2 * PowerPC atomic bit operations.
4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
7 * originally took it from the ppc32 code.
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
15 * The bitop functions are defined to work on unsigned longs, so for a
16 * ppc64 system the bits end up numbered:
17 * |63..............0|127............64|191...........128|255...........196|
19 * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
21 * There are a few little-endian macros used mostly for filesystem
22 * bitmaps, these work on similar bit arrays layouts, but
24 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27 * number field needs to be reversed compared to the big-endian bit
28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
30 * This program is free software; you can redistribute it and/or
31 * modify it under the terms of the GNU General Public License
32 * as published by the Free Software Foundation; either version
33 * 2 of the License, or (at your option) any later version.
36 #ifndef _ASM_POWERPC_BITOPS_H
37 #define _ASM_POWERPC_BITOPS_H
41 #include <linux/compiler.h>
42 #include <asm/atomic.h>
43 #include <asm/asm-compat.h>
44 #include <asm/synch.h>
47 * clear_bit doesn't imply a memory barrier
49 #define smp_mb__before_clear_bit() smp_mb()
50 #define smp_mb__after_clear_bit() smp_mb()
52 #define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
53 #define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
54 #define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
56 static __inline__
void set_bit(int nr
, volatile unsigned long *addr
)
59 unsigned long mask
= BITOP_MASK(nr
);
60 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
63 "1:" PPC_LLARX
"%0,0,%3 # set_bit\n"
68 : "=&r"(old
), "=m"(*p
)
69 : "r"(mask
), "r"(p
), "m"(*p
)
73 static __inline__
void clear_bit(int nr
, volatile unsigned long *addr
)
76 unsigned long mask
= BITOP_MASK(nr
);
77 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
80 "1:" PPC_LLARX
"%0,0,%3 # clear_bit\n"
85 : "=&r"(old
), "=m"(*p
)
86 : "r"(mask
), "r"(p
), "m"(*p
)
90 static __inline__
void change_bit(int nr
, volatile unsigned long *addr
)
93 unsigned long mask
= BITOP_MASK(nr
);
94 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
97 "1:" PPC_LLARX
"%0,0,%3 # change_bit\n"
100 PPC_STLCX
"%0,0,%3\n"
102 : "=&r"(old
), "=m"(*p
)
103 : "r"(mask
), "r"(p
), "m"(*p
)
107 static __inline__
int test_and_set_bit(unsigned long nr
,
108 volatile unsigned long *addr
)
110 unsigned long old
, t
;
111 unsigned long mask
= BITOP_MASK(nr
);
112 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
114 __asm__
__volatile__(
116 "1:" PPC_LLARX
"%0,0,%3 # test_and_set_bit\n"
119 PPC_STLCX
"%1,0,%3 \n"
122 : "=&r" (old
), "=&r" (t
)
123 : "r" (mask
), "r" (p
)
126 return (old
& mask
) != 0;
129 static __inline__
int test_and_clear_bit(unsigned long nr
,
130 volatile unsigned long *addr
)
132 unsigned long old
, t
;
133 unsigned long mask
= BITOP_MASK(nr
);
134 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
136 __asm__
__volatile__(
138 "1:" PPC_LLARX
"%0,0,%3 # test_and_clear_bit\n"
141 PPC_STLCX
"%1,0,%3 \n"
144 : "=&r" (old
), "=&r" (t
)
145 : "r" (mask
), "r" (p
)
148 return (old
& mask
) != 0;
151 static __inline__
int test_and_change_bit(unsigned long nr
,
152 volatile unsigned long *addr
)
154 unsigned long old
, t
;
155 unsigned long mask
= BITOP_MASK(nr
);
156 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
158 __asm__
__volatile__(
160 "1:" PPC_LLARX
"%0,0,%3 # test_and_change_bit\n"
163 PPC_STLCX
"%1,0,%3 \n"
166 : "=&r" (old
), "=&r" (t
)
167 : "r" (mask
), "r" (p
)
170 return (old
& mask
) != 0;
173 static __inline__
void set_bits(unsigned long mask
, unsigned long *addr
)
177 __asm__
__volatile__(
178 "1:" PPC_LLARX
"%0,0,%3 # set_bits\n"
180 PPC_STLCX
"%0,0,%3\n"
182 : "=&r" (old
), "=m" (*addr
)
183 : "r" (mask
), "r" (addr
), "m" (*addr
)
187 /* Non-atomic versions */
188 static __inline__
int test_bit(unsigned long nr
,
189 __const__
volatile unsigned long *addr
)
191 return 1UL & (addr
[BITOP_WORD(nr
)] >> (nr
& (BITS_PER_LONG
-1)));
194 static __inline__
void __set_bit(unsigned long nr
,
195 volatile unsigned long *addr
)
197 unsigned long mask
= BITOP_MASK(nr
);
198 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
203 static __inline__
void __clear_bit(unsigned long nr
,
204 volatile unsigned long *addr
)
206 unsigned long mask
= BITOP_MASK(nr
);
207 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
212 static __inline__
void __change_bit(unsigned long nr
,
213 volatile unsigned long *addr
)
215 unsigned long mask
= BITOP_MASK(nr
);
216 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
221 static __inline__
int __test_and_set_bit(unsigned long nr
,
222 volatile unsigned long *addr
)
224 unsigned long mask
= BITOP_MASK(nr
);
225 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
226 unsigned long old
= *p
;
229 return (old
& mask
) != 0;
232 static __inline__
int __test_and_clear_bit(unsigned long nr
,
233 volatile unsigned long *addr
)
235 unsigned long mask
= BITOP_MASK(nr
);
236 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
237 unsigned long old
= *p
;
240 return (old
& mask
) != 0;
243 static __inline__
int __test_and_change_bit(unsigned long nr
,
244 volatile unsigned long *addr
)
246 unsigned long mask
= BITOP_MASK(nr
);
247 unsigned long *p
= ((unsigned long *)addr
) + BITOP_WORD(nr
);
248 unsigned long old
= *p
;
251 return (old
& mask
) != 0;
255 * Return the zero-based bit position (LE, not IBM bit numbering) of
256 * the most significant 1-bit in a double word.
258 static __inline__
int __ilog2(unsigned long x
)
262 asm (PPC_CNTLZL
"%0,%1" : "=r" (lz
) : "r" (x
));
263 return BITS_PER_LONG
- 1 - lz
;
267 * Determines the bit position of the least significant 0 bit in the
268 * specified double word. The returned bit position will be
269 * zero-based, starting from the right side (63/31 - 0).
271 static __inline__
unsigned long ffz(unsigned long x
)
273 /* no zero exists anywhere in the 8 byte area. */
275 return BITS_PER_LONG
;
278 * Calculate the bit position of the least signficant '1' bit in x
279 * (since x has been changed this will actually be the least signficant
280 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
281 * is the least significant * (RIGHT-most) 1-bit of the value in x.
283 return __ilog2(x
& -x
);
286 static __inline__
int __ffs(unsigned long x
)
288 return __ilog2(x
& -x
);
292 * ffs: find first bit set. This is defined the same way as
293 * the libc and compiler builtin ffs routines, therefore
294 * differs in spirit from the above ffz (man ffs).
296 static __inline__
int ffs(int x
)
298 unsigned long i
= (unsigned long)x
;
299 return __ilog2(i
& -i
) + 1;
303 * fls: find last (most-significant) bit set.
304 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
306 static __inline__
int fls(unsigned int x
)
310 asm ("cntlzw %0,%1" : "=r" (lz
) : "r" (x
));
313 #define fls64(x) generic_fls64(x)
316 * hweightN: returns the hamming weight (i.e. the number
317 * of bits set) of a N-bit word
319 #define hweight64(x) generic_hweight64(x)
320 #define hweight32(x) generic_hweight32(x)
321 #define hweight16(x) generic_hweight16(x)
322 #define hweight8(x) generic_hweight8(x)
324 #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
325 unsigned long find_next_zero_bit(const unsigned long *addr
,
326 unsigned long size
, unsigned long offset
);
328 * find_first_bit - find the first set bit in a memory region
329 * @addr: The address to start the search at
330 * @size: The maximum size to search
332 * Returns the bit-number of the first set bit, not the number of the byte
335 #define find_first_bit(addr, size) find_next_bit((addr), (size), 0)
336 unsigned long find_next_bit(const unsigned long *addr
,
337 unsigned long size
, unsigned long offset
);
339 /* Little-endian versions */
341 static __inline__
int test_le_bit(unsigned long nr
,
342 __const__
unsigned long *addr
)
344 __const__
unsigned char *tmp
= (__const__
unsigned char *) addr
;
345 return (tmp
[nr
>> 3] >> (nr
& 7)) & 1;
348 #define __set_le_bit(nr, addr) \
349 __set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
350 #define __clear_le_bit(nr, addr) \
351 __clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
353 #define test_and_set_le_bit(nr, addr) \
354 test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
355 #define test_and_clear_le_bit(nr, addr) \
356 test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
358 #define __test_and_set_le_bit(nr, addr) \
359 __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
360 #define __test_and_clear_le_bit(nr, addr) \
361 __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
363 #define find_first_zero_le_bit(addr, size) find_next_zero_le_bit((addr), (size), 0)
364 unsigned long find_next_zero_le_bit(const unsigned long *addr
,
365 unsigned long size
, unsigned long offset
);
367 /* Bitmap functions for the ext2 filesystem */
369 #define ext2_set_bit(nr,addr) \
370 __test_and_set_le_bit((nr), (unsigned long*)addr)
371 #define ext2_clear_bit(nr, addr) \
372 __test_and_clear_le_bit((nr), (unsigned long*)addr)
374 #define ext2_set_bit_atomic(lock, nr, addr) \
375 test_and_set_le_bit((nr), (unsigned long*)addr)
376 #define ext2_clear_bit_atomic(lock, nr, addr) \
377 test_and_clear_le_bit((nr), (unsigned long*)addr)
379 #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
381 #define ext2_find_first_zero_bit(addr, size) \
382 find_first_zero_le_bit((unsigned long*)addr, size)
383 #define ext2_find_next_zero_bit(addr, size, off) \
384 find_next_zero_le_bit((unsigned long*)addr, size, off)
386 /* Bitmap functions for the minix filesystem. */
388 #define minix_test_and_set_bit(nr,addr) \
389 __test_and_set_le_bit(nr, (unsigned long *)addr)
390 #define minix_set_bit(nr,addr) \
391 __set_le_bit(nr, (unsigned long *)addr)
392 #define minix_test_and_clear_bit(nr,addr) \
393 __test_and_clear_le_bit(nr, (unsigned long *)addr)
394 #define minix_test_bit(nr,addr) \
395 test_le_bit(nr, (unsigned long *)addr)
397 #define minix_find_first_zero_bit(addr,size) \
398 find_first_zero_le_bit((unsigned long *)addr, size)
401 * Every architecture must define this function. It's the fastest
402 * way of searching a 140-bit bitmap where the first 100 bits are
403 * unlikely to be set. It's guaranteed that at least one of the 140
406 static inline int sched_find_first_bit(const unsigned long *b
)
412 return __ffs(b
[1]) + 64;
413 return __ffs(b
[2]) + 128;
418 return __ffs(b
[1]) + 32;
420 return __ffs(b
[2]) + 64;
422 return __ffs(b
[3]) + 96;
423 return __ffs(b
[4]) + 128;
427 #endif /* __KERNEL__ */
429 #endif /* _ASM_POWERPC_BITOPS_H */