2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
39 #include <net/neighbour.h>
40 #include <net/netevent.h>
41 #include <net/route.h>
44 #include "cxgb3_offload.h"
46 #include "iwch_provider.h"
49 static char *states
[] = {
65 static int ep_timeout_secs
= 10;
66 module_param(ep_timeout_secs
, int, 0444);
67 MODULE_PARM_DESC(ep_timeout_secs
, "CM Endpoint operation timeout "
68 "in seconds (default=10)");
70 static int mpa_rev
= 1;
71 module_param(mpa_rev
, int, 0444);
72 MODULE_PARM_DESC(mpa_rev
, "MPA Revision, 0 supports amso1100, "
73 "1 is spec compliant. (default=1)");
75 static int markers_enabled
= 0;
76 module_param(markers_enabled
, int, 0444);
77 MODULE_PARM_DESC(markers_enabled
, "Enable MPA MARKERS (default(0)=disabled)");
79 static int crc_enabled
= 1;
80 module_param(crc_enabled
, int, 0444);
81 MODULE_PARM_DESC(crc_enabled
, "Enable MPA CRC (default(1)=enabled)");
83 static int rcv_win
= 256 * 1024;
84 module_param(rcv_win
, int, 0444);
85 MODULE_PARM_DESC(rcv_win
, "TCP receive window in bytes (default=256)");
87 static int snd_win
= 32 * 1024;
88 module_param(snd_win
, int, 0444);
89 MODULE_PARM_DESC(snd_win
, "TCP send window in bytes (default=32KB)");
91 static unsigned int nocong
= 0;
92 module_param(nocong
, uint
, 0444);
93 MODULE_PARM_DESC(nocong
, "Turn off congestion control (default=0)");
95 static unsigned int cong_flavor
= 1;
96 module_param(cong_flavor
, uint
, 0444);
97 MODULE_PARM_DESC(cong_flavor
, "TCP Congestion control flavor (default=1)");
99 static void process_work(struct work_struct
*work
);
100 static struct workqueue_struct
*workq
;
101 static DECLARE_WORK(skb_work
, process_work
);
103 static struct sk_buff_head rxq
;
104 static cxgb3_cpl_handler_func work_handlers
[NUM_CPL_CMDS
];
106 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
);
107 static void ep_timeout(unsigned long arg
);
108 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
);
110 static void start_ep_timer(struct iwch_ep
*ep
)
112 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
113 if (timer_pending(&ep
->timer
)) {
114 PDBG("%s stopped / restarted timer ep %p\n", __FUNCTION__
, ep
);
115 del_timer_sync(&ep
->timer
);
118 ep
->timer
.expires
= jiffies
+ ep_timeout_secs
* HZ
;
119 ep
->timer
.data
= (unsigned long)ep
;
120 ep
->timer
.function
= ep_timeout
;
121 add_timer(&ep
->timer
);
124 static void stop_ep_timer(struct iwch_ep
*ep
)
126 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
127 del_timer_sync(&ep
->timer
);
131 static void release_tid(struct t3cdev
*tdev
, u32 hwtid
, struct sk_buff
*skb
)
133 struct cpl_tid_release
*req
;
135 skb
= get_skb(skb
, sizeof *req
, GFP_KERNEL
);
138 req
= (struct cpl_tid_release
*) skb_put(skb
, sizeof(*req
));
139 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
140 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE
, hwtid
));
141 skb
->priority
= CPL_PRIORITY_SETUP
;
142 tdev
->send(tdev
, skb
);
146 int iwch_quiesce_tid(struct iwch_ep
*ep
)
148 struct cpl_set_tcb_field
*req
;
149 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
153 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
154 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
155 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
156 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
159 req
->word
= htons(W_TCB_RX_QUIESCE
);
160 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
161 req
->val
= cpu_to_be64(1 << S_TCB_RX_QUIESCE
);
163 skb
->priority
= CPL_PRIORITY_DATA
;
164 ep
->com
.tdev
->send(ep
->com
.tdev
, skb
);
168 int iwch_resume_tid(struct iwch_ep
*ep
)
170 struct cpl_set_tcb_field
*req
;
171 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
175 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
176 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
177 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
178 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
181 req
->word
= htons(W_TCB_RX_QUIESCE
);
182 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
185 skb
->priority
= CPL_PRIORITY_DATA
;
186 ep
->com
.tdev
->send(ep
->com
.tdev
, skb
);
190 static void set_emss(struct iwch_ep
*ep
, u16 opt
)
192 PDBG("%s ep %p opt %u\n", __FUNCTION__
, ep
, opt
);
193 ep
->emss
= T3C_DATA(ep
->com
.tdev
)->mtus
[G_TCPOPT_MSS(opt
)] - 40;
194 if (G_TCPOPT_TSTAMP(opt
))
198 PDBG("emss=%d\n", ep
->emss
);
201 static enum iwch_ep_state
state_read(struct iwch_ep_common
*epc
)
204 enum iwch_ep_state state
;
206 spin_lock_irqsave(&epc
->lock
, flags
);
208 spin_unlock_irqrestore(&epc
->lock
, flags
);
212 static void __state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
217 static void state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
221 spin_lock_irqsave(&epc
->lock
, flags
);
222 PDBG("%s - %s -> %s\n", __FUNCTION__
, states
[epc
->state
], states
[new]);
223 __state_set(epc
, new);
224 spin_unlock_irqrestore(&epc
->lock
, flags
);
228 static void *alloc_ep(int size
, gfp_t gfp
)
230 struct iwch_ep_common
*epc
;
232 epc
= kmalloc(size
, gfp
);
234 memset(epc
, 0, size
);
235 kref_init(&epc
->kref
);
236 spin_lock_init(&epc
->lock
);
237 init_waitqueue_head(&epc
->waitq
);
239 PDBG("%s alloc ep %p\n", __FUNCTION__
, epc
);
243 void __free_ep(struct kref
*kref
)
245 struct iwch_ep_common
*epc
;
246 epc
= container_of(kref
, struct iwch_ep_common
, kref
);
247 PDBG("%s ep %p state %s\n", __FUNCTION__
, epc
, states
[state_read(epc
)]);
251 static void release_ep_resources(struct iwch_ep
*ep
)
253 PDBG("%s ep %p tid %d\n", __FUNCTION__
, ep
, ep
->hwtid
);
254 cxgb3_remove_tid(ep
->com
.tdev
, (void *)ep
, ep
->hwtid
);
255 dst_release(ep
->dst
);
256 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
260 static void process_work(struct work_struct
*work
)
262 struct sk_buff
*skb
= NULL
;
267 while ((skb
= skb_dequeue(&rxq
))) {
268 ep
= *((void **) (skb
->cb
));
269 tdev
= *((struct t3cdev
**) (skb
->cb
+ sizeof(void *)));
270 ret
= work_handlers
[G_OPCODE(ntohl((__force __be32
)skb
->csum
))](tdev
, skb
, ep
);
271 if (ret
& CPL_RET_BUF_DONE
)
275 * ep was referenced in sched(), and is freed here.
277 put_ep((struct iwch_ep_common
*)ep
);
281 static int status2errno(int status
)
286 case CPL_ERR_CONN_RESET
:
288 case CPL_ERR_ARP_MISS
:
289 return -EHOSTUNREACH
;
290 case CPL_ERR_CONN_TIMEDOUT
:
292 case CPL_ERR_TCAM_FULL
:
294 case CPL_ERR_CONN_EXIST
:
302 * Try and reuse skbs already allocated...
304 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
)
306 if (skb
&& !skb_is_nonlinear(skb
) && !skb_cloned(skb
)) {
310 skb
= alloc_skb(len
, gfp
);
315 static struct rtable
*find_route(struct t3cdev
*dev
, __be32 local_ip
,
316 __be32 peer_ip
, __be16 local_port
,
317 __be16 peer_port
, u8 tos
)
328 .proto
= IPPROTO_TCP
,
336 if (ip_route_output_flow(&rt
, &fl
, NULL
, 0))
341 static unsigned int find_best_mtu(const struct t3c_data
*d
, unsigned short mtu
)
345 while (i
< d
->nmtus
- 1 && d
->mtus
[i
+ 1] <= mtu
)
350 static void arp_failure_discard(struct t3cdev
*dev
, struct sk_buff
*skb
)
352 PDBG("%s t3cdev %p\n", __FUNCTION__
, dev
);
357 * Handle an ARP failure for an active open.
359 static void act_open_req_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
361 printk(KERN_ERR MOD
"ARP failure duing connect\n");
366 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
369 static void abort_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
371 struct cpl_abort_req
*req
= cplhdr(skb
);
373 PDBG("%s t3cdev %p\n", __FUNCTION__
, dev
);
374 req
->cmd
= CPL_ABORT_NO_RST
;
375 cxgb3_ofld_send(dev
, skb
);
378 static int send_halfclose(struct iwch_ep
*ep
, gfp_t gfp
)
380 struct cpl_close_con_req
*req
;
383 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
384 skb
= get_skb(NULL
, sizeof(*req
), gfp
);
386 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __FUNCTION__
);
389 skb
->priority
= CPL_PRIORITY_DATA
;
390 set_arp_failure_handler(skb
, arp_failure_discard
);
391 req
= (struct cpl_close_con_req
*) skb_put(skb
, sizeof(*req
));
392 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON
));
393 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
394 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ
, ep
->hwtid
));
395 l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
399 static int send_abort(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
401 struct cpl_abort_req
*req
;
403 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
404 skb
= get_skb(skb
, sizeof(*req
), gfp
);
406 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
410 skb
->priority
= CPL_PRIORITY_DATA
;
411 set_arp_failure_handler(skb
, abort_arp_failure
);
412 req
= (struct cpl_abort_req
*) skb_put(skb
, sizeof(*req
));
413 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ
));
414 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
415 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ
, ep
->hwtid
));
416 req
->cmd
= CPL_ABORT_SEND_RST
;
417 l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
421 static int send_connect(struct iwch_ep
*ep
)
423 struct cpl_act_open_req
*req
;
425 u32 opt0h
, opt0l
, opt2
;
426 unsigned int mtu_idx
;
429 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
431 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
433 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
437 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
438 wscale
= compute_wscale(rcv_win
);
443 V_WND_SCALE(wscale
) |
445 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
446 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
447 opt2
= V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor
);
448 skb
->priority
= CPL_PRIORITY_SETUP
;
449 set_arp_failure_handler(skb
, act_open_req_arp_failure
);
451 req
= (struct cpl_act_open_req
*) skb_put(skb
, sizeof(*req
));
452 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
453 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ
, ep
->atid
));
454 req
->local_port
= ep
->com
.local_addr
.sin_port
;
455 req
->peer_port
= ep
->com
.remote_addr
.sin_port
;
456 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
457 req
->peer_ip
= ep
->com
.remote_addr
.sin_addr
.s_addr
;
458 req
->opt0h
= htonl(opt0h
);
459 req
->opt0l
= htonl(opt0l
);
461 req
->opt2
= htonl(opt2
);
462 l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
466 static void send_mpa_req(struct iwch_ep
*ep
, struct sk_buff
*skb
)
469 struct tx_data_wr
*req
;
470 struct mpa_message
*mpa
;
473 PDBG("%s ep %p pd_len %d\n", __FUNCTION__
, ep
, ep
->plen
);
475 BUG_ON(skb_cloned(skb
));
477 mpalen
= sizeof(*mpa
) + ep
->plen
;
478 if (skb
->data
+ mpalen
+ sizeof(*req
) > skb_end_pointer(skb
)) {
480 skb
=alloc_skb(mpalen
+ sizeof(*req
), GFP_KERNEL
);
482 connect_reply_upcall(ep
, -ENOMEM
);
487 skb_reserve(skb
, sizeof(*req
));
488 skb_put(skb
, mpalen
);
489 skb
->priority
= CPL_PRIORITY_DATA
;
490 mpa
= (struct mpa_message
*) skb
->data
;
491 memset(mpa
, 0, sizeof(*mpa
));
492 memcpy(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
));
493 mpa
->flags
= (crc_enabled
? MPA_CRC
: 0) |
494 (markers_enabled
? MPA_MARKERS
: 0);
495 mpa
->private_data_size
= htons(ep
->plen
);
496 mpa
->revision
= mpa_rev
;
499 memcpy(mpa
->private_data
, ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
502 * Reference the mpa skb. This ensures the data area
503 * will remain in memory until the hw acks the tx.
504 * Function tx_ack() will deref it.
507 set_arp_failure_handler(skb
, arp_failure_discard
);
508 skb_reset_transport_header(skb
);
510 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
511 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
));
512 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
513 req
->len
= htonl(len
);
514 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
515 V_TX_SNDBUF(snd_win
>>15));
516 req
->flags
= htonl(F_TX_INIT
);
517 req
->sndseq
= htonl(ep
->snd_seq
);
520 l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
522 state_set(&ep
->com
, MPA_REQ_SENT
);
526 static int send_mpa_reject(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
529 struct tx_data_wr
*req
;
530 struct mpa_message
*mpa
;
533 PDBG("%s ep %p plen %d\n", __FUNCTION__
, ep
, plen
);
535 mpalen
= sizeof(*mpa
) + plen
;
537 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
539 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __FUNCTION__
);
542 skb_reserve(skb
, sizeof(*req
));
543 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
544 memset(mpa
, 0, sizeof(*mpa
));
545 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
546 mpa
->flags
= MPA_REJECT
;
547 mpa
->revision
= mpa_rev
;
548 mpa
->private_data_size
= htons(plen
);
550 memcpy(mpa
->private_data
, pdata
, plen
);
553 * Reference the mpa skb again. This ensures the data area
554 * will remain in memory until the hw acks the tx.
555 * Function tx_ack() will deref it.
558 skb
->priority
= CPL_PRIORITY_DATA
;
559 set_arp_failure_handler(skb
, arp_failure_discard
);
560 skb_reset_transport_header(skb
);
561 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
562 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
));
563 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
564 req
->len
= htonl(mpalen
);
565 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
566 V_TX_SNDBUF(snd_win
>>15));
567 req
->flags
= htonl(F_TX_INIT
);
568 req
->sndseq
= htonl(ep
->snd_seq
);
571 l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
575 static int send_mpa_reply(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
578 struct tx_data_wr
*req
;
579 struct mpa_message
*mpa
;
583 PDBG("%s ep %p plen %d\n", __FUNCTION__
, ep
, plen
);
585 mpalen
= sizeof(*mpa
) + plen
;
587 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
589 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __FUNCTION__
);
592 skb
->priority
= CPL_PRIORITY_DATA
;
593 skb_reserve(skb
, sizeof(*req
));
594 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
595 memset(mpa
, 0, sizeof(*mpa
));
596 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
597 mpa
->flags
= (ep
->mpa_attr
.crc_enabled
? MPA_CRC
: 0) |
598 (markers_enabled
? MPA_MARKERS
: 0);
599 mpa
->revision
= mpa_rev
;
600 mpa
->private_data_size
= htons(plen
);
602 memcpy(mpa
->private_data
, pdata
, plen
);
605 * Reference the mpa skb. This ensures the data area
606 * will remain in memory until the hw acks the tx.
607 * Function tx_ack() will deref it.
610 set_arp_failure_handler(skb
, arp_failure_discard
);
611 skb_reset_transport_header(skb
);
613 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
614 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
));
615 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
616 req
->len
= htonl(len
);
617 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
618 V_TX_SNDBUF(snd_win
>>15));
619 req
->flags
= htonl(F_TX_INIT
);
620 req
->sndseq
= htonl(ep
->snd_seq
);
622 state_set(&ep
->com
, MPA_REP_SENT
);
623 l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
627 static int act_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
629 struct iwch_ep
*ep
= ctx
;
630 struct cpl_act_establish
*req
= cplhdr(skb
);
631 unsigned int tid
= GET_TID(req
);
633 PDBG("%s ep %p tid %d\n", __FUNCTION__
, ep
, tid
);
635 dst_confirm(ep
->dst
);
637 /* setup the hwtid for this connection */
639 cxgb3_insert_tid(ep
->com
.tdev
, &t3c_client
, ep
, tid
);
641 ep
->snd_seq
= ntohl(req
->snd_isn
);
642 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
644 set_emss(ep
, ntohs(req
->tcp_opt
));
646 /* dealloc the atid */
647 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
649 /* start MPA negotiation */
650 send_mpa_req(ep
, skb
);
655 static void abort_connection(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
657 PDBG("%s ep %p\n", __FILE__
, ep
);
658 state_set(&ep
->com
, ABORTING
);
659 send_abort(ep
, skb
, gfp
);
662 static void close_complete_upcall(struct iwch_ep
*ep
)
664 struct iw_cm_event event
;
666 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
667 memset(&event
, 0, sizeof(event
));
668 event
.event
= IW_CM_EVENT_CLOSE
;
670 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
671 ep
, ep
->com
.cm_id
, ep
->hwtid
);
672 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
673 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
674 ep
->com
.cm_id
= NULL
;
679 static void peer_close_upcall(struct iwch_ep
*ep
)
681 struct iw_cm_event event
;
683 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
684 memset(&event
, 0, sizeof(event
));
685 event
.event
= IW_CM_EVENT_DISCONNECT
;
687 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
688 ep
, ep
->com
.cm_id
, ep
->hwtid
);
689 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
693 static void peer_abort_upcall(struct iwch_ep
*ep
)
695 struct iw_cm_event event
;
697 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
698 memset(&event
, 0, sizeof(event
));
699 event
.event
= IW_CM_EVENT_CLOSE
;
700 event
.status
= -ECONNRESET
;
702 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep
,
703 ep
->com
.cm_id
, ep
->hwtid
);
704 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
705 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
706 ep
->com
.cm_id
= NULL
;
711 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
)
713 struct iw_cm_event event
;
715 PDBG("%s ep %p status %d\n", __FUNCTION__
, ep
, status
);
716 memset(&event
, 0, sizeof(event
));
717 event
.event
= IW_CM_EVENT_CONNECT_REPLY
;
718 event
.status
= status
;
719 event
.local_addr
= ep
->com
.local_addr
;
720 event
.remote_addr
= ep
->com
.remote_addr
;
722 if ((status
== 0) || (status
== -ECONNREFUSED
)) {
723 event
.private_data_len
= ep
->plen
;
724 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
727 PDBG("%s ep %p tid %d status %d\n", __FUNCTION__
, ep
,
729 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
732 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
733 ep
->com
.cm_id
= NULL
;
738 static void connect_request_upcall(struct iwch_ep
*ep
)
740 struct iw_cm_event event
;
742 PDBG("%s ep %p tid %d\n", __FUNCTION__
, ep
, ep
->hwtid
);
743 memset(&event
, 0, sizeof(event
));
744 event
.event
= IW_CM_EVENT_CONNECT_REQUEST
;
745 event
.local_addr
= ep
->com
.local_addr
;
746 event
.remote_addr
= ep
->com
.remote_addr
;
747 event
.private_data_len
= ep
->plen
;
748 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
749 event
.provider_data
= ep
;
750 if (state_read(&ep
->parent_ep
->com
) != DEAD
)
751 ep
->parent_ep
->com
.cm_id
->event_handler(
752 ep
->parent_ep
->com
.cm_id
,
754 put_ep(&ep
->parent_ep
->com
);
755 ep
->parent_ep
= NULL
;
758 static void established_upcall(struct iwch_ep
*ep
)
760 struct iw_cm_event event
;
762 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
763 memset(&event
, 0, sizeof(event
));
764 event
.event
= IW_CM_EVENT_ESTABLISHED
;
766 PDBG("%s ep %p tid %d\n", __FUNCTION__
, ep
, ep
->hwtid
);
767 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
771 static int update_rx_credits(struct iwch_ep
*ep
, u32 credits
)
773 struct cpl_rx_data_ack
*req
;
776 PDBG("%s ep %p credits %u\n", __FUNCTION__
, ep
, credits
);
777 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
779 printk(KERN_ERR MOD
"update_rx_credits - cannot alloc skb!\n");
783 req
= (struct cpl_rx_data_ack
*) skb_put(skb
, sizeof(*req
));
784 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
785 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK
, ep
->hwtid
));
786 req
->credit_dack
= htonl(V_RX_CREDITS(credits
) | V_RX_FORCE_ACK(1));
787 skb
->priority
= CPL_PRIORITY_ACK
;
788 ep
->com
.tdev
->send(ep
->com
.tdev
, skb
);
792 static void process_mpa_reply(struct iwch_ep
*ep
, struct sk_buff
*skb
)
794 struct mpa_message
*mpa
;
796 struct iwch_qp_attributes attrs
;
797 enum iwch_qp_attr_mask mask
;
800 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
803 * Stop mpa timer. If it expired, then the state has
804 * changed and we bail since ep_timeout already aborted
808 if (state_read(&ep
->com
) != MPA_REQ_SENT
)
812 * If we get more than the supported amount of private data
813 * then we must fail this connection.
815 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
821 * copy the new data into our accumulation buffer.
823 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
825 ep
->mpa_pkt_len
+= skb
->len
;
828 * if we don't even have the mpa message, then bail.
830 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
832 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
834 /* Validate MPA header. */
835 if (mpa
->revision
!= mpa_rev
) {
839 if (memcmp(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
))) {
844 plen
= ntohs(mpa
->private_data_size
);
847 * Fail if there's too much private data.
849 if (plen
> MPA_MAX_PRIVATE_DATA
) {
855 * If plen does not account for pkt size
857 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
862 ep
->plen
= (u8
) plen
;
865 * If we don't have all the pdata yet, then bail.
866 * We'll continue process when more data arrives.
868 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
871 if (mpa
->flags
& MPA_REJECT
) {
877 * If we get here we have accumulated the entire mpa
878 * start reply message including private data. And
879 * the MPA header is valid.
881 state_set(&ep
->com
, FPDU_MODE
);
882 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
883 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
884 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
885 ep
->mpa_attr
.version
= mpa_rev
;
886 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
887 "xmit_marker_enabled=%d, version=%d\n", __FUNCTION__
,
888 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
889 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
891 attrs
.mpa_attr
= ep
->mpa_attr
;
892 attrs
.max_ird
= ep
->ird
;
893 attrs
.max_ord
= ep
->ord
;
894 attrs
.llp_stream_handle
= ep
;
895 attrs
.next_state
= IWCH_QP_STATE_RTS
;
897 mask
= IWCH_QP_ATTR_NEXT_STATE
|
898 IWCH_QP_ATTR_LLP_STREAM_HANDLE
| IWCH_QP_ATTR_MPA_ATTR
|
899 IWCH_QP_ATTR_MAX_IRD
| IWCH_QP_ATTR_MAX_ORD
;
901 /* bind QP and TID with INIT_WR */
902 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
903 ep
->com
.qp
, mask
, &attrs
, 1);
907 abort_connection(ep
, skb
, GFP_KERNEL
);
909 connect_reply_upcall(ep
, err
);
913 static void process_mpa_request(struct iwch_ep
*ep
, struct sk_buff
*skb
)
915 struct mpa_message
*mpa
;
918 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
921 * Stop mpa timer. If it expired, then the state has
922 * changed and we bail since ep_timeout already aborted
926 if (state_read(&ep
->com
) != MPA_REQ_WAIT
)
930 * If we get more than the supported amount of private data
931 * then we must fail this connection.
933 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
934 abort_connection(ep
, skb
, GFP_KERNEL
);
938 PDBG("%s enter (%s line %u)\n", __FUNCTION__
, __FILE__
, __LINE__
);
941 * Copy the new data into our accumulation buffer.
943 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
945 ep
->mpa_pkt_len
+= skb
->len
;
948 * If we don't even have the mpa message, then bail.
949 * We'll continue process when more data arrives.
951 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
953 PDBG("%s enter (%s line %u)\n", __FUNCTION__
, __FILE__
, __LINE__
);
954 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
957 * Validate MPA Header.
959 if (mpa
->revision
!= mpa_rev
) {
960 abort_connection(ep
, skb
, GFP_KERNEL
);
964 if (memcmp(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
))) {
965 abort_connection(ep
, skb
, GFP_KERNEL
);
969 plen
= ntohs(mpa
->private_data_size
);
972 * Fail if there's too much private data.
974 if (plen
> MPA_MAX_PRIVATE_DATA
) {
975 abort_connection(ep
, skb
, GFP_KERNEL
);
980 * If plen does not account for pkt size
982 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
983 abort_connection(ep
, skb
, GFP_KERNEL
);
986 ep
->plen
= (u8
) plen
;
989 * If we don't have all the pdata yet, then bail.
991 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
995 * If we get here we have accumulated the entire mpa
996 * start reply message including private data.
998 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
999 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
1000 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1001 ep
->mpa_attr
.version
= mpa_rev
;
1002 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1003 "xmit_marker_enabled=%d, version=%d\n", __FUNCTION__
,
1004 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
1005 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
1007 state_set(&ep
->com
, MPA_REQ_RCVD
);
1010 connect_request_upcall(ep
);
1014 static int rx_data(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1016 struct iwch_ep
*ep
= ctx
;
1017 struct cpl_rx_data
*hdr
= cplhdr(skb
);
1018 unsigned int dlen
= ntohs(hdr
->len
);
1020 PDBG("%s ep %p dlen %u\n", __FUNCTION__
, ep
, dlen
);
1022 skb_pull(skb
, sizeof(*hdr
));
1023 skb_trim(skb
, dlen
);
1025 ep
->rcv_seq
+= dlen
;
1026 BUG_ON(ep
->rcv_seq
!= (ntohl(hdr
->seq
) + dlen
));
1028 switch (state_read(&ep
->com
)) {
1030 process_mpa_reply(ep
, skb
);
1033 process_mpa_request(ep
, skb
);
1038 printk(KERN_ERR MOD
"%s Unexpected streaming data."
1039 " ep %p state %d tid %d\n",
1040 __FUNCTION__
, ep
, state_read(&ep
->com
), ep
->hwtid
);
1043 * The ep will timeout and inform the ULP of the failure.
1049 /* update RX credits */
1050 update_rx_credits(ep
, dlen
);
1052 return CPL_RET_BUF_DONE
;
1056 * Upcall from the adapter indicating data has been transmitted.
1057 * For us its just the single MPA request or reply. We can now free
1058 * the skb holding the mpa message.
1060 static int tx_ack(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1062 struct iwch_ep
*ep
= ctx
;
1063 struct cpl_wr_ack
*hdr
= cplhdr(skb
);
1064 unsigned int credits
= ntohs(hdr
->credits
);
1066 PDBG("%s ep %p credits %u\n", __FUNCTION__
, ep
, credits
);
1069 return CPL_RET_BUF_DONE
;
1070 BUG_ON(credits
!= 1);
1071 BUG_ON(ep
->mpa_skb
== NULL
);
1072 kfree_skb(ep
->mpa_skb
);
1074 dst_confirm(ep
->dst
);
1075 if (state_read(&ep
->com
) == MPA_REP_SENT
) {
1076 ep
->com
.rpl_done
= 1;
1077 PDBG("waking up ep %p\n", ep
);
1078 wake_up(&ep
->com
.waitq
);
1080 return CPL_RET_BUF_DONE
;
1083 static int abort_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1085 struct iwch_ep
*ep
= ctx
;
1087 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1090 * We get 2 abort replies from the HW. The first one must
1091 * be ignored except for scribbling that we need one more.
1093 if (!(ep
->flags
& ABORT_REQ_IN_PROGRESS
)) {
1094 ep
->flags
|= ABORT_REQ_IN_PROGRESS
;
1095 return CPL_RET_BUF_DONE
;
1098 close_complete_upcall(ep
);
1099 state_set(&ep
->com
, DEAD
);
1100 release_ep_resources(ep
);
1101 return CPL_RET_BUF_DONE
;
1105 * Return whether a failed active open has allocated a TID
1107 static inline int act_open_has_tid(int status
)
1109 return status
!= CPL_ERR_TCAM_FULL
&& status
!= CPL_ERR_CONN_EXIST
&&
1110 status
!= CPL_ERR_ARP_MISS
;
1113 static int act_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1115 struct iwch_ep
*ep
= ctx
;
1116 struct cpl_act_open_rpl
*rpl
= cplhdr(skb
);
1118 PDBG("%s ep %p status %u errno %d\n", __FUNCTION__
, ep
, rpl
->status
,
1119 status2errno(rpl
->status
));
1120 connect_reply_upcall(ep
, status2errno(rpl
->status
));
1121 state_set(&ep
->com
, DEAD
);
1122 if (ep
->com
.tdev
->type
== T3B
&& act_open_has_tid(rpl
->status
))
1123 release_tid(ep
->com
.tdev
, GET_TID(rpl
), NULL
);
1124 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1125 dst_release(ep
->dst
);
1126 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
1128 return CPL_RET_BUF_DONE
;
1131 static int listen_start(struct iwch_listen_ep
*ep
)
1133 struct sk_buff
*skb
;
1134 struct cpl_pass_open_req
*req
;
1136 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1137 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1139 printk(KERN_ERR MOD
"t3c_listen_start failed to alloc skb!\n");
1143 req
= (struct cpl_pass_open_req
*) skb_put(skb
, sizeof(*req
));
1144 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1145 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ
, ep
->stid
));
1146 req
->local_port
= ep
->com
.local_addr
.sin_port
;
1147 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
1150 req
->peer_netmask
= 0;
1151 req
->opt0h
= htonl(F_DELACK
| F_TCAM_BYPASS
);
1152 req
->opt0l
= htonl(V_RCV_BUFSIZ(rcv_win
>>10));
1153 req
->opt1
= htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK
));
1156 ep
->com
.tdev
->send(ep
->com
.tdev
, skb
);
1160 static int pass_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1162 struct iwch_listen_ep
*ep
= ctx
;
1163 struct cpl_pass_open_rpl
*rpl
= cplhdr(skb
);
1165 PDBG("%s ep %p status %d error %d\n", __FUNCTION__
, ep
,
1166 rpl
->status
, status2errno(rpl
->status
));
1167 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1168 ep
->com
.rpl_done
= 1;
1169 wake_up(&ep
->com
.waitq
);
1171 return CPL_RET_BUF_DONE
;
1174 static int listen_stop(struct iwch_listen_ep
*ep
)
1176 struct sk_buff
*skb
;
1177 struct cpl_close_listserv_req
*req
;
1179 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1180 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1182 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __FUNCTION__
);
1185 req
= (struct cpl_close_listserv_req
*) skb_put(skb
, sizeof(*req
));
1186 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1188 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ
, ep
->stid
));
1190 ep
->com
.tdev
->send(ep
->com
.tdev
, skb
);
1194 static int close_listsrv_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
,
1197 struct iwch_listen_ep
*ep
= ctx
;
1198 struct cpl_close_listserv_rpl
*rpl
= cplhdr(skb
);
1200 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1201 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1202 ep
->com
.rpl_done
= 1;
1203 wake_up(&ep
->com
.waitq
);
1204 return CPL_RET_BUF_DONE
;
1207 static void accept_cr(struct iwch_ep
*ep
, __be32 peer_ip
, struct sk_buff
*skb
)
1209 struct cpl_pass_accept_rpl
*rpl
;
1210 unsigned int mtu_idx
;
1211 u32 opt0h
, opt0l
, opt2
;
1214 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1215 BUG_ON(skb_cloned(skb
));
1216 skb_trim(skb
, sizeof(*rpl
));
1218 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
1219 wscale
= compute_wscale(rcv_win
);
1220 opt0h
= V_NAGLE(0) |
1224 V_WND_SCALE(wscale
) |
1225 V_MSS_IDX(mtu_idx
) |
1226 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
1227 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
1228 opt2
= V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor
);
1231 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1232 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
, ep
->hwtid
));
1233 rpl
->peer_ip
= peer_ip
;
1234 rpl
->opt0h
= htonl(opt0h
);
1235 rpl
->opt0l_status
= htonl(opt0l
| CPL_PASS_OPEN_ACCEPT
);
1236 rpl
->opt2
= htonl(opt2
);
1237 rpl
->rsvd
= rpl
->opt2
; /* workaround for HW bug */
1238 skb
->priority
= CPL_PRIORITY_SETUP
;
1239 l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
1244 static void reject_cr(struct t3cdev
*tdev
, u32 hwtid
, __be32 peer_ip
,
1245 struct sk_buff
*skb
)
1247 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __FUNCTION__
, tdev
, hwtid
,
1249 BUG_ON(skb_cloned(skb
));
1250 skb_trim(skb
, sizeof(struct cpl_tid_release
));
1253 if (tdev
->type
== T3B
)
1254 release_tid(tdev
, hwtid
, skb
);
1256 struct cpl_pass_accept_rpl
*rpl
;
1259 skb
->priority
= CPL_PRIORITY_SETUP
;
1260 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1261 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
,
1263 rpl
->peer_ip
= peer_ip
;
1264 rpl
->opt0h
= htonl(F_TCAM_BYPASS
);
1265 rpl
->opt0l_status
= htonl(CPL_PASS_OPEN_REJECT
);
1267 rpl
->rsvd
= rpl
->opt2
;
1268 tdev
->send(tdev
, skb
);
1272 static int pass_accept_req(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1274 struct iwch_ep
*child_ep
, *parent_ep
= ctx
;
1275 struct cpl_pass_accept_req
*req
= cplhdr(skb
);
1276 unsigned int hwtid
= GET_TID(req
);
1277 struct dst_entry
*dst
;
1278 struct l2t_entry
*l2t
;
1282 PDBG("%s parent ep %p tid %u\n", __FUNCTION__
, parent_ep
, hwtid
);
1284 if (state_read(&parent_ep
->com
) != LISTEN
) {
1285 printk(KERN_ERR
"%s - listening ep not in LISTEN\n",
1291 * Find the netdev for this connection request.
1293 tim
.mac_addr
= req
->dst_mac
;
1294 tim
.vlan_tag
= ntohs(req
->vlan_tag
);
1295 if (tdev
->ctl(tdev
, GET_IFF_FROM_MAC
, &tim
) < 0 || !tim
.dev
) {
1297 "%s bad dst mac %02x %02x %02x %02x %02x %02x\n",
1308 /* Find output route */
1309 rt
= find_route(tdev
,
1313 req
->peer_port
, G_PASS_OPEN_TOS(ntohl(req
->tos_tid
)));
1315 printk(KERN_ERR MOD
"%s - failed to find dst entry!\n",
1320 l2t
= t3_l2t_get(tdev
, dst
->neighbour
, dst
->neighbour
->dev
);
1322 printk(KERN_ERR MOD
"%s - failed to allocate l2t entry!\n",
1327 child_ep
= alloc_ep(sizeof(*child_ep
), GFP_KERNEL
);
1329 printk(KERN_ERR MOD
"%s - failed to allocate ep entry!\n",
1331 l2t_release(L2DATA(tdev
), l2t
);
1335 state_set(&child_ep
->com
, CONNECTING
);
1336 child_ep
->com
.tdev
= tdev
;
1337 child_ep
->com
.cm_id
= NULL
;
1338 child_ep
->com
.local_addr
.sin_family
= PF_INET
;
1339 child_ep
->com
.local_addr
.sin_port
= req
->local_port
;
1340 child_ep
->com
.local_addr
.sin_addr
.s_addr
= req
->local_ip
;
1341 child_ep
->com
.remote_addr
.sin_family
= PF_INET
;
1342 child_ep
->com
.remote_addr
.sin_port
= req
->peer_port
;
1343 child_ep
->com
.remote_addr
.sin_addr
.s_addr
= req
->peer_ip
;
1344 get_ep(&parent_ep
->com
);
1345 child_ep
->parent_ep
= parent_ep
;
1346 child_ep
->tos
= G_PASS_OPEN_TOS(ntohl(req
->tos_tid
));
1347 child_ep
->l2t
= l2t
;
1348 child_ep
->dst
= dst
;
1349 child_ep
->hwtid
= hwtid
;
1350 init_timer(&child_ep
->timer
);
1351 cxgb3_insert_tid(tdev
, &t3c_client
, child_ep
, hwtid
);
1352 accept_cr(child_ep
, req
->peer_ip
, skb
);
1355 reject_cr(tdev
, hwtid
, req
->peer_ip
, skb
);
1357 return CPL_RET_BUF_DONE
;
1360 static int pass_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1362 struct iwch_ep
*ep
= ctx
;
1363 struct cpl_pass_establish
*req
= cplhdr(skb
);
1365 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1366 ep
->snd_seq
= ntohl(req
->snd_isn
);
1367 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
1369 set_emss(ep
, ntohs(req
->tcp_opt
));
1371 dst_confirm(ep
->dst
);
1372 state_set(&ep
->com
, MPA_REQ_WAIT
);
1375 return CPL_RET_BUF_DONE
;
1378 static int peer_close(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1380 struct iwch_ep
*ep
= ctx
;
1381 struct iwch_qp_attributes attrs
;
1382 unsigned long flags
;
1386 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1387 dst_confirm(ep
->dst
);
1389 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1390 switch (ep
->com
.state
) {
1392 __state_set(&ep
->com
, CLOSING
);
1395 __state_set(&ep
->com
, CLOSING
);
1396 connect_reply_upcall(ep
, -ECONNRESET
);
1401 * We're gonna mark this puppy DEAD, but keep
1402 * the reference on it until the ULP accepts or
1405 __state_set(&ep
->com
, CLOSING
);
1409 __state_set(&ep
->com
, CLOSING
);
1410 ep
->com
.rpl_done
= 1;
1411 ep
->com
.rpl_err
= -ECONNRESET
;
1412 PDBG("waking up ep %p\n", ep
);
1413 wake_up(&ep
->com
.waitq
);
1417 __state_set(&ep
->com
, CLOSING
);
1418 attrs
.next_state
= IWCH_QP_STATE_CLOSING
;
1419 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1420 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1421 peer_close_upcall(ep
);
1427 __state_set(&ep
->com
, MORIBUND
);
1432 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1433 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1434 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1435 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1437 close_complete_upcall(ep
);
1438 __state_set(&ep
->com
, DEAD
);
1448 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1450 iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1452 release_ep_resources(ep
);
1453 return CPL_RET_BUF_DONE
;
1457 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1459 static int is_neg_adv_abort(unsigned int status
)
1461 return status
== CPL_ERR_RTX_NEG_ADVICE
||
1462 status
== CPL_ERR_PERSIST_NEG_ADVICE
;
1465 static int peer_abort(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1467 struct cpl_abort_req_rss
*req
= cplhdr(skb
);
1468 struct iwch_ep
*ep
= ctx
;
1469 struct cpl_abort_rpl
*rpl
;
1470 struct sk_buff
*rpl_skb
;
1471 struct iwch_qp_attributes attrs
;
1475 if (is_neg_adv_abort(req
->status
)) {
1476 PDBG("%s neg_adv_abort ep %p tid %d\n", __FUNCTION__
, ep
,
1478 t3_l2t_send_event(ep
->com
.tdev
, ep
->l2t
);
1479 return CPL_RET_BUF_DONE
;
1483 * We get 2 peer aborts from the HW. The first one must
1484 * be ignored except for scribbling that we need one more.
1486 if (!(ep
->flags
& PEER_ABORT_IN_PROGRESS
)) {
1487 ep
->flags
|= PEER_ABORT_IN_PROGRESS
;
1488 return CPL_RET_BUF_DONE
;
1491 state
= state_read(&ep
->com
);
1492 PDBG("%s ep %p state %u\n", __FUNCTION__
, ep
, state
);
1501 connect_reply_upcall(ep
, -ECONNRESET
);
1504 ep
->com
.rpl_done
= 1;
1505 ep
->com
.rpl_err
= -ECONNRESET
;
1506 PDBG("waking up ep %p\n", ep
);
1507 wake_up(&ep
->com
.waitq
);
1512 * We're gonna mark this puppy DEAD, but keep
1513 * the reference on it until the ULP accepts or
1523 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1524 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1525 ret
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1526 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1530 "%s - qp <- error failed!\n",
1533 peer_abort_upcall(ep
);
1538 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __FUNCTION__
);
1539 return CPL_RET_BUF_DONE
;
1544 dst_confirm(ep
->dst
);
1546 rpl_skb
= get_skb(skb
, sizeof(*rpl
), GFP_KERNEL
);
1548 printk(KERN_ERR MOD
"%s - cannot allocate skb!\n",
1550 dst_release(ep
->dst
);
1551 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
1553 return CPL_RET_BUF_DONE
;
1555 rpl_skb
->priority
= CPL_PRIORITY_DATA
;
1556 rpl
= (struct cpl_abort_rpl
*) skb_put(rpl_skb
, sizeof(*rpl
));
1557 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL
));
1558 rpl
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
1559 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL
, ep
->hwtid
));
1560 rpl
->cmd
= CPL_ABORT_NO_RST
;
1561 ep
->com
.tdev
->send(ep
->com
.tdev
, rpl_skb
);
1562 if (state
!= ABORTING
) {
1563 state_set(&ep
->com
, DEAD
);
1564 release_ep_resources(ep
);
1566 return CPL_RET_BUF_DONE
;
1569 static int close_con_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1571 struct iwch_ep
*ep
= ctx
;
1572 struct iwch_qp_attributes attrs
;
1573 unsigned long flags
;
1576 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1579 /* The cm_id may be null if we failed to connect */
1580 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1581 switch (ep
->com
.state
) {
1583 __state_set(&ep
->com
, MORIBUND
);
1587 if ((ep
->com
.cm_id
) && (ep
->com
.qp
)) {
1588 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1589 iwch_modify_qp(ep
->com
.qp
->rhp
,
1591 IWCH_QP_ATTR_NEXT_STATE
,
1594 close_complete_upcall(ep
);
1595 __state_set(&ep
->com
, DEAD
);
1605 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1607 release_ep_resources(ep
);
1608 return CPL_RET_BUF_DONE
;
1612 * T3A does 3 things when a TERM is received:
1613 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1614 * 2) generate an async event on the QP with the TERMINATE opcode
1615 * 3) post a TERMINATE opcde cqe into the associated CQ.
1617 * For (1), we save the message in the qp for later consumer consumption.
1618 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1619 * For (3), we toss the CQE in cxio_poll_cq().
1621 * terminate() handles case (1)...
1623 static int terminate(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1625 struct iwch_ep
*ep
= ctx
;
1627 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1628 skb_pull(skb
, sizeof(struct cpl_rdma_terminate
));
1629 PDBG("%s saving %d bytes of term msg\n", __FUNCTION__
, skb
->len
);
1630 skb_copy_from_linear_data(skb
, ep
->com
.qp
->attr
.terminate_buffer
,
1632 ep
->com
.qp
->attr
.terminate_msg_len
= skb
->len
;
1633 ep
->com
.qp
->attr
.is_terminate_local
= 0;
1634 return CPL_RET_BUF_DONE
;
1637 static int ec_status(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1639 struct cpl_rdma_ec_status
*rep
= cplhdr(skb
);
1640 struct iwch_ep
*ep
= ctx
;
1642 PDBG("%s ep %p tid %u status %d\n", __FUNCTION__
, ep
, ep
->hwtid
,
1645 struct iwch_qp_attributes attrs
;
1647 printk(KERN_ERR MOD
"%s BAD CLOSE - Aborting tid %u\n",
1648 __FUNCTION__
, ep
->hwtid
);
1650 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1651 iwch_modify_qp(ep
->com
.qp
->rhp
,
1652 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1654 abort_connection(ep
, NULL
, GFP_KERNEL
);
1656 return CPL_RET_BUF_DONE
;
1659 static void ep_timeout(unsigned long arg
)
1661 struct iwch_ep
*ep
= (struct iwch_ep
*)arg
;
1662 struct iwch_qp_attributes attrs
;
1663 unsigned long flags
;
1665 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1666 PDBG("%s ep %p tid %u state %d\n", __FUNCTION__
, ep
, ep
->hwtid
,
1668 switch (ep
->com
.state
) {
1670 connect_reply_upcall(ep
, -ETIMEDOUT
);
1676 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1677 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1678 iwch_modify_qp(ep
->com
.qp
->rhp
,
1679 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1686 __state_set(&ep
->com
, CLOSING
);
1687 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1688 abort_connection(ep
, NULL
, GFP_ATOMIC
);
1692 int iwch_reject_cr(struct iw_cm_id
*cm_id
, const void *pdata
, u8 pdata_len
)
1695 struct iwch_ep
*ep
= to_ep(cm_id
);
1696 PDBG("%s ep %p tid %u\n", __FUNCTION__
, ep
, ep
->hwtid
);
1698 if (state_read(&ep
->com
) == DEAD
) {
1702 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1704 abort_connection(ep
, NULL
, GFP_KERNEL
);
1706 err
= send_mpa_reject(ep
, pdata
, pdata_len
);
1707 err
= iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1712 int iwch_accept_cr(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1715 struct iwch_qp_attributes attrs
;
1716 enum iwch_qp_attr_mask mask
;
1717 struct iwch_ep
*ep
= to_ep(cm_id
);
1718 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1719 struct iwch_qp
*qp
= get_qhp(h
, conn_param
->qpn
);
1721 PDBG("%s ep %p tid %u\n", __FUNCTION__
, ep
, ep
->hwtid
);
1722 if (state_read(&ep
->com
) == DEAD
)
1725 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1728 if ((conn_param
->ord
> qp
->rhp
->attr
.max_rdma_read_qp_depth
) ||
1729 (conn_param
->ird
> qp
->rhp
->attr
.max_rdma_reads_per_qp
)) {
1730 abort_connection(ep
, NULL
, GFP_KERNEL
);
1734 cm_id
->add_ref(cm_id
);
1735 ep
->com
.cm_id
= cm_id
;
1738 ep
->com
.rpl_done
= 0;
1739 ep
->com
.rpl_err
= 0;
1740 ep
->ird
= conn_param
->ird
;
1741 ep
->ord
= conn_param
->ord
;
1742 PDBG("%s %d ird %d ord %d\n", __FUNCTION__
, __LINE__
, ep
->ird
, ep
->ord
);
1746 /* bind QP to EP and move to RTS */
1747 attrs
.mpa_attr
= ep
->mpa_attr
;
1748 attrs
.max_ird
= ep
->ord
;
1749 attrs
.max_ord
= ep
->ord
;
1750 attrs
.llp_stream_handle
= ep
;
1751 attrs
.next_state
= IWCH_QP_STATE_RTS
;
1753 /* bind QP and TID with INIT_WR */
1754 mask
= IWCH_QP_ATTR_NEXT_STATE
|
1755 IWCH_QP_ATTR_LLP_STREAM_HANDLE
|
1756 IWCH_QP_ATTR_MPA_ATTR
|
1757 IWCH_QP_ATTR_MAX_IRD
|
1758 IWCH_QP_ATTR_MAX_ORD
;
1760 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1761 ep
->com
.qp
, mask
, &attrs
, 1);
1765 err
= send_mpa_reply(ep
, conn_param
->private_data
,
1766 conn_param
->private_data_len
);
1770 /* wait for wr_ack */
1771 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
1772 err
= ep
->com
.rpl_err
;
1776 state_set(&ep
->com
, FPDU_MODE
);
1777 established_upcall(ep
);
1781 ep
->com
.cm_id
= NULL
;
1783 cm_id
->rem_ref(cm_id
);
1788 int iwch_connect(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1791 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1795 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
1797 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __FUNCTION__
);
1801 init_timer(&ep
->timer
);
1802 ep
->plen
= conn_param
->private_data_len
;
1804 memcpy(ep
->mpa_pkt
+ sizeof(struct mpa_message
),
1805 conn_param
->private_data
, ep
->plen
);
1806 ep
->ird
= conn_param
->ird
;
1807 ep
->ord
= conn_param
->ord
;
1808 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
1810 cm_id
->add_ref(cm_id
);
1811 ep
->com
.cm_id
= cm_id
;
1812 ep
->com
.qp
= get_qhp(h
, conn_param
->qpn
);
1813 BUG_ON(!ep
->com
.qp
);
1814 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __FUNCTION__
, conn_param
->qpn
,
1818 * Allocate an active TID to initiate a TCP connection.
1820 ep
->atid
= cxgb3_alloc_atid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
1821 if (ep
->atid
== -1) {
1822 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __FUNCTION__
);
1828 rt
= find_route(h
->rdev
.t3cdev_p
,
1829 cm_id
->local_addr
.sin_addr
.s_addr
,
1830 cm_id
->remote_addr
.sin_addr
.s_addr
,
1831 cm_id
->local_addr
.sin_port
,
1832 cm_id
->remote_addr
.sin_port
, IPTOS_LOWDELAY
);
1834 printk(KERN_ERR MOD
"%s - cannot find route.\n", __FUNCTION__
);
1835 err
= -EHOSTUNREACH
;
1838 ep
->dst
= &rt
->u
.dst
;
1840 /* get a l2t entry */
1841 ep
->l2t
= t3_l2t_get(ep
->com
.tdev
, ep
->dst
->neighbour
,
1842 ep
->dst
->neighbour
->dev
);
1844 printk(KERN_ERR MOD
"%s - cannot alloc l2e.\n", __FUNCTION__
);
1849 state_set(&ep
->com
, CONNECTING
);
1850 ep
->tos
= IPTOS_LOWDELAY
;
1851 ep
->com
.local_addr
= cm_id
->local_addr
;
1852 ep
->com
.remote_addr
= cm_id
->remote_addr
;
1854 /* send connect request to rnic */
1855 err
= send_connect(ep
);
1859 l2t_release(L2DATA(h
->rdev
.t3cdev_p
), ep
->l2t
);
1861 dst_release(ep
->dst
);
1863 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1870 int iwch_create_listen(struct iw_cm_id
*cm_id
, int backlog
)
1873 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1874 struct iwch_listen_ep
*ep
;
1879 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
1881 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __FUNCTION__
);
1885 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1886 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
1887 cm_id
->add_ref(cm_id
);
1888 ep
->com
.cm_id
= cm_id
;
1889 ep
->backlog
= backlog
;
1890 ep
->com
.local_addr
= cm_id
->local_addr
;
1893 * Allocate a server TID.
1895 ep
->stid
= cxgb3_alloc_stid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
1896 if (ep
->stid
== -1) {
1897 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __FUNCTION__
);
1902 state_set(&ep
->com
, LISTEN
);
1903 err
= listen_start(ep
);
1907 /* wait for pass_open_rpl */
1908 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
1909 err
= ep
->com
.rpl_err
;
1911 cm_id
->provider_data
= ep
;
1915 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
1923 int iwch_destroy_listen(struct iw_cm_id
*cm_id
)
1926 struct iwch_listen_ep
*ep
= to_listen_ep(cm_id
);
1928 PDBG("%s ep %p\n", __FUNCTION__
, ep
);
1931 state_set(&ep
->com
, DEAD
);
1932 ep
->com
.rpl_done
= 0;
1933 ep
->com
.rpl_err
= 0;
1934 err
= listen_stop(ep
);
1935 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
1936 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
1937 err
= ep
->com
.rpl_err
;
1938 cm_id
->rem_ref(cm_id
);
1943 int iwch_ep_disconnect(struct iwch_ep
*ep
, int abrupt
, gfp_t gfp
)
1946 unsigned long flags
;
1949 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1951 PDBG("%s ep %p state %s, abrupt %d\n", __FUNCTION__
, ep
,
1952 states
[ep
->com
.state
], abrupt
);
1954 if (ep
->com
.state
== DEAD
) {
1955 PDBG("%s already dead ep %p\n", __FUNCTION__
, ep
);
1960 if (ep
->com
.state
!= ABORTING
) {
1961 ep
->com
.state
= ABORTING
;
1967 switch (ep
->com
.state
) {
1974 ep
->com
.state
= CLOSING
;
1978 ep
->com
.state
= MORIBUND
;
1988 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1991 ret
= send_abort(ep
, NULL
, gfp
);
1993 ret
= send_halfclose(ep
, gfp
);
1998 int iwch_ep_redirect(void *ctx
, struct dst_entry
*old
, struct dst_entry
*new,
1999 struct l2t_entry
*l2t
)
2001 struct iwch_ep
*ep
= ctx
;
2006 PDBG("%s ep %p redirect to dst %p l2t %p\n", __FUNCTION__
, ep
, new,
2009 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
2017 * All the CM events are handled on a work queue to have a safe context.
2019 static int sched(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2021 struct iwch_ep_common
*epc
= ctx
;
2026 * Save ctx and tdev in the skb->cb area.
2028 *((void **) skb
->cb
) = ctx
;
2029 *((struct t3cdev
**) (skb
->cb
+ sizeof(void *))) = tdev
;
2032 * Queue the skb and schedule the worker thread.
2034 skb_queue_tail(&rxq
, skb
);
2035 queue_work(workq
, &skb_work
);
2039 static int set_tcb_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2041 struct cpl_set_tcb_rpl
*rpl
= cplhdr(skb
);
2043 if (rpl
->status
!= CPL_ERR_NONE
) {
2044 printk(KERN_ERR MOD
"Unexpected SET_TCB_RPL status %u "
2045 "for tid %u\n", rpl
->status
, GET_TID(rpl
));
2047 return CPL_RET_BUF_DONE
;
2050 int __init
iwch_cm_init(void)
2052 skb_queue_head_init(&rxq
);
2054 workq
= create_singlethread_workqueue("iw_cxgb3");
2059 * All upcalls from the T3 Core go to sched() to
2060 * schedule the processing on a work queue.
2062 t3c_handlers
[CPL_ACT_ESTABLISH
] = sched
;
2063 t3c_handlers
[CPL_ACT_OPEN_RPL
] = sched
;
2064 t3c_handlers
[CPL_RX_DATA
] = sched
;
2065 t3c_handlers
[CPL_TX_DMA_ACK
] = sched
;
2066 t3c_handlers
[CPL_ABORT_RPL_RSS
] = sched
;
2067 t3c_handlers
[CPL_ABORT_RPL
] = sched
;
2068 t3c_handlers
[CPL_PASS_OPEN_RPL
] = sched
;
2069 t3c_handlers
[CPL_CLOSE_LISTSRV_RPL
] = sched
;
2070 t3c_handlers
[CPL_PASS_ACCEPT_REQ
] = sched
;
2071 t3c_handlers
[CPL_PASS_ESTABLISH
] = sched
;
2072 t3c_handlers
[CPL_PEER_CLOSE
] = sched
;
2073 t3c_handlers
[CPL_CLOSE_CON_RPL
] = sched
;
2074 t3c_handlers
[CPL_ABORT_REQ_RSS
] = sched
;
2075 t3c_handlers
[CPL_RDMA_TERMINATE
] = sched
;
2076 t3c_handlers
[CPL_RDMA_EC_STATUS
] = sched
;
2077 t3c_handlers
[CPL_SET_TCB_RPL
] = set_tcb_rpl
;
2080 * These are the real handlers that are called from a
2083 work_handlers
[CPL_ACT_ESTABLISH
] = act_establish
;
2084 work_handlers
[CPL_ACT_OPEN_RPL
] = act_open_rpl
;
2085 work_handlers
[CPL_RX_DATA
] = rx_data
;
2086 work_handlers
[CPL_TX_DMA_ACK
] = tx_ack
;
2087 work_handlers
[CPL_ABORT_RPL_RSS
] = abort_rpl
;
2088 work_handlers
[CPL_ABORT_RPL
] = abort_rpl
;
2089 work_handlers
[CPL_PASS_OPEN_RPL
] = pass_open_rpl
;
2090 work_handlers
[CPL_CLOSE_LISTSRV_RPL
] = close_listsrv_rpl
;
2091 work_handlers
[CPL_PASS_ACCEPT_REQ
] = pass_accept_req
;
2092 work_handlers
[CPL_PASS_ESTABLISH
] = pass_establish
;
2093 work_handlers
[CPL_PEER_CLOSE
] = peer_close
;
2094 work_handlers
[CPL_ABORT_REQ_RSS
] = peer_abort
;
2095 work_handlers
[CPL_CLOSE_CON_RPL
] = close_con_rpl
;
2096 work_handlers
[CPL_RDMA_TERMINATE
] = terminate
;
2097 work_handlers
[CPL_RDMA_EC_STATUS
] = ec_status
;
2101 void __exit
iwch_cm_term(void)
2103 flush_workqueue(workq
);
2104 destroy_workqueue(workq
);