_array
->avail
+= batchcount
;
3102 free_block(cachep
, ac
->entry
, batchcount
, node
);
3107 struct list_head
*p
;
3109 p
= l3
->slabs_free
.next
;
3110 while (p
!= &(l3
->slabs_free
)) {
3113 slabp
= list_entry(p
, struct slab
, list
);
3114 BUG_ON(slabp
->inuse
);
3119 STATS_SET_FREEABLE(cachep
, i
);
3122 spin_unlock(&l3
->list_lock
);
3123 ac
->avail
-= batchcount
;
3124 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3128 * Release an obj back to its cache. If the obj has a constructed state, it must
3129 * be in this state _before_ it is released. Called with disabled ints.
3131 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3133 struct array_cache
*ac
= cpu_cache_get(cachep
);
3136 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3138 if (cache_free_alien(cachep
, objp
))
3141 if (likely(ac
->avail
< ac
->limit
)) {
3142 STATS_INC_FREEHIT(cachep
);
3143 ac
->entry
[ac
->avail
++] = objp
;
3146 STATS_INC_FREEMISS(cachep
);
3147 cache_flusharray(cachep
, ac
);
3148 ac
->entry
[ac
->avail
++] = objp
;
3153 * kmem_cache_alloc - Allocate an object
3154 * @cachep: The cache to allocate from.
3155 * @flags: See kmalloc().
3157 * Allocate an object from this cache. The flags are only relevant
3158 * if the cache has no available objects.
3160 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3162 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3164 EXPORT_SYMBOL(kmem_cache_alloc
);
3167 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3168 * @cache: The cache to allocate from.
3169 * @flags: See kmalloc().
3171 * Allocate an object from this cache and set the allocated memory to zero.
3172 * The flags are only relevant if the cache has no available objects.
3174 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3176 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3178 memset(ret
, 0, obj_size(cache
));
3181 EXPORT_SYMBOL(kmem_cache_zalloc
);
3184 * kmem_ptr_validate - check if an untrusted pointer might
3186 * @cachep: the cache we're checking against
3187 * @ptr: pointer to validate
3189 * This verifies that the untrusted pointer looks sane:
3190 * it is _not_ a guarantee that the pointer is actually
3191 * part of the slab cache in question, but it at least
3192 * validates that the pointer can be dereferenced and
3193 * looks half-way sane.
3195 * Currently only used for dentry validation.
3197 int fastcall
kmem_ptr_validate(struct kmem_cache
*cachep
, void *ptr
)
3199 unsigned long addr
= (unsigned long)ptr
;
3200 unsigned long min_addr
= PAGE_OFFSET
;
3201 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3202 unsigned long size
= cachep
->buffer_size
;
3205 if (unlikely(addr
< min_addr
))
3207 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3209 if (unlikely(addr
& align_mask
))
3211 if (unlikely(!kern_addr_valid(addr
)))
3213 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3215 page
= virt_to_page(ptr
);
3216 if (unlikely(!PageSlab(page
)))
3218 if (unlikely(page_get_cache(page
) != cachep
))
3227 * kmem_cache_alloc_node - Allocate an object on the specified node
3228 * @cachep: The cache to allocate from.
3229 * @flags: See kmalloc().
3230 * @nodeid: node number of the target node.
3232 * Identical to kmem_cache_alloc, except that this function is slow
3233 * and can sleep. And it will allocate memory on the given node, which
3234 * can improve the performance for cpu bound structures.
3235 * New and improved: it will now make sure that the object gets
3236 * put on the correct node list so that there is no false sharing.
3238 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3240 unsigned long save_flags
;
3243 cache_alloc_debugcheck_before(cachep
, flags
);
3244 local_irq_save(save_flags
);
3246 if (nodeid
== -1 || nodeid
== numa_node_id() ||
3247 !cachep
->nodelists
[nodeid
])
3248 ptr
= ____cache_alloc(cachep
, flags
);
3250 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
3251 local_irq_restore(save_flags
);
3253 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
,
3254 __builtin_return_address(0));
3258 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3260 void *kmalloc_node(size_t size
, gfp_t flags
, int node
)
3262 struct kmem_cache
*cachep
;
3264 cachep
= kmem_find_general_cachep(size
, flags
);
3265 if (unlikely(cachep
== NULL
))
3267 return kmem_cache_alloc_node(cachep
, flags
, node
);
3269 EXPORT_SYMBOL(kmalloc_node
);
3273 * __do_kmalloc - allocate memory
3274 * @size: how many bytes of memory are required.
3275 * @flags: the type of memory to allocate (see kmalloc).
3276 * @caller: function caller for debug tracking of the caller
3278 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3281 struct kmem_cache
*cachep
;
3283 /* If you want to save a few bytes .text space: replace
3285 * Then kmalloc uses the uninlined functions instead of the inline
3288 cachep
= __find_general_cachep(size
, flags
);
3289 if (unlikely(cachep
== NULL
))
3291 return __cache_alloc(cachep
, flags
, caller
);
3295 void *__kmalloc(size_t size
, gfp_t flags
)
3297 #ifndef CONFIG_DEBUG_SLAB
3298 return __do_kmalloc(size
, flags
, NULL
);
3300 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3303 EXPORT_SYMBOL(__kmalloc
);
3305 #ifdef CONFIG_DEBUG_SLAB
3306 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3308 return __do_kmalloc(size
, flags
, caller
);
3310 EXPORT_SYMBOL(__kmalloc_track_caller
);
3315 * __alloc_percpu - allocate one copy of the object for every present
3316 * cpu in the system, zeroing them.
3317 * Objects should be dereferenced using the per_cpu_ptr macro only.
3319 * @size: how many bytes of memory are required.
3321 void *__alloc_percpu(size_t size
)
3324 struct percpu_data
*pdata
= kmalloc(sizeof(*pdata
), GFP_KERNEL
);
3330 * Cannot use for_each_online_cpu since a cpu may come online
3331 * and we have no way of figuring out how to fix the array
3332 * that we have allocated then....
3334 for_each_possible_cpu(i
) {
3335 int node
= cpu_to_node(i
);
3337 if (node_online(node
))
3338 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
, node
);
3340 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
3342 if (!pdata
->ptrs
[i
])
3344 memset(pdata
->ptrs
[i
], 0, size
);
3347 /* Catch derefs w/o wrappers */
3348 return (void *)(~(unsigned long)pdata
);
3352 if (!cpu_possible(i
))
3354 kfree(pdata
->ptrs
[i
]);
3359 EXPORT_SYMBOL(__alloc_percpu
);
3363 * kmem_cache_free - Deallocate an object
3364 * @cachep: The cache the allocation was from.
3365 * @objp: The previously allocated object.
3367 * Free an object which was previously allocated from this
3370 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3372 unsigned long flags
;
3374 BUG_ON(virt_to_cache(objp
) != cachep
);
3376 local_irq_save(flags
);
3377 __cache_free(cachep
, objp
);
3378 local_irq_restore(flags
);
3380 EXPORT_SYMBOL(kmem_cache_free
);
3383 * kfree - free previously allocated memory
3384 * @objp: pointer returned by kmalloc.
3386 * If @objp is NULL, no operation is performed.
3388 * Don't free memory not originally allocated by kmalloc()
3389 * or you will run into trouble.
3391 void kfree(const void *objp
)
3393 struct kmem_cache
*c
;
3394 unsigned long flags
;
3396 if (unlikely(!objp
))
3398 local_irq_save(flags
);
3399 kfree_debugcheck(objp
);
3400 c
= virt_to_cache(objp
);
3401 debug_check_no_locks_freed(objp
, obj_size(c
));
3402 __cache_free(c
, (void *)objp
);
3403 local_irq_restore(flags
);
3405 EXPORT_SYMBOL(kfree
);
3409 * free_percpu - free previously allocated percpu memory
3410 * @objp: pointer returned by alloc_percpu.
3412 * Don't free memory not originally allocated by alloc_percpu()
3413 * The complemented objp is to check for that.
3415 void free_percpu(const void *objp
)
3418 struct percpu_data
*p
= (struct percpu_data
*)(~(unsigned long)objp
);
3421 * We allocate for all cpus so we cannot use for online cpu here.
3423 for_each_possible_cpu(i
)
3427 EXPORT_SYMBOL(free_percpu
);
3430 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3432 return obj_size(cachep
);
3434 EXPORT_SYMBOL(kmem_cache_size
);
3436 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3438 return cachep
->name
;
3440 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3443 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3445 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3448 struct kmem_list3
*l3
;
3449 struct array_cache
*new_shared
;
3450 struct array_cache
**new_alien
;
3452 for_each_online_node(node
) {
3454 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3458 new_shared
= alloc_arraycache(node
,
3459 cachep
->shared
*cachep
->batchcount
,
3462 free_alien_cache(new_alien
);
3466 l3
= cachep
->nodelists
[node
];
3468 struct array_cache
*shared
= l3
->shared
;
3470 spin_lock_irq(&l3
->list_lock
);
3473 free_block(cachep
, shared
->entry
,
3474 shared
->avail
, node
);
3476 l3
->shared
= new_shared
;
3478 l3
->alien
= new_alien
;
3481 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3482 cachep
->batchcount
+ cachep
->num
;
3483 spin_unlock_irq(&l3
->list_lock
);
3485 free_alien_cache(new_alien
);
3488 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3490 free_alien_cache(new_alien
);
3495 kmem_list3_init(l3
);
3496 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3497 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3498 l3
->shared
= new_shared
;
3499 l3
->alien
= new_alien
;
3500 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3501 cachep
->batchcount
+ cachep
->num
;
3502 cachep
->nodelists
[node
] = l3
;
3507 if (!cachep
->next
.next
) {
3508 /* Cache is not active yet. Roll back what we did */
3511 if (cachep
->nodelists
[node
]) {
3512 l3
= cachep
->nodelists
[node
];
3515 free_alien_cache(l3
->alien
);
3517 cachep
->nodelists
[node
] = NULL
;
3525 struct ccupdate_struct
{
3526 struct kmem_cache
*cachep
;
3527 struct array_cache
*new[NR_CPUS
];
3530 static void do_ccupdate_local(void *info
)
3532 struct ccupdate_struct
*new = info
;
3533 struct array_cache
*old
;
3536 old
= cpu_cache_get(new->cachep
);
3538 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3539 new->new[smp_processor_id()] = old
;
3542 /* Always called with the cache_chain_mutex held */
3543 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3544 int batchcount
, int shared
)
3546 struct ccupdate_struct
new;
3549 memset(&new.new, 0, sizeof(new.new));
3550 for_each_online_cpu(i
) {
3551 new.new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3554 for (i
--; i
>= 0; i
--)
3559 new.cachep
= cachep
;
3561 on_each_cpu(do_ccupdate_local
, (void *)&new, 1, 1);
3564 cachep
->batchcount
= batchcount
;
3565 cachep
->limit
= limit
;
3566 cachep
->shared
= shared
;
3568 for_each_online_cpu(i
) {
3569 struct array_cache
*ccold
= new.new[i
];
3572 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3573 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3574 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3578 err
= alloc_kmemlist(cachep
);
3580 printk(KERN_ERR
"alloc_kmemlist failed for %s, error %d.\n",
3581 cachep
->name
, -err
);
3587 /* Called with cache_chain_mutex held always */
3588 static void enable_cpucache(struct kmem_cache
*cachep
)
3594 * The head array serves three purposes:
3595 * - create a LIFO ordering, i.e. return objects that are cache-warm
3596 * - reduce the number of spinlock operations.
3597 * - reduce the number of linked list operations on the slab and
3598 * bufctl chains: array operations are cheaper.
3599 * The numbers are guessed, we should auto-tune as described by
3602 if (cachep
->buffer_size
> 131072)
3604 else if (cachep
->buffer_size
> PAGE_SIZE
)
3606 else if (cachep
->buffer_size
> 1024)
3608 else if (cachep
->buffer_size
> 256)
3614 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3615 * allocation behaviour: Most allocs on one cpu, most free operations
3616 * on another cpu. For these cases, an efficient object passing between
3617 * cpus is necessary. This is provided by a shared array. The array
3618 * replaces Bonwick's magazine layer.
3619 * On uniprocessor, it's functionally equivalent (but less efficient)
3620 * to a larger limit. Thus disabled by default.
3624 if (cachep
->buffer_size
<= PAGE_SIZE
)
3630 * With debugging enabled, large batchcount lead to excessively long
3631 * periods with disabled local interrupts. Limit the batchcount
3636 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3638 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3639 cachep
->name
, -err
);
3643 * Drain an array if it contains any elements taking the l3 lock only if
3644 * necessary. Note that the l3 listlock also protects the array_cache
3645 * if drain_array() is used on the shared array.
3647 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3648 struct array_cache
*ac
, int force
, int node
)
3652 if (!ac
|| !ac
->avail
)
3654 if (ac
->touched
&& !force
) {
3657 spin_lock_irq(&l3
->list_lock
);
3659 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3660 if (tofree
> ac
->avail
)
3661 tofree
= (ac
->avail
+ 1) / 2;
3662 free_block(cachep
, ac
->entry
, tofree
, node
);
3663 ac
->avail
-= tofree
;
3664 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3665 sizeof(void *) * ac
->avail
);
3667 spin_unlock_irq(&l3
->list_lock
);
3672 * cache_reap - Reclaim memory from caches.
3673 * @unused: unused parameter
3675 * Called from workqueue/eventd every few seconds.
3677 * - clear the per-cpu caches for this CPU.
3678 * - return freeable pages to the main free memory pool.
3680 * If we cannot acquire the cache chain mutex then just give up - we'll try
3681 * again on the next iteration.
3683 static void cache_reap(void *unused
)
3685 struct kmem_cache
*searchp
;
3686 struct kmem_list3
*l3
;
3687 int node
= numa_node_id();
3689 if (!mutex_trylock(&cache_chain_mutex
)) {
3690 /* Give up. Setup the next iteration. */
3691 schedule_delayed_work(&__get_cpu_var(reap_work
),
3696 list_for_each_entry(searchp
, &cache_chain
, next
) {
3697 struct list_head
*p
;
3704 * We only take the l3 lock if absolutely necessary and we
3705 * have established with reasonable certainty that
3706 * we can do some work if the lock was obtained.
3708 l3
= searchp
->nodelists
[node
];
3710 reap_alien(searchp
, l3
);
3712 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
3715 * These are racy checks but it does not matter
3716 * if we skip one check or scan twice.
3718 if (time_after(l3
->next_reap
, jiffies
))
3721 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3723 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
3725 if (l3
->free_touched
) {
3726 l3
->free_touched
= 0;
3730 tofree
= (l3
->free_limit
+ 5 * searchp
->num
- 1) /
3734 * Do not lock if there are no free blocks.
3736 if (list_empty(&l3
->slabs_free
))
3739 spin_lock_irq(&l3
->list_lock
);
3740 p
= l3
->slabs_free
.next
;
3741 if (p
== &(l3
->slabs_free
)) {
3742 spin_unlock_irq(&l3
->list_lock
);
3746 slabp
= list_entry(p
, struct slab
, list
);
3747 BUG_ON(slabp
->inuse
);
3748 list_del(&slabp
->list
);
3749 STATS_INC_REAPED(searchp
);
3752 * Safe to drop the lock. The slab is no longer linked
3753 * to the cache. searchp cannot disappear, we hold
3756 l3
->free_objects
-= searchp
->num
;
3757 spin_unlock_irq(&l3
->list_lock
);
3758 slab_destroy(searchp
, slabp
);
3759 } while (--tofree
> 0);
3764 mutex_unlock(&cache_chain_mutex
);
3766 /* Set up the next iteration */
3767 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
);
3770 #ifdef CONFIG_PROC_FS
3772 static void print_slabinfo_header(struct seq_file
*m
)
3775 * Output format version, so at least we can change it
3776 * without _too_ many complaints.
3779 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3781 seq_puts(m
, "slabinfo - version: 2.1\n");
3783 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
3784 "<objperslab> <pagesperslab>");
3785 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3786 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3788 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3789 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3790 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3795 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3798 struct list_head
*p
;
3800 mutex_lock(&cache_chain_mutex
);
3802 print_slabinfo_header(m
);
3803 p
= cache_chain
.next
;
3806 if (p
== &cache_chain
)
3809 return list_entry(p
, struct kmem_cache
, next
);
3812 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3814 struct kmem_cache
*cachep
= p
;
3816 return cachep
->next
.next
== &cache_chain
?
3817 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
3820 static void s_stop(struct seq_file
*m
, void *p
)
3822 mutex_unlock(&cache_chain_mutex
);
3825 static int s_show(struct seq_file
*m
, void *p
)
3827 struct kmem_cache
*cachep
= p
;
3829 unsigned long active_objs
;
3830 unsigned long num_objs
;
3831 unsigned long active_slabs
= 0;
3832 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3836 struct kmem_list3
*l3
;
3840 for_each_online_node(node
) {
3841 l3
= cachep
->nodelists
[node
];
3846 spin_lock_irq(&l3
->list_lock
);
3848 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
3849 if (slabp
->inuse
!= cachep
->num
&& !error
)
3850 error
= "slabs_full accounting error";
3851 active_objs
+= cachep
->num
;
3854 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
3855 if (slabp
->inuse
== cachep
->num
&& !error
)
3856 error
= "slabs_partial inuse accounting error";
3857 if (!slabp
->inuse
&& !error
)
3858 error
= "slabs_partial/inuse accounting error";
3859 active_objs
+= slabp
->inuse
;
3862 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
3863 if (slabp
->inuse
&& !error
)
3864 error
= "slabs_free/inuse accounting error";
3867 free_objects
+= l3
->free_objects
;
3869 shared_avail
+= l3
->shared
->avail
;
3871 spin_unlock_irq(&l3
->list_lock
);
3873 num_slabs
+= active_slabs
;
3874 num_objs
= num_slabs
* cachep
->num
;
3875 if (num_objs
- active_objs
!= free_objects
&& !error
)
3876 error
= "free_objects accounting error";
3878 name
= cachep
->name
;
3880 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3882 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3883 name
, active_objs
, num_objs
, cachep
->buffer_size
,
3884 cachep
->num
, (1 << cachep
->gfporder
));
3885 seq_printf(m
, " : tunables %4u %4u %4u",
3886 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
3887 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3888 active_slabs
, num_slabs
, shared_avail
);
3891 unsigned long high
= cachep
->high_mark
;
3892 unsigned long allocs
= cachep
->num_allocations
;
3893 unsigned long grown
= cachep
->grown
;
3894 unsigned long reaped
= cachep
->reaped
;
3895 unsigned long errors
= cachep
->errors
;
3896 unsigned long max_freeable
= cachep
->max_freeable
;
3897 unsigned long node_allocs
= cachep
->node_allocs
;
3898 unsigned long node_frees
= cachep
->node_frees
;
3899 unsigned long overflows
= cachep
->node_overflow
;
3901 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
3902 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
3903 reaped
, errors
, max_freeable
, node_allocs
,
3904 node_frees
, overflows
);
3908 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3909 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
3910 unsigned long freehit
= atomic_read(&cachep
->freehit
);
3911 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
3913 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
3914 allochit
, allocmiss
, freehit
, freemiss
);
3922 * slabinfo_op - iterator that generates /proc/slabinfo
3931 * num-pages-per-slab
3932 * + further values on SMP and with statistics enabled
3935 struct seq_operations slabinfo_op
= {
3942 #define MAX_SLABINFO_WRITE 128
3944 * slabinfo_write - Tuning for the slab allocator
3946 * @buffer: user buffer
3947 * @count: data length
3950 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
3951 size_t count
, loff_t
*ppos
)
3953 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
3954 int limit
, batchcount
, shared
, res
;
3955 struct kmem_cache
*cachep
;
3957 if (count
> MAX_SLABINFO_WRITE
)
3959 if (copy_from_user(&kbuf
, buffer
, count
))
3961 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3963 tmp
= strchr(kbuf
, ' ');
3968 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3971 /* Find the cache in the chain of caches. */
3972 mutex_lock(&cache_chain_mutex
);
3974 list_for_each_entry(cachep
, &cache_chain
, next
) {
3975 if (!strcmp(cachep
->name
, kbuf
)) {
3976 if (limit
< 1 || batchcount
< 1 ||
3977 batchcount
> limit
|| shared
< 0) {
3980 res
= do_tune_cpucache(cachep
, limit
,
3981 batchcount
, shared
);
3986 mutex_unlock(&cache_chain_mutex
);
3992 #ifdef CONFIG_DEBUG_SLAB_LEAK
3994 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
3997 struct list_head
*p
;
3999 mutex_lock(&cache_chain_mutex
);
4000 p
= cache_chain
.next
;
4003 if (p
== &cache_chain
)
4006 return list_entry(p
, struct kmem_cache
, next
);
4009 static inline int add_caller(unsigned long *n
, unsigned long v
)
4019 unsigned long *q
= p
+ 2 * i
;
4033 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4039 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4045 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4046 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4048 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4053 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4055 #ifdef CONFIG_KALLSYMS
4058 unsigned long offset
, size
;
4059 char namebuf
[KSYM_NAME_LEN
+1];
4061 name
= kallsyms_lookup(address
, &size
, &offset
, &modname
, namebuf
);
4064 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4066 seq_printf(m
, " [%s]", modname
);
4070 seq_printf(m
, "%p", (void *)address
);
4073 static int leaks_show(struct seq_file
*m
, void *p
)
4075 struct kmem_cache
*cachep
= p
;
4077 struct kmem_list3
*l3
;
4079 unsigned long *n
= m
->private;
4083 if (!(cachep
->flags
& SLAB_STORE_USER
))
4085 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4088 /* OK, we can do it */
4092 for_each_online_node(node
) {
4093 l3
= cachep
->nodelists
[node
];
4098 spin_lock_irq(&l3
->list_lock
);
4100 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4101 handle_slab(n
, cachep
, slabp
);
4102 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4103 handle_slab(n
, cachep
, slabp
);
4104 spin_unlock_irq(&l3
->list_lock
);
4106 name
= cachep
->name
;
4108 /* Increase the buffer size */
4109 mutex_unlock(&cache_chain_mutex
);
4110 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4112 /* Too bad, we are really out */
4114 mutex_lock(&cache_chain_mutex
);
4117 *(unsigned long *)m
->private = n
[0] * 2;
4119 mutex_lock(&cache_chain_mutex
);
4120 /* Now make sure this entry will be retried */
4124 for (i
= 0; i
< n
[1]; i
++) {
4125 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4126 show_symbol(m
, n
[2*i
+2]);
4132 struct seq_operations slabstats_op
= {
4133 .start
= leaks_start
,
4142 * ksize - get the actual amount of memory allocated for a given object
4143 * @objp: Pointer to the object
4145 * kmalloc may internally round up allocations and return more memory
4146 * than requested. ksize() can be used to determine the actual amount of
4147 * memory allocated. The caller may use this additional memory, even though
4148 * a smaller amount of memory was initially specified with the kmalloc call.
4149 * The caller must guarantee that objp points to a valid object previously
4150 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4151 * must not be freed during the duration of the call.
4153 unsigned int ksize(const void *objp
)
4155 if (unlikely(objp
== NULL
))
4158 return obj_size(virt_to_cache(objp
));