2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
15 #include <linux/config.h>
16 #include <linux/compiler.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
20 #include <asm/addrspace.h>
21 #include <asm/byteorder.h>
23 #include <asm/cpu-features.h>
25 #include <asm/pgtable-bits.h>
26 #include <asm/processor.h>
27 #include <asm/string.h>
30 #include <mangle-port.h>
33 * Slowdown I/O port space accesses for antique hardware.
35 #undef CONF_SLOWDOWN_IO
38 * Raw operations are never swapped in software. OTOH values that raw
39 * operations are working on may or may not have been swapped by the bus
40 * hardware. An example use would be for flash memory that's used for
43 # define __raw_ioswabb(x) (x)
44 # define __raw_ioswabw(x) (x)
45 # define __raw_ioswabl(x) (x)
46 # define __raw_ioswabq(x) (x)
47 # define ____raw_ioswabq(x) (x)
50 * Sane hardware offers swapping of PCI/ISA I/O space accesses in hardware;
51 * less sane hardware forces software to fiddle with this...
53 * Regardless, if the host bus endianness mismatches that of PCI/ISA, then
54 * you can't have the numerical value of data and byte addresses within
55 * multibyte quantities both preserved at the same time. Hence two
56 * variations of functions: non-prefixed ones that preserve the value
57 * and prefixed ones that preserve byte addresses. The latters are
58 * typically used for moving raw data between a peripheral and memory (cf.
59 * string I/O functions), hence the "__mem_" prefix.
61 #if defined(CONFIG_SWAP_IO_SPACE)
63 # define ioswabb(x) (x)
64 # define __mem_ioswabb(x) (x)
65 # ifdef CONFIG_SGI_IP22
67 * IP22 seems braindead enough to swap 16bits values in hardware, but
68 * not 32bits. Go figure... Can't tell without documentation.
70 # define ioswabw(x) (x)
71 # define __mem_ioswabw(x) le16_to_cpu(x)
73 # define ioswabw(x) le16_to_cpu(x)
74 # define __mem_ioswabw(x) (x)
76 # define ioswabl(x) le32_to_cpu(x)
77 # define __mem_ioswabl(x) (x)
78 # define ioswabq(x) le64_to_cpu(x)
79 # define __mem_ioswabq(x) (x)
83 # define ioswabb(x) (x)
84 # define __mem_ioswabb(x) (x)
85 # define ioswabw(x) (x)
86 # define __mem_ioswabw(x) cpu_to_le16(x)
87 # define ioswabl(x) (x)
88 # define __mem_ioswabl(x) cpu_to_le32(x)
89 # define ioswabq(x) (x)
90 # define __mem_ioswabq(x) cpu_to_le32(x)
94 #define IO_SPACE_LIMIT 0xffff
97 * On MIPS I/O ports are memory mapped, so we access them using normal
98 * load/store instructions. mips_io_port_base is the virtual address to
99 * which all ports are being mapped. For sake of efficiency some code
100 * assumes that this is an address that can be loaded with a single lui
101 * instruction, so the lower 16 bits must be zero. Should be true on
102 * on any sane architecture; generic code does not use this assumption.
104 extern const unsigned long mips_io_port_base
;
107 * Gcc will generate code to load the value of mips_io_port_base after each
108 * function call which may be fairly wasteful in some cases. So we don't
109 * play quite by the book. We tell gcc mips_io_port_base is a long variable
110 * which solves the code generation issue. Now we need to violate the
111 * aliasing rules a little to make initialization possible and finally we
112 * will need the barrier() to fight side effects of the aliasing chat.
113 * This trickery will eventually collapse under gcc's optimizer. Oh well.
115 static inline void set_io_port_base(unsigned long base
)
117 * (unsigned long *) &mips_io_port_base
= base
;
122 * Thanks to James van Artsdalen for a better timing-fix than
123 * the two short jumps: using outb's to a nonexistent port seems
124 * to guarantee better timings even on fast machines.
126 * On the other hand, I'd like to be sure of a non-existent port:
127 * I feel a bit unsafe about using 0x80 (should be safe, though)
133 #define __SLOW_DOWN_IO \
134 __asm__ __volatile__( \
136 : : "r" (mips_io_port_base));
138 #ifdef CONF_SLOWDOWN_IO
139 #ifdef REALLY_SLOW_IO
140 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
142 #define SLOW_DOWN_IO __SLOW_DOWN_IO
149 * virt_to_phys - map virtual addresses to physical
150 * @address: address to remap
152 * The returned physical address is the physical (CPU) mapping for
153 * the memory address given. It is only valid to use this function on
154 * addresses directly mapped or allocated via kmalloc.
156 * This function does not give bus mappings for DMA transfers. In
157 * almost all conceivable cases a device driver should not be using
160 static inline unsigned long virt_to_phys(volatile void * address
)
162 return (unsigned long)address
- PAGE_OFFSET
;
166 * phys_to_virt - map physical address to virtual
167 * @address: address to remap
169 * The returned virtual address is a current CPU mapping for
170 * the memory address given. It is only valid to use this function on
171 * addresses that have a kernel mapping
173 * This function does not handle bus mappings for DMA transfers. In
174 * almost all conceivable cases a device driver should not be using
177 static inline void * phys_to_virt(unsigned long address
)
179 return (void *)(address
+ PAGE_OFFSET
);
183 * ISA I/O bus memory addresses are 1:1 with the physical address.
185 static inline unsigned long isa_virt_to_bus(volatile void * address
)
187 return (unsigned long)address
- PAGE_OFFSET
;
190 static inline void * isa_bus_to_virt(unsigned long address
)
192 return (void *)(address
+ PAGE_OFFSET
);
195 #define isa_page_to_bus page_to_phys
198 * However PCI ones are not necessarily 1:1 and therefore these interfaces
199 * are forbidden in portable PCI drivers.
201 * Allow them for x86 for legacy drivers, though.
203 #define virt_to_bus virt_to_phys
204 #define bus_to_virt phys_to_virt
207 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
208 * for the processor. This implies the assumption that there is only
209 * one of these busses.
211 extern unsigned long isa_slot_offset
;
214 * Change "struct page" to physical address.
216 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
218 extern void __iomem
* __ioremap(phys_t offset
, phys_t size
, unsigned long flags
);
219 extern void __iounmap(volatile void __iomem
*addr
);
221 static inline void __iomem
* __ioremap_mode(phys_t offset
, unsigned long size
,
224 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
226 if (cpu_has_64bit_addresses
) {
227 u64 base
= UNCAC_BASE
;
230 * R10000 supports a 2 bit uncached attribute therefore
231 * UNCAC_BASE may not equal IO_BASE.
233 if (flags
== _CACHE_UNCACHED
)
234 base
= (u64
) IO_BASE
;
235 return (void __iomem
*) (unsigned long) (base
+ offset
);
236 } else if (__builtin_constant_p(offset
) &&
237 __builtin_constant_p(size
) && __builtin_constant_p(flags
)) {
238 phys_t phys_addr
, last_addr
;
240 phys_addr
= fixup_bigphys_addr(offset
, size
);
242 /* Don't allow wraparound or zero size. */
243 last_addr
= phys_addr
+ size
- 1;
244 if (!size
|| last_addr
< phys_addr
)
248 * Map uncached objects in the low 512MB of address
251 if (__IS_LOW512(phys_addr
) && __IS_LOW512(last_addr
) &&
252 flags
== _CACHE_UNCACHED
)
253 return (void __iomem
*)CKSEG1ADDR(phys_addr
);
256 return __ioremap(offset
, size
, flags
);
262 * ioremap - map bus memory into CPU space
263 * @offset: bus address of the memory
264 * @size: size of the resource to map
266 * ioremap performs a platform specific sequence of operations to
267 * make bus memory CPU accessible via the readb/readw/readl/writeb/
268 * writew/writel functions and the other mmio helpers. The returned
269 * address is not guaranteed to be usable directly as a virtual
272 #define ioremap(offset, size) \
273 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
276 * ioremap_nocache - map bus memory into CPU space
277 * @offset: bus address of the memory
278 * @size: size of the resource to map
280 * ioremap_nocache performs a platform specific sequence of operations to
281 * make bus memory CPU accessible via the readb/readw/readl/writeb/
282 * writew/writel functions and the other mmio helpers. The returned
283 * address is not guaranteed to be usable directly as a virtual
286 * This version of ioremap ensures that the memory is marked uncachable
287 * on the CPU as well as honouring existing caching rules from things like
288 * the PCI bus. Note that there are other caches and buffers on many
289 * busses. In paticular driver authors should read up on PCI writes
291 * It's useful if some control registers are in such an area and
292 * write combining or read caching is not desirable:
294 #define ioremap_nocache(offset, size) \
295 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
298 * ioremap_cachable - map bus memory into CPU space
299 * @offset: bus address of the memory
300 * @size: size of the resource to map
302 * ioremap_nocache performs a platform specific sequence of operations to
303 * make bus memory CPU accessible via the readb/readw/readl/writeb/
304 * writew/writel functions and the other mmio helpers. The returned
305 * address is not guaranteed to be usable directly as a virtual
308 * This version of ioremap ensures that the memory is marked cachable by
309 * the CPU. Also enables full write-combining. Useful for some
310 * memory-like regions on I/O busses.
312 #define ioremap_cachable(offset, size) \
313 __ioremap_mode((offset), (size), PAGE_CACHABLE_DEFAULT)
316 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
317 * requests a cachable mapping, ioremap_uncached_accelerated requests a
318 * mapping using the uncached accelerated mode which isn't supported on
321 #define ioremap_cacheable_cow(offset, size) \
322 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
323 #define ioremap_uncached_accelerated(offset, size) \
324 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
326 static inline void iounmap(volatile void __iomem
*addr
)
328 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
330 if (cpu_has_64bit_addresses
||
331 (__builtin_constant_p(addr
) && __IS_KSEG1(addr
)))
339 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
341 static inline void pfx##write##bwlq(type val, \
342 volatile void __iomem *mem) \
344 volatile type *__mem; \
347 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
349 __val = pfx##ioswab##bwlq(val); \
351 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
353 else if (cpu_has_64bits) { \
354 unsigned long __flags; \
358 local_irq_save(__flags); \
359 __asm__ __volatile__( \
360 ".set mips3" "\t\t# __writeq""\n\t" \
361 "dsll32 %L0, %L0, 0" "\n\t" \
362 "dsrl32 %L0, %L0, 0" "\n\t" \
363 "dsll32 %M0, %M0, 0" "\n\t" \
364 "or %L0, %L0, %M0" "\n\t" \
365 "sd %L0, %2" "\n\t" \
368 : "0" (__val), "m" (*__mem)); \
370 local_irq_restore(__flags); \
375 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
377 volatile type *__mem; \
380 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
382 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
384 else if (cpu_has_64bits) { \
385 unsigned long __flags; \
388 local_irq_save(__flags); \
389 __asm__ __volatile__( \
390 ".set mips3" "\t\t# __readq" "\n\t" \
391 "ld %L0, %1" "\n\t" \
392 "dsra32 %M0, %L0, 0" "\n\t" \
393 "sll %L0, %L0, 0" "\n\t" \
398 local_irq_restore(__flags); \
404 return pfx##ioswab##bwlq(__val); \
407 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
409 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
411 volatile type *__addr; \
414 port = __swizzle_addr_##bwlq(port); \
415 __addr = (void *)(mips_io_port_base + port); \
417 __val = pfx##ioswab##bwlq(val); \
419 /* Really, we want this to be atomic */ \
420 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
426 static inline type pfx##in##bwlq##p(unsigned long port) \
428 volatile type *__addr; \
431 port = __swizzle_addr_##bwlq(port); \
432 __addr = (void *)(mips_io_port_base + port); \
434 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
439 return pfx##ioswab##bwlq(__val); \
442 #define __BUILD_MEMORY_PFX(bus, bwlq, type) \
444 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
446 #define BUILDIO_MEM(bwlq, type) \
448 __BUILD_MEMORY_PFX(__raw_, bwlq, type) \
449 __BUILD_MEMORY_PFX(, bwlq, type) \
450 __BUILD_MEMORY_PFX(__mem_, bwlq, type) \
457 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
458 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
459 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
461 #define BUILDIO_IOPORT(bwlq, type) \
462 __BUILD_IOPORT_PFX(, bwlq, type) \
463 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
465 BUILDIO_IOPORT(b
, u8
)
466 BUILDIO_IOPORT(w
, u16
)
467 BUILDIO_IOPORT(l
, u32
)
469 BUILDIO_IOPORT(q
, u64
)
472 #define __BUILDIO(bwlq, type) \
474 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
478 #define readb_relaxed readb
479 #define readw_relaxed readw
480 #define readl_relaxed readl
481 #define readq_relaxed readq
484 * Some code tests for these symbols
487 #define writeq writeq
489 #define __BUILD_MEMORY_STRING(bwlq, type) \
491 static inline void writes##bwlq(volatile void __iomem *mem, \
492 const void *addr, unsigned int count) \
494 const volatile type *__addr = addr; \
497 __mem_write##bwlq(*__addr, mem); \
502 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
503 unsigned int count) \
505 volatile type *__addr = addr; \
508 *__addr = __mem_read##bwlq(mem); \
513 #define __BUILD_IOPORT_STRING(bwlq, type) \
515 static inline void outs##bwlq(unsigned long port, const void *addr, \
516 unsigned int count) \
518 const volatile type *__addr = addr; \
521 __mem_out##bwlq(*__addr, port); \
526 static inline void ins##bwlq(unsigned long port, void *addr, \
527 unsigned int count) \
529 volatile type *__addr = addr; \
532 *__addr = __mem_in##bwlq(port); \
537 #define BUILDSTRING(bwlq, type) \
539 __BUILD_MEMORY_STRING(bwlq, type) \
540 __BUILD_IOPORT_STRING(bwlq, type)
550 /* Depends on MIPS II instruction set */
551 #define mmiowb() asm volatile ("sync" ::: "memory")
553 static inline void memset_io(volatile void __iomem
*addr
, unsigned char val
, int count
)
555 memset((void __force
*) addr
, val
, count
);
557 static inline void memcpy_fromio(void *dst
, const volatile void __iomem
*src
, int count
)
559 memcpy(dst
, (void __force
*) src
, count
);
561 static inline void memcpy_toio(volatile void __iomem
*dst
, const void *src
, int count
)
563 memcpy((void __force
*) dst
, src
, count
);
569 #define ioread8(addr) readb(addr)
570 #define ioread16(addr) readw(addr)
571 #define ioread32(addr) readl(addr)
573 #define iowrite8(b,addr) writeb(b,addr)
574 #define iowrite16(w,addr) writew(w,addr)
575 #define iowrite32(l,addr) writel(l,addr)
577 #define ioread8_rep(a,b,c) readsb(a,b,c)
578 #define ioread16_rep(a,b,c) readsw(a,b,c)
579 #define ioread32_rep(a,b,c) readsl(a,b,c)
581 #define iowrite8_rep(a,b,c) writesb(a,b,c)
582 #define iowrite16_rep(a,b,c) writesw(a,b,c)
583 #define iowrite32_rep(a,b,c) writesl(a,b,c)
585 /* Create a virtual mapping cookie for an IO port range */
586 extern void __iomem
*ioport_map(unsigned long port
, unsigned int nr
);
587 extern void ioport_unmap(void __iomem
*);
589 /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
591 extern void __iomem
*pci_iomap(struct pci_dev
*dev
, int bar
, unsigned long max
);
592 extern void pci_iounmap(struct pci_dev
*dev
, void __iomem
*);
595 * ISA space is 'always mapped' on currently supported MIPS systems, no need
596 * to explicitly ioremap() it. The fact that the ISA IO space is mapped
597 * to PAGE_OFFSET is pure coincidence - it does not mean ISA values
598 * are physical addresses. The following constant pointer can be
599 * used as the IO-area pointer (it can be iounmapped as well, so the
600 * analogy with PCI is quite large):
602 #define __ISA_IO_base ((char *)(isa_slot_offset))
604 #define isa_readb(a) readb(__ISA_IO_base + (a))
605 #define isa_readw(a) readw(__ISA_IO_base + (a))
606 #define isa_readl(a) readl(__ISA_IO_base + (a))
607 #define isa_readq(a) readq(__ISA_IO_base + (a))
608 #define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a))
609 #define isa_writew(w,a) writew(w,__ISA_IO_base + (a))
610 #define isa_writel(l,a) writel(l,__ISA_IO_base + (a))
611 #define isa_writeq(q,a) writeq(q,__ISA_IO_base + (a))
612 #define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c))
613 #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c))
614 #define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c))
617 * We don't have csum_partial_copy_fromio() yet, so we cheat here and
618 * just copy it. The net code will then do the checksum later.
620 #define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len))
621 #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d))
624 * check_signature - find BIOS signatures
625 * @io_addr: mmio address to check
626 * @signature: signature block
627 * @length: length of signature
629 * Perform a signature comparison with the mmio address io_addr. This
630 * address should have been obtained by ioremap.
631 * Returns 1 on a match.
633 static inline int check_signature(char __iomem
*io_addr
,
634 const unsigned char *signature
, int length
)
638 if (readb(io_addr
) != *signature
)
650 * The caches on some architectures aren't dma-coherent and have need to
651 * handle this in software. There are three types of operations that
652 * can be applied to dma buffers.
654 * - dma_cache_wback_inv(start, size) makes caches and coherent by
655 * writing the content of the caches back to memory, if necessary.
656 * The function also invalidates the affected part of the caches as
657 * necessary before DMA transfers from outside to memory.
658 * - dma_cache_wback(start, size) makes caches and coherent by
659 * writing the content of the caches back to memory, if necessary.
660 * The function also invalidates the affected part of the caches as
661 * necessary before DMA transfers from outside to memory.
662 * - dma_cache_inv(start, size) invalidates the affected parts of the
663 * caches. Dirty lines of the caches may be written back or simply
664 * be discarded. This operation is necessary before dma operations
667 #ifdef CONFIG_DMA_NONCOHERENT
669 extern void (*_dma_cache_wback_inv
)(unsigned long start
, unsigned long size
);
670 extern void (*_dma_cache_wback
)(unsigned long start
, unsigned long size
);
671 extern void (*_dma_cache_inv
)(unsigned long start
, unsigned long size
);
673 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start,size)
674 #define dma_cache_wback(start, size) _dma_cache_wback(start,size)
675 #define dma_cache_inv(start, size) _dma_cache_inv(start,size)
677 #else /* Sane hardware */
679 #define dma_cache_wback_inv(start,size) \
680 do { (void) (start); (void) (size); } while (0)
681 #define dma_cache_wback(start,size) \
682 do { (void) (start); (void) (size); } while (0)
683 #define dma_cache_inv(start,size) \
684 do { (void) (start); (void) (size); } while (0)
686 #endif /* CONFIG_DMA_NONCOHERENT */
689 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
690 * Avoid interrupt mucking, just adjust the address for 4-byte access.
691 * Assume the addresses are 8-byte aligned.
694 #define __CSR_32_ADJUST 4
696 #define __CSR_32_ADJUST 0
699 #define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
700 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
703 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
706 #define xlate_dev_mem_ptr(p) __va(p)
709 * Convert a virtual cached pointer to an uncached pointer
711 #define xlate_dev_kmem_ptr(p) p
713 #endif /* _ASM_IO_H */