2 * arch/ppc/kernel/process.c
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/prctl.h>
34 #include <linux/init_task.h>
35 #include <linux/module.h>
36 #include <linux/kallsyms.h>
37 #include <linux/mqueue.h>
38 #include <linux/hardirq.h>
39 #include <linux/utsname.h>
40 #include <linux/kprobes.h>
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
46 #include <asm/processor.h>
49 #include <asm/machdep.h>
51 #include <asm/firmware.h>
55 extern unsigned long _get_SP(void);
58 struct task_struct
*last_task_used_math
= NULL
;
59 struct task_struct
*last_task_used_altivec
= NULL
;
60 struct task_struct
*last_task_used_spe
= NULL
;
64 * Make sure the floating-point register state in the
65 * the thread_struct is up to date for task tsk.
67 void flush_fp_to_thread(struct task_struct
*tsk
)
69 if (tsk
->thread
.regs
) {
71 * We need to disable preemption here because if we didn't,
72 * another process could get scheduled after the regs->msr
73 * test but before we have finished saving the FP registers
74 * to the thread_struct. That process could take over the
75 * FPU, and then when we get scheduled again we would store
76 * bogus values for the remaining FP registers.
79 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
82 * This should only ever be called for current or
83 * for a stopped child process. Since we save away
84 * the FP register state on context switch on SMP,
85 * there is something wrong if a stopped child appears
86 * to still have its FP state in the CPU registers.
88 BUG_ON(tsk
!= current
);
96 void enable_kernel_fp(void)
98 WARN_ON(preemptible());
101 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
104 giveup_fpu(NULL
); /* just enables FP for kernel */
106 giveup_fpu(last_task_used_math
);
107 #endif /* CONFIG_SMP */
109 EXPORT_SYMBOL(enable_kernel_fp
);
111 int dump_task_fpu(struct task_struct
*tsk
, elf_fpregset_t
*fpregs
)
113 if (!tsk
->thread
.regs
)
115 flush_fp_to_thread(current
);
117 memcpy(fpregs
, &tsk
->thread
.fpr
[0], sizeof(*fpregs
));
122 #ifdef CONFIG_ALTIVEC
123 void enable_kernel_altivec(void)
125 WARN_ON(preemptible());
128 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
129 giveup_altivec(current
);
131 giveup_altivec(NULL
); /* just enable AltiVec for kernel - force */
133 giveup_altivec(last_task_used_altivec
);
134 #endif /* CONFIG_SMP */
136 EXPORT_SYMBOL(enable_kernel_altivec
);
139 * Make sure the VMX/Altivec register state in the
140 * the thread_struct is up to date for task tsk.
142 void flush_altivec_to_thread(struct task_struct
*tsk
)
144 if (tsk
->thread
.regs
) {
146 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
148 BUG_ON(tsk
!= current
);
150 giveup_altivec(current
);
156 int dump_task_altivec(struct pt_regs
*regs
, elf_vrregset_t
*vrregs
)
158 flush_altivec_to_thread(current
);
159 memcpy(vrregs
, ¤t
->thread
.vr
[0], sizeof(*vrregs
));
162 #endif /* CONFIG_ALTIVEC */
166 void enable_kernel_spe(void)
168 WARN_ON(preemptible());
171 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
174 giveup_spe(NULL
); /* just enable SPE for kernel - force */
176 giveup_spe(last_task_used_spe
);
177 #endif /* __SMP __ */
179 EXPORT_SYMBOL(enable_kernel_spe
);
181 void flush_spe_to_thread(struct task_struct
*tsk
)
183 if (tsk
->thread
.regs
) {
185 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
187 BUG_ON(tsk
!= current
);
195 int dump_spe(struct pt_regs
*regs
, elf_vrregset_t
*evrregs
)
197 flush_spe_to_thread(current
);
198 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
199 memcpy(evrregs
, ¤t
->thread
.evr
[0], sizeof(u32
) * 35);
202 #endif /* CONFIG_SPE */
206 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
207 * and the current task has some state, discard it.
209 void discard_lazy_cpu_state(void)
212 if (last_task_used_math
== current
)
213 last_task_used_math
= NULL
;
214 #ifdef CONFIG_ALTIVEC
215 if (last_task_used_altivec
== current
)
216 last_task_used_altivec
= NULL
;
217 #endif /* CONFIG_ALTIVEC */
219 if (last_task_used_spe
== current
)
220 last_task_used_spe
= NULL
;
224 #endif /* CONFIG_SMP */
226 #ifdef CONFIG_PPC_MERGE /* XXX for now */
227 int set_dabr(unsigned long dabr
)
230 return ppc_md
.set_dabr(dabr
);
232 mtspr(SPRN_DABR
, dabr
);
238 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
239 static DEFINE_PER_CPU(unsigned long, current_dabr
);
242 struct task_struct
*__switch_to(struct task_struct
*prev
,
243 struct task_struct
*new)
245 struct thread_struct
*new_thread
, *old_thread
;
247 struct task_struct
*last
;
250 /* avoid complexity of lazy save/restore of fpu
251 * by just saving it every time we switch out if
252 * this task used the fpu during the last quantum.
254 * If it tries to use the fpu again, it'll trap and
255 * reload its fp regs. So we don't have to do a restore
256 * every switch, just a save.
259 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
261 #ifdef CONFIG_ALTIVEC
263 * If the previous thread used altivec in the last quantum
264 * (thus changing altivec regs) then save them.
265 * We used to check the VRSAVE register but not all apps
266 * set it, so we don't rely on it now (and in fact we need
267 * to save & restore VSCR even if VRSAVE == 0). -- paulus
269 * On SMP we always save/restore altivec regs just to avoid the
270 * complexity of changing processors.
273 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
274 giveup_altivec(prev
);
275 #endif /* CONFIG_ALTIVEC */
278 * If the previous thread used spe in the last quantum
279 * (thus changing spe regs) then save them.
281 * On SMP we always save/restore spe regs just to avoid the
282 * complexity of changing processors.
284 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
286 #endif /* CONFIG_SPE */
288 #else /* CONFIG_SMP */
289 #ifdef CONFIG_ALTIVEC
290 /* Avoid the trap. On smp this this never happens since
291 * we don't set last_task_used_altivec -- Cort
293 if (new->thread
.regs
&& last_task_used_altivec
== new)
294 new->thread
.regs
->msr
|= MSR_VEC
;
295 #endif /* CONFIG_ALTIVEC */
297 /* Avoid the trap. On smp this this never happens since
298 * we don't set last_task_used_spe
300 if (new->thread
.regs
&& last_task_used_spe
== new)
301 new->thread
.regs
->msr
|= MSR_SPE
;
302 #endif /* CONFIG_SPE */
304 #endif /* CONFIG_SMP */
306 #ifdef CONFIG_PPC64 /* for now */
307 if (unlikely(__get_cpu_var(current_dabr
) != new->thread
.dabr
)) {
308 set_dabr(new->thread
.dabr
);
309 __get_cpu_var(current_dabr
) = new->thread
.dabr
;
315 new_thread
= &new->thread
;
316 old_thread
= ¤t
->thread
;
320 * Collect processor utilization data per process
322 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
323 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
324 long unsigned start_tb
, current_tb
;
325 start_tb
= old_thread
->start_tb
;
326 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
327 old_thread
->accum_tb
+= (current_tb
- start_tb
);
328 new_thread
->start_tb
= current_tb
;
332 local_irq_save(flags
);
333 last
= _switch(old_thread
, new_thread
);
335 local_irq_restore(flags
);
340 static int instructions_to_print
= 16;
343 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
344 (REGION_ID(pc) != VMALLOC_REGION_ID))
346 #define BAD_PC(pc) ((pc) < KERNELBASE)
349 static void show_instructions(struct pt_regs
*regs
)
352 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
355 printk("Instruction dump:");
357 for (i
= 0; i
< instructions_to_print
; i
++) {
363 if (BAD_PC(pc
) || __get_user(instr
, (unsigned int *)pc
)) {
367 printk("<%08x> ", instr
);
369 printk("%08x ", instr
);
378 static struct regbit
{
391 static void printbits(unsigned long val
, struct regbit
*bits
)
393 const char *sep
= "";
396 for (; bits
->bit
; ++bits
)
397 if (val
& bits
->bit
) {
398 printk("%s%s", sep
, bits
->name
);
406 #define REGS_PER_LINE 4
407 #define LAST_VOLATILE 13
410 #define REGS_PER_LINE 8
411 #define LAST_VOLATILE 12
414 void show_regs(struct pt_regs
* regs
)
418 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
419 regs
->nip
, regs
->link
, regs
->ctr
);
420 printk("REGS: %p TRAP: %04lx %s (%s)\n",
421 regs
, regs
->trap
, print_tainted(), system_utsname
.release
);
422 printk("MSR: "REG
" ", regs
->msr
);
423 printbits(regs
->msr
, msr_bits
);
424 printk(" CR: %08lX XER: %08lX\n", regs
->ccr
, regs
->xer
);
426 if (trap
== 0x300 || trap
== 0x600)
427 printk("DAR: "REG
", DSISR: "REG
"\n", regs
->dar
, regs
->dsisr
);
428 printk("TASK = %p[%d] '%s' THREAD: %p",
429 current
, current
->pid
, current
->comm
, task_thread_info(current
));
432 printk(" CPU: %d", smp_processor_id());
433 #endif /* CONFIG_SMP */
435 for (i
= 0; i
< 32; i
++) {
436 if ((i
% REGS_PER_LINE
) == 0)
437 printk("\n" KERN_INFO
"GPR%02d: ", i
);
438 printk(REG
" ", regs
->gpr
[i
]);
439 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
443 #ifdef CONFIG_KALLSYMS
445 * Lookup NIP late so we have the best change of getting the
446 * above info out without failing
448 printk("NIP ["REG
"] ", regs
->nip
);
449 print_symbol("%s\n", regs
->nip
);
450 printk("LR ["REG
"] ", regs
->link
);
451 print_symbol("%s\n", regs
->link
);
453 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
454 if (!user_mode(regs
))
455 show_instructions(regs
);
458 void exit_thread(void)
460 kprobe_flush_task(current
);
461 discard_lazy_cpu_state();
464 void flush_thread(void)
467 struct thread_info
*t
= current_thread_info();
469 if (t
->flags
& _TIF_ABI_PENDING
)
470 t
->flags
^= (_TIF_ABI_PENDING
| _TIF_32BIT
);
473 discard_lazy_cpu_state();
475 #ifdef CONFIG_PPC64 /* for now */
476 if (current
->thread
.dabr
) {
477 current
->thread
.dabr
= 0;
484 release_thread(struct task_struct
*t
)
489 * This gets called before we allocate a new thread and copy
490 * the current task into it.
492 void prepare_to_copy(struct task_struct
*tsk
)
494 flush_fp_to_thread(current
);
495 flush_altivec_to_thread(current
);
496 flush_spe_to_thread(current
);
502 int copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
503 unsigned long unused
, struct task_struct
*p
,
504 struct pt_regs
*regs
)
506 struct pt_regs
*childregs
, *kregs
;
507 extern void ret_from_fork(void);
508 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
510 CHECK_FULL_REGS(regs
);
512 sp
-= sizeof(struct pt_regs
);
513 childregs
= (struct pt_regs
*) sp
;
515 if ((childregs
->msr
& MSR_PR
) == 0) {
516 /* for kernel thread, set `current' and stackptr in new task */
517 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
519 childregs
->gpr
[2] = (unsigned long) p
;
521 clear_tsk_thread_flag(p
, TIF_32BIT
);
523 p
->thread
.regs
= NULL
; /* no user register state */
525 childregs
->gpr
[1] = usp
;
526 p
->thread
.regs
= childregs
;
527 if (clone_flags
& CLONE_SETTLS
) {
529 if (!test_thread_flag(TIF_32BIT
))
530 childregs
->gpr
[13] = childregs
->gpr
[6];
533 childregs
->gpr
[2] = childregs
->gpr
[6];
536 childregs
->gpr
[3] = 0; /* Result from fork() */
537 sp
-= STACK_FRAME_OVERHEAD
;
540 * The way this works is that at some point in the future
541 * some task will call _switch to switch to the new task.
542 * That will pop off the stack frame created below and start
543 * the new task running at ret_from_fork. The new task will
544 * do some house keeping and then return from the fork or clone
545 * system call, using the stack frame created above.
547 sp
-= sizeof(struct pt_regs
);
548 kregs
= (struct pt_regs
*) sp
;
549 sp
-= STACK_FRAME_OVERHEAD
;
553 if (cpu_has_feature(CPU_FTR_SLB
)) {
554 unsigned long sp_vsid
= get_kernel_vsid(sp
);
555 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
557 sp_vsid
<<= SLB_VSID_SHIFT
;
558 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
559 p
->thread
.ksp_vsid
= sp_vsid
;
563 * The PPC64 ABI makes use of a TOC to contain function
564 * pointers. The function (ret_from_except) is actually a pointer
565 * to the TOC entry. The first entry is a pointer to the actual
568 kregs
->nip
= *((unsigned long *)ret_from_fork
);
570 kregs
->nip
= (unsigned long)ret_from_fork
;
571 p
->thread
.last_syscall
= -1;
578 * Set up a thread for executing a new program
580 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
583 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
589 * If we exec out of a kernel thread then thread.regs will not be
592 if (!current
->thread
.regs
) {
593 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
594 current
->thread
.regs
= regs
- 1;
597 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
607 regs
->msr
= MSR_USER
;
609 if (!test_thread_flag(TIF_32BIT
)) {
610 unsigned long entry
, toc
;
612 /* start is a relocated pointer to the function descriptor for
613 * the elf _start routine. The first entry in the function
614 * descriptor is the entry address of _start and the second
615 * entry is the TOC value we need to use.
617 __get_user(entry
, (unsigned long __user
*)start
);
618 __get_user(toc
, (unsigned long __user
*)start
+1);
620 /* Check whether the e_entry function descriptor entries
621 * need to be relocated before we can use them.
623 if (load_addr
!= 0) {
629 regs
->msr
= MSR_USER64
;
633 regs
->msr
= MSR_USER32
;
637 discard_lazy_cpu_state();
638 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
639 current
->thread
.fpscr
.val
= 0;
640 #ifdef CONFIG_ALTIVEC
641 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
642 memset(¤t
->thread
.vscr
, 0, sizeof(current
->thread
.vscr
));
643 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
644 current
->thread
.vrsave
= 0;
645 current
->thread
.used_vr
= 0;
646 #endif /* CONFIG_ALTIVEC */
648 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
649 current
->thread
.acc
= 0;
650 current
->thread
.spefscr
= 0;
651 current
->thread
.used_spe
= 0;
652 #endif /* CONFIG_SPE */
655 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
656 | PR_FP_EXC_RES | PR_FP_EXC_INV)
658 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
660 struct pt_regs
*regs
= tsk
->thread
.regs
;
662 /* This is a bit hairy. If we are an SPE enabled processor
663 * (have embedded fp) we store the IEEE exception enable flags in
664 * fpexc_mode. fpexc_mode is also used for setting FP exception
665 * mode (asyn, precise, disabled) for 'Classic' FP. */
666 if (val
& PR_FP_EXC_SW_ENABLE
) {
668 tsk
->thread
.fpexc_mode
= val
&
669 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
676 /* on a CONFIG_SPE this does not hurt us. The bits that
677 * __pack_fe01 use do not overlap with bits used for
678 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
679 * on CONFIG_SPE implementations are reserved so writing to
680 * them does not change anything */
681 if (val
> PR_FP_EXC_PRECISE
)
683 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
684 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
685 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
686 | tsk
->thread
.fpexc_mode
;
690 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
694 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
696 val
= tsk
->thread
.fpexc_mode
;
701 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
702 return put_user(val
, (unsigned int __user
*) adr
);
705 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
707 int sys_clone(unsigned long clone_flags
, unsigned long usp
,
708 int __user
*parent_tidp
, void __user
*child_threadptr
,
709 int __user
*child_tidp
, int p6
,
710 struct pt_regs
*regs
)
712 CHECK_FULL_REGS(regs
);
714 usp
= regs
->gpr
[1]; /* stack pointer for child */
716 if (test_thread_flag(TIF_32BIT
)) {
717 parent_tidp
= TRUNC_PTR(parent_tidp
);
718 child_tidp
= TRUNC_PTR(child_tidp
);
721 return do_fork(clone_flags
, usp
, regs
, 0, parent_tidp
, child_tidp
);
724 int sys_fork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
725 unsigned long p4
, unsigned long p5
, unsigned long p6
,
726 struct pt_regs
*regs
)
728 CHECK_FULL_REGS(regs
);
729 return do_fork(SIGCHLD
, regs
->gpr
[1], regs
, 0, NULL
, NULL
);
732 int sys_vfork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
733 unsigned long p4
, unsigned long p5
, unsigned long p6
,
734 struct pt_regs
*regs
)
736 CHECK_FULL_REGS(regs
);
737 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, regs
->gpr
[1],
738 regs
, 0, NULL
, NULL
);
741 int sys_execve(unsigned long a0
, unsigned long a1
, unsigned long a2
,
742 unsigned long a3
, unsigned long a4
, unsigned long a5
,
743 struct pt_regs
*regs
)
748 filename
= getname((char __user
*) a0
);
749 error
= PTR_ERR(filename
);
750 if (IS_ERR(filename
))
752 flush_fp_to_thread(current
);
753 flush_altivec_to_thread(current
);
754 flush_spe_to_thread(current
);
755 error
= do_execve(filename
, (char __user
* __user
*) a1
,
756 (char __user
* __user
*) a2
, regs
);
759 current
->ptrace
&= ~PT_DTRACE
;
760 task_unlock(current
);
767 static int validate_sp(unsigned long sp
, struct task_struct
*p
,
768 unsigned long nbytes
)
770 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
772 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
773 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
776 #ifdef CONFIG_IRQSTACKS
777 stack_page
= (unsigned long) hardirq_ctx
[task_cpu(p
)];
778 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
779 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
782 stack_page
= (unsigned long) softirq_ctx
[task_cpu(p
)];
783 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
784 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
792 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
793 #define FRAME_LR_SAVE 2
794 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
795 #define REGS_MARKER 0x7265677368657265ul
796 #define FRAME_MARKER 12
798 #define MIN_STACK_FRAME 16
799 #define FRAME_LR_SAVE 1
800 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
801 #define REGS_MARKER 0x72656773ul
802 #define FRAME_MARKER 2
805 unsigned long get_wchan(struct task_struct
*p
)
807 unsigned long ip
, sp
;
810 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
814 if (!validate_sp(sp
, p
, MIN_STACK_FRAME
))
818 sp
= *(unsigned long *)sp
;
819 if (!validate_sp(sp
, p
, MIN_STACK_FRAME
))
822 ip
= ((unsigned long *)sp
)[FRAME_LR_SAVE
];
823 if (!in_sched_functions(ip
))
826 } while (count
++ < 16);
829 EXPORT_SYMBOL(get_wchan
);
831 static int kstack_depth_to_print
= 64;
833 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
835 unsigned long sp
, ip
, lr
, newsp
;
839 sp
= (unsigned long) stack
;
844 asm("mr %0,1" : "=r" (sp
));
846 sp
= tsk
->thread
.ksp
;
850 printk("Call Trace:\n");
852 if (!validate_sp(sp
, tsk
, MIN_STACK_FRAME
))
855 stack
= (unsigned long *) sp
;
857 ip
= stack
[FRAME_LR_SAVE
];
858 if (!firstframe
|| ip
!= lr
) {
859 printk("["REG
"] ["REG
"] ", sp
, ip
);
860 print_symbol("%s", ip
);
862 printk(" (unreliable)");
868 * See if this is an exception frame.
869 * We look for the "regshere" marker in the current frame.
871 if (validate_sp(sp
, tsk
, INT_FRAME_SIZE
)
872 && stack
[FRAME_MARKER
] == REGS_MARKER
) {
873 struct pt_regs
*regs
= (struct pt_regs
*)
874 (sp
+ STACK_FRAME_OVERHEAD
);
875 printk("--- Exception: %lx", regs
->trap
);
876 print_symbol(" at %s\n", regs
->nip
);
878 print_symbol(" LR = %s\n", lr
);
883 } while (count
++ < kstack_depth_to_print
);
886 void dump_stack(void)
888 show_stack(current
, NULL
);
890 EXPORT_SYMBOL(dump_stack
);
893 void ppc64_runlatch_on(void)
897 if (cpu_has_feature(CPU_FTR_CTRL
) && !test_thread_flag(TIF_RUNLATCH
)) {
900 ctrl
= mfspr(SPRN_CTRLF
);
901 ctrl
|= CTRL_RUNLATCH
;
902 mtspr(SPRN_CTRLT
, ctrl
);
904 set_thread_flag(TIF_RUNLATCH
);
908 void ppc64_runlatch_off(void)
912 if (cpu_has_feature(CPU_FTR_CTRL
) && test_thread_flag(TIF_RUNLATCH
)) {
915 clear_thread_flag(TIF_RUNLATCH
);
917 ctrl
= mfspr(SPRN_CTRLF
);
918 ctrl
&= ~CTRL_RUNLATCH
;
919 mtspr(SPRN_CTRLT
, ctrl
);