[SK_BUFF]: Introduce skb_mac_header()
[linux-2.6/verdex.git] / include / linux / skbuff.h
blobdff81af454b7059994125c70a908d0cf3a4e2c06
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_PARTIAL 1
37 #define CHECKSUM_UNNECESSARY 2
38 #define CHECKSUM_COMPLETE 3
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 (((X) - sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * B. Checksumming on output.
69 * NONE: skb is checksummed by protocol or csum is not required.
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->h.raw to the end and to record the checksum
73 * at skb->h.raw+skb->csum.
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
85 * Any questions? No questions, good. --ANK
88 struct net_device;
90 #ifdef CONFIG_NETFILTER
91 struct nf_conntrack {
92 atomic_t use;
93 void (*destroy)(struct nf_conntrack *);
96 #ifdef CONFIG_BRIDGE_NETFILTER
97 struct nf_bridge_info {
98 atomic_t use;
99 struct net_device *physindev;
100 struct net_device *physoutdev;
101 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
102 struct net_device *netoutdev;
103 #endif
104 unsigned int mask;
105 unsigned long data[32 / sizeof(unsigned long)];
107 #endif
109 #endif
111 struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
116 __u32 qlen;
117 spinlock_t lock;
120 struct sk_buff;
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
125 typedef struct skb_frag_struct skb_frag_t;
127 struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
133 /* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
136 struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
145 skb_frag_t frags[MAX_SKB_FRAGS];
148 /* We divide dataref into two halves. The higher 16 bits hold references
149 * to the payload part of skb->data. The lower 16 bits hold references to
150 * the entire skb->data. It is up to the users of the skb to agree on
151 * where the payload starts.
153 * All users must obey the rule that the skb->data reference count must be
154 * greater than or equal to the payload reference count.
156 * Holding a reference to the payload part means that the user does not
157 * care about modifications to the header part of skb->data.
159 #define SKB_DATAREF_SHIFT 16
160 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
163 enum {
164 SKB_FCLONE_UNAVAILABLE,
165 SKB_FCLONE_ORIG,
166 SKB_FCLONE_CLONE,
169 enum {
170 SKB_GSO_TCPV4 = 1 << 0,
171 SKB_GSO_UDP = 1 << 1,
173 /* This indicates the skb is from an untrusted source. */
174 SKB_GSO_DODGY = 1 << 2,
176 /* This indicates the tcp segment has CWR set. */
177 SKB_GSO_TCP_ECN = 1 << 3,
179 SKB_GSO_TCPV6 = 1 << 4,
182 /**
183 * struct sk_buff - socket buffer
184 * @next: Next buffer in list
185 * @prev: Previous buffer in list
186 * @sk: Socket we are owned by
187 * @tstamp: Time we arrived
188 * @dev: Device we arrived on/are leaving by
189 * @iif: ifindex of device we arrived on
190 * @h: Transport layer header
191 * @nh: Network layer header
192 * @mac: Link layer header
193 * @dst: destination entry
194 * @sp: the security path, used for xfrm
195 * @cb: Control buffer. Free for use by every layer. Put private vars here
196 * @len: Length of actual data
197 * @data_len: Data length
198 * @mac_len: Length of link layer header
199 * @csum: Checksum
200 * @local_df: allow local fragmentation
201 * @cloned: Head may be cloned (check refcnt to be sure)
202 * @nohdr: Payload reference only, must not modify header
203 * @pkt_type: Packet class
204 * @fclone: skbuff clone status
205 * @ip_summed: Driver fed us an IP checksum
206 * @priority: Packet queueing priority
207 * @users: User count - see {datagram,tcp}.c
208 * @protocol: Packet protocol from driver
209 * @truesize: Buffer size
210 * @head: Head of buffer
211 * @data: Data head pointer
212 * @tail: Tail pointer
213 * @end: End pointer
214 * @destructor: Destruct function
215 * @mark: Generic packet mark
216 * @nfct: Associated connection, if any
217 * @ipvs_property: skbuff is owned by ipvs
218 * @nfctinfo: Relationship of this skb to the connection
219 * @nfct_reasm: netfilter conntrack re-assembly pointer
220 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
221 * @tc_index: Traffic control index
222 * @tc_verd: traffic control verdict
223 * @dma_cookie: a cookie to one of several possible DMA operations
224 * done by skb DMA functions
225 * @secmark: security marking
228 struct sk_buff {
229 /* These two members must be first. */
230 struct sk_buff *next;
231 struct sk_buff *prev;
233 struct sock *sk;
234 ktime_t tstamp;
235 struct net_device *dev;
236 int iif;
237 /* 4 byte hole on 64 bit*/
239 union {
240 struct tcphdr *th;
241 struct udphdr *uh;
242 struct icmphdr *icmph;
243 struct igmphdr *igmph;
244 struct iphdr *ipiph;
245 struct ipv6hdr *ipv6h;
246 unsigned char *raw;
247 } h;
249 union {
250 struct iphdr *iph;
251 struct ipv6hdr *ipv6h;
252 struct arphdr *arph;
253 unsigned char *raw;
254 } nh;
256 union {
257 unsigned char *raw;
258 } mac;
260 struct dst_entry *dst;
261 struct sec_path *sp;
264 * This is the control buffer. It is free to use for every
265 * layer. Please put your private variables there. If you
266 * want to keep them across layers you have to do a skb_clone()
267 * first. This is owned by whoever has the skb queued ATM.
269 char cb[48];
271 unsigned int len,
272 data_len,
273 mac_len;
274 union {
275 __wsum csum;
276 __u32 csum_offset;
278 __u32 priority;
279 __u8 local_df:1,
280 cloned:1,
281 ip_summed:2,
282 nohdr:1,
283 nfctinfo:3;
284 __u8 pkt_type:3,
285 fclone:2,
286 ipvs_property:1;
287 __be16 protocol;
289 void (*destructor)(struct sk_buff *skb);
290 #ifdef CONFIG_NETFILTER
291 struct nf_conntrack *nfct;
292 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
293 struct sk_buff *nfct_reasm;
294 #endif
295 #ifdef CONFIG_BRIDGE_NETFILTER
296 struct nf_bridge_info *nf_bridge;
297 #endif
298 #endif /* CONFIG_NETFILTER */
299 #ifdef CONFIG_NET_SCHED
300 __u16 tc_index; /* traffic control index */
301 #ifdef CONFIG_NET_CLS_ACT
302 __u16 tc_verd; /* traffic control verdict */
303 #endif
304 #endif
305 #ifdef CONFIG_NET_DMA
306 dma_cookie_t dma_cookie;
307 #endif
308 #ifdef CONFIG_NETWORK_SECMARK
309 __u32 secmark;
310 #endif
312 __u32 mark;
314 /* These elements must be at the end, see alloc_skb() for details. */
315 unsigned int truesize;
316 atomic_t users;
317 unsigned char *head,
318 *data,
319 *tail,
320 *end;
323 #ifdef __KERNEL__
325 * Handling routines are only of interest to the kernel
327 #include <linux/slab.h>
329 #include <asm/system.h>
331 extern void kfree_skb(struct sk_buff *skb);
332 extern void __kfree_skb(struct sk_buff *skb);
333 extern struct sk_buff *__alloc_skb(unsigned int size,
334 gfp_t priority, int fclone, int node);
335 static inline struct sk_buff *alloc_skb(unsigned int size,
336 gfp_t priority)
338 return __alloc_skb(size, priority, 0, -1);
341 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
342 gfp_t priority)
344 return __alloc_skb(size, priority, 1, -1);
347 extern void kfree_skbmem(struct sk_buff *skb);
348 extern struct sk_buff *skb_clone(struct sk_buff *skb,
349 gfp_t priority);
350 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
351 gfp_t priority);
352 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
353 gfp_t gfp_mask);
354 extern int pskb_expand_head(struct sk_buff *skb,
355 int nhead, int ntail,
356 gfp_t gfp_mask);
357 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
358 unsigned int headroom);
359 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
360 int newheadroom, int newtailroom,
361 gfp_t priority);
362 extern int skb_pad(struct sk_buff *skb, int pad);
363 #define dev_kfree_skb(a) kfree_skb(a)
364 extern void skb_over_panic(struct sk_buff *skb, int len,
365 void *here);
366 extern void skb_under_panic(struct sk_buff *skb, int len,
367 void *here);
368 extern void skb_truesize_bug(struct sk_buff *skb);
370 static inline void skb_truesize_check(struct sk_buff *skb)
372 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
373 skb_truesize_bug(skb);
376 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
377 int getfrag(void *from, char *to, int offset,
378 int len,int odd, struct sk_buff *skb),
379 void *from, int length);
381 struct skb_seq_state
383 __u32 lower_offset;
384 __u32 upper_offset;
385 __u32 frag_idx;
386 __u32 stepped_offset;
387 struct sk_buff *root_skb;
388 struct sk_buff *cur_skb;
389 __u8 *frag_data;
392 extern void skb_prepare_seq_read(struct sk_buff *skb,
393 unsigned int from, unsigned int to,
394 struct skb_seq_state *st);
395 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
396 struct skb_seq_state *st);
397 extern void skb_abort_seq_read(struct skb_seq_state *st);
399 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
400 unsigned int to, struct ts_config *config,
401 struct ts_state *state);
403 /* Internal */
404 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
407 * skb_queue_empty - check if a queue is empty
408 * @list: queue head
410 * Returns true if the queue is empty, false otherwise.
412 static inline int skb_queue_empty(const struct sk_buff_head *list)
414 return list->next == (struct sk_buff *)list;
418 * skb_get - reference buffer
419 * @skb: buffer to reference
421 * Makes another reference to a socket buffer and returns a pointer
422 * to the buffer.
424 static inline struct sk_buff *skb_get(struct sk_buff *skb)
426 atomic_inc(&skb->users);
427 return skb;
431 * If users == 1, we are the only owner and are can avoid redundant
432 * atomic change.
436 * skb_cloned - is the buffer a clone
437 * @skb: buffer to check
439 * Returns true if the buffer was generated with skb_clone() and is
440 * one of multiple shared copies of the buffer. Cloned buffers are
441 * shared data so must not be written to under normal circumstances.
443 static inline int skb_cloned(const struct sk_buff *skb)
445 return skb->cloned &&
446 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
450 * skb_header_cloned - is the header a clone
451 * @skb: buffer to check
453 * Returns true if modifying the header part of the buffer requires
454 * the data to be copied.
456 static inline int skb_header_cloned(const struct sk_buff *skb)
458 int dataref;
460 if (!skb->cloned)
461 return 0;
463 dataref = atomic_read(&skb_shinfo(skb)->dataref);
464 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
465 return dataref != 1;
469 * skb_header_release - release reference to header
470 * @skb: buffer to operate on
472 * Drop a reference to the header part of the buffer. This is done
473 * by acquiring a payload reference. You must not read from the header
474 * part of skb->data after this.
476 static inline void skb_header_release(struct sk_buff *skb)
478 BUG_ON(skb->nohdr);
479 skb->nohdr = 1;
480 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
484 * skb_shared - is the buffer shared
485 * @skb: buffer to check
487 * Returns true if more than one person has a reference to this
488 * buffer.
490 static inline int skb_shared(const struct sk_buff *skb)
492 return atomic_read(&skb->users) != 1;
496 * skb_share_check - check if buffer is shared and if so clone it
497 * @skb: buffer to check
498 * @pri: priority for memory allocation
500 * If the buffer is shared the buffer is cloned and the old copy
501 * drops a reference. A new clone with a single reference is returned.
502 * If the buffer is not shared the original buffer is returned. When
503 * being called from interrupt status or with spinlocks held pri must
504 * be GFP_ATOMIC.
506 * NULL is returned on a memory allocation failure.
508 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
509 gfp_t pri)
511 might_sleep_if(pri & __GFP_WAIT);
512 if (skb_shared(skb)) {
513 struct sk_buff *nskb = skb_clone(skb, pri);
514 kfree_skb(skb);
515 skb = nskb;
517 return skb;
521 * Copy shared buffers into a new sk_buff. We effectively do COW on
522 * packets to handle cases where we have a local reader and forward
523 * and a couple of other messy ones. The normal one is tcpdumping
524 * a packet thats being forwarded.
528 * skb_unshare - make a copy of a shared buffer
529 * @skb: buffer to check
530 * @pri: priority for memory allocation
532 * If the socket buffer is a clone then this function creates a new
533 * copy of the data, drops a reference count on the old copy and returns
534 * the new copy with the reference count at 1. If the buffer is not a clone
535 * the original buffer is returned. When called with a spinlock held or
536 * from interrupt state @pri must be %GFP_ATOMIC
538 * %NULL is returned on a memory allocation failure.
540 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
541 gfp_t pri)
543 might_sleep_if(pri & __GFP_WAIT);
544 if (skb_cloned(skb)) {
545 struct sk_buff *nskb = skb_copy(skb, pri);
546 kfree_skb(skb); /* Free our shared copy */
547 skb = nskb;
549 return skb;
553 * skb_peek
554 * @list_: list to peek at
556 * Peek an &sk_buff. Unlike most other operations you _MUST_
557 * be careful with this one. A peek leaves the buffer on the
558 * list and someone else may run off with it. You must hold
559 * the appropriate locks or have a private queue to do this.
561 * Returns %NULL for an empty list or a pointer to the head element.
562 * The reference count is not incremented and the reference is therefore
563 * volatile. Use with caution.
565 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
567 struct sk_buff *list = ((struct sk_buff *)list_)->next;
568 if (list == (struct sk_buff *)list_)
569 list = NULL;
570 return list;
574 * skb_peek_tail
575 * @list_: list to peek at
577 * Peek an &sk_buff. Unlike most other operations you _MUST_
578 * be careful with this one. A peek leaves the buffer on the
579 * list and someone else may run off with it. You must hold
580 * the appropriate locks or have a private queue to do this.
582 * Returns %NULL for an empty list or a pointer to the tail element.
583 * The reference count is not incremented and the reference is therefore
584 * volatile. Use with caution.
586 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
588 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
589 if (list == (struct sk_buff *)list_)
590 list = NULL;
591 return list;
595 * skb_queue_len - get queue length
596 * @list_: list to measure
598 * Return the length of an &sk_buff queue.
600 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
602 return list_->qlen;
606 * This function creates a split out lock class for each invocation;
607 * this is needed for now since a whole lot of users of the skb-queue
608 * infrastructure in drivers have different locking usage (in hardirq)
609 * than the networking core (in softirq only). In the long run either the
610 * network layer or drivers should need annotation to consolidate the
611 * main types of usage into 3 classes.
613 static inline void skb_queue_head_init(struct sk_buff_head *list)
615 spin_lock_init(&list->lock);
616 list->prev = list->next = (struct sk_buff *)list;
617 list->qlen = 0;
620 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
621 struct lock_class_key *class)
623 skb_queue_head_init(list);
624 lockdep_set_class(&list->lock, class);
628 * Insert an sk_buff at the start of a list.
630 * The "__skb_xxxx()" functions are the non-atomic ones that
631 * can only be called with interrupts disabled.
635 * __skb_queue_after - queue a buffer at the list head
636 * @list: list to use
637 * @prev: place after this buffer
638 * @newsk: buffer to queue
640 * Queue a buffer int the middle of a list. This function takes no locks
641 * and you must therefore hold required locks before calling it.
643 * A buffer cannot be placed on two lists at the same time.
645 static inline void __skb_queue_after(struct sk_buff_head *list,
646 struct sk_buff *prev,
647 struct sk_buff *newsk)
649 struct sk_buff *next;
650 list->qlen++;
652 next = prev->next;
653 newsk->next = next;
654 newsk->prev = prev;
655 next->prev = prev->next = newsk;
659 * __skb_queue_head - queue a buffer at the list head
660 * @list: list to use
661 * @newsk: buffer to queue
663 * Queue a buffer at the start of a list. This function takes no locks
664 * and you must therefore hold required locks before calling it.
666 * A buffer cannot be placed on two lists at the same time.
668 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
669 static inline void __skb_queue_head(struct sk_buff_head *list,
670 struct sk_buff *newsk)
672 __skb_queue_after(list, (struct sk_buff *)list, newsk);
676 * __skb_queue_tail - queue a buffer at the list tail
677 * @list: list to use
678 * @newsk: buffer to queue
680 * Queue a buffer at the end of a list. This function takes no locks
681 * and you must therefore hold required locks before calling it.
683 * A buffer cannot be placed on two lists at the same time.
685 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
686 static inline void __skb_queue_tail(struct sk_buff_head *list,
687 struct sk_buff *newsk)
689 struct sk_buff *prev, *next;
691 list->qlen++;
692 next = (struct sk_buff *)list;
693 prev = next->prev;
694 newsk->next = next;
695 newsk->prev = prev;
696 next->prev = prev->next = newsk;
701 * __skb_dequeue - remove from the head of the queue
702 * @list: list to dequeue from
704 * Remove the head of the list. This function does not take any locks
705 * so must be used with appropriate locks held only. The head item is
706 * returned or %NULL if the list is empty.
708 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
709 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
711 struct sk_buff *next, *prev, *result;
713 prev = (struct sk_buff *) list;
714 next = prev->next;
715 result = NULL;
716 if (next != prev) {
717 result = next;
718 next = next->next;
719 list->qlen--;
720 next->prev = prev;
721 prev->next = next;
722 result->next = result->prev = NULL;
724 return result;
729 * Insert a packet on a list.
731 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
732 static inline void __skb_insert(struct sk_buff *newsk,
733 struct sk_buff *prev, struct sk_buff *next,
734 struct sk_buff_head *list)
736 newsk->next = next;
737 newsk->prev = prev;
738 next->prev = prev->next = newsk;
739 list->qlen++;
743 * Place a packet after a given packet in a list.
745 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
746 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
748 __skb_insert(newsk, old, old->next, list);
752 * remove sk_buff from list. _Must_ be called atomically, and with
753 * the list known..
755 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
756 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
758 struct sk_buff *next, *prev;
760 list->qlen--;
761 next = skb->next;
762 prev = skb->prev;
763 skb->next = skb->prev = NULL;
764 next->prev = prev;
765 prev->next = next;
769 /* XXX: more streamlined implementation */
772 * __skb_dequeue_tail - remove from the tail of the queue
773 * @list: list to dequeue from
775 * Remove the tail of the list. This function does not take any locks
776 * so must be used with appropriate locks held only. The tail item is
777 * returned or %NULL if the list is empty.
779 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
780 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
782 struct sk_buff *skb = skb_peek_tail(list);
783 if (skb)
784 __skb_unlink(skb, list);
785 return skb;
789 static inline int skb_is_nonlinear(const struct sk_buff *skb)
791 return skb->data_len;
794 static inline unsigned int skb_headlen(const struct sk_buff *skb)
796 return skb->len - skb->data_len;
799 static inline int skb_pagelen(const struct sk_buff *skb)
801 int i, len = 0;
803 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
804 len += skb_shinfo(skb)->frags[i].size;
805 return len + skb_headlen(skb);
808 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
809 struct page *page, int off, int size)
811 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
813 frag->page = page;
814 frag->page_offset = off;
815 frag->size = size;
816 skb_shinfo(skb)->nr_frags = i + 1;
819 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
820 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
821 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
824 * Add data to an sk_buff
826 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
828 unsigned char *tmp = skb->tail;
829 SKB_LINEAR_ASSERT(skb);
830 skb->tail += len;
831 skb->len += len;
832 return tmp;
836 * skb_put - add data to a buffer
837 * @skb: buffer to use
838 * @len: amount of data to add
840 * This function extends the used data area of the buffer. If this would
841 * exceed the total buffer size the kernel will panic. A pointer to the
842 * first byte of the extra data is returned.
844 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
846 unsigned char *tmp = skb->tail;
847 SKB_LINEAR_ASSERT(skb);
848 skb->tail += len;
849 skb->len += len;
850 if (unlikely(skb->tail>skb->end))
851 skb_over_panic(skb, len, current_text_addr());
852 return tmp;
855 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
857 skb->data -= len;
858 skb->len += len;
859 return skb->data;
863 * skb_push - add data to the start of a buffer
864 * @skb: buffer to use
865 * @len: amount of data to add
867 * This function extends the used data area of the buffer at the buffer
868 * start. If this would exceed the total buffer headroom the kernel will
869 * panic. A pointer to the first byte of the extra data is returned.
871 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
873 skb->data -= len;
874 skb->len += len;
875 if (unlikely(skb->data<skb->head))
876 skb_under_panic(skb, len, current_text_addr());
877 return skb->data;
880 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
882 skb->len -= len;
883 BUG_ON(skb->len < skb->data_len);
884 return skb->data += len;
888 * skb_pull - remove data from the start of a buffer
889 * @skb: buffer to use
890 * @len: amount of data to remove
892 * This function removes data from the start of a buffer, returning
893 * the memory to the headroom. A pointer to the next data in the buffer
894 * is returned. Once the data has been pulled future pushes will overwrite
895 * the old data.
897 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
899 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
902 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
904 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
906 if (len > skb_headlen(skb) &&
907 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
908 return NULL;
909 skb->len -= len;
910 return skb->data += len;
913 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
915 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
918 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
920 if (likely(len <= skb_headlen(skb)))
921 return 1;
922 if (unlikely(len > skb->len))
923 return 0;
924 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
928 * skb_headroom - bytes at buffer head
929 * @skb: buffer to check
931 * Return the number of bytes of free space at the head of an &sk_buff.
933 static inline int skb_headroom(const struct sk_buff *skb)
935 return skb->data - skb->head;
939 * skb_tailroom - bytes at buffer end
940 * @skb: buffer to check
942 * Return the number of bytes of free space at the tail of an sk_buff
944 static inline int skb_tailroom(const struct sk_buff *skb)
946 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
950 * skb_reserve - adjust headroom
951 * @skb: buffer to alter
952 * @len: bytes to move
954 * Increase the headroom of an empty &sk_buff by reducing the tail
955 * room. This is only allowed for an empty buffer.
957 static inline void skb_reserve(struct sk_buff *skb, int len)
959 skb->data += len;
960 skb->tail += len;
963 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
965 return skb->mac.raw;
968 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
970 return skb->mac.raw != NULL;
973 static inline void skb_reset_mac_header(struct sk_buff *skb)
975 skb->mac.raw = skb->data;
978 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
980 skb->mac.raw = skb->data + offset;
984 * CPUs often take a performance hit when accessing unaligned memory
985 * locations. The actual performance hit varies, it can be small if the
986 * hardware handles it or large if we have to take an exception and fix it
987 * in software.
989 * Since an ethernet header is 14 bytes network drivers often end up with
990 * the IP header at an unaligned offset. The IP header can be aligned by
991 * shifting the start of the packet by 2 bytes. Drivers should do this
992 * with:
994 * skb_reserve(NET_IP_ALIGN);
996 * The downside to this alignment of the IP header is that the DMA is now
997 * unaligned. On some architectures the cost of an unaligned DMA is high
998 * and this cost outweighs the gains made by aligning the IP header.
1000 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1001 * to be overridden.
1003 #ifndef NET_IP_ALIGN
1004 #define NET_IP_ALIGN 2
1005 #endif
1008 * The networking layer reserves some headroom in skb data (via
1009 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1010 * the header has to grow. In the default case, if the header has to grow
1011 * 16 bytes or less we avoid the reallocation.
1013 * Unfortunately this headroom changes the DMA alignment of the resulting
1014 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1015 * on some architectures. An architecture can override this value,
1016 * perhaps setting it to a cacheline in size (since that will maintain
1017 * cacheline alignment of the DMA). It must be a power of 2.
1019 * Various parts of the networking layer expect at least 16 bytes of
1020 * headroom, you should not reduce this.
1022 #ifndef NET_SKB_PAD
1023 #define NET_SKB_PAD 16
1024 #endif
1026 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1028 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1030 if (unlikely(skb->data_len)) {
1031 WARN_ON(1);
1032 return;
1034 skb->len = len;
1035 skb->tail = skb->data + len;
1039 * skb_trim - remove end from a buffer
1040 * @skb: buffer to alter
1041 * @len: new length
1043 * Cut the length of a buffer down by removing data from the tail. If
1044 * the buffer is already under the length specified it is not modified.
1045 * The skb must be linear.
1047 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1049 if (skb->len > len)
1050 __skb_trim(skb, len);
1054 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1056 if (skb->data_len)
1057 return ___pskb_trim(skb, len);
1058 __skb_trim(skb, len);
1059 return 0;
1062 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1064 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1068 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1069 * @skb: buffer to alter
1070 * @len: new length
1072 * This is identical to pskb_trim except that the caller knows that
1073 * the skb is not cloned so we should never get an error due to out-
1074 * of-memory.
1076 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1078 int err = pskb_trim(skb, len);
1079 BUG_ON(err);
1083 * skb_orphan - orphan a buffer
1084 * @skb: buffer to orphan
1086 * If a buffer currently has an owner then we call the owner's
1087 * destructor function and make the @skb unowned. The buffer continues
1088 * to exist but is no longer charged to its former owner.
1090 static inline void skb_orphan(struct sk_buff *skb)
1092 if (skb->destructor)
1093 skb->destructor(skb);
1094 skb->destructor = NULL;
1095 skb->sk = NULL;
1099 * __skb_queue_purge - empty a list
1100 * @list: list to empty
1102 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1103 * the list and one reference dropped. This function does not take the
1104 * list lock and the caller must hold the relevant locks to use it.
1106 extern void skb_queue_purge(struct sk_buff_head *list);
1107 static inline void __skb_queue_purge(struct sk_buff_head *list)
1109 struct sk_buff *skb;
1110 while ((skb = __skb_dequeue(list)) != NULL)
1111 kfree_skb(skb);
1115 * __dev_alloc_skb - allocate an skbuff for receiving
1116 * @length: length to allocate
1117 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1119 * Allocate a new &sk_buff and assign it a usage count of one. The
1120 * buffer has unspecified headroom built in. Users should allocate
1121 * the headroom they think they need without accounting for the
1122 * built in space. The built in space is used for optimisations.
1124 * %NULL is returned if there is no free memory.
1126 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1127 gfp_t gfp_mask)
1129 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1130 if (likely(skb))
1131 skb_reserve(skb, NET_SKB_PAD);
1132 return skb;
1136 * dev_alloc_skb - allocate an skbuff for receiving
1137 * @length: length to allocate
1139 * Allocate a new &sk_buff and assign it a usage count of one. The
1140 * buffer has unspecified headroom built in. Users should allocate
1141 * the headroom they think they need without accounting for the
1142 * built in space. The built in space is used for optimisations.
1144 * %NULL is returned if there is no free memory. Although this function
1145 * allocates memory it can be called from an interrupt.
1147 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1149 return __dev_alloc_skb(length, GFP_ATOMIC);
1152 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1153 unsigned int length, gfp_t gfp_mask);
1156 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1157 * @dev: network device to receive on
1158 * @length: length to allocate
1160 * Allocate a new &sk_buff and assign it a usage count of one. The
1161 * buffer has unspecified headroom built in. Users should allocate
1162 * the headroom they think they need without accounting for the
1163 * built in space. The built in space is used for optimisations.
1165 * %NULL is returned if there is no free memory. Although this function
1166 * allocates memory it can be called from an interrupt.
1168 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1169 unsigned int length)
1171 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1175 * skb_cow - copy header of skb when it is required
1176 * @skb: buffer to cow
1177 * @headroom: needed headroom
1179 * If the skb passed lacks sufficient headroom or its data part
1180 * is shared, data is reallocated. If reallocation fails, an error
1181 * is returned and original skb is not changed.
1183 * The result is skb with writable area skb->head...skb->tail
1184 * and at least @headroom of space at head.
1186 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1188 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1189 skb_headroom(skb);
1191 if (delta < 0)
1192 delta = 0;
1194 if (delta || skb_cloned(skb))
1195 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1196 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1197 return 0;
1201 * skb_padto - pad an skbuff up to a minimal size
1202 * @skb: buffer to pad
1203 * @len: minimal length
1205 * Pads up a buffer to ensure the trailing bytes exist and are
1206 * blanked. If the buffer already contains sufficient data it
1207 * is untouched. Otherwise it is extended. Returns zero on
1208 * success. The skb is freed on error.
1211 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1213 unsigned int size = skb->len;
1214 if (likely(size >= len))
1215 return 0;
1216 return skb_pad(skb, len-size);
1219 static inline int skb_add_data(struct sk_buff *skb,
1220 char __user *from, int copy)
1222 const int off = skb->len;
1224 if (skb->ip_summed == CHECKSUM_NONE) {
1225 int err = 0;
1226 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1227 copy, 0, &err);
1228 if (!err) {
1229 skb->csum = csum_block_add(skb->csum, csum, off);
1230 return 0;
1232 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1233 return 0;
1235 __skb_trim(skb, off);
1236 return -EFAULT;
1239 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1240 struct page *page, int off)
1242 if (i) {
1243 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1245 return page == frag->page &&
1246 off == frag->page_offset + frag->size;
1248 return 0;
1251 static inline int __skb_linearize(struct sk_buff *skb)
1253 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1257 * skb_linearize - convert paged skb to linear one
1258 * @skb: buffer to linarize
1260 * If there is no free memory -ENOMEM is returned, otherwise zero
1261 * is returned and the old skb data released.
1263 static inline int skb_linearize(struct sk_buff *skb)
1265 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1269 * skb_linearize_cow - make sure skb is linear and writable
1270 * @skb: buffer to process
1272 * If there is no free memory -ENOMEM is returned, otherwise zero
1273 * is returned and the old skb data released.
1275 static inline int skb_linearize_cow(struct sk_buff *skb)
1277 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1278 __skb_linearize(skb) : 0;
1282 * skb_postpull_rcsum - update checksum for received skb after pull
1283 * @skb: buffer to update
1284 * @start: start of data before pull
1285 * @len: length of data pulled
1287 * After doing a pull on a received packet, you need to call this to
1288 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1289 * CHECKSUM_NONE so that it can be recomputed from scratch.
1292 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1293 const void *start, unsigned int len)
1295 if (skb->ip_summed == CHECKSUM_COMPLETE)
1296 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1299 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1302 * pskb_trim_rcsum - trim received skb and update checksum
1303 * @skb: buffer to trim
1304 * @len: new length
1306 * This is exactly the same as pskb_trim except that it ensures the
1307 * checksum of received packets are still valid after the operation.
1310 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1312 if (likely(len >= skb->len))
1313 return 0;
1314 if (skb->ip_summed == CHECKSUM_COMPLETE)
1315 skb->ip_summed = CHECKSUM_NONE;
1316 return __pskb_trim(skb, len);
1319 #define skb_queue_walk(queue, skb) \
1320 for (skb = (queue)->next; \
1321 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1322 skb = skb->next)
1324 #define skb_queue_reverse_walk(queue, skb) \
1325 for (skb = (queue)->prev; \
1326 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1327 skb = skb->prev)
1330 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1331 int noblock, int *err);
1332 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1333 struct poll_table_struct *wait);
1334 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1335 int offset, struct iovec *to,
1336 int size);
1337 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1338 int hlen,
1339 struct iovec *iov);
1340 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1341 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1342 unsigned int flags);
1343 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1344 int len, __wsum csum);
1345 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1346 void *to, int len);
1347 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1348 void *from, int len);
1349 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1350 int offset, u8 *to, int len,
1351 __wsum csum);
1352 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1353 extern void skb_split(struct sk_buff *skb,
1354 struct sk_buff *skb1, const u32 len);
1356 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1358 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1359 int len, void *buffer)
1361 int hlen = skb_headlen(skb);
1363 if (hlen - offset >= len)
1364 return skb->data + offset;
1366 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1367 return NULL;
1369 return buffer;
1372 extern void skb_init(void);
1373 extern void skb_add_mtu(int mtu);
1376 * skb_get_timestamp - get timestamp from a skb
1377 * @skb: skb to get stamp from
1378 * @stamp: pointer to struct timeval to store stamp in
1380 * Timestamps are stored in the skb as offsets to a base timestamp.
1381 * This function converts the offset back to a struct timeval and stores
1382 * it in stamp.
1384 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1386 *stamp = ktime_to_timeval(skb->tstamp);
1389 static inline void __net_timestamp(struct sk_buff *skb)
1391 skb->tstamp = ktime_get_real();
1395 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1396 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1399 * skb_checksum_complete - Calculate checksum of an entire packet
1400 * @skb: packet to process
1402 * This function calculates the checksum over the entire packet plus
1403 * the value of skb->csum. The latter can be used to supply the
1404 * checksum of a pseudo header as used by TCP/UDP. It returns the
1405 * checksum.
1407 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1408 * this function can be used to verify that checksum on received
1409 * packets. In that case the function should return zero if the
1410 * checksum is correct. In particular, this function will return zero
1411 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1412 * hardware has already verified the correctness of the checksum.
1414 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1416 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1417 __skb_checksum_complete(skb);
1420 #ifdef CONFIG_NETFILTER
1421 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1423 if (nfct && atomic_dec_and_test(&nfct->use))
1424 nfct->destroy(nfct);
1426 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1428 if (nfct)
1429 atomic_inc(&nfct->use);
1431 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1432 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1434 if (skb)
1435 atomic_inc(&skb->users);
1437 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1439 if (skb)
1440 kfree_skb(skb);
1442 #endif
1443 #ifdef CONFIG_BRIDGE_NETFILTER
1444 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1446 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1447 kfree(nf_bridge);
1449 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1451 if (nf_bridge)
1452 atomic_inc(&nf_bridge->use);
1454 #endif /* CONFIG_BRIDGE_NETFILTER */
1455 static inline void nf_reset(struct sk_buff *skb)
1457 nf_conntrack_put(skb->nfct);
1458 skb->nfct = NULL;
1459 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1460 nf_conntrack_put_reasm(skb->nfct_reasm);
1461 skb->nfct_reasm = NULL;
1462 #endif
1463 #ifdef CONFIG_BRIDGE_NETFILTER
1464 nf_bridge_put(skb->nf_bridge);
1465 skb->nf_bridge = NULL;
1466 #endif
1469 #else /* CONFIG_NETFILTER */
1470 static inline void nf_reset(struct sk_buff *skb) {}
1471 #endif /* CONFIG_NETFILTER */
1473 #ifdef CONFIG_NETWORK_SECMARK
1474 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1476 to->secmark = from->secmark;
1479 static inline void skb_init_secmark(struct sk_buff *skb)
1481 skb->secmark = 0;
1483 #else
1484 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1487 static inline void skb_init_secmark(struct sk_buff *skb)
1489 #endif
1491 static inline int skb_is_gso(const struct sk_buff *skb)
1493 return skb_shinfo(skb)->gso_size;
1496 #endif /* __KERNEL__ */
1497 #endif /* _LINUX_SKBUFF_H */