[IPV6]: ROUTE: Split up rt6_cow() for future changes.
[linux-2.6/verdex.git] / include / asm-sparc64 / pbm.h
blob1396f110939adbfb4bad5b8e7f803658f209c79f
1 /* $Id: pbm.h,v 1.27 2001/08/12 13:18:23 davem Exp $
2 * pbm.h: UltraSparc PCI controller software state.
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
5 */
7 #ifndef __SPARC64_PBM_H
8 #define __SPARC64_PBM_H
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/ioport.h>
13 #include <linux/spinlock.h>
15 #include <asm/io.h>
16 #include <asm/page.h>
17 #include <asm/oplib.h>
18 #include <asm/iommu.h>
20 /* The abstraction used here is that there are PCI controllers,
21 * each with one (Sabre) or two (PSYCHO/SCHIZO) PCI bus modules
22 * underneath. Each PCI bus module uses an IOMMU (shared by both
23 * PBMs of a controller, or per-PBM), and if a streaming buffer
24 * is present, each PCI bus module has it's own. (ie. the IOMMU
25 * might be shared between PBMs, the STC is never shared)
26 * Furthermore, each PCI bus module controls it's own autonomous
27 * PCI bus.
30 struct pci_controller_info;
32 /* This contains the software state necessary to drive a PCI
33 * controller's IOMMU.
35 struct pci_iommu_arena {
36 unsigned long *map;
37 unsigned int hint;
38 unsigned int limit;
41 struct pci_iommu {
42 /* This protects the controller's IOMMU and all
43 * streaming buffers underneath.
45 spinlock_t lock;
47 struct pci_iommu_arena arena;
49 /* IOMMU page table, a linear array of ioptes. */
50 iopte_t *page_table; /* The page table itself. */
52 /* Base PCI memory space address where IOMMU mappings
53 * begin.
55 u32 page_table_map_base;
57 /* IOMMU Controller Registers */
58 unsigned long iommu_control; /* IOMMU control register */
59 unsigned long iommu_tsbbase; /* IOMMU page table base register */
60 unsigned long iommu_flush; /* IOMMU page flush register */
61 unsigned long iommu_ctxflush; /* IOMMU context flush register */
63 /* This is a register in the PCI controller, which if
64 * read will have no side-effects but will guarantee
65 * completion of all previous writes into IOMMU/STC.
67 unsigned long write_complete_reg;
69 /* In order to deal with some buggy third-party PCI bridges that
70 * do wrong prefetching, we never mark valid mappings as invalid.
71 * Instead we point them at this dummy page.
73 unsigned long dummy_page;
74 unsigned long dummy_page_pa;
76 /* CTX allocation. */
77 unsigned long ctx_lowest_free;
78 unsigned long ctx_bitmap[IOMMU_NUM_CTXS / (sizeof(unsigned long) * 8)];
80 /* Here a PCI controller driver describes the areas of
81 * PCI memory space where DMA to/from physical memory
82 * are addressed. Drivers interrogate the PCI layer
83 * if their device has addressing limitations. They
84 * do so via pci_dma_supported, and pass in a mask of
85 * DMA address bits their device can actually drive.
87 * The test for being usable is:
88 * (device_mask & dma_addr_mask) == dma_addr_mask
90 u32 dma_addr_mask;
93 extern void pci_iommu_table_init(struct pci_iommu *iommu, int tsbsize, u32 dma_offset, u32 dma_addr_mask);
95 /* This describes a PCI bus module's streaming buffer. */
96 struct pci_strbuf {
97 int strbuf_enabled; /* Present and using it? */
99 /* Streaming Buffer Control Registers */
100 unsigned long strbuf_control; /* STC control register */
101 unsigned long strbuf_pflush; /* STC page flush register */
102 unsigned long strbuf_fsync; /* STC flush synchronization reg */
103 unsigned long strbuf_ctxflush; /* STC context flush register */
104 unsigned long strbuf_ctxmatch_base; /* STC context flush match reg */
105 unsigned long strbuf_flushflag_pa; /* Physical address of flush flag */
106 volatile unsigned long *strbuf_flushflag; /* The flush flag itself */
108 /* And this is the actual flush flag area.
109 * We allocate extra because the chips require
110 * a 64-byte aligned area.
112 volatile unsigned long __flushflag_buf[(64 + (64 - 1)) / sizeof(long)];
115 #define PCI_STC_FLUSHFLAG_INIT(STC) \
116 (*((STC)->strbuf_flushflag) = 0UL)
117 #define PCI_STC_FLUSHFLAG_SET(STC) \
118 (*((STC)->strbuf_flushflag) != 0UL)
120 /* There can be quite a few ranges and interrupt maps on a PCI
121 * segment. Thus...
123 #define PROM_PCIRNG_MAX 64
124 #define PROM_PCIIMAP_MAX 64
126 struct pci_pbm_info {
127 /* PCI controller we sit under. */
128 struct pci_controller_info *parent;
130 /* Physical address base of controller registers. */
131 unsigned long controller_regs;
133 /* Physical address base of PBM registers. */
134 unsigned long pbm_regs;
136 /* Physical address of DMA sync register, if any. */
137 unsigned long sync_reg;
139 /* Opaque 32-bit system bus Port ID. */
140 u32 portid;
142 /* Opaque 32-bit handle used for hypervisor calls. */
143 u32 devhandle;
145 /* Chipset version information. */
146 int chip_type;
147 #define PBM_CHIP_TYPE_SABRE 1
148 #define PBM_CHIP_TYPE_PSYCHO 2
149 #define PBM_CHIP_TYPE_SCHIZO 3
150 #define PBM_CHIP_TYPE_SCHIZO_PLUS 4
151 #define PBM_CHIP_TYPE_TOMATILLO 5
152 int chip_version;
153 int chip_revision;
155 /* Name used for top-level resources. */
156 char name[64];
158 /* OBP specific information. */
159 int prom_node;
160 char prom_name[64];
161 struct linux_prom_pci_ranges pbm_ranges[PROM_PCIRNG_MAX];
162 int num_pbm_ranges;
163 struct linux_prom_pci_intmap pbm_intmap[PROM_PCIIMAP_MAX];
164 int num_pbm_intmap;
165 struct linux_prom_pci_intmask pbm_intmask;
166 u64 ino_bitmap;
168 /* PBM I/O and Memory space resources. */
169 struct resource io_space;
170 struct resource mem_space;
172 /* Base of PCI Config space, can be per-PBM or shared. */
173 unsigned long config_space;
175 /* State of 66MHz capabilities on this PBM. */
176 int is_66mhz_capable;
177 int all_devs_66mhz;
179 /* This PBM's streaming buffer. */
180 struct pci_strbuf stc;
182 /* IOMMU state, potentially shared by both PBM segments. */
183 struct pci_iommu *iommu;
185 /* PCI slot mapping. */
186 unsigned int pci_first_slot;
188 /* Now things for the actual PCI bus probes. */
189 unsigned int pci_first_busno;
190 unsigned int pci_last_busno;
191 struct pci_bus *pci_bus;
194 struct pci_controller_info {
195 /* List of all PCI controllers. */
196 struct pci_controller_info *next;
198 /* Each controller gets a unique index, used mostly for
199 * error logging purposes.
201 int index;
203 /* Do the PBMs both exist in the same PCI domain? */
204 int pbms_same_domain;
206 /* The PCI bus modules controlled by us. */
207 struct pci_pbm_info pbm_A;
208 struct pci_pbm_info pbm_B;
210 /* Operations which are controller specific. */
211 void (*scan_bus)(struct pci_controller_info *);
212 unsigned int (*irq_build)(struct pci_pbm_info *, struct pci_dev *, unsigned int);
213 void (*base_address_update)(struct pci_dev *, int);
214 void (*resource_adjust)(struct pci_dev *, struct resource *, struct resource *);
216 /* Now things for the actual PCI bus probes. */
217 struct pci_ops *pci_ops;
218 unsigned int pci_first_busno;
219 unsigned int pci_last_busno;
221 void *starfire_cookie;
224 /* PCI devices which are not bridges have this placed in their pci_dev
225 * sysdata member. This makes OBP aware PCI device drivers easier to
226 * code.
228 struct pcidev_cookie {
229 struct pci_pbm_info *pbm;
230 char prom_name[64];
231 int prom_node;
232 struct linux_prom_pci_registers prom_regs[PROMREG_MAX];
233 int num_prom_regs;
234 struct linux_prom_pci_registers prom_assignments[PROMREG_MAX];
235 int num_prom_assignments;
238 /* Currently these are the same across all PCI controllers
239 * we support. Someday they may not be...
241 #define PCI_IRQ_IGN 0x000007c0 /* Interrupt Group Number */
242 #define PCI_IRQ_INO 0x0000003f /* Interrupt Number */
244 #endif /* !(__SPARC64_PBM_H) */