Merge HEAD from ../linux-2.6
[linux-2.6/verdex.git] / kernel / futex.c
blob5699c512057b087a14633b357a618d4528d4a032
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
16 * enough at me, Linus for the original (flawed) idea, Matthew
17 * Kirkwood for proof-of-concept implementation.
19 * "The futexes are also cursed."
20 * "But they come in a choice of three flavours!"
22 * This program is free software; you can redistribute it and/or modify
23 * it under the terms of the GNU General Public License as published by
24 * the Free Software Foundation; either version 2 of the License, or
25 * (at your option) any later version.
27 * This program is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
32 * You should have received a copy of the GNU General Public License
33 * along with this program; if not, write to the Free Software
34 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
36 #include <linux/slab.h>
37 #include <linux/poll.h>
38 #include <linux/fs.h>
39 #include <linux/file.h>
40 #include <linux/jhash.h>
41 #include <linux/init.h>
42 #include <linux/futex.h>
43 #include <linux/mount.h>
44 #include <linux/pagemap.h>
45 #include <linux/syscalls.h>
46 #include <linux/signal.h>
47 #include <asm/futex.h>
49 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
52 * Futexes are matched on equal values of this key.
53 * The key type depends on whether it's a shared or private mapping.
54 * Don't rearrange members without looking at hash_futex().
56 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
57 * We set bit 0 to indicate if it's an inode-based key.
59 union futex_key {
60 struct {
61 unsigned long pgoff;
62 struct inode *inode;
63 int offset;
64 } shared;
65 struct {
66 unsigned long uaddr;
67 struct mm_struct *mm;
68 int offset;
69 } private;
70 struct {
71 unsigned long word;
72 void *ptr;
73 int offset;
74 } both;
78 * We use this hashed waitqueue instead of a normal wait_queue_t, so
79 * we can wake only the relevant ones (hashed queues may be shared).
81 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
82 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
83 * The order of wakup is always to make the first condition true, then
84 * wake up q->waiters, then make the second condition true.
86 struct futex_q {
87 struct list_head list;
88 wait_queue_head_t waiters;
90 /* Which hash list lock to use. */
91 spinlock_t *lock_ptr;
93 /* Key which the futex is hashed on. */
94 union futex_key key;
96 /* For fd, sigio sent using these. */
97 int fd;
98 struct file *filp;
102 * Split the global futex_lock into every hash list lock.
104 struct futex_hash_bucket {
105 spinlock_t lock;
106 struct list_head chain;
109 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
111 /* Futex-fs vfsmount entry: */
112 static struct vfsmount *futex_mnt;
115 * We hash on the keys returned from get_futex_key (see below).
117 static struct futex_hash_bucket *hash_futex(union futex_key *key)
119 u32 hash = jhash2((u32*)&key->both.word,
120 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
121 key->both.offset);
122 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
126 * Return 1 if two futex_keys are equal, 0 otherwise.
128 static inline int match_futex(union futex_key *key1, union futex_key *key2)
130 return (key1->both.word == key2->both.word
131 && key1->both.ptr == key2->both.ptr
132 && key1->both.offset == key2->both.offset);
136 * Get parameters which are the keys for a futex.
138 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
139 * offset_within_page). For private mappings, it's (uaddr, current->mm).
140 * We can usually work out the index without swapping in the page.
142 * Returns: 0, or negative error code.
143 * The key words are stored in *key on success.
145 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
147 static int get_futex_key(unsigned long uaddr, union futex_key *key)
149 struct mm_struct *mm = current->mm;
150 struct vm_area_struct *vma;
151 struct page *page;
152 int err;
155 * The futex address must be "naturally" aligned.
157 key->both.offset = uaddr % PAGE_SIZE;
158 if (unlikely((key->both.offset % sizeof(u32)) != 0))
159 return -EINVAL;
160 uaddr -= key->both.offset;
163 * The futex is hashed differently depending on whether
164 * it's in a shared or private mapping. So check vma first.
166 vma = find_extend_vma(mm, uaddr);
167 if (unlikely(!vma))
168 return -EFAULT;
171 * Permissions.
173 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
174 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
177 * Private mappings are handled in a simple way.
179 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
180 * it's a read-only handle, it's expected that futexes attach to
181 * the object not the particular process. Therefore we use
182 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
183 * mappings of _writable_ handles.
185 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
186 key->private.mm = mm;
187 key->private.uaddr = uaddr;
188 return 0;
192 * Linear file mappings are also simple.
194 key->shared.inode = vma->vm_file->f_dentry->d_inode;
195 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
196 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
197 key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT)
198 + vma->vm_pgoff);
199 return 0;
203 * We could walk the page table to read the non-linear
204 * pte, and get the page index without fetching the page
205 * from swap. But that's a lot of code to duplicate here
206 * for a rare case, so we simply fetch the page.
208 err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL);
209 if (err >= 0) {
210 key->shared.pgoff =
211 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
212 put_page(page);
213 return 0;
215 return err;
219 * Take a reference to the resource addressed by a key.
220 * Can be called while holding spinlocks.
222 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
223 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
225 static inline void get_key_refs(union futex_key *key)
227 if (key->both.ptr != 0) {
228 if (key->both.offset & 1)
229 atomic_inc(&key->shared.inode->i_count);
230 else
231 atomic_inc(&key->private.mm->mm_count);
236 * Drop a reference to the resource addressed by a key.
237 * The hash bucket spinlock must not be held.
239 static void drop_key_refs(union futex_key *key)
241 if (key->both.ptr != 0) {
242 if (key->both.offset & 1)
243 iput(key->shared.inode);
244 else
245 mmdrop(key->private.mm);
249 static inline int get_futex_value_locked(int *dest, int __user *from)
251 int ret;
253 inc_preempt_count();
254 ret = __copy_from_user_inatomic(dest, from, sizeof(int));
255 dec_preempt_count();
257 return ret ? -EFAULT : 0;
261 * The hash bucket lock must be held when this is called.
262 * Afterwards, the futex_q must not be accessed.
264 static void wake_futex(struct futex_q *q)
266 list_del_init(&q->list);
267 if (q->filp)
268 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
270 * The lock in wake_up_all() is a crucial memory barrier after the
271 * list_del_init() and also before assigning to q->lock_ptr.
273 wake_up_all(&q->waiters);
275 * The waiting task can free the futex_q as soon as this is written,
276 * without taking any locks. This must come last.
278 * A memory barrier is required here to prevent the following store
279 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
280 * at the end of wake_up_all() does not prevent this store from
281 * moving.
283 wmb();
284 q->lock_ptr = NULL;
288 * Wake up all waiters hashed on the physical page that is mapped
289 * to this virtual address:
291 static int futex_wake(unsigned long uaddr, int nr_wake)
293 union futex_key key;
294 struct futex_hash_bucket *bh;
295 struct list_head *head;
296 struct futex_q *this, *next;
297 int ret;
299 down_read(&current->mm->mmap_sem);
301 ret = get_futex_key(uaddr, &key);
302 if (unlikely(ret != 0))
303 goto out;
305 bh = hash_futex(&key);
306 spin_lock(&bh->lock);
307 head = &bh->chain;
309 list_for_each_entry_safe(this, next, head, list) {
310 if (match_futex (&this->key, &key)) {
311 wake_futex(this);
312 if (++ret >= nr_wake)
313 break;
317 spin_unlock(&bh->lock);
318 out:
319 up_read(&current->mm->mmap_sem);
320 return ret;
324 * Wake up all waiters hashed on the physical page that is mapped
325 * to this virtual address:
327 static int futex_wake_op(unsigned long uaddr1, unsigned long uaddr2, int nr_wake, int nr_wake2, int op)
329 union futex_key key1, key2;
330 struct futex_hash_bucket *bh1, *bh2;
331 struct list_head *head;
332 struct futex_q *this, *next;
333 int ret, op_ret, attempt = 0;
335 retryfull:
336 down_read(&current->mm->mmap_sem);
338 ret = get_futex_key(uaddr1, &key1);
339 if (unlikely(ret != 0))
340 goto out;
341 ret = get_futex_key(uaddr2, &key2);
342 if (unlikely(ret != 0))
343 goto out;
345 bh1 = hash_futex(&key1);
346 bh2 = hash_futex(&key2);
348 retry:
349 if (bh1 < bh2)
350 spin_lock(&bh1->lock);
351 spin_lock(&bh2->lock);
352 if (bh1 > bh2)
353 spin_lock(&bh1->lock);
355 op_ret = futex_atomic_op_inuser(op, (int __user *)uaddr2);
356 if (unlikely(op_ret < 0)) {
357 int dummy;
359 spin_unlock(&bh1->lock);
360 if (bh1 != bh2)
361 spin_unlock(&bh2->lock);
363 #ifndef CONFIG_MMU
364 /* we don't get EFAULT from MMU faults if we don't have an MMU,
365 * but we might get them from range checking */
366 ret = op_ret;
367 goto out;
368 #endif
370 if (unlikely(op_ret != -EFAULT)) {
371 ret = op_ret;
372 goto out;
375 /* futex_atomic_op_inuser needs to both read and write
376 * *(int __user *)uaddr2, but we can't modify it
377 * non-atomically. Therefore, if get_user below is not
378 * enough, we need to handle the fault ourselves, while
379 * still holding the mmap_sem. */
380 if (attempt++) {
381 struct vm_area_struct * vma;
382 struct mm_struct *mm = current->mm;
384 ret = -EFAULT;
385 if (attempt >= 2 ||
386 !(vma = find_vma(mm, uaddr2)) ||
387 vma->vm_start > uaddr2 ||
388 !(vma->vm_flags & VM_WRITE))
389 goto out;
391 switch (handle_mm_fault(mm, vma, uaddr2, 1)) {
392 case VM_FAULT_MINOR:
393 current->min_flt++;
394 break;
395 case VM_FAULT_MAJOR:
396 current->maj_flt++;
397 break;
398 default:
399 goto out;
401 goto retry;
404 /* If we would have faulted, release mmap_sem,
405 * fault it in and start all over again. */
406 up_read(&current->mm->mmap_sem);
408 ret = get_user(dummy, (int __user *)uaddr2);
409 if (ret)
410 return ret;
412 goto retryfull;
415 head = &bh1->chain;
417 list_for_each_entry_safe(this, next, head, list) {
418 if (match_futex (&this->key, &key1)) {
419 wake_futex(this);
420 if (++ret >= nr_wake)
421 break;
425 if (op_ret > 0) {
426 head = &bh2->chain;
428 op_ret = 0;
429 list_for_each_entry_safe(this, next, head, list) {
430 if (match_futex (&this->key, &key2)) {
431 wake_futex(this);
432 if (++op_ret >= nr_wake2)
433 break;
436 ret += op_ret;
439 spin_unlock(&bh1->lock);
440 if (bh1 != bh2)
441 spin_unlock(&bh2->lock);
442 out:
443 up_read(&current->mm->mmap_sem);
444 return ret;
448 * Requeue all waiters hashed on one physical page to another
449 * physical page.
451 static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2,
452 int nr_wake, int nr_requeue, int *valp)
454 union futex_key key1, key2;
455 struct futex_hash_bucket *bh1, *bh2;
456 struct list_head *head1;
457 struct futex_q *this, *next;
458 int ret, drop_count = 0;
460 retry:
461 down_read(&current->mm->mmap_sem);
463 ret = get_futex_key(uaddr1, &key1);
464 if (unlikely(ret != 0))
465 goto out;
466 ret = get_futex_key(uaddr2, &key2);
467 if (unlikely(ret != 0))
468 goto out;
470 bh1 = hash_futex(&key1);
471 bh2 = hash_futex(&key2);
473 if (bh1 < bh2)
474 spin_lock(&bh1->lock);
475 spin_lock(&bh2->lock);
476 if (bh1 > bh2)
477 spin_lock(&bh1->lock);
479 if (likely(valp != NULL)) {
480 int curval;
482 ret = get_futex_value_locked(&curval, (int __user *)uaddr1);
484 if (unlikely(ret)) {
485 spin_unlock(&bh1->lock);
486 if (bh1 != bh2)
487 spin_unlock(&bh2->lock);
489 /* If we would have faulted, release mmap_sem, fault
490 * it in and start all over again.
492 up_read(&current->mm->mmap_sem);
494 ret = get_user(curval, (int __user *)uaddr1);
496 if (!ret)
497 goto retry;
499 return ret;
501 if (curval != *valp) {
502 ret = -EAGAIN;
503 goto out_unlock;
507 head1 = &bh1->chain;
508 list_for_each_entry_safe(this, next, head1, list) {
509 if (!match_futex (&this->key, &key1))
510 continue;
511 if (++ret <= nr_wake) {
512 wake_futex(this);
513 } else {
514 list_move_tail(&this->list, &bh2->chain);
515 this->lock_ptr = &bh2->lock;
516 this->key = key2;
517 get_key_refs(&key2);
518 drop_count++;
520 if (ret - nr_wake >= nr_requeue)
521 break;
522 /* Make sure to stop if key1 == key2 */
523 if (head1 == &bh2->chain && head1 != &next->list)
524 head1 = &this->list;
528 out_unlock:
529 spin_unlock(&bh1->lock);
530 if (bh1 != bh2)
531 spin_unlock(&bh2->lock);
533 /* drop_key_refs() must be called outside the spinlocks. */
534 while (--drop_count >= 0)
535 drop_key_refs(&key1);
537 out:
538 up_read(&current->mm->mmap_sem);
539 return ret;
542 /* The key must be already stored in q->key. */
543 static inline struct futex_hash_bucket *
544 queue_lock(struct futex_q *q, int fd, struct file *filp)
546 struct futex_hash_bucket *bh;
548 q->fd = fd;
549 q->filp = filp;
551 init_waitqueue_head(&q->waiters);
553 get_key_refs(&q->key);
554 bh = hash_futex(&q->key);
555 q->lock_ptr = &bh->lock;
557 spin_lock(&bh->lock);
558 return bh;
561 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh)
563 list_add_tail(&q->list, &bh->chain);
564 spin_unlock(&bh->lock);
567 static inline void
568 queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh)
570 spin_unlock(&bh->lock);
571 drop_key_refs(&q->key);
575 * queue_me and unqueue_me must be called as a pair, each
576 * exactly once. They are called with the hashed spinlock held.
579 /* The key must be already stored in q->key. */
580 static void queue_me(struct futex_q *q, int fd, struct file *filp)
582 struct futex_hash_bucket *bh;
583 bh = queue_lock(q, fd, filp);
584 __queue_me(q, bh);
587 /* Return 1 if we were still queued (ie. 0 means we were woken) */
588 static int unqueue_me(struct futex_q *q)
590 int ret = 0;
591 spinlock_t *lock_ptr;
593 /* In the common case we don't take the spinlock, which is nice. */
594 retry:
595 lock_ptr = q->lock_ptr;
596 if (lock_ptr != 0) {
597 spin_lock(lock_ptr);
599 * q->lock_ptr can change between reading it and
600 * spin_lock(), causing us to take the wrong lock. This
601 * corrects the race condition.
603 * Reasoning goes like this: if we have the wrong lock,
604 * q->lock_ptr must have changed (maybe several times)
605 * between reading it and the spin_lock(). It can
606 * change again after the spin_lock() but only if it was
607 * already changed before the spin_lock(). It cannot,
608 * however, change back to the original value. Therefore
609 * we can detect whether we acquired the correct lock.
611 if (unlikely(lock_ptr != q->lock_ptr)) {
612 spin_unlock(lock_ptr);
613 goto retry;
615 WARN_ON(list_empty(&q->list));
616 list_del(&q->list);
617 spin_unlock(lock_ptr);
618 ret = 1;
621 drop_key_refs(&q->key);
622 return ret;
625 static int futex_wait(unsigned long uaddr, int val, unsigned long time)
627 DECLARE_WAITQUEUE(wait, current);
628 int ret, curval;
629 struct futex_q q;
630 struct futex_hash_bucket *bh;
632 retry:
633 down_read(&current->mm->mmap_sem);
635 ret = get_futex_key(uaddr, &q.key);
636 if (unlikely(ret != 0))
637 goto out_release_sem;
639 bh = queue_lock(&q, -1, NULL);
642 * Access the page AFTER the futex is queued.
643 * Order is important:
645 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
646 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
648 * The basic logical guarantee of a futex is that it blocks ONLY
649 * if cond(var) is known to be true at the time of blocking, for
650 * any cond. If we queued after testing *uaddr, that would open
651 * a race condition where we could block indefinitely with
652 * cond(var) false, which would violate the guarantee.
654 * A consequence is that futex_wait() can return zero and absorb
655 * a wakeup when *uaddr != val on entry to the syscall. This is
656 * rare, but normal.
658 * We hold the mmap semaphore, so the mapping cannot have changed
659 * since we looked it up in get_futex_key.
662 ret = get_futex_value_locked(&curval, (int __user *)uaddr);
664 if (unlikely(ret)) {
665 queue_unlock(&q, bh);
667 /* If we would have faulted, release mmap_sem, fault it in and
668 * start all over again.
670 up_read(&current->mm->mmap_sem);
672 ret = get_user(curval, (int __user *)uaddr);
674 if (!ret)
675 goto retry;
676 return ret;
678 if (curval != val) {
679 ret = -EWOULDBLOCK;
680 queue_unlock(&q, bh);
681 goto out_release_sem;
684 /* Only actually queue if *uaddr contained val. */
685 __queue_me(&q, bh);
688 * Now the futex is queued and we have checked the data, we
689 * don't want to hold mmap_sem while we sleep.
691 up_read(&current->mm->mmap_sem);
694 * There might have been scheduling since the queue_me(), as we
695 * cannot hold a spinlock across the get_user() in case it
696 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
697 * queueing ourselves into the futex hash. This code thus has to
698 * rely on the futex_wake() code removing us from hash when it
699 * wakes us up.
702 /* add_wait_queue is the barrier after __set_current_state. */
703 __set_current_state(TASK_INTERRUPTIBLE);
704 add_wait_queue(&q.waiters, &wait);
706 * !list_empty() is safe here without any lock.
707 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
709 if (likely(!list_empty(&q.list)))
710 time = schedule_timeout(time);
711 __set_current_state(TASK_RUNNING);
714 * NOTE: we don't remove ourselves from the waitqueue because
715 * we are the only user of it.
718 /* If we were woken (and unqueued), we succeeded, whatever. */
719 if (!unqueue_me(&q))
720 return 0;
721 if (time == 0)
722 return -ETIMEDOUT;
723 /* We expect signal_pending(current), but another thread may
724 * have handled it for us already. */
725 return -EINTR;
727 out_release_sem:
728 up_read(&current->mm->mmap_sem);
729 return ret;
732 static int futex_close(struct inode *inode, struct file *filp)
734 struct futex_q *q = filp->private_data;
736 unqueue_me(q);
737 kfree(q);
738 return 0;
741 /* This is one-shot: once it's gone off you need a new fd */
742 static unsigned int futex_poll(struct file *filp,
743 struct poll_table_struct *wait)
745 struct futex_q *q = filp->private_data;
746 int ret = 0;
748 poll_wait(filp, &q->waiters, wait);
751 * list_empty() is safe here without any lock.
752 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
754 if (list_empty(&q->list))
755 ret = POLLIN | POLLRDNORM;
757 return ret;
760 static struct file_operations futex_fops = {
761 .release = futex_close,
762 .poll = futex_poll,
766 * Signal allows caller to avoid the race which would occur if they
767 * set the sigio stuff up afterwards.
769 static int futex_fd(unsigned long uaddr, int signal)
771 struct futex_q *q;
772 struct file *filp;
773 int ret, err;
775 ret = -EINVAL;
776 if (!valid_signal(signal))
777 goto out;
779 ret = get_unused_fd();
780 if (ret < 0)
781 goto out;
782 filp = get_empty_filp();
783 if (!filp) {
784 put_unused_fd(ret);
785 ret = -ENFILE;
786 goto out;
788 filp->f_op = &futex_fops;
789 filp->f_vfsmnt = mntget(futex_mnt);
790 filp->f_dentry = dget(futex_mnt->mnt_root);
791 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
793 if (signal) {
794 err = f_setown(filp, current->pid, 1);
795 if (err < 0) {
796 goto error;
798 filp->f_owner.signum = signal;
801 q = kmalloc(sizeof(*q), GFP_KERNEL);
802 if (!q) {
803 err = -ENOMEM;
804 goto error;
807 down_read(&current->mm->mmap_sem);
808 err = get_futex_key(uaddr, &q->key);
810 if (unlikely(err != 0)) {
811 up_read(&current->mm->mmap_sem);
812 kfree(q);
813 goto error;
817 * queue_me() must be called before releasing mmap_sem, because
818 * key->shared.inode needs to be referenced while holding it.
820 filp->private_data = q;
822 queue_me(q, ret, filp);
823 up_read(&current->mm->mmap_sem);
825 /* Now we map fd to filp, so userspace can access it */
826 fd_install(ret, filp);
827 out:
828 return ret;
829 error:
830 put_unused_fd(ret);
831 put_filp(filp);
832 ret = err;
833 goto out;
837 * Support for robust futexes: the kernel cleans up held futexes at
838 * thread exit time.
840 * Implementation: user-space maintains a per-thread list of locks it
841 * is holding. Upon do_exit(), the kernel carefully walks this list,
842 * and marks all locks that are owned by this thread with the
843 * FUTEX_OWNER_DEAD bit, and wakes up a waiter (if any). The list is
844 * always manipulated with the lock held, so the list is private and
845 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
846 * field, to allow the kernel to clean up if the thread dies after
847 * acquiring the lock, but just before it could have added itself to
848 * the list. There can only be one such pending lock.
852 * sys_set_robust_list - set the robust-futex list head of a task
853 * @head: pointer to the list-head
854 * @len: length of the list-head, as userspace expects
856 asmlinkage long
857 sys_set_robust_list(struct robust_list_head __user *head,
858 size_t len)
861 * The kernel knows only one size for now:
863 if (unlikely(len != sizeof(*head)))
864 return -EINVAL;
866 current->robust_list = head;
868 return 0;
872 * sys_get_robust_list - get the robust-futex list head of a task
873 * @pid: pid of the process [zero for current task]
874 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
875 * @len_ptr: pointer to a length field, the kernel fills in the header size
877 asmlinkage long
878 sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
879 size_t __user *len_ptr)
881 struct robust_list_head *head;
882 unsigned long ret;
884 if (!pid)
885 head = current->robust_list;
886 else {
887 struct task_struct *p;
889 ret = -ESRCH;
890 read_lock(&tasklist_lock);
891 p = find_task_by_pid(pid);
892 if (!p)
893 goto err_unlock;
894 ret = -EPERM;
895 if ((current->euid != p->euid) && (current->euid != p->uid) &&
896 !capable(CAP_SYS_PTRACE))
897 goto err_unlock;
898 head = p->robust_list;
899 read_unlock(&tasklist_lock);
902 if (put_user(sizeof(*head), len_ptr))
903 return -EFAULT;
904 return put_user(head, head_ptr);
906 err_unlock:
907 read_unlock(&tasklist_lock);
909 return ret;
913 * Process a futex-list entry, check whether it's owned by the
914 * dying task, and do notification if so:
916 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
918 u32 uval;
920 retry:
921 if (get_user(uval, uaddr))
922 return -1;
924 if ((uval & FUTEX_TID_MASK) == curr->pid) {
926 * Ok, this dying thread is truly holding a futex
927 * of interest. Set the OWNER_DIED bit atomically
928 * via cmpxchg, and if the value had FUTEX_WAITERS
929 * set, wake up a waiter (if any). (We have to do a
930 * futex_wake() even if OWNER_DIED is already set -
931 * to handle the rare but possible case of recursive
932 * thread-death.) The rest of the cleanup is done in
933 * userspace.
935 if (futex_atomic_cmpxchg_inatomic(uaddr, uval,
936 uval | FUTEX_OWNER_DIED) != uval)
937 goto retry;
939 if (uval & FUTEX_WAITERS)
940 futex_wake((unsigned long)uaddr, 1);
942 return 0;
946 * Walk curr->robust_list (very carefully, it's a userspace list!)
947 * and mark any locks found there dead, and notify any waiters.
949 * We silently return on any sign of list-walking problem.
951 void exit_robust_list(struct task_struct *curr)
953 struct robust_list_head __user *head = curr->robust_list;
954 struct robust_list __user *entry, *pending;
955 unsigned int limit = ROBUST_LIST_LIMIT;
956 unsigned long futex_offset;
959 * Fetch the list head (which was registered earlier, via
960 * sys_set_robust_list()):
962 if (get_user(entry, &head->list.next))
963 return;
965 * Fetch the relative futex offset:
967 if (get_user(futex_offset, &head->futex_offset))
968 return;
970 * Fetch any possibly pending lock-add first, and handle it
971 * if it exists:
973 if (get_user(pending, &head->list_op_pending))
974 return;
975 if (pending)
976 handle_futex_death((void *)pending + futex_offset, curr);
978 while (entry != &head->list) {
980 * A pending lock might already be on the list, so
981 * dont process it twice:
983 if (entry != pending)
984 if (handle_futex_death((void *)entry + futex_offset,
985 curr))
986 return;
988 * Fetch the next entry in the list:
990 if (get_user(entry, &entry->next))
991 return;
993 * Avoid excessively long or circular lists:
995 if (!--limit)
996 break;
998 cond_resched();
1002 long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout,
1003 unsigned long uaddr2, int val2, int val3)
1005 int ret;
1007 switch (op) {
1008 case FUTEX_WAIT:
1009 ret = futex_wait(uaddr, val, timeout);
1010 break;
1011 case FUTEX_WAKE:
1012 ret = futex_wake(uaddr, val);
1013 break;
1014 case FUTEX_FD:
1015 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1016 ret = futex_fd(uaddr, val);
1017 break;
1018 case FUTEX_REQUEUE:
1019 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1020 break;
1021 case FUTEX_CMP_REQUEUE:
1022 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1023 break;
1024 case FUTEX_WAKE_OP:
1025 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1026 break;
1027 default:
1028 ret = -ENOSYS;
1030 return ret;
1034 asmlinkage long sys_futex(u32 __user *uaddr, int op, int val,
1035 struct timespec __user *utime, u32 __user *uaddr2,
1036 int val3)
1038 struct timespec t;
1039 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1040 int val2 = 0;
1042 if (utime && (op == FUTEX_WAIT)) {
1043 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1044 return -EFAULT;
1045 if (!timespec_valid(&t))
1046 return -EINVAL;
1047 timeout = timespec_to_jiffies(&t) + 1;
1050 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1052 if (op >= FUTEX_REQUEUE)
1053 val2 = (int) (unsigned long) utime;
1055 return do_futex((unsigned long)uaddr, op, val, timeout,
1056 (unsigned long)uaddr2, val2, val3);
1059 static struct super_block *
1060 futexfs_get_sb(struct file_system_type *fs_type,
1061 int flags, const char *dev_name, void *data)
1063 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA);
1066 static struct file_system_type futex_fs_type = {
1067 .name = "futexfs",
1068 .get_sb = futexfs_get_sb,
1069 .kill_sb = kill_anon_super,
1072 static int __init init(void)
1074 unsigned int i;
1076 register_filesystem(&futex_fs_type);
1077 futex_mnt = kern_mount(&futex_fs_type);
1079 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1080 INIT_LIST_HEAD(&futex_queues[i].chain);
1081 spin_lock_init(&futex_queues[i].lock);
1083 return 0;
1085 __initcall(init);