[IPV6]: ROUTE: Split up rt6_cow() for future changes.
[linux-2.6/verdex.git] / mm / page-writeback.c
blob945559fb63d208bb5c10543aece7b117e84d3e97
1 /*
2 * mm/page-writeback.c.
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
34 * The maximum number of pages to writeout in a single bdflush/kupdate
35 * operation. We do this so we don't hold I_LOCK against an inode for
36 * enormous amounts of time, which would block a userspace task which has
37 * been forced to throttle against that inode. Also, the code reevaluates
38 * the dirty each time it has written this many pages.
40 #define MAX_WRITEBACK_PAGES 1024
43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44 * will look to see if it needs to force writeback or throttling.
46 static long ratelimit_pages = 32;
48 static long total_pages; /* The total number of pages in the machine. */
49 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
52 * When balance_dirty_pages decides that the caller needs to perform some
53 * non-background writeback, this is how many pages it will attempt to write.
54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55 * large amounts of I/O are submitted.
57 static inline long sync_writeback_pages(void)
59 return ratelimit_pages + ratelimit_pages / 2;
62 /* The following parameters are exported via /proc/sys/vm */
65 * Start background writeback (via pdflush) at this percentage
67 int dirty_background_ratio = 10;
70 * The generator of dirty data starts writeback at this percentage
72 int vm_dirty_ratio = 40;
75 * The interval between `kupdate'-style writebacks, in centiseconds
76 * (hundredths of a second)
78 int dirty_writeback_centisecs = 5 * 100;
81 * The longest number of centiseconds for which data is allowed to remain dirty
83 int dirty_expire_centisecs = 30 * 100;
86 * Flag that makes the machine dump writes/reads and block dirtyings.
88 int block_dump;
91 * Flag that puts the machine in "laptop mode".
93 int laptop_mode;
95 EXPORT_SYMBOL(laptop_mode);
97 /* End of sysctl-exported parameters */
100 static void background_writeout(unsigned long _min_pages);
102 struct writeback_state
104 unsigned long nr_dirty;
105 unsigned long nr_unstable;
106 unsigned long nr_mapped;
107 unsigned long nr_writeback;
110 static void get_writeback_state(struct writeback_state *wbs)
112 wbs->nr_dirty = read_page_state(nr_dirty);
113 wbs->nr_unstable = read_page_state(nr_unstable);
114 wbs->nr_mapped = read_page_state(nr_mapped);
115 wbs->nr_writeback = read_page_state(nr_writeback);
119 * Work out the current dirty-memory clamping and background writeout
120 * thresholds.
122 * The main aim here is to lower them aggressively if there is a lot of mapped
123 * memory around. To avoid stressing page reclaim with lots of unreclaimable
124 * pages. It is better to clamp down on writers than to start swapping, and
125 * performing lots of scanning.
127 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
129 * We don't permit the clamping level to fall below 5% - that is getting rather
130 * excessive.
132 * We make sure that the background writeout level is below the adjusted
133 * clamping level.
135 static void
136 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
137 struct address_space *mapping)
139 int background_ratio; /* Percentages */
140 int dirty_ratio;
141 int unmapped_ratio;
142 long background;
143 long dirty;
144 unsigned long available_memory = total_pages;
145 struct task_struct *tsk;
147 get_writeback_state(wbs);
149 #ifdef CONFIG_HIGHMEM
151 * If this mapping can only allocate from low memory,
152 * we exclude high memory from our count.
154 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
155 available_memory -= totalhigh_pages;
156 #endif
159 unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
161 dirty_ratio = vm_dirty_ratio;
162 if (dirty_ratio > unmapped_ratio / 2)
163 dirty_ratio = unmapped_ratio / 2;
165 if (dirty_ratio < 5)
166 dirty_ratio = 5;
168 background_ratio = dirty_background_ratio;
169 if (background_ratio >= dirty_ratio)
170 background_ratio = dirty_ratio / 2;
172 background = (background_ratio * available_memory) / 100;
173 dirty = (dirty_ratio * available_memory) / 100;
174 tsk = current;
175 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
176 background += background / 4;
177 dirty += dirty / 4;
179 *pbackground = background;
180 *pdirty = dirty;
184 * balance_dirty_pages() must be called by processes which are generating dirty
185 * data. It looks at the number of dirty pages in the machine and will force
186 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
187 * If we're over `background_thresh' then pdflush is woken to perform some
188 * writeout.
190 static void balance_dirty_pages(struct address_space *mapping)
192 struct writeback_state wbs;
193 long nr_reclaimable;
194 long background_thresh;
195 long dirty_thresh;
196 unsigned long pages_written = 0;
197 unsigned long write_chunk = sync_writeback_pages();
199 struct backing_dev_info *bdi = mapping->backing_dev_info;
201 for (;;) {
202 struct writeback_control wbc = {
203 .bdi = bdi,
204 .sync_mode = WB_SYNC_NONE,
205 .older_than_this = NULL,
206 .nr_to_write = write_chunk,
209 get_dirty_limits(&wbs, &background_thresh,
210 &dirty_thresh, mapping);
211 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
212 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
213 break;
215 if (!dirty_exceeded)
216 dirty_exceeded = 1;
218 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
219 * Unstable writes are a feature of certain networked
220 * filesystems (i.e. NFS) in which data may have been
221 * written to the server's write cache, but has not yet
222 * been flushed to permanent storage.
224 if (nr_reclaimable) {
225 writeback_inodes(&wbc);
226 get_dirty_limits(&wbs, &background_thresh,
227 &dirty_thresh, mapping);
228 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
229 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
230 break;
231 pages_written += write_chunk - wbc.nr_to_write;
232 if (pages_written >= write_chunk)
233 break; /* We've done our duty */
235 blk_congestion_wait(WRITE, HZ/10);
238 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
239 dirty_exceeded = 0;
241 if (writeback_in_progress(bdi))
242 return; /* pdflush is already working this queue */
245 * In laptop mode, we wait until hitting the higher threshold before
246 * starting background writeout, and then write out all the way down
247 * to the lower threshold. So slow writers cause minimal disk activity.
249 * In normal mode, we start background writeout at the lower
250 * background_thresh, to keep the amount of dirty memory low.
252 if ((laptop_mode && pages_written) ||
253 (!laptop_mode && (nr_reclaimable > background_thresh)))
254 pdflush_operation(background_writeout, 0);
258 * balance_dirty_pages_ratelimited - balance dirty memory state
259 * @mapping: address_space which was dirtied
261 * Processes which are dirtying memory should call in here once for each page
262 * which was newly dirtied. The function will periodically check the system's
263 * dirty state and will initiate writeback if needed.
265 * On really big machines, get_writeback_state is expensive, so try to avoid
266 * calling it too often (ratelimiting). But once we're over the dirty memory
267 * limit we decrease the ratelimiting by a lot, to prevent individual processes
268 * from overshooting the limit by (ratelimit_pages) each.
270 void balance_dirty_pages_ratelimited(struct address_space *mapping)
272 static DEFINE_PER_CPU(int, ratelimits) = 0;
273 long ratelimit;
275 ratelimit = ratelimit_pages;
276 if (dirty_exceeded)
277 ratelimit = 8;
280 * Check the rate limiting. Also, we do not want to throttle real-time
281 * tasks in balance_dirty_pages(). Period.
283 if (get_cpu_var(ratelimits)++ >= ratelimit) {
284 __get_cpu_var(ratelimits) = 0;
285 put_cpu_var(ratelimits);
286 balance_dirty_pages(mapping);
287 return;
289 put_cpu_var(ratelimits);
291 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
293 void throttle_vm_writeout(void)
295 struct writeback_state wbs;
296 long background_thresh;
297 long dirty_thresh;
299 for ( ; ; ) {
300 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
303 * Boost the allowable dirty threshold a bit for page
304 * allocators so they don't get DoS'ed by heavy writers
306 dirty_thresh += dirty_thresh / 10; /* wheeee... */
308 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
309 break;
310 blk_congestion_wait(WRITE, HZ/10);
316 * writeback at least _min_pages, and keep writing until the amount of dirty
317 * memory is less than the background threshold, or until we're all clean.
319 static void background_writeout(unsigned long _min_pages)
321 long min_pages = _min_pages;
322 struct writeback_control wbc = {
323 .bdi = NULL,
324 .sync_mode = WB_SYNC_NONE,
325 .older_than_this = NULL,
326 .nr_to_write = 0,
327 .nonblocking = 1,
330 for ( ; ; ) {
331 struct writeback_state wbs;
332 long background_thresh;
333 long dirty_thresh;
335 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
336 if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
337 && min_pages <= 0)
338 break;
339 wbc.encountered_congestion = 0;
340 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
341 wbc.pages_skipped = 0;
342 writeback_inodes(&wbc);
343 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
344 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
345 /* Wrote less than expected */
346 blk_congestion_wait(WRITE, HZ/10);
347 if (!wbc.encountered_congestion)
348 break;
354 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
355 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
356 * -1 if all pdflush threads were busy.
358 int wakeup_pdflush(long nr_pages)
360 if (nr_pages == 0) {
361 struct writeback_state wbs;
363 get_writeback_state(&wbs);
364 nr_pages = wbs.nr_dirty + wbs.nr_unstable;
366 return pdflush_operation(background_writeout, nr_pages);
369 static void wb_timer_fn(unsigned long unused);
370 static void laptop_timer_fn(unsigned long unused);
372 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
373 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
376 * Periodic writeback of "old" data.
378 * Define "old": the first time one of an inode's pages is dirtied, we mark the
379 * dirtying-time in the inode's address_space. So this periodic writeback code
380 * just walks the superblock inode list, writing back any inodes which are
381 * older than a specific point in time.
383 * Try to run once per dirty_writeback_centisecs. But if a writeback event
384 * takes longer than a dirty_writeback_centisecs interval, then leave a
385 * one-second gap.
387 * older_than_this takes precedence over nr_to_write. So we'll only write back
388 * all dirty pages if they are all attached to "old" mappings.
390 static void wb_kupdate(unsigned long arg)
392 unsigned long oldest_jif;
393 unsigned long start_jif;
394 unsigned long next_jif;
395 long nr_to_write;
396 struct writeback_state wbs;
397 struct writeback_control wbc = {
398 .bdi = NULL,
399 .sync_mode = WB_SYNC_NONE,
400 .older_than_this = &oldest_jif,
401 .nr_to_write = 0,
402 .nonblocking = 1,
403 .for_kupdate = 1,
406 sync_supers();
408 get_writeback_state(&wbs);
409 oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100;
410 start_jif = jiffies;
411 next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100;
412 nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
413 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
414 while (nr_to_write > 0) {
415 wbc.encountered_congestion = 0;
416 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
417 writeback_inodes(&wbc);
418 if (wbc.nr_to_write > 0) {
419 if (wbc.encountered_congestion)
420 blk_congestion_wait(WRITE, HZ/10);
421 else
422 break; /* All the old data is written */
424 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
426 if (time_before(next_jif, jiffies + HZ))
427 next_jif = jiffies + HZ;
428 if (dirty_writeback_centisecs)
429 mod_timer(&wb_timer, next_jif);
433 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
435 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
436 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
438 proc_dointvec(table, write, file, buffer, length, ppos);
439 if (dirty_writeback_centisecs) {
440 mod_timer(&wb_timer,
441 jiffies + (dirty_writeback_centisecs * HZ) / 100);
442 } else {
443 del_timer(&wb_timer);
445 return 0;
448 static void wb_timer_fn(unsigned long unused)
450 if (pdflush_operation(wb_kupdate, 0) < 0)
451 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
454 static void laptop_flush(unsigned long unused)
456 sys_sync();
459 static void laptop_timer_fn(unsigned long unused)
461 pdflush_operation(laptop_flush, 0);
465 * We've spun up the disk and we're in laptop mode: schedule writeback
466 * of all dirty data a few seconds from now. If the flush is already scheduled
467 * then push it back - the user is still using the disk.
469 void laptop_io_completion(void)
471 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ);
475 * We're in laptop mode and we've just synced. The sync's writes will have
476 * caused another writeback to be scheduled by laptop_io_completion.
477 * Nothing needs to be written back anymore, so we unschedule the writeback.
479 void laptop_sync_completion(void)
481 del_timer(&laptop_mode_wb_timer);
485 * If ratelimit_pages is too high then we can get into dirty-data overload
486 * if a large number of processes all perform writes at the same time.
487 * If it is too low then SMP machines will call the (expensive)
488 * get_writeback_state too often.
490 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
491 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
492 * thresholds before writeback cuts in.
494 * But the limit should not be set too high. Because it also controls the
495 * amount of memory which the balance_dirty_pages() caller has to write back.
496 * If this is too large then the caller will block on the IO queue all the
497 * time. So limit it to four megabytes - the balance_dirty_pages() caller
498 * will write six megabyte chunks, max.
501 static void set_ratelimit(void)
503 ratelimit_pages = total_pages / (num_online_cpus() * 32);
504 if (ratelimit_pages < 16)
505 ratelimit_pages = 16;
506 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
507 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
510 static int
511 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
513 set_ratelimit();
514 return 0;
517 static struct notifier_block ratelimit_nb = {
518 .notifier_call = ratelimit_handler,
519 .next = NULL,
523 * If the machine has a large highmem:lowmem ratio then scale back the default
524 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
525 * number of buffer_heads.
527 void __init page_writeback_init(void)
529 long buffer_pages = nr_free_buffer_pages();
530 long correction;
532 total_pages = nr_free_pagecache_pages();
534 correction = (100 * 4 * buffer_pages) / total_pages;
536 if (correction < 100) {
537 dirty_background_ratio *= correction;
538 dirty_background_ratio /= 100;
539 vm_dirty_ratio *= correction;
540 vm_dirty_ratio /= 100;
542 if (dirty_background_ratio <= 0)
543 dirty_background_ratio = 1;
544 if (vm_dirty_ratio <= 0)
545 vm_dirty_ratio = 1;
547 mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100);
548 set_ratelimit();
549 register_cpu_notifier(&ratelimit_nb);
552 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
554 int ret;
556 if (wbc->nr_to_write <= 0)
557 return 0;
558 wbc->for_writepages = 1;
559 if (mapping->a_ops->writepages)
560 ret = mapping->a_ops->writepages(mapping, wbc);
561 else
562 ret = generic_writepages(mapping, wbc);
563 wbc->for_writepages = 0;
564 return ret;
568 * write_one_page - write out a single page and optionally wait on I/O
570 * @page: the page to write
571 * @wait: if true, wait on writeout
573 * The page must be locked by the caller and will be unlocked upon return.
575 * write_one_page() returns a negative error code if I/O failed.
577 int write_one_page(struct page *page, int wait)
579 struct address_space *mapping = page->mapping;
580 int ret = 0;
581 struct writeback_control wbc = {
582 .sync_mode = WB_SYNC_ALL,
583 .nr_to_write = 1,
586 BUG_ON(!PageLocked(page));
588 if (wait)
589 wait_on_page_writeback(page);
591 if (clear_page_dirty_for_io(page)) {
592 page_cache_get(page);
593 ret = mapping->a_ops->writepage(page, &wbc);
594 if (ret == 0 && wait) {
595 wait_on_page_writeback(page);
596 if (PageError(page))
597 ret = -EIO;
599 page_cache_release(page);
600 } else {
601 unlock_page(page);
603 return ret;
605 EXPORT_SYMBOL(write_one_page);
608 * For address_spaces which do not use buffers. Just tag the page as dirty in
609 * its radix tree.
611 * This is also used when a single buffer is being dirtied: we want to set the
612 * page dirty in that case, but not all the buffers. This is a "bottom-up"
613 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
615 * Most callers have locked the page, which pins the address_space in memory.
616 * But zap_pte_range() does not lock the page, however in that case the
617 * mapping is pinned by the vma's ->vm_file reference.
619 * We take care to handle the case where the page was truncated from the
620 * mapping by re-checking page_mapping() insode tree_lock.
622 int __set_page_dirty_nobuffers(struct page *page)
624 int ret = 0;
626 if (!TestSetPageDirty(page)) {
627 struct address_space *mapping = page_mapping(page);
628 struct address_space *mapping2;
630 if (mapping) {
631 write_lock_irq(&mapping->tree_lock);
632 mapping2 = page_mapping(page);
633 if (mapping2) { /* Race with truncate? */
634 BUG_ON(mapping2 != mapping);
635 if (mapping_cap_account_dirty(mapping))
636 inc_page_state(nr_dirty);
637 radix_tree_tag_set(&mapping->page_tree,
638 page_index(page), PAGECACHE_TAG_DIRTY);
640 write_unlock_irq(&mapping->tree_lock);
641 if (mapping->host) {
642 /* !PageAnon && !swapper_space */
643 __mark_inode_dirty(mapping->host,
644 I_DIRTY_PAGES);
648 return ret;
650 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
653 * When a writepage implementation decides that it doesn't want to write this
654 * page for some reason, it should redirty the locked page via
655 * redirty_page_for_writepage() and it should then unlock the page and return 0
657 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
659 wbc->pages_skipped++;
660 return __set_page_dirty_nobuffers(page);
662 EXPORT_SYMBOL(redirty_page_for_writepage);
665 * If the mapping doesn't provide a set_page_dirty a_op, then
666 * just fall through and assume that it wants buffer_heads.
668 int fastcall set_page_dirty(struct page *page)
670 struct address_space *mapping = page_mapping(page);
672 if (likely(mapping)) {
673 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
674 if (spd)
675 return (*spd)(page);
676 return __set_page_dirty_buffers(page);
678 if (!PageDirty(page))
679 SetPageDirty(page);
680 return 0;
682 EXPORT_SYMBOL(set_page_dirty);
685 * set_page_dirty() is racy if the caller has no reference against
686 * page->mapping->host, and if the page is unlocked. This is because another
687 * CPU could truncate the page off the mapping and then free the mapping.
689 * Usually, the page _is_ locked, or the caller is a user-space process which
690 * holds a reference on the inode by having an open file.
692 * In other cases, the page should be locked before running set_page_dirty().
694 int set_page_dirty_lock(struct page *page)
696 int ret;
698 lock_page(page);
699 ret = set_page_dirty(page);
700 unlock_page(page);
701 return ret;
703 EXPORT_SYMBOL(set_page_dirty_lock);
706 * Clear a page's dirty flag, while caring for dirty memory accounting.
707 * Returns true if the page was previously dirty.
709 int test_clear_page_dirty(struct page *page)
711 struct address_space *mapping = page_mapping(page);
712 unsigned long flags;
714 if (mapping) {
715 write_lock_irqsave(&mapping->tree_lock, flags);
716 if (TestClearPageDirty(page)) {
717 radix_tree_tag_clear(&mapping->page_tree,
718 page_index(page),
719 PAGECACHE_TAG_DIRTY);
720 write_unlock_irqrestore(&mapping->tree_lock, flags);
721 if (mapping_cap_account_dirty(mapping))
722 dec_page_state(nr_dirty);
723 return 1;
725 write_unlock_irqrestore(&mapping->tree_lock, flags);
726 return 0;
728 return TestClearPageDirty(page);
730 EXPORT_SYMBOL(test_clear_page_dirty);
733 * Clear a page's dirty flag, while caring for dirty memory accounting.
734 * Returns true if the page was previously dirty.
736 * This is for preparing to put the page under writeout. We leave the page
737 * tagged as dirty in the radix tree so that a concurrent write-for-sync
738 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
739 * implementation will run either set_page_writeback() or set_page_dirty(),
740 * at which stage we bring the page's dirty flag and radix-tree dirty tag
741 * back into sync.
743 * This incoherency between the page's dirty flag and radix-tree tag is
744 * unfortunate, but it only exists while the page is locked.
746 int clear_page_dirty_for_io(struct page *page)
748 struct address_space *mapping = page_mapping(page);
750 if (mapping) {
751 if (TestClearPageDirty(page)) {
752 if (mapping_cap_account_dirty(mapping))
753 dec_page_state(nr_dirty);
754 return 1;
756 return 0;
758 return TestClearPageDirty(page);
760 EXPORT_SYMBOL(clear_page_dirty_for_io);
762 int test_clear_page_writeback(struct page *page)
764 struct address_space *mapping = page_mapping(page);
765 int ret;
767 if (mapping) {
768 unsigned long flags;
770 write_lock_irqsave(&mapping->tree_lock, flags);
771 ret = TestClearPageWriteback(page);
772 if (ret)
773 radix_tree_tag_clear(&mapping->page_tree,
774 page_index(page),
775 PAGECACHE_TAG_WRITEBACK);
776 write_unlock_irqrestore(&mapping->tree_lock, flags);
777 } else {
778 ret = TestClearPageWriteback(page);
780 return ret;
783 int test_set_page_writeback(struct page *page)
785 struct address_space *mapping = page_mapping(page);
786 int ret;
788 if (mapping) {
789 unsigned long flags;
791 write_lock_irqsave(&mapping->tree_lock, flags);
792 ret = TestSetPageWriteback(page);
793 if (!ret)
794 radix_tree_tag_set(&mapping->page_tree,
795 page_index(page),
796 PAGECACHE_TAG_WRITEBACK);
797 if (!PageDirty(page))
798 radix_tree_tag_clear(&mapping->page_tree,
799 page_index(page),
800 PAGECACHE_TAG_DIRTY);
801 write_unlock_irqrestore(&mapping->tree_lock, flags);
802 } else {
803 ret = TestSetPageWriteback(page);
805 return ret;
808 EXPORT_SYMBOL(test_set_page_writeback);
811 * Return true if any of the pages in the mapping are marged with the
812 * passed tag.
814 int mapping_tagged(struct address_space *mapping, int tag)
816 unsigned long flags;
817 int ret;
819 read_lock_irqsave(&mapping->tree_lock, flags);
820 ret = radix_tree_tagged(&mapping->page_tree, tag);
821 read_unlock_irqrestore(&mapping->tree_lock, flags);
822 return ret;
824 EXPORT_SYMBOL(mapping_tagged);