[DCCP] ackvec: Introduce dccp_ackvec_slab
[linux-2.6/verdex.git] / fs / xfs / xfs_alloc_btree.c
bloba1d92da86ccd04e33c33e2dbb1752daea04c1430
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir_sf.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_btree.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_alloc.h"
42 #include "xfs_error.h"
45 * Prototypes for internal functions.
48 STATIC void xfs_alloc_log_block(xfs_trans_t *, xfs_buf_t *, int);
49 STATIC void xfs_alloc_log_keys(xfs_btree_cur_t *, xfs_buf_t *, int, int);
50 STATIC void xfs_alloc_log_ptrs(xfs_btree_cur_t *, xfs_buf_t *, int, int);
51 STATIC void xfs_alloc_log_recs(xfs_btree_cur_t *, xfs_buf_t *, int, int);
52 STATIC int xfs_alloc_lshift(xfs_btree_cur_t *, int, int *);
53 STATIC int xfs_alloc_newroot(xfs_btree_cur_t *, int *);
54 STATIC int xfs_alloc_rshift(xfs_btree_cur_t *, int, int *);
55 STATIC int xfs_alloc_split(xfs_btree_cur_t *, int, xfs_agblock_t *,
56 xfs_alloc_key_t *, xfs_btree_cur_t **, int *);
57 STATIC int xfs_alloc_updkey(xfs_btree_cur_t *, xfs_alloc_key_t *, int);
60 * Internal functions.
64 * Single level of the xfs_alloc_delete record deletion routine.
65 * Delete record pointed to by cur/level.
66 * Remove the record from its block then rebalance the tree.
67 * Return 0 for error, 1 for done, 2 to go on to the next level.
69 STATIC int /* error */
70 xfs_alloc_delrec(
71 xfs_btree_cur_t *cur, /* btree cursor */
72 int level, /* level removing record from */
73 int *stat) /* fail/done/go-on */
75 xfs_agf_t *agf; /* allocation group freelist header */
76 xfs_alloc_block_t *block; /* btree block record/key lives in */
77 xfs_agblock_t bno; /* btree block number */
78 xfs_buf_t *bp; /* buffer for block */
79 int error; /* error return value */
80 int i; /* loop index */
81 xfs_alloc_key_t key; /* kp points here if block is level 0 */
82 xfs_agblock_t lbno; /* left block's block number */
83 xfs_buf_t *lbp; /* left block's buffer pointer */
84 xfs_alloc_block_t *left; /* left btree block */
85 xfs_alloc_key_t *lkp=NULL; /* left block key pointer */
86 xfs_alloc_ptr_t *lpp=NULL; /* left block address pointer */
87 int lrecs=0; /* number of records in left block */
88 xfs_alloc_rec_t *lrp; /* left block record pointer */
89 xfs_mount_t *mp; /* mount structure */
90 int ptr; /* index in btree block for this rec */
91 xfs_agblock_t rbno; /* right block's block number */
92 xfs_buf_t *rbp; /* right block's buffer pointer */
93 xfs_alloc_block_t *right; /* right btree block */
94 xfs_alloc_key_t *rkp; /* right block key pointer */
95 xfs_alloc_ptr_t *rpp; /* right block address pointer */
96 int rrecs=0; /* number of records in right block */
97 xfs_alloc_rec_t *rrp; /* right block record pointer */
98 xfs_btree_cur_t *tcur; /* temporary btree cursor */
101 * Get the index of the entry being deleted, check for nothing there.
103 ptr = cur->bc_ptrs[level];
104 if (ptr == 0) {
105 *stat = 0;
106 return 0;
109 * Get the buffer & block containing the record or key/ptr.
111 bp = cur->bc_bufs[level];
112 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
113 #ifdef DEBUG
114 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
115 return error;
116 #endif
118 * Fail if we're off the end of the block.
120 if (ptr > be16_to_cpu(block->bb_numrecs)) {
121 *stat = 0;
122 return 0;
124 XFS_STATS_INC(xs_abt_delrec);
126 * It's a nonleaf. Excise the key and ptr being deleted, by
127 * sliding the entries past them down one.
128 * Log the changed areas of the block.
130 if (level > 0) {
131 lkp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
132 lpp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
133 #ifdef DEBUG
134 for (i = ptr; i < be16_to_cpu(block->bb_numrecs); i++) {
135 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level)))
136 return error;
138 #endif
139 if (ptr < be16_to_cpu(block->bb_numrecs)) {
140 memmove(&lkp[ptr - 1], &lkp[ptr],
141 (be16_to_cpu(block->bb_numrecs) - ptr) * sizeof(*lkp));
142 memmove(&lpp[ptr - 1], &lpp[ptr],
143 (be16_to_cpu(block->bb_numrecs) - ptr) * sizeof(*lpp));
144 xfs_alloc_log_ptrs(cur, bp, ptr, be16_to_cpu(block->bb_numrecs) - 1);
145 xfs_alloc_log_keys(cur, bp, ptr, be16_to_cpu(block->bb_numrecs) - 1);
149 * It's a leaf. Excise the record being deleted, by sliding the
150 * entries past it down one. Log the changed areas of the block.
152 else {
153 lrp = XFS_ALLOC_REC_ADDR(block, 1, cur);
154 if (ptr < be16_to_cpu(block->bb_numrecs)) {
155 memmove(&lrp[ptr - 1], &lrp[ptr],
156 (be16_to_cpu(block->bb_numrecs) - ptr) * sizeof(*lrp));
157 xfs_alloc_log_recs(cur, bp, ptr, be16_to_cpu(block->bb_numrecs) - 1);
160 * If it's the first record in the block, we'll need a key
161 * structure to pass up to the next level (updkey).
163 if (ptr == 1) {
164 key.ar_startblock = lrp->ar_startblock;
165 key.ar_blockcount = lrp->ar_blockcount;
166 lkp = &key;
170 * Decrement and log the number of entries in the block.
172 be16_add(&block->bb_numrecs, -1);
173 xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS);
175 * See if the longest free extent in the allocation group was
176 * changed by this operation. True if it's the by-size btree, and
177 * this is the leaf level, and there is no right sibling block,
178 * and this was the last record.
180 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
181 mp = cur->bc_mp;
183 if (level == 0 &&
184 cur->bc_btnum == XFS_BTNUM_CNT &&
185 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
186 ptr > be16_to_cpu(block->bb_numrecs)) {
187 ASSERT(ptr == be16_to_cpu(block->bb_numrecs) + 1);
189 * There are still records in the block. Grab the size
190 * from the last one.
192 if (be16_to_cpu(block->bb_numrecs)) {
193 rrp = XFS_ALLOC_REC_ADDR(block, be16_to_cpu(block->bb_numrecs), cur);
194 agf->agf_longest = rrp->ar_blockcount;
197 * No free extents left.
199 else
200 agf->agf_longest = 0;
201 mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest =
202 be32_to_cpu(agf->agf_longest);
203 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
204 XFS_AGF_LONGEST);
207 * Is this the root level? If so, we're almost done.
209 if (level == cur->bc_nlevels - 1) {
211 * If this is the root level,
212 * and there's only one entry left,
213 * and it's NOT the leaf level,
214 * then we can get rid of this level.
216 if (be16_to_cpu(block->bb_numrecs) == 1 && level > 0) {
218 * lpp is still set to the first pointer in the block.
219 * Make it the new root of the btree.
221 bno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]);
222 agf->agf_roots[cur->bc_btnum] = *lpp;
223 be32_add(&agf->agf_levels[cur->bc_btnum], -1);
224 mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_levels[cur->bc_btnum]--;
226 * Put this buffer/block on the ag's freelist.
228 if ((error = xfs_alloc_put_freelist(cur->bc_tp,
229 cur->bc_private.a.agbp, NULL, bno)))
230 return error;
232 * Since blocks move to the free list without the
233 * coordination used in xfs_bmap_finish, we can't allow
234 * block to be available for reallocation and
235 * non-transaction writing (user data) until we know
236 * that the transaction that moved it to the free list
237 * is permanently on disk. We track the blocks by
238 * declaring these blocks as "busy"; the busy list is
239 * maintained on a per-ag basis and each transaction
240 * records which entries should be removed when the
241 * iclog commits to disk. If a busy block is
242 * allocated, the iclog is pushed up to the LSN
243 * that freed the block.
245 xfs_alloc_mark_busy(cur->bc_tp,
246 be32_to_cpu(agf->agf_seqno), bno, 1);
248 xfs_trans_agbtree_delta(cur->bc_tp, -1);
249 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
250 XFS_AGF_ROOTS | XFS_AGF_LEVELS);
252 * Update the cursor so there's one fewer level.
254 xfs_btree_setbuf(cur, level, NULL);
255 cur->bc_nlevels--;
256 } else if (level > 0 &&
257 (error = xfs_alloc_decrement(cur, level, &i)))
258 return error;
259 *stat = 1;
260 return 0;
263 * If we deleted the leftmost entry in the block, update the
264 * key values above us in the tree.
266 if (ptr == 1 && (error = xfs_alloc_updkey(cur, lkp, level + 1)))
267 return error;
269 * If the number of records remaining in the block is at least
270 * the minimum, we're done.
272 if (be16_to_cpu(block->bb_numrecs) >= XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
273 if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i)))
274 return error;
275 *stat = 1;
276 return 0;
279 * Otherwise, we have to move some records around to keep the
280 * tree balanced. Look at the left and right sibling blocks to
281 * see if we can re-balance by moving only one record.
283 rbno = be32_to_cpu(block->bb_rightsib);
284 lbno = be32_to_cpu(block->bb_leftsib);
285 bno = NULLAGBLOCK;
286 ASSERT(rbno != NULLAGBLOCK || lbno != NULLAGBLOCK);
288 * Duplicate the cursor so our btree manipulations here won't
289 * disrupt the next level up.
291 if ((error = xfs_btree_dup_cursor(cur, &tcur)))
292 return error;
294 * If there's a right sibling, see if it's ok to shift an entry
295 * out of it.
297 if (rbno != NULLAGBLOCK) {
299 * Move the temp cursor to the last entry in the next block.
300 * Actually any entry but the first would suffice.
302 i = xfs_btree_lastrec(tcur, level);
303 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
304 if ((error = xfs_alloc_increment(tcur, level, &i)))
305 goto error0;
306 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
307 i = xfs_btree_lastrec(tcur, level);
308 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
310 * Grab a pointer to the block.
312 rbp = tcur->bc_bufs[level];
313 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
314 #ifdef DEBUG
315 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
316 goto error0;
317 #endif
319 * Grab the current block number, for future use.
321 bno = be32_to_cpu(right->bb_leftsib);
323 * If right block is full enough so that removing one entry
324 * won't make it too empty, and left-shifting an entry out
325 * of right to us works, we're done.
327 if (be16_to_cpu(right->bb_numrecs) - 1 >=
328 XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
329 if ((error = xfs_alloc_lshift(tcur, level, &i)))
330 goto error0;
331 if (i) {
332 ASSERT(be16_to_cpu(block->bb_numrecs) >=
333 XFS_ALLOC_BLOCK_MINRECS(level, cur));
334 xfs_btree_del_cursor(tcur,
335 XFS_BTREE_NOERROR);
336 if (level > 0 &&
337 (error = xfs_alloc_decrement(cur, level,
338 &i)))
339 return error;
340 *stat = 1;
341 return 0;
345 * Otherwise, grab the number of records in right for
346 * future reference, and fix up the temp cursor to point
347 * to our block again (last record).
349 rrecs = be16_to_cpu(right->bb_numrecs);
350 if (lbno != NULLAGBLOCK) {
351 i = xfs_btree_firstrec(tcur, level);
352 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
353 if ((error = xfs_alloc_decrement(tcur, level, &i)))
354 goto error0;
355 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
359 * If there's a left sibling, see if it's ok to shift an entry
360 * out of it.
362 if (lbno != NULLAGBLOCK) {
364 * Move the temp cursor to the first entry in the
365 * previous block.
367 i = xfs_btree_firstrec(tcur, level);
368 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
369 if ((error = xfs_alloc_decrement(tcur, level, &i)))
370 goto error0;
371 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
372 xfs_btree_firstrec(tcur, level);
374 * Grab a pointer to the block.
376 lbp = tcur->bc_bufs[level];
377 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
378 #ifdef DEBUG
379 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
380 goto error0;
381 #endif
383 * Grab the current block number, for future use.
385 bno = be32_to_cpu(left->bb_rightsib);
387 * If left block is full enough so that removing one entry
388 * won't make it too empty, and right-shifting an entry out
389 * of left to us works, we're done.
391 if (be16_to_cpu(left->bb_numrecs) - 1 >=
392 XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
393 if ((error = xfs_alloc_rshift(tcur, level, &i)))
394 goto error0;
395 if (i) {
396 ASSERT(be16_to_cpu(block->bb_numrecs) >=
397 XFS_ALLOC_BLOCK_MINRECS(level, cur));
398 xfs_btree_del_cursor(tcur,
399 XFS_BTREE_NOERROR);
400 if (level == 0)
401 cur->bc_ptrs[0]++;
402 *stat = 1;
403 return 0;
407 * Otherwise, grab the number of records in right for
408 * future reference.
410 lrecs = be16_to_cpu(left->bb_numrecs);
413 * Delete the temp cursor, we're done with it.
415 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
417 * If here, we need to do a join to keep the tree balanced.
419 ASSERT(bno != NULLAGBLOCK);
421 * See if we can join with the left neighbor block.
423 if (lbno != NULLAGBLOCK &&
424 lrecs + be16_to_cpu(block->bb_numrecs) <= XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
426 * Set "right" to be the starting block,
427 * "left" to be the left neighbor.
429 rbno = bno;
430 right = block;
431 rbp = bp;
432 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
433 cur->bc_private.a.agno, lbno, 0, &lbp,
434 XFS_ALLOC_BTREE_REF)))
435 return error;
436 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
437 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
438 return error;
441 * If that won't work, see if we can join with the right neighbor block.
443 else if (rbno != NULLAGBLOCK &&
444 rrecs + be16_to_cpu(block->bb_numrecs) <=
445 XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
447 * Set "left" to be the starting block,
448 * "right" to be the right neighbor.
450 lbno = bno;
451 left = block;
452 lbp = bp;
453 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
454 cur->bc_private.a.agno, rbno, 0, &rbp,
455 XFS_ALLOC_BTREE_REF)))
456 return error;
457 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
458 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
459 return error;
462 * Otherwise, we can't fix the imbalance.
463 * Just return. This is probably a logic error, but it's not fatal.
465 else {
466 if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i)))
467 return error;
468 *stat = 1;
469 return 0;
472 * We're now going to join "left" and "right" by moving all the stuff
473 * in "right" to "left" and deleting "right".
475 if (level > 0) {
477 * It's a non-leaf. Move keys and pointers.
479 lkp = XFS_ALLOC_KEY_ADDR(left, be16_to_cpu(left->bb_numrecs) + 1, cur);
480 lpp = XFS_ALLOC_PTR_ADDR(left, be16_to_cpu(left->bb_numrecs) + 1, cur);
481 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
482 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
483 #ifdef DEBUG
484 for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) {
485 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level)))
486 return error;
488 #endif
489 memcpy(lkp, rkp, be16_to_cpu(right->bb_numrecs) * sizeof(*lkp));
490 memcpy(lpp, rpp, be16_to_cpu(right->bb_numrecs) * sizeof(*lpp));
491 xfs_alloc_log_keys(cur, lbp, be16_to_cpu(left->bb_numrecs) + 1,
492 be16_to_cpu(left->bb_numrecs) +
493 be16_to_cpu(right->bb_numrecs));
494 xfs_alloc_log_ptrs(cur, lbp, be16_to_cpu(left->bb_numrecs) + 1,
495 be16_to_cpu(left->bb_numrecs) +
496 be16_to_cpu(right->bb_numrecs));
497 } else {
499 * It's a leaf. Move records.
501 lrp = XFS_ALLOC_REC_ADDR(left, be16_to_cpu(left->bb_numrecs) + 1, cur);
502 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
503 memcpy(lrp, rrp, be16_to_cpu(right->bb_numrecs) * sizeof(*lrp));
504 xfs_alloc_log_recs(cur, lbp, be16_to_cpu(left->bb_numrecs) + 1,
505 be16_to_cpu(left->bb_numrecs) +
506 be16_to_cpu(right->bb_numrecs));
509 * If we joined with the left neighbor, set the buffer in the
510 * cursor to the left block, and fix up the index.
512 if (bp != lbp) {
513 xfs_btree_setbuf(cur, level, lbp);
514 cur->bc_ptrs[level] += be16_to_cpu(left->bb_numrecs);
517 * If we joined with the right neighbor and there's a level above
518 * us, increment the cursor at that level.
520 else if (level + 1 < cur->bc_nlevels &&
521 (error = xfs_alloc_increment(cur, level + 1, &i)))
522 return error;
524 * Fix up the number of records in the surviving block.
526 be16_add(&left->bb_numrecs, be16_to_cpu(right->bb_numrecs));
528 * Fix up the right block pointer in the surviving block, and log it.
530 left->bb_rightsib = right->bb_rightsib;
531 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
533 * If there is a right sibling now, make it point to the
534 * remaining block.
536 if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) {
537 xfs_alloc_block_t *rrblock;
538 xfs_buf_t *rrbp;
540 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
541 cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib), 0,
542 &rrbp, XFS_ALLOC_BTREE_REF)))
543 return error;
544 rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp);
545 if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp)))
546 return error;
547 rrblock->bb_leftsib = cpu_to_be32(lbno);
548 xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB);
551 * Free the deleting block by putting it on the freelist.
553 if ((error = xfs_alloc_put_freelist(cur->bc_tp, cur->bc_private.a.agbp,
554 NULL, rbno)))
555 return error;
557 * Since blocks move to the free list without the coordination
558 * used in xfs_bmap_finish, we can't allow block to be available
559 * for reallocation and non-transaction writing (user data)
560 * until we know that the transaction that moved it to the free
561 * list is permanently on disk. We track the blocks by declaring
562 * these blocks as "busy"; the busy list is maintained on a
563 * per-ag basis and each transaction records which entries
564 * should be removed when the iclog commits to disk. If a
565 * busy block is allocated, the iclog is pushed up to the
566 * LSN that freed the block.
568 xfs_alloc_mark_busy(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1);
569 xfs_trans_agbtree_delta(cur->bc_tp, -1);
572 * Adjust the current level's cursor so that we're left referring
573 * to the right node, after we're done.
574 * If this leaves the ptr value 0 our caller will fix it up.
576 if (level > 0)
577 cur->bc_ptrs[level]--;
579 * Return value means the next level up has something to do.
581 *stat = 2;
582 return 0;
584 error0:
585 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
586 return error;
590 * Insert one record/level. Return information to the caller
591 * allowing the next level up to proceed if necessary.
593 STATIC int /* error */
594 xfs_alloc_insrec(
595 xfs_btree_cur_t *cur, /* btree cursor */
596 int level, /* level to insert record at */
597 xfs_agblock_t *bnop, /* i/o: block number inserted */
598 xfs_alloc_rec_t *recp, /* i/o: record data inserted */
599 xfs_btree_cur_t **curp, /* output: new cursor replacing cur */
600 int *stat) /* output: success/failure */
602 xfs_agf_t *agf; /* allocation group freelist header */
603 xfs_alloc_block_t *block; /* btree block record/key lives in */
604 xfs_buf_t *bp; /* buffer for block */
605 int error; /* error return value */
606 int i; /* loop index */
607 xfs_alloc_key_t key; /* key value being inserted */
608 xfs_alloc_key_t *kp; /* pointer to btree keys */
609 xfs_agblock_t nbno; /* block number of allocated block */
610 xfs_btree_cur_t *ncur; /* new cursor to be used at next lvl */
611 xfs_alloc_key_t nkey; /* new key value, from split */
612 xfs_alloc_rec_t nrec; /* new record value, for caller */
613 int optr; /* old ptr value */
614 xfs_alloc_ptr_t *pp; /* pointer to btree addresses */
615 int ptr; /* index in btree block for this rec */
616 xfs_alloc_rec_t *rp; /* pointer to btree records */
618 ASSERT(be32_to_cpu(recp->ar_blockcount) > 0);
621 * GCC doesn't understand the (arguably complex) control flow in
622 * this function and complains about uninitialized structure fields
623 * without this.
625 memset(&nrec, 0, sizeof(nrec));
628 * If we made it to the root level, allocate a new root block
629 * and we're done.
631 if (level >= cur->bc_nlevels) {
632 XFS_STATS_INC(xs_abt_insrec);
633 if ((error = xfs_alloc_newroot(cur, &i)))
634 return error;
635 *bnop = NULLAGBLOCK;
636 *stat = i;
637 return 0;
640 * Make a key out of the record data to be inserted, and save it.
642 key.ar_startblock = recp->ar_startblock;
643 key.ar_blockcount = recp->ar_blockcount;
644 optr = ptr = cur->bc_ptrs[level];
646 * If we're off the left edge, return failure.
648 if (ptr == 0) {
649 *stat = 0;
650 return 0;
652 XFS_STATS_INC(xs_abt_insrec);
654 * Get pointers to the btree buffer and block.
656 bp = cur->bc_bufs[level];
657 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
658 #ifdef DEBUG
659 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
660 return error;
662 * Check that the new entry is being inserted in the right place.
664 if (ptr <= be16_to_cpu(block->bb_numrecs)) {
665 if (level == 0) {
666 rp = XFS_ALLOC_REC_ADDR(block, ptr, cur);
667 xfs_btree_check_rec(cur->bc_btnum, recp, rp);
668 } else {
669 kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur);
670 xfs_btree_check_key(cur->bc_btnum, &key, kp);
673 #endif
674 nbno = NULLAGBLOCK;
675 ncur = (xfs_btree_cur_t *)0;
677 * If the block is full, we can't insert the new entry until we
678 * make the block un-full.
680 if (be16_to_cpu(block->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
682 * First, try shifting an entry to the right neighbor.
684 if ((error = xfs_alloc_rshift(cur, level, &i)))
685 return error;
686 if (i) {
687 /* nothing */
690 * Next, try shifting an entry to the left neighbor.
692 else {
693 if ((error = xfs_alloc_lshift(cur, level, &i)))
694 return error;
695 if (i)
696 optr = ptr = cur->bc_ptrs[level];
697 else {
699 * Next, try splitting the current block in
700 * half. If this works we have to re-set our
701 * variables because we could be in a
702 * different block now.
704 if ((error = xfs_alloc_split(cur, level, &nbno,
705 &nkey, &ncur, &i)))
706 return error;
707 if (i) {
708 bp = cur->bc_bufs[level];
709 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
710 #ifdef DEBUG
711 if ((error =
712 xfs_btree_check_sblock(cur,
713 block, level, bp)))
714 return error;
715 #endif
716 ptr = cur->bc_ptrs[level];
717 nrec.ar_startblock = nkey.ar_startblock;
718 nrec.ar_blockcount = nkey.ar_blockcount;
721 * Otherwise the insert fails.
723 else {
724 *stat = 0;
725 return 0;
731 * At this point we know there's room for our new entry in the block
732 * we're pointing at.
734 if (level > 0) {
736 * It's a non-leaf entry. Make a hole for the new data
737 * in the key and ptr regions of the block.
739 kp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
740 pp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
741 #ifdef DEBUG
742 for (i = be16_to_cpu(block->bb_numrecs); i >= ptr; i--) {
743 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(pp[i - 1]), level)))
744 return error;
746 #endif
747 memmove(&kp[ptr], &kp[ptr - 1],
748 (be16_to_cpu(block->bb_numrecs) - ptr + 1) * sizeof(*kp));
749 memmove(&pp[ptr], &pp[ptr - 1],
750 (be16_to_cpu(block->bb_numrecs) - ptr + 1) * sizeof(*pp));
751 #ifdef DEBUG
752 if ((error = xfs_btree_check_sptr(cur, *bnop, level)))
753 return error;
754 #endif
756 * Now stuff the new data in, bump numrecs and log the new data.
758 kp[ptr - 1] = key;
759 pp[ptr - 1] = cpu_to_be32(*bnop);
760 be16_add(&block->bb_numrecs, 1);
761 xfs_alloc_log_keys(cur, bp, ptr, be16_to_cpu(block->bb_numrecs));
762 xfs_alloc_log_ptrs(cur, bp, ptr, be16_to_cpu(block->bb_numrecs));
763 #ifdef DEBUG
764 if (ptr < be16_to_cpu(block->bb_numrecs))
765 xfs_btree_check_key(cur->bc_btnum, kp + ptr - 1,
766 kp + ptr);
767 #endif
768 } else {
770 * It's a leaf entry. Make a hole for the new record.
772 rp = XFS_ALLOC_REC_ADDR(block, 1, cur);
773 memmove(&rp[ptr], &rp[ptr - 1],
774 (be16_to_cpu(block->bb_numrecs) - ptr + 1) * sizeof(*rp));
776 * Now stuff the new record in, bump numrecs
777 * and log the new data.
779 rp[ptr - 1] = *recp; /* INT_: struct copy */
780 be16_add(&block->bb_numrecs, 1);
781 xfs_alloc_log_recs(cur, bp, ptr, be16_to_cpu(block->bb_numrecs));
782 #ifdef DEBUG
783 if (ptr < be16_to_cpu(block->bb_numrecs))
784 xfs_btree_check_rec(cur->bc_btnum, rp + ptr - 1,
785 rp + ptr);
786 #endif
789 * Log the new number of records in the btree header.
791 xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS);
793 * If we inserted at the start of a block, update the parents' keys.
795 if (optr == 1 && (error = xfs_alloc_updkey(cur, &key, level + 1)))
796 return error;
798 * Look to see if the longest extent in the allocation group
799 * needs to be updated.
802 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
803 if (level == 0 &&
804 cur->bc_btnum == XFS_BTNUM_CNT &&
805 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
806 be32_to_cpu(recp->ar_blockcount) > be32_to_cpu(agf->agf_longest)) {
808 * If this is a leaf in the by-size btree and there
809 * is no right sibling block and this block is bigger
810 * than the previous longest block, update it.
812 agf->agf_longest = recp->ar_blockcount;
813 cur->bc_mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest
814 = be32_to_cpu(recp->ar_blockcount);
815 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
816 XFS_AGF_LONGEST);
819 * Return the new block number, if any.
820 * If there is one, give back a record value and a cursor too.
822 *bnop = nbno;
823 if (nbno != NULLAGBLOCK) {
824 *recp = nrec; /* INT_: struct copy */
825 *curp = ncur; /* INT_: struct copy */
827 *stat = 1;
828 return 0;
832 * Log header fields from a btree block.
834 STATIC void
835 xfs_alloc_log_block(
836 xfs_trans_t *tp, /* transaction pointer */
837 xfs_buf_t *bp, /* buffer containing btree block */
838 int fields) /* mask of fields: XFS_BB_... */
840 int first; /* first byte offset logged */
841 int last; /* last byte offset logged */
842 static const short offsets[] = { /* table of offsets */
843 offsetof(xfs_alloc_block_t, bb_magic),
844 offsetof(xfs_alloc_block_t, bb_level),
845 offsetof(xfs_alloc_block_t, bb_numrecs),
846 offsetof(xfs_alloc_block_t, bb_leftsib),
847 offsetof(xfs_alloc_block_t, bb_rightsib),
848 sizeof(xfs_alloc_block_t)
851 xfs_btree_offsets(fields, offsets, XFS_BB_NUM_BITS, &first, &last);
852 xfs_trans_log_buf(tp, bp, first, last);
856 * Log keys from a btree block (nonleaf).
858 STATIC void
859 xfs_alloc_log_keys(
860 xfs_btree_cur_t *cur, /* btree cursor */
861 xfs_buf_t *bp, /* buffer containing btree block */
862 int kfirst, /* index of first key to log */
863 int klast) /* index of last key to log */
865 xfs_alloc_block_t *block; /* btree block to log from */
866 int first; /* first byte offset logged */
867 xfs_alloc_key_t *kp; /* key pointer in btree block */
868 int last; /* last byte offset logged */
870 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
871 kp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
872 first = (int)((xfs_caddr_t)&kp[kfirst - 1] - (xfs_caddr_t)block);
873 last = (int)(((xfs_caddr_t)&kp[klast] - 1) - (xfs_caddr_t)block);
874 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
878 * Log block pointer fields from a btree block (nonleaf).
880 STATIC void
881 xfs_alloc_log_ptrs(
882 xfs_btree_cur_t *cur, /* btree cursor */
883 xfs_buf_t *bp, /* buffer containing btree block */
884 int pfirst, /* index of first pointer to log */
885 int plast) /* index of last pointer to log */
887 xfs_alloc_block_t *block; /* btree block to log from */
888 int first; /* first byte offset logged */
889 int last; /* last byte offset logged */
890 xfs_alloc_ptr_t *pp; /* block-pointer pointer in btree blk */
892 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
893 pp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
894 first = (int)((xfs_caddr_t)&pp[pfirst - 1] - (xfs_caddr_t)block);
895 last = (int)(((xfs_caddr_t)&pp[plast] - 1) - (xfs_caddr_t)block);
896 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
900 * Log records from a btree block (leaf).
902 STATIC void
903 xfs_alloc_log_recs(
904 xfs_btree_cur_t *cur, /* btree cursor */
905 xfs_buf_t *bp, /* buffer containing btree block */
906 int rfirst, /* index of first record to log */
907 int rlast) /* index of last record to log */
909 xfs_alloc_block_t *block; /* btree block to log from */
910 int first; /* first byte offset logged */
911 int last; /* last byte offset logged */
912 xfs_alloc_rec_t *rp; /* record pointer for btree block */
915 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
916 rp = XFS_ALLOC_REC_ADDR(block, 1, cur);
917 #ifdef DEBUG
919 xfs_agf_t *agf;
920 xfs_alloc_rec_t *p;
922 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
923 for (p = &rp[rfirst - 1]; p <= &rp[rlast - 1]; p++)
924 ASSERT(be32_to_cpu(p->ar_startblock) +
925 be32_to_cpu(p->ar_blockcount) <=
926 be32_to_cpu(agf->agf_length));
928 #endif
929 first = (int)((xfs_caddr_t)&rp[rfirst - 1] - (xfs_caddr_t)block);
930 last = (int)(((xfs_caddr_t)&rp[rlast] - 1) - (xfs_caddr_t)block);
931 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
935 * Lookup the record. The cursor is made to point to it, based on dir.
936 * Return 0 if can't find any such record, 1 for success.
938 STATIC int /* error */
939 xfs_alloc_lookup(
940 xfs_btree_cur_t *cur, /* btree cursor */
941 xfs_lookup_t dir, /* <=, ==, or >= */
942 int *stat) /* success/failure */
944 xfs_agblock_t agbno; /* a.g. relative btree block number */
945 xfs_agnumber_t agno; /* allocation group number */
946 xfs_alloc_block_t *block=NULL; /* current btree block */
947 int diff; /* difference for the current key */
948 int error; /* error return value */
949 int keyno=0; /* current key number */
950 int level; /* level in the btree */
951 xfs_mount_t *mp; /* file system mount point */
953 XFS_STATS_INC(xs_abt_lookup);
955 * Get the allocation group header, and the root block number.
957 mp = cur->bc_mp;
960 xfs_agf_t *agf; /* a.g. freespace header */
962 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
963 agno = be32_to_cpu(agf->agf_seqno);
964 agbno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]);
967 * Iterate over each level in the btree, starting at the root.
968 * For each level above the leaves, find the key we need, based
969 * on the lookup record, then follow the corresponding block
970 * pointer down to the next level.
972 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
973 xfs_buf_t *bp; /* buffer pointer for btree block */
974 xfs_daddr_t d; /* disk address of btree block */
977 * Get the disk address we're looking for.
979 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
981 * If the old buffer at this level is for a different block,
982 * throw it away, otherwise just use it.
984 bp = cur->bc_bufs[level];
985 if (bp && XFS_BUF_ADDR(bp) != d)
986 bp = (xfs_buf_t *)0;
987 if (!bp) {
989 * Need to get a new buffer. Read it, then
990 * set it in the cursor, releasing the old one.
992 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, agno,
993 agbno, 0, &bp, XFS_ALLOC_BTREE_REF)))
994 return error;
995 xfs_btree_setbuf(cur, level, bp);
997 * Point to the btree block, now that we have the buffer
999 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1000 if ((error = xfs_btree_check_sblock(cur, block, level,
1001 bp)))
1002 return error;
1003 } else
1004 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1006 * If we already had a key match at a higher level, we know
1007 * we need to use the first entry in this block.
1009 if (diff == 0)
1010 keyno = 1;
1012 * Otherwise we need to search this block. Do a binary search.
1014 else {
1015 int high; /* high entry number */
1016 xfs_alloc_key_t *kkbase=NULL;/* base of keys in block */
1017 xfs_alloc_rec_t *krbase=NULL;/* base of records in block */
1018 int low; /* low entry number */
1021 * Get a pointer to keys or records.
1023 if (level > 0)
1024 kkbase = XFS_ALLOC_KEY_ADDR(block, 1, cur);
1025 else
1026 krbase = XFS_ALLOC_REC_ADDR(block, 1, cur);
1028 * Set low and high entry numbers, 1-based.
1030 low = 1;
1031 if (!(high = be16_to_cpu(block->bb_numrecs))) {
1033 * If the block is empty, the tree must
1034 * be an empty leaf.
1036 ASSERT(level == 0 && cur->bc_nlevels == 1);
1037 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1038 *stat = 0;
1039 return 0;
1042 * Binary search the block.
1044 while (low <= high) {
1045 xfs_extlen_t blockcount; /* key value */
1046 xfs_agblock_t startblock; /* key value */
1048 XFS_STATS_INC(xs_abt_compare);
1050 * keyno is average of low and high.
1052 keyno = (low + high) >> 1;
1054 * Get startblock & blockcount.
1056 if (level > 0) {
1057 xfs_alloc_key_t *kkp;
1059 kkp = kkbase + keyno - 1;
1060 startblock = be32_to_cpu(kkp->ar_startblock);
1061 blockcount = be32_to_cpu(kkp->ar_blockcount);
1062 } else {
1063 xfs_alloc_rec_t *krp;
1065 krp = krbase + keyno - 1;
1066 startblock = be32_to_cpu(krp->ar_startblock);
1067 blockcount = be32_to_cpu(krp->ar_blockcount);
1070 * Compute difference to get next direction.
1072 if (cur->bc_btnum == XFS_BTNUM_BNO)
1073 diff = (int)startblock -
1074 (int)cur->bc_rec.a.ar_startblock;
1075 else if (!(diff = (int)blockcount -
1076 (int)cur->bc_rec.a.ar_blockcount))
1077 diff = (int)startblock -
1078 (int)cur->bc_rec.a.ar_startblock;
1080 * Less than, move right.
1082 if (diff < 0)
1083 low = keyno + 1;
1085 * Greater than, move left.
1087 else if (diff > 0)
1088 high = keyno - 1;
1090 * Equal, we're done.
1092 else
1093 break;
1097 * If there are more levels, set up for the next level
1098 * by getting the block number and filling in the cursor.
1100 if (level > 0) {
1102 * If we moved left, need the previous key number,
1103 * unless there isn't one.
1105 if (diff > 0 && --keyno < 1)
1106 keyno = 1;
1107 agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, keyno, cur));
1108 #ifdef DEBUG
1109 if ((error = xfs_btree_check_sptr(cur, agbno, level)))
1110 return error;
1111 #endif
1112 cur->bc_ptrs[level] = keyno;
1116 * Done with the search.
1117 * See if we need to adjust the results.
1119 if (dir != XFS_LOOKUP_LE && diff < 0) {
1120 keyno++;
1122 * If ge search and we went off the end of the block, but it's
1123 * not the last block, we're in the wrong block.
1125 if (dir == XFS_LOOKUP_GE &&
1126 keyno > be16_to_cpu(block->bb_numrecs) &&
1127 be32_to_cpu(block->bb_rightsib) != NULLAGBLOCK) {
1128 int i;
1130 cur->bc_ptrs[0] = keyno;
1131 if ((error = xfs_alloc_increment(cur, 0, &i)))
1132 return error;
1133 XFS_WANT_CORRUPTED_RETURN(i == 1);
1134 *stat = 1;
1135 return 0;
1138 else if (dir == XFS_LOOKUP_LE && diff > 0)
1139 keyno--;
1140 cur->bc_ptrs[0] = keyno;
1142 * Return if we succeeded or not.
1144 if (keyno == 0 || keyno > be16_to_cpu(block->bb_numrecs))
1145 *stat = 0;
1146 else
1147 *stat = ((dir != XFS_LOOKUP_EQ) || (diff == 0));
1148 return 0;
1152 * Move 1 record left from cur/level if possible.
1153 * Update cur to reflect the new path.
1155 STATIC int /* error */
1156 xfs_alloc_lshift(
1157 xfs_btree_cur_t *cur, /* btree cursor */
1158 int level, /* level to shift record on */
1159 int *stat) /* success/failure */
1161 int error; /* error return value */
1162 #ifdef DEBUG
1163 int i; /* loop index */
1164 #endif
1165 xfs_alloc_key_t key; /* key value for leaf level upward */
1166 xfs_buf_t *lbp; /* buffer for left neighbor block */
1167 xfs_alloc_block_t *left; /* left neighbor btree block */
1168 int nrec; /* new number of left block entries */
1169 xfs_buf_t *rbp; /* buffer for right (current) block */
1170 xfs_alloc_block_t *right; /* right (current) btree block */
1171 xfs_alloc_key_t *rkp=NULL; /* key pointer for right block */
1172 xfs_alloc_ptr_t *rpp=NULL; /* address pointer for right block */
1173 xfs_alloc_rec_t *rrp=NULL; /* record pointer for right block */
1176 * Set up variables for this block as "right".
1178 rbp = cur->bc_bufs[level];
1179 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1180 #ifdef DEBUG
1181 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
1182 return error;
1183 #endif
1185 * If we've got no left sibling then we can't shift an entry left.
1187 if (be32_to_cpu(right->bb_leftsib) == NULLAGBLOCK) {
1188 *stat = 0;
1189 return 0;
1192 * If the cursor entry is the one that would be moved, don't
1193 * do it... it's too complicated.
1195 if (cur->bc_ptrs[level] <= 1) {
1196 *stat = 0;
1197 return 0;
1200 * Set up the left neighbor as "left".
1202 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1203 cur->bc_private.a.agno, be32_to_cpu(right->bb_leftsib),
1204 0, &lbp, XFS_ALLOC_BTREE_REF)))
1205 return error;
1206 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1207 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
1208 return error;
1210 * If it's full, it can't take another entry.
1212 if (be16_to_cpu(left->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
1213 *stat = 0;
1214 return 0;
1216 nrec = be16_to_cpu(left->bb_numrecs) + 1;
1218 * If non-leaf, copy a key and a ptr to the left block.
1220 if (level > 0) {
1221 xfs_alloc_key_t *lkp; /* key pointer for left block */
1222 xfs_alloc_ptr_t *lpp; /* address pointer for left block */
1224 lkp = XFS_ALLOC_KEY_ADDR(left, nrec, cur);
1225 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1226 *lkp = *rkp;
1227 xfs_alloc_log_keys(cur, lbp, nrec, nrec);
1228 lpp = XFS_ALLOC_PTR_ADDR(left, nrec, cur);
1229 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1230 #ifdef DEBUG
1231 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*rpp), level)))
1232 return error;
1233 #endif
1234 *lpp = *rpp; /* INT_: copy */
1235 xfs_alloc_log_ptrs(cur, lbp, nrec, nrec);
1236 xfs_btree_check_key(cur->bc_btnum, lkp - 1, lkp);
1239 * If leaf, copy a record to the left block.
1241 else {
1242 xfs_alloc_rec_t *lrp; /* record pointer for left block */
1244 lrp = XFS_ALLOC_REC_ADDR(left, nrec, cur);
1245 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1246 *lrp = *rrp;
1247 xfs_alloc_log_recs(cur, lbp, nrec, nrec);
1248 xfs_btree_check_rec(cur->bc_btnum, lrp - 1, lrp);
1251 * Bump and log left's numrecs, decrement and log right's numrecs.
1253 be16_add(&left->bb_numrecs, 1);
1254 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS);
1255 be16_add(&right->bb_numrecs, -1);
1256 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS);
1258 * Slide the contents of right down one entry.
1260 if (level > 0) {
1261 #ifdef DEBUG
1262 for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) {
1263 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i + 1]),
1264 level)))
1265 return error;
1267 #endif
1268 memmove(rkp, rkp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1269 memmove(rpp, rpp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1270 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1271 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1272 } else {
1273 memmove(rrp, rrp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1274 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1275 key.ar_startblock = rrp->ar_startblock;
1276 key.ar_blockcount = rrp->ar_blockcount;
1277 rkp = &key;
1280 * Update the parent key values of right.
1282 if ((error = xfs_alloc_updkey(cur, rkp, level + 1)))
1283 return error;
1285 * Slide the cursor value left one.
1287 cur->bc_ptrs[level]--;
1288 *stat = 1;
1289 return 0;
1293 * Allocate a new root block, fill it in.
1295 STATIC int /* error */
1296 xfs_alloc_newroot(
1297 xfs_btree_cur_t *cur, /* btree cursor */
1298 int *stat) /* success/failure */
1300 int error; /* error return value */
1301 xfs_agblock_t lbno; /* left block number */
1302 xfs_buf_t *lbp; /* left btree buffer */
1303 xfs_alloc_block_t *left; /* left btree block */
1304 xfs_mount_t *mp; /* mount structure */
1305 xfs_agblock_t nbno; /* new block number */
1306 xfs_buf_t *nbp; /* new (root) buffer */
1307 xfs_alloc_block_t *new; /* new (root) btree block */
1308 int nptr; /* new value for key index, 1 or 2 */
1309 xfs_agblock_t rbno; /* right block number */
1310 xfs_buf_t *rbp; /* right btree buffer */
1311 xfs_alloc_block_t *right; /* right btree block */
1313 mp = cur->bc_mp;
1315 ASSERT(cur->bc_nlevels < XFS_AG_MAXLEVELS(mp));
1317 * Get a buffer from the freelist blocks, for the new root.
1319 if ((error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
1320 &nbno)))
1321 return error;
1323 * None available, we fail.
1325 if (nbno == NULLAGBLOCK) {
1326 *stat = 0;
1327 return 0;
1329 xfs_trans_agbtree_delta(cur->bc_tp, 1);
1330 nbp = xfs_btree_get_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, nbno,
1332 new = XFS_BUF_TO_ALLOC_BLOCK(nbp);
1334 * Set the root data in the a.g. freespace structure.
1337 xfs_agf_t *agf; /* a.g. freespace header */
1338 xfs_agnumber_t seqno;
1340 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
1341 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(nbno);
1342 be32_add(&agf->agf_levels[cur->bc_btnum], 1);
1343 seqno = be32_to_cpu(agf->agf_seqno);
1344 mp->m_perag[seqno].pagf_levels[cur->bc_btnum]++;
1345 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
1346 XFS_AGF_ROOTS | XFS_AGF_LEVELS);
1349 * At the previous root level there are now two blocks: the old
1350 * root, and the new block generated when it was split.
1351 * We don't know which one the cursor is pointing at, so we
1352 * set up variables "left" and "right" for each case.
1354 lbp = cur->bc_bufs[cur->bc_nlevels - 1];
1355 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1356 #ifdef DEBUG
1357 if ((error = xfs_btree_check_sblock(cur, left, cur->bc_nlevels - 1, lbp)))
1358 return error;
1359 #endif
1360 if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) {
1362 * Our block is left, pick up the right block.
1364 lbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(lbp));
1365 rbno = be32_to_cpu(left->bb_rightsib);
1366 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
1367 cur->bc_private.a.agno, rbno, 0, &rbp,
1368 XFS_ALLOC_BTREE_REF)))
1369 return error;
1370 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1371 if ((error = xfs_btree_check_sblock(cur, right,
1372 cur->bc_nlevels - 1, rbp)))
1373 return error;
1374 nptr = 1;
1375 } else {
1377 * Our block is right, pick up the left block.
1379 rbp = lbp;
1380 right = left;
1381 rbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(rbp));
1382 lbno = be32_to_cpu(right->bb_leftsib);
1383 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
1384 cur->bc_private.a.agno, lbno, 0, &lbp,
1385 XFS_ALLOC_BTREE_REF)))
1386 return error;
1387 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1388 if ((error = xfs_btree_check_sblock(cur, left,
1389 cur->bc_nlevels - 1, lbp)))
1390 return error;
1391 nptr = 2;
1394 * Fill in the new block's btree header and log it.
1396 new->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]);
1397 new->bb_level = cpu_to_be16(cur->bc_nlevels);
1398 new->bb_numrecs = cpu_to_be16(2);
1399 new->bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1400 new->bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1401 xfs_alloc_log_block(cur->bc_tp, nbp, XFS_BB_ALL_BITS);
1402 ASSERT(lbno != NULLAGBLOCK && rbno != NULLAGBLOCK);
1404 * Fill in the key data in the new root.
1407 xfs_alloc_key_t *kp; /* btree key pointer */
1409 kp = XFS_ALLOC_KEY_ADDR(new, 1, cur);
1410 if (be16_to_cpu(left->bb_level) > 0) {
1411 kp[0] = *XFS_ALLOC_KEY_ADDR(left, 1, cur); /* INT_: structure copy */
1412 kp[1] = *XFS_ALLOC_KEY_ADDR(right, 1, cur);/* INT_: structure copy */
1413 } else {
1414 xfs_alloc_rec_t *rp; /* btree record pointer */
1416 rp = XFS_ALLOC_REC_ADDR(left, 1, cur);
1417 kp[0].ar_startblock = rp->ar_startblock;
1418 kp[0].ar_blockcount = rp->ar_blockcount;
1419 rp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1420 kp[1].ar_startblock = rp->ar_startblock;
1421 kp[1].ar_blockcount = rp->ar_blockcount;
1424 xfs_alloc_log_keys(cur, nbp, 1, 2);
1426 * Fill in the pointer data in the new root.
1429 xfs_alloc_ptr_t *pp; /* btree address pointer */
1431 pp = XFS_ALLOC_PTR_ADDR(new, 1, cur);
1432 pp[0] = cpu_to_be32(lbno);
1433 pp[1] = cpu_to_be32(rbno);
1435 xfs_alloc_log_ptrs(cur, nbp, 1, 2);
1437 * Fix up the cursor.
1439 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
1440 cur->bc_ptrs[cur->bc_nlevels] = nptr;
1441 cur->bc_nlevels++;
1442 *stat = 1;
1443 return 0;
1447 * Move 1 record right from cur/level if possible.
1448 * Update cur to reflect the new path.
1450 STATIC int /* error */
1451 xfs_alloc_rshift(
1452 xfs_btree_cur_t *cur, /* btree cursor */
1453 int level, /* level to shift record on */
1454 int *stat) /* success/failure */
1456 int error; /* error return value */
1457 int i; /* loop index */
1458 xfs_alloc_key_t key; /* key value for leaf level upward */
1459 xfs_buf_t *lbp; /* buffer for left (current) block */
1460 xfs_alloc_block_t *left; /* left (current) btree block */
1461 xfs_buf_t *rbp; /* buffer for right neighbor block */
1462 xfs_alloc_block_t *right; /* right neighbor btree block */
1463 xfs_alloc_key_t *rkp; /* key pointer for right block */
1464 xfs_btree_cur_t *tcur; /* temporary cursor */
1467 * Set up variables for this block as "left".
1469 lbp = cur->bc_bufs[level];
1470 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1471 #ifdef DEBUG
1472 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
1473 return error;
1474 #endif
1476 * If we've got no right sibling then we can't shift an entry right.
1478 if (be32_to_cpu(left->bb_rightsib) == NULLAGBLOCK) {
1479 *stat = 0;
1480 return 0;
1483 * If the cursor entry is the one that would be moved, don't
1484 * do it... it's too complicated.
1486 if (cur->bc_ptrs[level] >= be16_to_cpu(left->bb_numrecs)) {
1487 *stat = 0;
1488 return 0;
1491 * Set up the right neighbor as "right".
1493 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1494 cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib),
1495 0, &rbp, XFS_ALLOC_BTREE_REF)))
1496 return error;
1497 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1498 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
1499 return error;
1501 * If it's full, it can't take another entry.
1503 if (be16_to_cpu(right->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
1504 *stat = 0;
1505 return 0;
1508 * Make a hole at the start of the right neighbor block, then
1509 * copy the last left block entry to the hole.
1511 if (level > 0) {
1512 xfs_alloc_key_t *lkp; /* key pointer for left block */
1513 xfs_alloc_ptr_t *lpp; /* address pointer for left block */
1514 xfs_alloc_ptr_t *rpp; /* address pointer for right block */
1516 lkp = XFS_ALLOC_KEY_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1517 lpp = XFS_ALLOC_PTR_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1518 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1519 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1520 #ifdef DEBUG
1521 for (i = be16_to_cpu(right->bb_numrecs) - 1; i >= 0; i--) {
1522 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level)))
1523 return error;
1525 #endif
1526 memmove(rkp + 1, rkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1527 memmove(rpp + 1, rpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1528 #ifdef DEBUG
1529 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*lpp), level)))
1530 return error;
1531 #endif
1532 *rkp = *lkp; /* INT_: copy */
1533 *rpp = *lpp; /* INT_: copy */
1534 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1535 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1536 xfs_btree_check_key(cur->bc_btnum, rkp, rkp + 1);
1537 } else {
1538 xfs_alloc_rec_t *lrp; /* record pointer for left block */
1539 xfs_alloc_rec_t *rrp; /* record pointer for right block */
1541 lrp = XFS_ALLOC_REC_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1542 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1543 memmove(rrp + 1, rrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1544 *rrp = *lrp;
1545 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1546 key.ar_startblock = rrp->ar_startblock;
1547 key.ar_blockcount = rrp->ar_blockcount;
1548 rkp = &key;
1549 xfs_btree_check_rec(cur->bc_btnum, rrp, rrp + 1);
1552 * Decrement and log left's numrecs, bump and log right's numrecs.
1554 be16_add(&left->bb_numrecs, -1);
1555 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS);
1556 be16_add(&right->bb_numrecs, 1);
1557 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS);
1559 * Using a temporary cursor, update the parent key values of the
1560 * block on the right.
1562 if ((error = xfs_btree_dup_cursor(cur, &tcur)))
1563 return error;
1564 i = xfs_btree_lastrec(tcur, level);
1565 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1566 if ((error = xfs_alloc_increment(tcur, level, &i)) ||
1567 (error = xfs_alloc_updkey(tcur, rkp, level + 1)))
1568 goto error0;
1569 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1570 *stat = 1;
1571 return 0;
1572 error0:
1573 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1574 return error;
1578 * Split cur/level block in half.
1579 * Return new block number and its first record (to be inserted into parent).
1581 STATIC int /* error */
1582 xfs_alloc_split(
1583 xfs_btree_cur_t *cur, /* btree cursor */
1584 int level, /* level to split */
1585 xfs_agblock_t *bnop, /* output: block number allocated */
1586 xfs_alloc_key_t *keyp, /* output: first key of new block */
1587 xfs_btree_cur_t **curp, /* output: new cursor */
1588 int *stat) /* success/failure */
1590 int error; /* error return value */
1591 int i; /* loop index/record number */
1592 xfs_agblock_t lbno; /* left (current) block number */
1593 xfs_buf_t *lbp; /* buffer for left block */
1594 xfs_alloc_block_t *left; /* left (current) btree block */
1595 xfs_agblock_t rbno; /* right (new) block number */
1596 xfs_buf_t *rbp; /* buffer for right block */
1597 xfs_alloc_block_t *right; /* right (new) btree block */
1600 * Allocate the new block from the freelist.
1601 * If we can't do it, we're toast. Give up.
1603 if ((error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
1604 &rbno)))
1605 return error;
1606 if (rbno == NULLAGBLOCK) {
1607 *stat = 0;
1608 return 0;
1610 xfs_trans_agbtree_delta(cur->bc_tp, 1);
1611 rbp = xfs_btree_get_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno,
1612 rbno, 0);
1614 * Set up the new block as "right".
1616 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1618 * "Left" is the current (according to the cursor) block.
1620 lbp = cur->bc_bufs[level];
1621 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1622 #ifdef DEBUG
1623 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
1624 return error;
1625 #endif
1627 * Fill in the btree header for the new block.
1629 right->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]);
1630 right->bb_level = left->bb_level;
1631 right->bb_numrecs = cpu_to_be16(be16_to_cpu(left->bb_numrecs) / 2);
1633 * Make sure that if there's an odd number of entries now, that
1634 * each new block will have the same number of entries.
1636 if ((be16_to_cpu(left->bb_numrecs) & 1) &&
1637 cur->bc_ptrs[level] <= be16_to_cpu(right->bb_numrecs) + 1)
1638 be16_add(&right->bb_numrecs, 1);
1639 i = be16_to_cpu(left->bb_numrecs) - be16_to_cpu(right->bb_numrecs) + 1;
1641 * For non-leaf blocks, copy keys and addresses over to the new block.
1643 if (level > 0) {
1644 xfs_alloc_key_t *lkp; /* left btree key pointer */
1645 xfs_alloc_ptr_t *lpp; /* left btree address pointer */
1646 xfs_alloc_key_t *rkp; /* right btree key pointer */
1647 xfs_alloc_ptr_t *rpp; /* right btree address pointer */
1649 lkp = XFS_ALLOC_KEY_ADDR(left, i, cur);
1650 lpp = XFS_ALLOC_PTR_ADDR(left, i, cur);
1651 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1652 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1653 #ifdef DEBUG
1654 for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) {
1655 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level)))
1656 return error;
1658 #endif
1659 memcpy(rkp, lkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1660 memcpy(rpp, lpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1661 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1662 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1663 *keyp = *rkp;
1666 * For leaf blocks, copy records over to the new block.
1668 else {
1669 xfs_alloc_rec_t *lrp; /* left btree record pointer */
1670 xfs_alloc_rec_t *rrp; /* right btree record pointer */
1672 lrp = XFS_ALLOC_REC_ADDR(left, i, cur);
1673 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1674 memcpy(rrp, lrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1675 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1676 keyp->ar_startblock = rrp->ar_startblock;
1677 keyp->ar_blockcount = rrp->ar_blockcount;
1680 * Find the left block number by looking in the buffer.
1681 * Adjust numrecs, sibling pointers.
1683 lbno = XFS_DADDR_TO_AGBNO(cur->bc_mp, XFS_BUF_ADDR(lbp));
1684 be16_add(&left->bb_numrecs, -(be16_to_cpu(right->bb_numrecs)));
1685 right->bb_rightsib = left->bb_rightsib;
1686 left->bb_rightsib = cpu_to_be32(rbno);
1687 right->bb_leftsib = cpu_to_be32(lbno);
1688 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_ALL_BITS);
1689 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
1691 * If there's a block to the new block's right, make that block
1692 * point back to right instead of to left.
1694 if (be32_to_cpu(right->bb_rightsib) != NULLAGBLOCK) {
1695 xfs_alloc_block_t *rrblock; /* rr btree block */
1696 xfs_buf_t *rrbp; /* buffer for rrblock */
1698 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1699 cur->bc_private.a.agno, be32_to_cpu(right->bb_rightsib), 0,
1700 &rrbp, XFS_ALLOC_BTREE_REF)))
1701 return error;
1702 rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp);
1703 if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp)))
1704 return error;
1705 rrblock->bb_leftsib = cpu_to_be32(rbno);
1706 xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB);
1709 * If the cursor is really in the right block, move it there.
1710 * If it's just pointing past the last entry in left, then we'll
1711 * insert there, so don't change anything in that case.
1713 if (cur->bc_ptrs[level] > be16_to_cpu(left->bb_numrecs) + 1) {
1714 xfs_btree_setbuf(cur, level, rbp);
1715 cur->bc_ptrs[level] -= be16_to_cpu(left->bb_numrecs);
1718 * If there are more levels, we'll need another cursor which refers to
1719 * the right block, no matter where this cursor was.
1721 if (level + 1 < cur->bc_nlevels) {
1722 if ((error = xfs_btree_dup_cursor(cur, curp)))
1723 return error;
1724 (*curp)->bc_ptrs[level + 1]++;
1726 *bnop = rbno;
1727 *stat = 1;
1728 return 0;
1732 * Update keys at all levels from here to the root along the cursor's path.
1734 STATIC int /* error */
1735 xfs_alloc_updkey(
1736 xfs_btree_cur_t *cur, /* btree cursor */
1737 xfs_alloc_key_t *keyp, /* new key value to update to */
1738 int level) /* starting level for update */
1740 int ptr; /* index of key in block */
1743 * Go up the tree from this level toward the root.
1744 * At each level, update the key value to the value input.
1745 * Stop when we reach a level where the cursor isn't pointing
1746 * at the first entry in the block.
1748 for (ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
1749 xfs_alloc_block_t *block; /* btree block */
1750 xfs_buf_t *bp; /* buffer for block */
1751 #ifdef DEBUG
1752 int error; /* error return value */
1753 #endif
1754 xfs_alloc_key_t *kp; /* ptr to btree block keys */
1756 bp = cur->bc_bufs[level];
1757 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1758 #ifdef DEBUG
1759 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
1760 return error;
1761 #endif
1762 ptr = cur->bc_ptrs[level];
1763 kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur);
1764 *kp = *keyp;
1765 xfs_alloc_log_keys(cur, bp, ptr, ptr);
1767 return 0;
1771 * Externally visible routines.
1775 * Decrement cursor by one record at the level.
1776 * For nonzero levels the leaf-ward information is untouched.
1778 int /* error */
1779 xfs_alloc_decrement(
1780 xfs_btree_cur_t *cur, /* btree cursor */
1781 int level, /* level in btree, 0 is leaf */
1782 int *stat) /* success/failure */
1784 xfs_alloc_block_t *block; /* btree block */
1785 int error; /* error return value */
1786 int lev; /* btree level */
1788 ASSERT(level < cur->bc_nlevels);
1790 * Read-ahead to the left at this level.
1792 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1794 * Decrement the ptr at this level. If we're still in the block
1795 * then we're done.
1797 if (--cur->bc_ptrs[level] > 0) {
1798 *stat = 1;
1799 return 0;
1802 * Get a pointer to the btree block.
1804 block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[level]);
1805 #ifdef DEBUG
1806 if ((error = xfs_btree_check_sblock(cur, block, level,
1807 cur->bc_bufs[level])))
1808 return error;
1809 #endif
1811 * If we just went off the left edge of the tree, return failure.
1813 if (be32_to_cpu(block->bb_leftsib) == NULLAGBLOCK) {
1814 *stat = 0;
1815 return 0;
1818 * March up the tree decrementing pointers.
1819 * Stop when we don't go off the left edge of a block.
1821 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1822 if (--cur->bc_ptrs[lev] > 0)
1823 break;
1825 * Read-ahead the left block, we're going to read it
1826 * in the next loop.
1828 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1831 * If we went off the root then we are seriously confused.
1833 ASSERT(lev < cur->bc_nlevels);
1835 * Now walk back down the tree, fixing up the cursor's buffer
1836 * pointers and key numbers.
1838 for (block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[lev]); lev > level; ) {
1839 xfs_agblock_t agbno; /* block number of btree block */
1840 xfs_buf_t *bp; /* buffer pointer for block */
1842 agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, cur->bc_ptrs[lev], cur));
1843 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1844 cur->bc_private.a.agno, agbno, 0, &bp,
1845 XFS_ALLOC_BTREE_REF)))
1846 return error;
1847 lev--;
1848 xfs_btree_setbuf(cur, lev, bp);
1849 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1850 if ((error = xfs_btree_check_sblock(cur, block, lev, bp)))
1851 return error;
1852 cur->bc_ptrs[lev] = be16_to_cpu(block->bb_numrecs);
1854 *stat = 1;
1855 return 0;
1859 * Delete the record pointed to by cur.
1860 * The cursor refers to the place where the record was (could be inserted)
1861 * when the operation returns.
1863 int /* error */
1864 xfs_alloc_delete(
1865 xfs_btree_cur_t *cur, /* btree cursor */
1866 int *stat) /* success/failure */
1868 int error; /* error return value */
1869 int i; /* result code */
1870 int level; /* btree level */
1873 * Go up the tree, starting at leaf level.
1874 * If 2 is returned then a join was done; go to the next level.
1875 * Otherwise we are done.
1877 for (level = 0, i = 2; i == 2; level++) {
1878 if ((error = xfs_alloc_delrec(cur, level, &i)))
1879 return error;
1881 if (i == 0) {
1882 for (level = 1; level < cur->bc_nlevels; level++) {
1883 if (cur->bc_ptrs[level] == 0) {
1884 if ((error = xfs_alloc_decrement(cur, level, &i)))
1885 return error;
1886 break;
1890 *stat = i;
1891 return 0;
1895 * Get the data from the pointed-to record.
1897 int /* error */
1898 xfs_alloc_get_rec(
1899 xfs_btree_cur_t *cur, /* btree cursor */
1900 xfs_agblock_t *bno, /* output: starting block of extent */
1901 xfs_extlen_t *len, /* output: length of extent */
1902 int *stat) /* output: success/failure */
1904 xfs_alloc_block_t *block; /* btree block */
1905 #ifdef DEBUG
1906 int error; /* error return value */
1907 #endif
1908 int ptr; /* record number */
1910 ptr = cur->bc_ptrs[0];
1911 block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]);
1912 #ifdef DEBUG
1913 if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0])))
1914 return error;
1915 #endif
1917 * Off the right end or left end, return failure.
1919 if (ptr > be16_to_cpu(block->bb_numrecs) || ptr <= 0) {
1920 *stat = 0;
1921 return 0;
1924 * Point to the record and extract its data.
1927 xfs_alloc_rec_t *rec; /* record data */
1929 rec = XFS_ALLOC_REC_ADDR(block, ptr, cur);
1930 *bno = be32_to_cpu(rec->ar_startblock);
1931 *len = be32_to_cpu(rec->ar_blockcount);
1933 *stat = 1;
1934 return 0;
1938 * Increment cursor by one record at the level.
1939 * For nonzero levels the leaf-ward information is untouched.
1941 int /* error */
1942 xfs_alloc_increment(
1943 xfs_btree_cur_t *cur, /* btree cursor */
1944 int level, /* level in btree, 0 is leaf */
1945 int *stat) /* success/failure */
1947 xfs_alloc_block_t *block; /* btree block */
1948 xfs_buf_t *bp; /* tree block buffer */
1949 int error; /* error return value */
1950 int lev; /* btree level */
1952 ASSERT(level < cur->bc_nlevels);
1954 * Read-ahead to the right at this level.
1956 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1958 * Get a pointer to the btree block.
1960 bp = cur->bc_bufs[level];
1961 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1962 #ifdef DEBUG
1963 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
1964 return error;
1965 #endif
1967 * Increment the ptr at this level. If we're still in the block
1968 * then we're done.
1970 if (++cur->bc_ptrs[level] <= be16_to_cpu(block->bb_numrecs)) {
1971 *stat = 1;
1972 return 0;
1975 * If we just went off the right edge of the tree, return failure.
1977 if (be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK) {
1978 *stat = 0;
1979 return 0;
1982 * March up the tree incrementing pointers.
1983 * Stop when we don't go off the right edge of a block.
1985 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1986 bp = cur->bc_bufs[lev];
1987 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1988 #ifdef DEBUG
1989 if ((error = xfs_btree_check_sblock(cur, block, lev, bp)))
1990 return error;
1991 #endif
1992 if (++cur->bc_ptrs[lev] <= be16_to_cpu(block->bb_numrecs))
1993 break;
1995 * Read-ahead the right block, we're going to read it
1996 * in the next loop.
1998 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
2001 * If we went off the root then we are seriously confused.
2003 ASSERT(lev < cur->bc_nlevels);
2005 * Now walk back down the tree, fixing up the cursor's buffer
2006 * pointers and key numbers.
2008 for (bp = cur->bc_bufs[lev], block = XFS_BUF_TO_ALLOC_BLOCK(bp);
2009 lev > level; ) {
2010 xfs_agblock_t agbno; /* block number of btree block */
2012 agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, cur->bc_ptrs[lev], cur));
2013 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
2014 cur->bc_private.a.agno, agbno, 0, &bp,
2015 XFS_ALLOC_BTREE_REF)))
2016 return error;
2017 lev--;
2018 xfs_btree_setbuf(cur, lev, bp);
2019 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
2020 if ((error = xfs_btree_check_sblock(cur, block, lev, bp)))
2021 return error;
2022 cur->bc_ptrs[lev] = 1;
2024 *stat = 1;
2025 return 0;
2029 * Insert the current record at the point referenced by cur.
2030 * The cursor may be inconsistent on return if splits have been done.
2032 int /* error */
2033 xfs_alloc_insert(
2034 xfs_btree_cur_t *cur, /* btree cursor */
2035 int *stat) /* success/failure */
2037 int error; /* error return value */
2038 int i; /* result value, 0 for failure */
2039 int level; /* current level number in btree */
2040 xfs_agblock_t nbno; /* new block number (split result) */
2041 xfs_btree_cur_t *ncur; /* new cursor (split result) */
2042 xfs_alloc_rec_t nrec; /* record being inserted this level */
2043 xfs_btree_cur_t *pcur; /* previous level's cursor */
2045 level = 0;
2046 nbno = NULLAGBLOCK;
2047 nrec.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
2048 nrec.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
2049 ncur = (xfs_btree_cur_t *)0;
2050 pcur = cur;
2052 * Loop going up the tree, starting at the leaf level.
2053 * Stop when we don't get a split block, that must mean that
2054 * the insert is finished with this level.
2056 do {
2058 * Insert nrec/nbno into this level of the tree.
2059 * Note if we fail, nbno will be null.
2061 if ((error = xfs_alloc_insrec(pcur, level++, &nbno, &nrec, &ncur,
2062 &i))) {
2063 if (pcur != cur)
2064 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
2065 return error;
2068 * See if the cursor we just used is trash.
2069 * Can't trash the caller's cursor, but otherwise we should
2070 * if ncur is a new cursor or we're about to be done.
2072 if (pcur != cur && (ncur || nbno == NULLAGBLOCK)) {
2073 cur->bc_nlevels = pcur->bc_nlevels;
2074 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
2077 * If we got a new cursor, switch to it.
2079 if (ncur) {
2080 pcur = ncur;
2081 ncur = (xfs_btree_cur_t *)0;
2083 } while (nbno != NULLAGBLOCK);
2084 *stat = i;
2085 return 0;
2089 * Lookup the record equal to [bno, len] in the btree given by cur.
2091 int /* error */
2092 xfs_alloc_lookup_eq(
2093 xfs_btree_cur_t *cur, /* btree cursor */
2094 xfs_agblock_t bno, /* starting block of extent */
2095 xfs_extlen_t len, /* length of extent */
2096 int *stat) /* success/failure */
2098 cur->bc_rec.a.ar_startblock = bno;
2099 cur->bc_rec.a.ar_blockcount = len;
2100 return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, stat);
2104 * Lookup the first record greater than or equal to [bno, len]
2105 * in the btree given by cur.
2107 int /* error */
2108 xfs_alloc_lookup_ge(
2109 xfs_btree_cur_t *cur, /* btree cursor */
2110 xfs_agblock_t bno, /* starting block of extent */
2111 xfs_extlen_t len, /* length of extent */
2112 int *stat) /* success/failure */
2114 cur->bc_rec.a.ar_startblock = bno;
2115 cur->bc_rec.a.ar_blockcount = len;
2116 return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, stat);
2120 * Lookup the first record less than or equal to [bno, len]
2121 * in the btree given by cur.
2123 int /* error */
2124 xfs_alloc_lookup_le(
2125 xfs_btree_cur_t *cur, /* btree cursor */
2126 xfs_agblock_t bno, /* starting block of extent */
2127 xfs_extlen_t len, /* length of extent */
2128 int *stat) /* success/failure */
2130 cur->bc_rec.a.ar_startblock = bno;
2131 cur->bc_rec.a.ar_blockcount = len;
2132 return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, stat);
2136 * Update the record referred to by cur, to the value given by [bno, len].
2137 * This either works (return 0) or gets an EFSCORRUPTED error.
2139 int /* error */
2140 xfs_alloc_update(
2141 xfs_btree_cur_t *cur, /* btree cursor */
2142 xfs_agblock_t bno, /* starting block of extent */
2143 xfs_extlen_t len) /* length of extent */
2145 xfs_alloc_block_t *block; /* btree block to update */
2146 int error; /* error return value */
2147 int ptr; /* current record number (updating) */
2149 ASSERT(len > 0);
2151 * Pick up the a.g. freelist struct and the current block.
2153 block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]);
2154 #ifdef DEBUG
2155 if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0])))
2156 return error;
2157 #endif
2159 * Get the address of the rec to be updated.
2161 ptr = cur->bc_ptrs[0];
2163 xfs_alloc_rec_t *rp; /* pointer to updated record */
2165 rp = XFS_ALLOC_REC_ADDR(block, ptr, cur);
2167 * Fill in the new contents and log them.
2169 rp->ar_startblock = cpu_to_be32(bno);
2170 rp->ar_blockcount = cpu_to_be32(len);
2171 xfs_alloc_log_recs(cur, cur->bc_bufs[0], ptr, ptr);
2174 * If it's the by-size btree and it's the last leaf block and
2175 * it's the last record... then update the size of the longest
2176 * extent in the a.g., which we cache in the a.g. freelist header.
2178 if (cur->bc_btnum == XFS_BTNUM_CNT &&
2179 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
2180 ptr == be16_to_cpu(block->bb_numrecs)) {
2181 xfs_agf_t *agf; /* a.g. freespace header */
2182 xfs_agnumber_t seqno;
2184 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
2185 seqno = be32_to_cpu(agf->agf_seqno);
2186 cur->bc_mp->m_perag[seqno].pagf_longest = len;
2187 agf->agf_longest = cpu_to_be32(len);
2188 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
2189 XFS_AGF_LONGEST);
2192 * Updating first record in leaf. Pass new key value up to our parent.
2194 if (ptr == 1) {
2195 xfs_alloc_key_t key; /* key containing [bno, len] */
2197 key.ar_startblock = cpu_to_be32(bno);
2198 key.ar_blockcount = cpu_to_be32(len);
2199 if ((error = xfs_alloc_updkey(cur, &key, 1)))
2200 return error;
2202 return 0;