tty: rework break handling
[linux-2.6/verdex.git] / drivers / char / istallion.c
blob63d22b5ebc0dd2dbc4aa6b3070c4a7d5b6f09707
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tty.h>
25 #include <linux/tty_flip.h>
26 #include <linux/serial.h>
27 #include <linux/cdk.h>
28 #include <linux/comstats.h>
29 #include <linux/istallion.h>
30 #include <linux/ioport.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/wait.h>
35 #include <linux/eisa.h>
36 #include <linux/ctype.h>
38 #include <asm/io.h>
39 #include <asm/uaccess.h>
41 #include <linux/pci.h>
43 /*****************************************************************************/
46 * Define different board types. Not all of the following board types
47 * are supported by this driver. But I will use the standard "assigned"
48 * board numbers. Currently supported boards are abbreviated as:
49 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
50 * STAL = Stallion.
52 #define BRD_UNKNOWN 0
53 #define BRD_STALLION 1
54 #define BRD_BRUMBY4 2
55 #define BRD_ONBOARD2 3
56 #define BRD_ONBOARD 4
57 #define BRD_ONBOARDE 7
58 #define BRD_ECP 23
59 #define BRD_ECPE 24
60 #define BRD_ECPMC 25
61 #define BRD_ECPPCI 29
63 #define BRD_BRUMBY BRD_BRUMBY4
66 * Define a configuration structure to hold the board configuration.
67 * Need to set this up in the code (for now) with the boards that are
68 * to be configured into the system. This is what needs to be modified
69 * when adding/removing/modifying boards. Each line entry in the
70 * stli_brdconf[] array is a board. Each line contains io/irq/memory
71 * ranges for that board (as well as what type of board it is).
72 * Some examples:
73 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
74 * This line will configure an EasyConnection 8/64 at io address 2a0,
75 * and shared memory address of cc000. Multiple EasyConnection 8/64
76 * boards can share the same shared memory address space. No interrupt
77 * is required for this board type.
78 * Another example:
79 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
80 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
81 * shared memory address of 0x80000000 (2 GByte). Multiple
82 * EasyConnection 8/64 EISA boards can share the same shared memory
83 * address space. No interrupt is required for this board type.
84 * Another example:
85 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
86 * This line will configure an ONboard (ISA type) at io address 240,
87 * and shared memory address of d0000. Multiple ONboards can share
88 * the same shared memory address space. No interrupt required.
89 * Another example:
90 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
91 * This line will configure a Brumby board (any number of ports!) at
92 * io address 360 and shared memory address of c8000. All Brumby boards
93 * configured into a system must have their own separate io and memory
94 * addresses. No interrupt is required.
95 * Another example:
96 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
97 * This line will configure an original Stallion board at io address 330
98 * and shared memory address d0000 (this would only be valid for a "V4.0"
99 * or Rev.O Stallion board). All Stallion boards configured into the
100 * system must have their own separate io and memory addresses. No
101 * interrupt is required.
104 struct stlconf {
105 int brdtype;
106 int ioaddr1;
107 int ioaddr2;
108 unsigned long memaddr;
109 int irq;
110 int irqtype;
113 static unsigned int stli_nrbrds;
115 /* stli_lock must NOT be taken holding brd_lock */
116 static spinlock_t stli_lock; /* TTY logic lock */
117 static spinlock_t brd_lock; /* Board logic lock */
120 * There is some experimental EISA board detection code in this driver.
121 * By default it is disabled, but for those that want to try it out,
122 * then set the define below to be 1.
124 #define STLI_EISAPROBE 0
126 /*****************************************************************************/
129 * Define some important driver characteristics. Device major numbers
130 * allocated as per Linux Device Registry.
132 #ifndef STL_SIOMEMMAJOR
133 #define STL_SIOMEMMAJOR 28
134 #endif
135 #ifndef STL_SERIALMAJOR
136 #define STL_SERIALMAJOR 24
137 #endif
138 #ifndef STL_CALLOUTMAJOR
139 #define STL_CALLOUTMAJOR 25
140 #endif
142 /*****************************************************************************/
145 * Define our local driver identity first. Set up stuff to deal with
146 * all the local structures required by a serial tty driver.
148 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
149 static char *stli_drvname = "istallion";
150 static char *stli_drvversion = "5.6.0";
151 static char *stli_serialname = "ttyE";
153 static struct tty_driver *stli_serial;
156 #define STLI_TXBUFSIZE 4096
159 * Use a fast local buffer for cooked characters. Typically a whole
160 * bunch of cooked characters come in for a port, 1 at a time. So we
161 * save those up into a local buffer, then write out the whole lot
162 * with a large memcpy. Just use 1 buffer for all ports, since its
163 * use it is only need for short periods of time by each port.
165 static char *stli_txcookbuf;
166 static int stli_txcooksize;
167 static int stli_txcookrealsize;
168 static struct tty_struct *stli_txcooktty;
171 * Define a local default termios struct. All ports will be created
172 * with this termios initially. Basically all it defines is a raw port
173 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
175 static struct ktermios stli_deftermios = {
176 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
177 .c_cc = INIT_C_CC,
178 .c_ispeed = 9600,
179 .c_ospeed = 9600,
183 * Define global stats structures. Not used often, and can be
184 * re-used for each stats call.
186 static comstats_t stli_comstats;
187 static combrd_t stli_brdstats;
188 static struct asystats stli_cdkstats;
190 /*****************************************************************************/
192 static DEFINE_MUTEX(stli_brdslock);
193 static struct stlibrd *stli_brds[STL_MAXBRDS];
195 static int stli_shared;
198 * Per board state flags. Used with the state field of the board struct.
199 * Not really much here... All we need to do is keep track of whether
200 * the board has been detected, and whether it is actually running a slave
201 * or not.
203 #define BST_FOUND 0x1
204 #define BST_STARTED 0x2
205 #define BST_PROBED 0x4
208 * Define the set of port state flags. These are marked for internal
209 * state purposes only, usually to do with the state of communications
210 * with the slave. Most of them need to be updated atomically, so always
211 * use the bit setting operations (unless protected by cli/sti).
213 #define ST_INITIALIZING 1
214 #define ST_OPENING 2
215 #define ST_CLOSING 3
216 #define ST_CMDING 4
217 #define ST_TXBUSY 5
218 #define ST_RXING 6
219 #define ST_DOFLUSHRX 7
220 #define ST_DOFLUSHTX 8
221 #define ST_DOSIGS 9
222 #define ST_RXSTOP 10
223 #define ST_GETSIGS 11
226 * Define an array of board names as printable strings. Handy for
227 * referencing boards when printing trace and stuff.
229 static char *stli_brdnames[] = {
230 "Unknown",
231 "Stallion",
232 "Brumby",
233 "ONboard-MC",
234 "ONboard",
235 "Brumby",
236 "Brumby",
237 "ONboard-EI",
238 NULL,
239 "ONboard",
240 "ONboard-MC",
241 "ONboard-MC",
242 NULL,
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 "EasyIO",
251 "EC8/32-AT",
252 "EC8/32-MC",
253 "EC8/64-AT",
254 "EC8/64-EI",
255 "EC8/64-MC",
256 "EC8/32-PCI",
257 "EC8/64-PCI",
258 "EasyIO-PCI",
259 "EC/RA-PCI",
262 /*****************************************************************************/
265 * Define some string labels for arguments passed from the module
266 * load line. These allow for easy board definitions, and easy
267 * modification of the io, memory and irq resoucres.
270 static char *board0[8];
271 static char *board1[8];
272 static char *board2[8];
273 static char *board3[8];
275 static char **stli_brdsp[] = {
276 (char **) &board0,
277 (char **) &board1,
278 (char **) &board2,
279 (char **) &board3
283 * Define a set of common board names, and types. This is used to
284 * parse any module arguments.
287 static struct stlibrdtype {
288 char *name;
289 int type;
290 } stli_brdstr[] = {
291 { "stallion", BRD_STALLION },
292 { "1", BRD_STALLION },
293 { "brumby", BRD_BRUMBY },
294 { "brumby4", BRD_BRUMBY },
295 { "brumby/4", BRD_BRUMBY },
296 { "brumby-4", BRD_BRUMBY },
297 { "brumby8", BRD_BRUMBY },
298 { "brumby/8", BRD_BRUMBY },
299 { "brumby-8", BRD_BRUMBY },
300 { "brumby16", BRD_BRUMBY },
301 { "brumby/16", BRD_BRUMBY },
302 { "brumby-16", BRD_BRUMBY },
303 { "2", BRD_BRUMBY },
304 { "onboard2", BRD_ONBOARD2 },
305 { "onboard-2", BRD_ONBOARD2 },
306 { "onboard/2", BRD_ONBOARD2 },
307 { "onboard-mc", BRD_ONBOARD2 },
308 { "onboard/mc", BRD_ONBOARD2 },
309 { "onboard-mca", BRD_ONBOARD2 },
310 { "onboard/mca", BRD_ONBOARD2 },
311 { "3", BRD_ONBOARD2 },
312 { "onboard", BRD_ONBOARD },
313 { "onboardat", BRD_ONBOARD },
314 { "4", BRD_ONBOARD },
315 { "onboarde", BRD_ONBOARDE },
316 { "onboard-e", BRD_ONBOARDE },
317 { "onboard/e", BRD_ONBOARDE },
318 { "onboard-ei", BRD_ONBOARDE },
319 { "onboard/ei", BRD_ONBOARDE },
320 { "7", BRD_ONBOARDE },
321 { "ecp", BRD_ECP },
322 { "ecpat", BRD_ECP },
323 { "ec8/64", BRD_ECP },
324 { "ec8/64-at", BRD_ECP },
325 { "ec8/64-isa", BRD_ECP },
326 { "23", BRD_ECP },
327 { "ecpe", BRD_ECPE },
328 { "ecpei", BRD_ECPE },
329 { "ec8/64-e", BRD_ECPE },
330 { "ec8/64-ei", BRD_ECPE },
331 { "24", BRD_ECPE },
332 { "ecpmc", BRD_ECPMC },
333 { "ec8/64-mc", BRD_ECPMC },
334 { "ec8/64-mca", BRD_ECPMC },
335 { "25", BRD_ECPMC },
336 { "ecppci", BRD_ECPPCI },
337 { "ec/ra", BRD_ECPPCI },
338 { "ec/ra-pc", BRD_ECPPCI },
339 { "ec/ra-pci", BRD_ECPPCI },
340 { "29", BRD_ECPPCI },
344 * Define the module agruments.
346 MODULE_AUTHOR("Greg Ungerer");
347 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
348 MODULE_LICENSE("GPL");
351 module_param_array(board0, charp, NULL, 0);
352 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
353 module_param_array(board1, charp, NULL, 0);
354 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board2, charp, NULL, 0);
356 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board3, charp, NULL, 0);
358 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
360 #if STLI_EISAPROBE != 0
362 * Set up a default memory address table for EISA board probing.
363 * The default addresses are all bellow 1Mbyte, which has to be the
364 * case anyway. They should be safe, since we only read values from
365 * them, and interrupts are disabled while we do it. If the higher
366 * memory support is compiled in then we also try probing around
367 * the 1Gb, 2Gb and 3Gb areas as well...
369 static unsigned long stli_eisamemprobeaddrs[] = {
370 0xc0000, 0xd0000, 0xe0000, 0xf0000,
371 0x80000000, 0x80010000, 0x80020000, 0x80030000,
372 0x40000000, 0x40010000, 0x40020000, 0x40030000,
373 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
374 0xff000000, 0xff010000, 0xff020000, 0xff030000,
377 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
378 #endif
381 * Define the Stallion PCI vendor and device IDs.
383 #ifndef PCI_DEVICE_ID_ECRA
384 #define PCI_DEVICE_ID_ECRA 0x0004
385 #endif
387 static struct pci_device_id istallion_pci_tbl[] = {
388 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
389 { 0 }
391 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
393 static struct pci_driver stli_pcidriver;
395 /*****************************************************************************/
398 * Hardware configuration info for ECP boards. These defines apply
399 * to the directly accessible io ports of the ECP. There is a set of
400 * defines for each ECP board type, ISA, EISA, MCA and PCI.
402 #define ECP_IOSIZE 4
404 #define ECP_MEMSIZE (128 * 1024)
405 #define ECP_PCIMEMSIZE (256 * 1024)
407 #define ECP_ATPAGESIZE (4 * 1024)
408 #define ECP_MCPAGESIZE (4 * 1024)
409 #define ECP_EIPAGESIZE (64 * 1024)
410 #define ECP_PCIPAGESIZE (64 * 1024)
412 #define STL_EISAID 0x8c4e
415 * Important defines for the ISA class of ECP board.
417 #define ECP_ATIREG 0
418 #define ECP_ATCONFR 1
419 #define ECP_ATMEMAR 2
420 #define ECP_ATMEMPR 3
421 #define ECP_ATSTOP 0x1
422 #define ECP_ATINTENAB 0x10
423 #define ECP_ATENABLE 0x20
424 #define ECP_ATDISABLE 0x00
425 #define ECP_ATADDRMASK 0x3f000
426 #define ECP_ATADDRSHFT 12
429 * Important defines for the EISA class of ECP board.
431 #define ECP_EIIREG 0
432 #define ECP_EIMEMARL 1
433 #define ECP_EICONFR 2
434 #define ECP_EIMEMARH 3
435 #define ECP_EIENABLE 0x1
436 #define ECP_EIDISABLE 0x0
437 #define ECP_EISTOP 0x4
438 #define ECP_EIEDGE 0x00
439 #define ECP_EILEVEL 0x80
440 #define ECP_EIADDRMASKL 0x00ff0000
441 #define ECP_EIADDRSHFTL 16
442 #define ECP_EIADDRMASKH 0xff000000
443 #define ECP_EIADDRSHFTH 24
444 #define ECP_EIBRDENAB 0xc84
446 #define ECP_EISAID 0x4
449 * Important defines for the Micro-channel class of ECP board.
450 * (It has a lot in common with the ISA boards.)
452 #define ECP_MCIREG 0
453 #define ECP_MCCONFR 1
454 #define ECP_MCSTOP 0x20
455 #define ECP_MCENABLE 0x80
456 #define ECP_MCDISABLE 0x00
459 * Important defines for the PCI class of ECP board.
460 * (It has a lot in common with the other ECP boards.)
462 #define ECP_PCIIREG 0
463 #define ECP_PCICONFR 1
464 #define ECP_PCISTOP 0x01
467 * Hardware configuration info for ONboard and Brumby boards. These
468 * defines apply to the directly accessible io ports of these boards.
470 #define ONB_IOSIZE 16
471 #define ONB_MEMSIZE (64 * 1024)
472 #define ONB_ATPAGESIZE (64 * 1024)
473 #define ONB_MCPAGESIZE (64 * 1024)
474 #define ONB_EIMEMSIZE (128 * 1024)
475 #define ONB_EIPAGESIZE (64 * 1024)
478 * Important defines for the ISA class of ONboard board.
480 #define ONB_ATIREG 0
481 #define ONB_ATMEMAR 1
482 #define ONB_ATCONFR 2
483 #define ONB_ATSTOP 0x4
484 #define ONB_ATENABLE 0x01
485 #define ONB_ATDISABLE 0x00
486 #define ONB_ATADDRMASK 0xff0000
487 #define ONB_ATADDRSHFT 16
489 #define ONB_MEMENABLO 0
490 #define ONB_MEMENABHI 0x02
493 * Important defines for the EISA class of ONboard board.
495 #define ONB_EIIREG 0
496 #define ONB_EIMEMARL 1
497 #define ONB_EICONFR 2
498 #define ONB_EIMEMARH 3
499 #define ONB_EIENABLE 0x1
500 #define ONB_EIDISABLE 0x0
501 #define ONB_EISTOP 0x4
502 #define ONB_EIEDGE 0x00
503 #define ONB_EILEVEL 0x80
504 #define ONB_EIADDRMASKL 0x00ff0000
505 #define ONB_EIADDRSHFTL 16
506 #define ONB_EIADDRMASKH 0xff000000
507 #define ONB_EIADDRSHFTH 24
508 #define ONB_EIBRDENAB 0xc84
510 #define ONB_EISAID 0x1
513 * Important defines for the Brumby boards. They are pretty simple,
514 * there is not much that is programmably configurable.
516 #define BBY_IOSIZE 16
517 #define BBY_MEMSIZE (64 * 1024)
518 #define BBY_PAGESIZE (16 * 1024)
520 #define BBY_ATIREG 0
521 #define BBY_ATCONFR 1
522 #define BBY_ATSTOP 0x4
525 * Important defines for the Stallion boards. They are pretty simple,
526 * there is not much that is programmably configurable.
528 #define STAL_IOSIZE 16
529 #define STAL_MEMSIZE (64 * 1024)
530 #define STAL_PAGESIZE (64 * 1024)
533 * Define the set of status register values for EasyConnection panels.
534 * The signature will return with the status value for each panel. From
535 * this we can determine what is attached to the board - before we have
536 * actually down loaded any code to it.
538 #define ECH_PNLSTATUS 2
539 #define ECH_PNL16PORT 0x20
540 #define ECH_PNLIDMASK 0x07
541 #define ECH_PNLXPID 0x40
542 #define ECH_PNLINTRPEND 0x80
545 * Define some macros to do things to the board. Even those these boards
546 * are somewhat related there is often significantly different ways of
547 * doing some operation on it (like enable, paging, reset, etc). So each
548 * board class has a set of functions which do the commonly required
549 * operations. The macros below basically just call these functions,
550 * generally checking for a NULL function - which means that the board
551 * needs nothing done to it to achieve this operation!
553 #define EBRDINIT(brdp) \
554 if (brdp->init != NULL) \
555 (* brdp->init)(brdp)
557 #define EBRDENABLE(brdp) \
558 if (brdp->enable != NULL) \
559 (* brdp->enable)(brdp);
561 #define EBRDDISABLE(brdp) \
562 if (brdp->disable != NULL) \
563 (* brdp->disable)(brdp);
565 #define EBRDINTR(brdp) \
566 if (brdp->intr != NULL) \
567 (* brdp->intr)(brdp);
569 #define EBRDRESET(brdp) \
570 if (brdp->reset != NULL) \
571 (* brdp->reset)(brdp);
573 #define EBRDGETMEMPTR(brdp,offset) \
574 (* brdp->getmemptr)(brdp, offset, __LINE__)
577 * Define the maximal baud rate, and the default baud base for ports.
579 #define STL_MAXBAUD 460800
580 #define STL_BAUDBASE 115200
581 #define STL_CLOSEDELAY (5 * HZ / 10)
583 /*****************************************************************************/
586 * Define macros to extract a brd or port number from a minor number.
588 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
589 #define MINOR2PORT(min) ((min) & 0x3f)
591 /*****************************************************************************/
594 * Prototype all functions in this driver!
597 static int stli_parsebrd(struct stlconf *confp, char **argp);
598 static int stli_open(struct tty_struct *tty, struct file *filp);
599 static void stli_close(struct tty_struct *tty, struct file *filp);
600 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
601 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
602 static void stli_flushchars(struct tty_struct *tty);
603 static int stli_writeroom(struct tty_struct *tty);
604 static int stli_charsinbuffer(struct tty_struct *tty);
605 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
606 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
607 static void stli_throttle(struct tty_struct *tty);
608 static void stli_unthrottle(struct tty_struct *tty);
609 static void stli_stop(struct tty_struct *tty);
610 static void stli_start(struct tty_struct *tty);
611 static void stli_flushbuffer(struct tty_struct *tty);
612 static int stli_breakctl(struct tty_struct *tty, int state);
613 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
614 static void stli_sendxchar(struct tty_struct *tty, char ch);
615 static void stli_hangup(struct tty_struct *tty);
616 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos);
618 static int stli_brdinit(struct stlibrd *brdp);
619 static int stli_startbrd(struct stlibrd *brdp);
620 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
621 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
622 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
623 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
624 static void stli_poll(unsigned long arg);
625 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
626 static int stli_initopen(struct stlibrd *brdp, struct stliport *portp);
627 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
628 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629 static int stli_waitcarrier(struct stlibrd *brdp, struct stliport *portp, struct file *filp);
630 static int stli_setport(struct stliport *portp);
631 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
635 static void stli_mkasyport(struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
636 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
637 static long stli_mktiocm(unsigned long sigvalue);
638 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
639 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
640 static int stli_setserial(struct stliport *portp, struct serial_struct __user *sp);
641 static int stli_getbrdstats(combrd_t __user *bp);
642 static int stli_getportstats(struct stliport *portp, comstats_t __user *cp);
643 static int stli_portcmdstats(struct stliport *portp);
644 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
645 static int stli_getportstruct(struct stliport __user *arg);
646 static int stli_getbrdstruct(struct stlibrd __user *arg);
647 static struct stlibrd *stli_allocbrd(void);
649 static void stli_ecpinit(struct stlibrd *brdp);
650 static void stli_ecpenable(struct stlibrd *brdp);
651 static void stli_ecpdisable(struct stlibrd *brdp);
652 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
653 static void stli_ecpreset(struct stlibrd *brdp);
654 static void stli_ecpintr(struct stlibrd *brdp);
655 static void stli_ecpeiinit(struct stlibrd *brdp);
656 static void stli_ecpeienable(struct stlibrd *brdp);
657 static void stli_ecpeidisable(struct stlibrd *brdp);
658 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
659 static void stli_ecpeireset(struct stlibrd *brdp);
660 static void stli_ecpmcenable(struct stlibrd *brdp);
661 static void stli_ecpmcdisable(struct stlibrd *brdp);
662 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
663 static void stli_ecpmcreset(struct stlibrd *brdp);
664 static void stli_ecppciinit(struct stlibrd *brdp);
665 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
666 static void stli_ecppcireset(struct stlibrd *brdp);
668 static void stli_onbinit(struct stlibrd *brdp);
669 static void stli_onbenable(struct stlibrd *brdp);
670 static void stli_onbdisable(struct stlibrd *brdp);
671 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
672 static void stli_onbreset(struct stlibrd *brdp);
673 static void stli_onbeinit(struct stlibrd *brdp);
674 static void stli_onbeenable(struct stlibrd *brdp);
675 static void stli_onbedisable(struct stlibrd *brdp);
676 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
677 static void stli_onbereset(struct stlibrd *brdp);
678 static void stli_bbyinit(struct stlibrd *brdp);
679 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
680 static void stli_bbyreset(struct stlibrd *brdp);
681 static void stli_stalinit(struct stlibrd *brdp);
682 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
683 static void stli_stalreset(struct stlibrd *brdp);
685 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
687 static int stli_initecp(struct stlibrd *brdp);
688 static int stli_initonb(struct stlibrd *brdp);
689 #if STLI_EISAPROBE != 0
690 static int stli_eisamemprobe(struct stlibrd *brdp);
691 #endif
692 static int stli_initports(struct stlibrd *brdp);
694 /*****************************************************************************/
697 * Define the driver info for a user level shared memory device. This
698 * device will work sort of like the /dev/kmem device - except that it
699 * will give access to the shared memory on the Stallion intelligent
700 * board. This is also a very useful debugging tool.
702 static const struct file_operations stli_fsiomem = {
703 .owner = THIS_MODULE,
704 .read = stli_memread,
705 .write = stli_memwrite,
706 .ioctl = stli_memioctl,
709 /*****************************************************************************/
712 * Define a timer_list entry for our poll routine. The slave board
713 * is polled every so often to see if anything needs doing. This is
714 * much cheaper on host cpu than using interrupts. It turns out to
715 * not increase character latency by much either...
717 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
719 static int stli_timeron;
722 * Define the calculation for the timeout routine.
724 #define STLI_TIMEOUT (jiffies + 1)
726 /*****************************************************************************/
728 static struct class *istallion_class;
730 static void stli_cleanup_ports(struct stlibrd *brdp)
732 struct stliport *portp;
733 unsigned int j;
735 for (j = 0; j < STL_MAXPORTS; j++) {
736 portp = brdp->ports[j];
737 if (portp != NULL) {
738 if (portp->port.tty != NULL)
739 tty_hangup(portp->port.tty);
740 kfree(portp);
745 /*****************************************************************************/
748 * Parse the supplied argument string, into the board conf struct.
751 static int stli_parsebrd(struct stlconf *confp, char **argp)
753 unsigned int i;
754 char *sp;
756 if (argp[0] == NULL || *argp[0] == 0)
757 return 0;
759 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
760 *sp = tolower(*sp);
762 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
763 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
764 break;
766 if (i == ARRAY_SIZE(stli_brdstr)) {
767 printk("STALLION: unknown board name, %s?\n", argp[0]);
768 return 0;
771 confp->brdtype = stli_brdstr[i].type;
772 if (argp[1] != NULL && *argp[1] != 0)
773 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
774 if (argp[2] != NULL && *argp[2] != 0)
775 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
776 return(1);
779 /*****************************************************************************/
781 static int stli_open(struct tty_struct *tty, struct file *filp)
783 struct stlibrd *brdp;
784 struct stliport *portp;
785 unsigned int minordev, brdnr, portnr;
786 int rc;
788 minordev = tty->index;
789 brdnr = MINOR2BRD(minordev);
790 if (brdnr >= stli_nrbrds)
791 return -ENODEV;
792 brdp = stli_brds[brdnr];
793 if (brdp == NULL)
794 return -ENODEV;
795 if ((brdp->state & BST_STARTED) == 0)
796 return -ENODEV;
797 portnr = MINOR2PORT(minordev);
798 if (portnr > brdp->nrports)
799 return -ENODEV;
801 portp = brdp->ports[portnr];
802 if (portp == NULL)
803 return -ENODEV;
804 if (portp->devnr < 1)
805 return -ENODEV;
809 * Check if this port is in the middle of closing. If so then wait
810 * until it is closed then return error status based on flag settings.
811 * The sleep here does not need interrupt protection since the wakeup
812 * for it is done with the same context.
814 if (portp->port.flags & ASYNC_CLOSING) {
815 interruptible_sleep_on(&portp->port.close_wait);
816 if (portp->port.flags & ASYNC_HUP_NOTIFY)
817 return -EAGAIN;
818 return -ERESTARTSYS;
822 * On the first open of the device setup the port hardware, and
823 * initialize the per port data structure. Since initializing the port
824 * requires several commands to the board we will need to wait for any
825 * other open that is already initializing the port.
827 portp->port.tty = tty;
828 tty->driver_data = portp;
829 portp->port.count++;
831 wait_event_interruptible(portp->raw_wait,
832 !test_bit(ST_INITIALIZING, &portp->state));
833 if (signal_pending(current))
834 return -ERESTARTSYS;
836 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
837 set_bit(ST_INITIALIZING, &portp->state);
838 if ((rc = stli_initopen(brdp, portp)) >= 0) {
839 portp->port.flags |= ASYNC_INITIALIZED;
840 clear_bit(TTY_IO_ERROR, &tty->flags);
842 clear_bit(ST_INITIALIZING, &portp->state);
843 wake_up_interruptible(&portp->raw_wait);
844 if (rc < 0)
845 return rc;
849 * Check if this port is in the middle of closing. If so then wait
850 * until it is closed then return error status, based on flag settings.
851 * The sleep here does not need interrupt protection since the wakeup
852 * for it is done with the same context.
854 if (portp->port.flags & ASYNC_CLOSING) {
855 interruptible_sleep_on(&portp->port.close_wait);
856 if (portp->port.flags & ASYNC_HUP_NOTIFY)
857 return -EAGAIN;
858 return -ERESTARTSYS;
862 * Based on type of open being done check if it can overlap with any
863 * previous opens still in effect. If we are a normal serial device
864 * then also we might have to wait for carrier.
866 if (!(filp->f_flags & O_NONBLOCK)) {
867 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
868 return rc;
870 portp->port.flags |= ASYNC_NORMAL_ACTIVE;
871 return 0;
874 /*****************************************************************************/
876 static void stli_close(struct tty_struct *tty, struct file *filp)
878 struct stlibrd *brdp;
879 struct stliport *portp;
880 unsigned long flags;
882 portp = tty->driver_data;
883 if (portp == NULL)
884 return;
886 spin_lock_irqsave(&stli_lock, flags);
887 if (tty_hung_up_p(filp)) {
888 spin_unlock_irqrestore(&stli_lock, flags);
889 return;
891 if ((tty->count == 1) && (portp->port.count != 1))
892 portp->port.count = 1;
893 if (portp->port.count-- > 1) {
894 spin_unlock_irqrestore(&stli_lock, flags);
895 return;
898 portp->port.flags |= ASYNC_CLOSING;
901 * May want to wait for data to drain before closing. The BUSY flag
902 * keeps track of whether we are still transmitting or not. It is
903 * updated by messages from the slave - indicating when all chars
904 * really have drained.
906 if (tty == stli_txcooktty)
907 stli_flushchars(tty);
908 tty->closing = 1;
909 spin_unlock_irqrestore(&stli_lock, flags);
911 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
912 tty_wait_until_sent(tty, portp->closing_wait);
914 portp->port.flags &= ~ASYNC_INITIALIZED;
915 brdp = stli_brds[portp->brdnr];
916 stli_rawclose(brdp, portp, 0, 0);
917 if (tty->termios->c_cflag & HUPCL) {
918 stli_mkasysigs(&portp->asig, 0, 0);
919 if (test_bit(ST_CMDING, &portp->state))
920 set_bit(ST_DOSIGS, &portp->state);
921 else
922 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
923 sizeof(asysigs_t), 0);
925 clear_bit(ST_TXBUSY, &portp->state);
926 clear_bit(ST_RXSTOP, &portp->state);
927 set_bit(TTY_IO_ERROR, &tty->flags);
928 if (tty->ldisc.ops->flush_buffer)
929 (tty->ldisc.ops->flush_buffer)(tty);
930 set_bit(ST_DOFLUSHRX, &portp->state);
931 stli_flushbuffer(tty);
933 tty->closing = 0;
934 portp->port.tty = NULL;
936 if (portp->openwaitcnt) {
937 if (portp->close_delay)
938 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
939 wake_up_interruptible(&portp->port.open_wait);
942 portp->port.flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
943 wake_up_interruptible(&portp->port.close_wait);
946 /*****************************************************************************/
949 * Carry out first open operations on a port. This involves a number of
950 * commands to be sent to the slave. We need to open the port, set the
951 * notification events, set the initial port settings, get and set the
952 * initial signal values. We sleep and wait in between each one. But
953 * this still all happens pretty quickly.
956 static int stli_initopen(struct stlibrd *brdp, struct stliport *portp)
958 struct tty_struct *tty;
959 asynotify_t nt;
960 asyport_t aport;
961 int rc;
963 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
964 return rc;
966 memset(&nt, 0, sizeof(asynotify_t));
967 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
968 nt.signal = SG_DCD;
969 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
970 sizeof(asynotify_t), 0)) < 0)
971 return rc;
973 tty = portp->port.tty;
974 if (tty == NULL)
975 return -ENODEV;
976 stli_mkasyport(portp, &aport, tty->termios);
977 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
978 sizeof(asyport_t), 0)) < 0)
979 return rc;
981 set_bit(ST_GETSIGS, &portp->state);
982 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
983 sizeof(asysigs_t), 1)) < 0)
984 return rc;
985 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
986 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
987 stli_mkasysigs(&portp->asig, 1, 1);
988 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
989 sizeof(asysigs_t), 0)) < 0)
990 return rc;
992 return 0;
995 /*****************************************************************************/
998 * Send an open message to the slave. This will sleep waiting for the
999 * acknowledgement, so must have user context. We need to co-ordinate
1000 * with close events here, since we don't want open and close events
1001 * to overlap.
1004 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1006 cdkhdr_t __iomem *hdrp;
1007 cdkctrl_t __iomem *cp;
1008 unsigned char __iomem *bits;
1009 unsigned long flags;
1010 int rc;
1013 * Send a message to the slave to open this port.
1017 * Slave is already closing this port. This can happen if a hangup
1018 * occurs on this port. So we must wait until it is complete. The
1019 * order of opens and closes may not be preserved across shared
1020 * memory, so we must wait until it is complete.
1022 wait_event_interruptible(portp->raw_wait,
1023 !test_bit(ST_CLOSING, &portp->state));
1024 if (signal_pending(current)) {
1025 return -ERESTARTSYS;
1029 * Everything is ready now, so write the open message into shared
1030 * memory. Once the message is in set the service bits to say that
1031 * this port wants service.
1033 spin_lock_irqsave(&brd_lock, flags);
1034 EBRDENABLE(brdp);
1035 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1036 writel(arg, &cp->openarg);
1037 writeb(1, &cp->open);
1038 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1039 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1040 portp->portidx;
1041 writeb(readb(bits) | portp->portbit, bits);
1042 EBRDDISABLE(brdp);
1044 if (wait == 0) {
1045 spin_unlock_irqrestore(&brd_lock, flags);
1046 return 0;
1050 * Slave is in action, so now we must wait for the open acknowledgment
1051 * to come back.
1053 rc = 0;
1054 set_bit(ST_OPENING, &portp->state);
1055 spin_unlock_irqrestore(&brd_lock, flags);
1057 wait_event_interruptible(portp->raw_wait,
1058 !test_bit(ST_OPENING, &portp->state));
1059 if (signal_pending(current))
1060 rc = -ERESTARTSYS;
1062 if ((rc == 0) && (portp->rc != 0))
1063 rc = -EIO;
1064 return rc;
1067 /*****************************************************************************/
1070 * Send a close message to the slave. Normally this will sleep waiting
1071 * for the acknowledgement, but if wait parameter is 0 it will not. If
1072 * wait is true then must have user context (to sleep).
1075 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1077 cdkhdr_t __iomem *hdrp;
1078 cdkctrl_t __iomem *cp;
1079 unsigned char __iomem *bits;
1080 unsigned long flags;
1081 int rc;
1084 * Slave is already closing this port. This can happen if a hangup
1085 * occurs on this port.
1087 if (wait) {
1088 wait_event_interruptible(portp->raw_wait,
1089 !test_bit(ST_CLOSING, &portp->state));
1090 if (signal_pending(current)) {
1091 return -ERESTARTSYS;
1096 * Write the close command into shared memory.
1098 spin_lock_irqsave(&brd_lock, flags);
1099 EBRDENABLE(brdp);
1100 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1101 writel(arg, &cp->closearg);
1102 writeb(1, &cp->close);
1103 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1104 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1105 portp->portidx;
1106 writeb(readb(bits) |portp->portbit, bits);
1107 EBRDDISABLE(brdp);
1109 set_bit(ST_CLOSING, &portp->state);
1110 spin_unlock_irqrestore(&brd_lock, flags);
1112 if (wait == 0)
1113 return 0;
1116 * Slave is in action, so now we must wait for the open acknowledgment
1117 * to come back.
1119 rc = 0;
1120 wait_event_interruptible(portp->raw_wait,
1121 !test_bit(ST_CLOSING, &portp->state));
1122 if (signal_pending(current))
1123 rc = -ERESTARTSYS;
1125 if ((rc == 0) && (portp->rc != 0))
1126 rc = -EIO;
1127 return rc;
1130 /*****************************************************************************/
1133 * Send a command to the slave and wait for the response. This must
1134 * have user context (it sleeps). This routine is generic in that it
1135 * can send any type of command. Its purpose is to wait for that command
1136 * to complete (as opposed to initiating the command then returning).
1139 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1141 wait_event_interruptible(portp->raw_wait,
1142 !test_bit(ST_CMDING, &portp->state));
1143 if (signal_pending(current))
1144 return -ERESTARTSYS;
1146 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1148 wait_event_interruptible(portp->raw_wait,
1149 !test_bit(ST_CMDING, &portp->state));
1150 if (signal_pending(current))
1151 return -ERESTARTSYS;
1153 if (portp->rc != 0)
1154 return -EIO;
1155 return 0;
1158 /*****************************************************************************/
1161 * Send the termios settings for this port to the slave. This sleeps
1162 * waiting for the command to complete - so must have user context.
1165 static int stli_setport(struct stliport *portp)
1167 struct stlibrd *brdp;
1168 asyport_t aport;
1170 if (portp == NULL)
1171 return -ENODEV;
1172 if (portp->port.tty == NULL)
1173 return -ENODEV;
1174 if (portp->brdnr >= stli_nrbrds)
1175 return -ENODEV;
1176 brdp = stli_brds[portp->brdnr];
1177 if (brdp == NULL)
1178 return -ENODEV;
1180 stli_mkasyport(portp, &aport, portp->port.tty->termios);
1181 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1184 /*****************************************************************************/
1187 * Possibly need to wait for carrier (DCD signal) to come high. Say
1188 * maybe because if we are clocal then we don't need to wait...
1191 static int stli_waitcarrier(struct stlibrd *brdp, struct stliport *portp, struct file *filp)
1193 unsigned long flags;
1194 int rc, doclocal;
1196 rc = 0;
1197 doclocal = 0;
1199 if (portp->port.tty->termios->c_cflag & CLOCAL)
1200 doclocal++;
1202 spin_lock_irqsave(&stli_lock, flags);
1203 portp->openwaitcnt++;
1204 if (! tty_hung_up_p(filp))
1205 portp->port.count--;
1206 spin_unlock_irqrestore(&stli_lock, flags);
1208 for (;;) {
1209 stli_mkasysigs(&portp->asig, 1, 1);
1210 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1211 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1212 break;
1213 if (tty_hung_up_p(filp) ||
1214 ((portp->port.flags & ASYNC_INITIALIZED) == 0)) {
1215 if (portp->port.flags & ASYNC_HUP_NOTIFY)
1216 rc = -EBUSY;
1217 else
1218 rc = -ERESTARTSYS;
1219 break;
1221 if (((portp->port.flags & ASYNC_CLOSING) == 0) &&
1222 (doclocal || (portp->sigs & TIOCM_CD))) {
1223 break;
1225 if (signal_pending(current)) {
1226 rc = -ERESTARTSYS;
1227 break;
1229 interruptible_sleep_on(&portp->port.open_wait);
1232 spin_lock_irqsave(&stli_lock, flags);
1233 if (! tty_hung_up_p(filp))
1234 portp->port.count++;
1235 portp->openwaitcnt--;
1236 spin_unlock_irqrestore(&stli_lock, flags);
1238 return rc;
1241 /*****************************************************************************/
1244 * Write routine. Take the data and put it in the shared memory ring
1245 * queue. If port is not already sending chars then need to mark the
1246 * service bits for this port.
1249 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1251 cdkasy_t __iomem *ap;
1252 cdkhdr_t __iomem *hdrp;
1253 unsigned char __iomem *bits;
1254 unsigned char __iomem *shbuf;
1255 unsigned char *chbuf;
1256 struct stliport *portp;
1257 struct stlibrd *brdp;
1258 unsigned int len, stlen, head, tail, size;
1259 unsigned long flags;
1261 if (tty == stli_txcooktty)
1262 stli_flushchars(tty);
1263 portp = tty->driver_data;
1264 if (portp == NULL)
1265 return 0;
1266 if (portp->brdnr >= stli_nrbrds)
1267 return 0;
1268 brdp = stli_brds[portp->brdnr];
1269 if (brdp == NULL)
1270 return 0;
1271 chbuf = (unsigned char *) buf;
1274 * All data is now local, shove as much as possible into shared memory.
1276 spin_lock_irqsave(&brd_lock, flags);
1277 EBRDENABLE(brdp);
1278 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1279 head = (unsigned int) readw(&ap->txq.head);
1280 tail = (unsigned int) readw(&ap->txq.tail);
1281 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1282 tail = (unsigned int) readw(&ap->txq.tail);
1283 size = portp->txsize;
1284 if (head >= tail) {
1285 len = size - (head - tail) - 1;
1286 stlen = size - head;
1287 } else {
1288 len = tail - head - 1;
1289 stlen = len;
1292 len = min(len, (unsigned int)count);
1293 count = 0;
1294 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1296 while (len > 0) {
1297 stlen = min(len, stlen);
1298 memcpy_toio(shbuf + head, chbuf, stlen);
1299 chbuf += stlen;
1300 len -= stlen;
1301 count += stlen;
1302 head += stlen;
1303 if (head >= size) {
1304 head = 0;
1305 stlen = tail;
1309 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1310 writew(head, &ap->txq.head);
1311 if (test_bit(ST_TXBUSY, &portp->state)) {
1312 if (readl(&ap->changed.data) & DT_TXEMPTY)
1313 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1315 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1316 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1317 portp->portidx;
1318 writeb(readb(bits) | portp->portbit, bits);
1319 set_bit(ST_TXBUSY, &portp->state);
1320 EBRDDISABLE(brdp);
1321 spin_unlock_irqrestore(&brd_lock, flags);
1323 return(count);
1326 /*****************************************************************************/
1329 * Output a single character. We put it into a temporary local buffer
1330 * (for speed) then write out that buffer when the flushchars routine
1331 * is called. There is a safety catch here so that if some other port
1332 * writes chars before the current buffer has been, then we write them
1333 * first them do the new ports.
1336 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1338 if (tty != stli_txcooktty) {
1339 if (stli_txcooktty != NULL)
1340 stli_flushchars(stli_txcooktty);
1341 stli_txcooktty = tty;
1344 stli_txcookbuf[stli_txcooksize++] = ch;
1345 return 0;
1348 /*****************************************************************************/
1351 * Transfer characters from the local TX cooking buffer to the board.
1352 * We sort of ignore the tty that gets passed in here. We rely on the
1353 * info stored with the TX cook buffer to tell us which port to flush
1354 * the data on. In any case we clean out the TX cook buffer, for re-use
1355 * by someone else.
1358 static void stli_flushchars(struct tty_struct *tty)
1360 cdkhdr_t __iomem *hdrp;
1361 unsigned char __iomem *bits;
1362 cdkasy_t __iomem *ap;
1363 struct tty_struct *cooktty;
1364 struct stliport *portp;
1365 struct stlibrd *brdp;
1366 unsigned int len, stlen, head, tail, size, count, cooksize;
1367 unsigned char *buf;
1368 unsigned char __iomem *shbuf;
1369 unsigned long flags;
1371 cooksize = stli_txcooksize;
1372 cooktty = stli_txcooktty;
1373 stli_txcooksize = 0;
1374 stli_txcookrealsize = 0;
1375 stli_txcooktty = NULL;
1377 if (tty == NULL)
1378 return;
1379 if (cooktty == NULL)
1380 return;
1381 if (tty != cooktty)
1382 tty = cooktty;
1383 if (cooksize == 0)
1384 return;
1386 portp = tty->driver_data;
1387 if (portp == NULL)
1388 return;
1389 if (portp->brdnr >= stli_nrbrds)
1390 return;
1391 brdp = stli_brds[portp->brdnr];
1392 if (brdp == NULL)
1393 return;
1395 spin_lock_irqsave(&brd_lock, flags);
1396 EBRDENABLE(brdp);
1398 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1399 head = (unsigned int) readw(&ap->txq.head);
1400 tail = (unsigned int) readw(&ap->txq.tail);
1401 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1402 tail = (unsigned int) readw(&ap->txq.tail);
1403 size = portp->txsize;
1404 if (head >= tail) {
1405 len = size - (head - tail) - 1;
1406 stlen = size - head;
1407 } else {
1408 len = tail - head - 1;
1409 stlen = len;
1412 len = min(len, cooksize);
1413 count = 0;
1414 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1415 buf = stli_txcookbuf;
1417 while (len > 0) {
1418 stlen = min(len, stlen);
1419 memcpy_toio(shbuf + head, buf, stlen);
1420 buf += stlen;
1421 len -= stlen;
1422 count += stlen;
1423 head += stlen;
1424 if (head >= size) {
1425 head = 0;
1426 stlen = tail;
1430 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1431 writew(head, &ap->txq.head);
1433 if (test_bit(ST_TXBUSY, &portp->state)) {
1434 if (readl(&ap->changed.data) & DT_TXEMPTY)
1435 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1437 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1438 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1439 portp->portidx;
1440 writeb(readb(bits) | portp->portbit, bits);
1441 set_bit(ST_TXBUSY, &portp->state);
1443 EBRDDISABLE(brdp);
1444 spin_unlock_irqrestore(&brd_lock, flags);
1447 /*****************************************************************************/
1449 static int stli_writeroom(struct tty_struct *tty)
1451 cdkasyrq_t __iomem *rp;
1452 struct stliport *portp;
1453 struct stlibrd *brdp;
1454 unsigned int head, tail, len;
1455 unsigned long flags;
1457 if (tty == stli_txcooktty) {
1458 if (stli_txcookrealsize != 0) {
1459 len = stli_txcookrealsize - stli_txcooksize;
1460 return len;
1464 portp = tty->driver_data;
1465 if (portp == NULL)
1466 return 0;
1467 if (portp->brdnr >= stli_nrbrds)
1468 return 0;
1469 brdp = stli_brds[portp->brdnr];
1470 if (brdp == NULL)
1471 return 0;
1473 spin_lock_irqsave(&brd_lock, flags);
1474 EBRDENABLE(brdp);
1475 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1476 head = (unsigned int) readw(&rp->head);
1477 tail = (unsigned int) readw(&rp->tail);
1478 if (tail != ((unsigned int) readw(&rp->tail)))
1479 tail = (unsigned int) readw(&rp->tail);
1480 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1481 len--;
1482 EBRDDISABLE(brdp);
1483 spin_unlock_irqrestore(&brd_lock, flags);
1485 if (tty == stli_txcooktty) {
1486 stli_txcookrealsize = len;
1487 len -= stli_txcooksize;
1489 return len;
1492 /*****************************************************************************/
1495 * Return the number of characters in the transmit buffer. Normally we
1496 * will return the number of chars in the shared memory ring queue.
1497 * We need to kludge around the case where the shared memory buffer is
1498 * empty but not all characters have drained yet, for this case just
1499 * return that there is 1 character in the buffer!
1502 static int stli_charsinbuffer(struct tty_struct *tty)
1504 cdkasyrq_t __iomem *rp;
1505 struct stliport *portp;
1506 struct stlibrd *brdp;
1507 unsigned int head, tail, len;
1508 unsigned long flags;
1510 if (tty == stli_txcooktty)
1511 stli_flushchars(tty);
1512 portp = tty->driver_data;
1513 if (portp == NULL)
1514 return 0;
1515 if (portp->brdnr >= stli_nrbrds)
1516 return 0;
1517 brdp = stli_brds[portp->brdnr];
1518 if (brdp == NULL)
1519 return 0;
1521 spin_lock_irqsave(&brd_lock, flags);
1522 EBRDENABLE(brdp);
1523 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1524 head = (unsigned int) readw(&rp->head);
1525 tail = (unsigned int) readw(&rp->tail);
1526 if (tail != ((unsigned int) readw(&rp->tail)))
1527 tail = (unsigned int) readw(&rp->tail);
1528 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1529 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1530 len = 1;
1531 EBRDDISABLE(brdp);
1532 spin_unlock_irqrestore(&brd_lock, flags);
1534 return len;
1537 /*****************************************************************************/
1540 * Generate the serial struct info.
1543 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1545 struct serial_struct sio;
1546 struct stlibrd *brdp;
1548 memset(&sio, 0, sizeof(struct serial_struct));
1549 sio.type = PORT_UNKNOWN;
1550 sio.line = portp->portnr;
1551 sio.irq = 0;
1552 sio.flags = portp->port.flags;
1553 sio.baud_base = portp->baud_base;
1554 sio.close_delay = portp->close_delay;
1555 sio.closing_wait = portp->closing_wait;
1556 sio.custom_divisor = portp->custom_divisor;
1557 sio.xmit_fifo_size = 0;
1558 sio.hub6 = 0;
1560 brdp = stli_brds[portp->brdnr];
1561 if (brdp != NULL)
1562 sio.port = brdp->iobase;
1564 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1565 -EFAULT : 0;
1568 /*****************************************************************************/
1571 * Set port according to the serial struct info.
1572 * At this point we do not do any auto-configure stuff, so we will
1573 * just quietly ignore any requests to change irq, etc.
1576 static int stli_setserial(struct stliport *portp, struct serial_struct __user *sp)
1578 struct serial_struct sio;
1579 int rc;
1581 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1582 return -EFAULT;
1583 if (!capable(CAP_SYS_ADMIN)) {
1584 if ((sio.baud_base != portp->baud_base) ||
1585 (sio.close_delay != portp->close_delay) ||
1586 ((sio.flags & ~ASYNC_USR_MASK) !=
1587 (portp->port.flags & ~ASYNC_USR_MASK)))
1588 return -EPERM;
1591 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1592 (sio.flags & ASYNC_USR_MASK);
1593 portp->baud_base = sio.baud_base;
1594 portp->close_delay = sio.close_delay;
1595 portp->closing_wait = sio.closing_wait;
1596 portp->custom_divisor = sio.custom_divisor;
1598 if ((rc = stli_setport(portp)) < 0)
1599 return rc;
1600 return 0;
1603 /*****************************************************************************/
1605 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1607 struct stliport *portp = tty->driver_data;
1608 struct stlibrd *brdp;
1609 int rc;
1611 if (portp == NULL)
1612 return -ENODEV;
1613 if (portp->brdnr >= stli_nrbrds)
1614 return 0;
1615 brdp = stli_brds[portp->brdnr];
1616 if (brdp == NULL)
1617 return 0;
1618 if (tty->flags & (1 << TTY_IO_ERROR))
1619 return -EIO;
1621 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1622 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1623 return rc;
1625 return stli_mktiocm(portp->asig.sigvalue);
1628 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1629 unsigned int set, unsigned int clear)
1631 struct stliport *portp = tty->driver_data;
1632 struct stlibrd *brdp;
1633 int rts = -1, dtr = -1;
1635 if (portp == NULL)
1636 return -ENODEV;
1637 if (portp->brdnr >= stli_nrbrds)
1638 return 0;
1639 brdp = stli_brds[portp->brdnr];
1640 if (brdp == NULL)
1641 return 0;
1642 if (tty->flags & (1 << TTY_IO_ERROR))
1643 return -EIO;
1645 if (set & TIOCM_RTS)
1646 rts = 1;
1647 if (set & TIOCM_DTR)
1648 dtr = 1;
1649 if (clear & TIOCM_RTS)
1650 rts = 0;
1651 if (clear & TIOCM_DTR)
1652 dtr = 0;
1654 stli_mkasysigs(&portp->asig, dtr, rts);
1656 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1657 sizeof(asysigs_t), 0);
1660 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1662 struct stliport *portp;
1663 struct stlibrd *brdp;
1664 int rc;
1665 void __user *argp = (void __user *)arg;
1667 portp = tty->driver_data;
1668 if (portp == NULL)
1669 return -ENODEV;
1670 if (portp->brdnr >= stli_nrbrds)
1671 return 0;
1672 brdp = stli_brds[portp->brdnr];
1673 if (brdp == NULL)
1674 return 0;
1676 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1677 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1678 if (tty->flags & (1 << TTY_IO_ERROR))
1679 return -EIO;
1682 rc = 0;
1684 switch (cmd) {
1685 case TIOCGSERIAL:
1686 rc = stli_getserial(portp, argp);
1687 break;
1688 case TIOCSSERIAL:
1689 rc = stli_setserial(portp, argp);
1690 break;
1691 case STL_GETPFLAG:
1692 rc = put_user(portp->pflag, (unsigned __user *)argp);
1693 break;
1694 case STL_SETPFLAG:
1695 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1696 stli_setport(portp);
1697 break;
1698 case COM_GETPORTSTATS:
1699 rc = stli_getportstats(portp, argp);
1700 break;
1701 case COM_CLRPORTSTATS:
1702 rc = stli_clrportstats(portp, argp);
1703 break;
1704 case TIOCSERCONFIG:
1705 case TIOCSERGWILD:
1706 case TIOCSERSWILD:
1707 case TIOCSERGETLSR:
1708 case TIOCSERGSTRUCT:
1709 case TIOCSERGETMULTI:
1710 case TIOCSERSETMULTI:
1711 default:
1712 rc = -ENOIOCTLCMD;
1713 break;
1716 return rc;
1719 /*****************************************************************************/
1722 * This routine assumes that we have user context and can sleep.
1723 * Looks like it is true for the current ttys implementation..!!
1726 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1728 struct stliport *portp;
1729 struct stlibrd *brdp;
1730 struct ktermios *tiosp;
1731 asyport_t aport;
1733 if (tty == NULL)
1734 return;
1735 portp = tty->driver_data;
1736 if (portp == NULL)
1737 return;
1738 if (portp->brdnr >= stli_nrbrds)
1739 return;
1740 brdp = stli_brds[portp->brdnr];
1741 if (brdp == NULL)
1742 return;
1744 tiosp = tty->termios;
1746 stli_mkasyport(portp, &aport, tiosp);
1747 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1748 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1749 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1750 sizeof(asysigs_t), 0);
1751 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1752 tty->hw_stopped = 0;
1753 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1754 wake_up_interruptible(&portp->port.open_wait);
1757 /*****************************************************************************/
1760 * Attempt to flow control who ever is sending us data. We won't really
1761 * do any flow control action here. We can't directly, and even if we
1762 * wanted to we would have to send a command to the slave. The slave
1763 * knows how to flow control, and will do so when its buffers reach its
1764 * internal high water marks. So what we will do is set a local state
1765 * bit that will stop us sending any RX data up from the poll routine
1766 * (which is the place where RX data from the slave is handled).
1769 static void stli_throttle(struct tty_struct *tty)
1771 struct stliport *portp = tty->driver_data;
1772 if (portp == NULL)
1773 return;
1774 set_bit(ST_RXSTOP, &portp->state);
1777 /*****************************************************************************/
1780 * Unflow control the device sending us data... That means that all
1781 * we have to do is clear the RXSTOP state bit. The next poll call
1782 * will then be able to pass the RX data back up.
1785 static void stli_unthrottle(struct tty_struct *tty)
1787 struct stliport *portp = tty->driver_data;
1788 if (portp == NULL)
1789 return;
1790 clear_bit(ST_RXSTOP, &portp->state);
1793 /*****************************************************************************/
1796 * Stop the transmitter.
1799 static void stli_stop(struct tty_struct *tty)
1803 /*****************************************************************************/
1806 * Start the transmitter again.
1809 static void stli_start(struct tty_struct *tty)
1813 /*****************************************************************************/
1816 * Hangup this port. This is pretty much like closing the port, only
1817 * a little more brutal. No waiting for data to drain. Shutdown the
1818 * port and maybe drop signals. This is rather tricky really. We want
1819 * to close the port as well.
1822 static void stli_hangup(struct tty_struct *tty)
1824 struct stliport *portp;
1825 struct stlibrd *brdp;
1826 unsigned long flags;
1828 portp = tty->driver_data;
1829 if (portp == NULL)
1830 return;
1831 if (portp->brdnr >= stli_nrbrds)
1832 return;
1833 brdp = stli_brds[portp->brdnr];
1834 if (brdp == NULL)
1835 return;
1837 portp->port.flags &= ~ASYNC_INITIALIZED;
1839 if (!test_bit(ST_CLOSING, &portp->state))
1840 stli_rawclose(brdp, portp, 0, 0);
1842 spin_lock_irqsave(&stli_lock, flags);
1843 if (tty->termios->c_cflag & HUPCL) {
1844 stli_mkasysigs(&portp->asig, 0, 0);
1845 if (test_bit(ST_CMDING, &portp->state)) {
1846 set_bit(ST_DOSIGS, &portp->state);
1847 set_bit(ST_DOFLUSHTX, &portp->state);
1848 set_bit(ST_DOFLUSHRX, &portp->state);
1849 } else {
1850 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1851 &portp->asig, sizeof(asysigs_t), 0);
1855 clear_bit(ST_TXBUSY, &portp->state);
1856 clear_bit(ST_RXSTOP, &portp->state);
1857 set_bit(TTY_IO_ERROR, &tty->flags);
1858 portp->port.tty = NULL;
1859 portp->port.flags &= ~ASYNC_NORMAL_ACTIVE;
1860 portp->port.count = 0;
1861 spin_unlock_irqrestore(&stli_lock, flags);
1863 wake_up_interruptible(&portp->port.open_wait);
1866 /*****************************************************************************/
1869 * Flush characters from the lower buffer. We may not have user context
1870 * so we cannot sleep waiting for it to complete. Also we need to check
1871 * if there is chars for this port in the TX cook buffer, and flush them
1872 * as well.
1875 static void stli_flushbuffer(struct tty_struct *tty)
1877 struct stliport *portp;
1878 struct stlibrd *brdp;
1879 unsigned long ftype, flags;
1881 portp = tty->driver_data;
1882 if (portp == NULL)
1883 return;
1884 if (portp->brdnr >= stli_nrbrds)
1885 return;
1886 brdp = stli_brds[portp->brdnr];
1887 if (brdp == NULL)
1888 return;
1890 spin_lock_irqsave(&brd_lock, flags);
1891 if (tty == stli_txcooktty) {
1892 stli_txcooktty = NULL;
1893 stli_txcooksize = 0;
1894 stli_txcookrealsize = 0;
1896 if (test_bit(ST_CMDING, &portp->state)) {
1897 set_bit(ST_DOFLUSHTX, &portp->state);
1898 } else {
1899 ftype = FLUSHTX;
1900 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1901 ftype |= FLUSHRX;
1902 clear_bit(ST_DOFLUSHRX, &portp->state);
1904 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1906 spin_unlock_irqrestore(&brd_lock, flags);
1907 tty_wakeup(tty);
1910 /*****************************************************************************/
1912 static int stli_breakctl(struct tty_struct *tty, int state)
1914 struct stlibrd *brdp;
1915 struct stliport *portp;
1916 long arg;
1918 portp = tty->driver_data;
1919 if (portp == NULL)
1920 return -EINVAL;
1921 if (portp->brdnr >= stli_nrbrds)
1922 return -EINVAL;
1923 brdp = stli_brds[portp->brdnr];
1924 if (brdp == NULL)
1925 return -EINVAL;
1927 arg = (state == -1) ? BREAKON : BREAKOFF;
1928 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1929 return 0;
1932 /*****************************************************************************/
1934 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1936 struct stliport *portp;
1937 unsigned long tend;
1939 if (tty == NULL)
1940 return;
1941 portp = tty->driver_data;
1942 if (portp == NULL)
1943 return;
1945 if (timeout == 0)
1946 timeout = HZ;
1947 tend = jiffies + timeout;
1949 while (test_bit(ST_TXBUSY, &portp->state)) {
1950 if (signal_pending(current))
1951 break;
1952 msleep_interruptible(20);
1953 if (time_after_eq(jiffies, tend))
1954 break;
1958 /*****************************************************************************/
1960 static void stli_sendxchar(struct tty_struct *tty, char ch)
1962 struct stlibrd *brdp;
1963 struct stliport *portp;
1964 asyctrl_t actrl;
1966 portp = tty->driver_data;
1967 if (portp == NULL)
1968 return;
1969 if (portp->brdnr >= stli_nrbrds)
1970 return;
1971 brdp = stli_brds[portp->brdnr];
1972 if (brdp == NULL)
1973 return;
1975 memset(&actrl, 0, sizeof(asyctrl_t));
1976 if (ch == STOP_CHAR(tty)) {
1977 actrl.rxctrl = CT_STOPFLOW;
1978 } else if (ch == START_CHAR(tty)) {
1979 actrl.rxctrl = CT_STARTFLOW;
1980 } else {
1981 actrl.txctrl = CT_SENDCHR;
1982 actrl.tximdch = ch;
1984 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1987 /*****************************************************************************/
1989 #define MAXLINE 80
1992 * Format info for a specified port. The line is deliberately limited
1993 * to 80 characters. (If it is too long it will be truncated, if too
1994 * short then padded with spaces).
1997 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos)
1999 char *sp, *uart;
2000 int rc, cnt;
2002 rc = stli_portcmdstats(portp);
2004 uart = "UNKNOWN";
2005 if (brdp->state & BST_STARTED) {
2006 switch (stli_comstats.hwid) {
2007 case 0: uart = "2681"; break;
2008 case 1: uart = "SC26198"; break;
2009 default:uart = "CD1400"; break;
2013 sp = pos;
2014 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2016 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2017 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2018 (int) stli_comstats.rxtotal);
2020 if (stli_comstats.rxframing)
2021 sp += sprintf(sp, " fe:%d",
2022 (int) stli_comstats.rxframing);
2023 if (stli_comstats.rxparity)
2024 sp += sprintf(sp, " pe:%d",
2025 (int) stli_comstats.rxparity);
2026 if (stli_comstats.rxbreaks)
2027 sp += sprintf(sp, " brk:%d",
2028 (int) stli_comstats.rxbreaks);
2029 if (stli_comstats.rxoverrun)
2030 sp += sprintf(sp, " oe:%d",
2031 (int) stli_comstats.rxoverrun);
2033 cnt = sprintf(sp, "%s%s%s%s%s ",
2034 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2035 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2036 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2037 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2038 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2039 *sp = ' ';
2040 sp += cnt;
2043 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2044 *sp++ = ' ';
2045 if (cnt >= MAXLINE)
2046 pos[(MAXLINE - 2)] = '+';
2047 pos[(MAXLINE - 1)] = '\n';
2049 return(MAXLINE);
2052 /*****************************************************************************/
2055 * Port info, read from the /proc file system.
2058 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2060 struct stlibrd *brdp;
2061 struct stliport *portp;
2062 unsigned int brdnr, portnr, totalport;
2063 int curoff, maxoff;
2064 char *pos;
2066 pos = page;
2067 totalport = 0;
2068 curoff = 0;
2070 if (off == 0) {
2071 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2072 stli_drvversion);
2073 while (pos < (page + MAXLINE - 1))
2074 *pos++ = ' ';
2075 *pos++ = '\n';
2077 curoff = MAXLINE;
2080 * We scan through for each board, panel and port. The offset is
2081 * calculated on the fly, and irrelevant ports are skipped.
2083 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2084 brdp = stli_brds[brdnr];
2085 if (brdp == NULL)
2086 continue;
2087 if (brdp->state == 0)
2088 continue;
2090 maxoff = curoff + (brdp->nrports * MAXLINE);
2091 if (off >= maxoff) {
2092 curoff = maxoff;
2093 continue;
2096 totalport = brdnr * STL_MAXPORTS;
2097 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2098 totalport++) {
2099 portp = brdp->ports[portnr];
2100 if (portp == NULL)
2101 continue;
2102 if (off >= (curoff += MAXLINE))
2103 continue;
2104 if ((pos - page + MAXLINE) > count)
2105 goto stli_readdone;
2106 pos += stli_portinfo(brdp, portp, totalport, pos);
2110 *eof = 1;
2112 stli_readdone:
2113 *start = page;
2114 return(pos - page);
2117 /*****************************************************************************/
2120 * Generic send command routine. This will send a message to the slave,
2121 * of the specified type with the specified argument. Must be very
2122 * careful of data that will be copied out from shared memory -
2123 * containing command results. The command completion is all done from
2124 * a poll routine that does not have user context. Therefore you cannot
2125 * copy back directly into user space, or to the kernel stack of a
2126 * process. This routine does not sleep, so can be called from anywhere.
2128 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2129 * entry point)
2132 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2134 cdkhdr_t __iomem *hdrp;
2135 cdkctrl_t __iomem *cp;
2136 unsigned char __iomem *bits;
2138 if (test_bit(ST_CMDING, &portp->state)) {
2139 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2140 (int) cmd);
2141 return;
2144 EBRDENABLE(brdp);
2145 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2146 if (size > 0) {
2147 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2148 if (copyback) {
2149 portp->argp = arg;
2150 portp->argsize = size;
2153 writel(0, &cp->status);
2154 writel(cmd, &cp->cmd);
2155 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2156 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2157 portp->portidx;
2158 writeb(readb(bits) | portp->portbit, bits);
2159 set_bit(ST_CMDING, &portp->state);
2160 EBRDDISABLE(brdp);
2163 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2165 unsigned long flags;
2167 spin_lock_irqsave(&brd_lock, flags);
2168 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2169 spin_unlock_irqrestore(&brd_lock, flags);
2172 /*****************************************************************************/
2175 * Read data from shared memory. This assumes that the shared memory
2176 * is enabled and that interrupts are off. Basically we just empty out
2177 * the shared memory buffer into the tty buffer. Must be careful to
2178 * handle the case where we fill up the tty buffer, but still have
2179 * more chars to unload.
2182 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2184 cdkasyrq_t __iomem *rp;
2185 char __iomem *shbuf;
2186 struct tty_struct *tty;
2187 unsigned int head, tail, size;
2188 unsigned int len, stlen;
2190 if (test_bit(ST_RXSTOP, &portp->state))
2191 return;
2192 tty = portp->port.tty;
2193 if (tty == NULL)
2194 return;
2196 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2197 head = (unsigned int) readw(&rp->head);
2198 if (head != ((unsigned int) readw(&rp->head)))
2199 head = (unsigned int) readw(&rp->head);
2200 tail = (unsigned int) readw(&rp->tail);
2201 size = portp->rxsize;
2202 if (head >= tail) {
2203 len = head - tail;
2204 stlen = len;
2205 } else {
2206 len = size - (tail - head);
2207 stlen = size - tail;
2210 len = tty_buffer_request_room(tty, len);
2212 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2214 while (len > 0) {
2215 unsigned char *cptr;
2217 stlen = min(len, stlen);
2218 tty_prepare_flip_string(tty, &cptr, stlen);
2219 memcpy_fromio(cptr, shbuf + tail, stlen);
2220 len -= stlen;
2221 tail += stlen;
2222 if (tail >= size) {
2223 tail = 0;
2224 stlen = head;
2227 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2228 writew(tail, &rp->tail);
2230 if (head != tail)
2231 set_bit(ST_RXING, &portp->state);
2233 tty_schedule_flip(tty);
2236 /*****************************************************************************/
2239 * Set up and carry out any delayed commands. There is only a small set
2240 * of slave commands that can be done "off-level". So it is not too
2241 * difficult to deal with them here.
2244 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2246 int cmd;
2248 if (test_bit(ST_DOSIGS, &portp->state)) {
2249 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2250 test_bit(ST_DOFLUSHRX, &portp->state))
2251 cmd = A_SETSIGNALSF;
2252 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2253 cmd = A_SETSIGNALSFTX;
2254 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2255 cmd = A_SETSIGNALSFRX;
2256 else
2257 cmd = A_SETSIGNALS;
2258 clear_bit(ST_DOFLUSHTX, &portp->state);
2259 clear_bit(ST_DOFLUSHRX, &portp->state);
2260 clear_bit(ST_DOSIGS, &portp->state);
2261 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2262 sizeof(asysigs_t));
2263 writel(0, &cp->status);
2264 writel(cmd, &cp->cmd);
2265 set_bit(ST_CMDING, &portp->state);
2266 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2267 test_bit(ST_DOFLUSHRX, &portp->state)) {
2268 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2269 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2270 clear_bit(ST_DOFLUSHTX, &portp->state);
2271 clear_bit(ST_DOFLUSHRX, &portp->state);
2272 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2273 writel(0, &cp->status);
2274 writel(A_FLUSH, &cp->cmd);
2275 set_bit(ST_CMDING, &portp->state);
2279 /*****************************************************************************/
2282 * Host command service checking. This handles commands or messages
2283 * coming from the slave to the host. Must have board shared memory
2284 * enabled and interrupts off when called. Notice that by servicing the
2285 * read data last we don't need to change the shared memory pointer
2286 * during processing (which is a slow IO operation).
2287 * Return value indicates if this port is still awaiting actions from
2288 * the slave (like open, command, or even TX data being sent). If 0
2289 * then port is still busy, otherwise no longer busy.
2292 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2294 cdkasy_t __iomem *ap;
2295 cdkctrl_t __iomem *cp;
2296 struct tty_struct *tty;
2297 asynotify_t nt;
2298 unsigned long oldsigs;
2299 int rc, donerx;
2301 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2302 cp = &ap->ctrl;
2305 * Check if we are waiting for an open completion message.
2307 if (test_bit(ST_OPENING, &portp->state)) {
2308 rc = readl(&cp->openarg);
2309 if (readb(&cp->open) == 0 && rc != 0) {
2310 if (rc > 0)
2311 rc--;
2312 writel(0, &cp->openarg);
2313 portp->rc = rc;
2314 clear_bit(ST_OPENING, &portp->state);
2315 wake_up_interruptible(&portp->raw_wait);
2320 * Check if we are waiting for a close completion message.
2322 if (test_bit(ST_CLOSING, &portp->state)) {
2323 rc = (int) readl(&cp->closearg);
2324 if (readb(&cp->close) == 0 && rc != 0) {
2325 if (rc > 0)
2326 rc--;
2327 writel(0, &cp->closearg);
2328 portp->rc = rc;
2329 clear_bit(ST_CLOSING, &portp->state);
2330 wake_up_interruptible(&portp->raw_wait);
2335 * Check if we are waiting for a command completion message. We may
2336 * need to copy out the command results associated with this command.
2338 if (test_bit(ST_CMDING, &portp->state)) {
2339 rc = readl(&cp->status);
2340 if (readl(&cp->cmd) == 0 && rc != 0) {
2341 if (rc > 0)
2342 rc--;
2343 if (portp->argp != NULL) {
2344 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2345 portp->argsize);
2346 portp->argp = NULL;
2348 writel(0, &cp->status);
2349 portp->rc = rc;
2350 clear_bit(ST_CMDING, &portp->state);
2351 stli_dodelaycmd(portp, cp);
2352 wake_up_interruptible(&portp->raw_wait);
2357 * Check for any notification messages ready. This includes lots of
2358 * different types of events - RX chars ready, RX break received,
2359 * TX data low or empty in the slave, modem signals changed state.
2361 donerx = 0;
2363 if (ap->notify) {
2364 nt = ap->changed;
2365 ap->notify = 0;
2366 tty = portp->port.tty;
2368 if (nt.signal & SG_DCD) {
2369 oldsigs = portp->sigs;
2370 portp->sigs = stli_mktiocm(nt.sigvalue);
2371 clear_bit(ST_GETSIGS, &portp->state);
2372 if ((portp->sigs & TIOCM_CD) &&
2373 ((oldsigs & TIOCM_CD) == 0))
2374 wake_up_interruptible(&portp->port.open_wait);
2375 if ((oldsigs & TIOCM_CD) &&
2376 ((portp->sigs & TIOCM_CD) == 0)) {
2377 if (portp->port.flags & ASYNC_CHECK_CD) {
2378 if (tty)
2379 tty_hangup(tty);
2384 if (nt.data & DT_TXEMPTY)
2385 clear_bit(ST_TXBUSY, &portp->state);
2386 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2387 if (tty != NULL) {
2388 tty_wakeup(tty);
2389 EBRDENABLE(brdp);
2393 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2394 if (tty != NULL) {
2395 tty_insert_flip_char(tty, 0, TTY_BREAK);
2396 if (portp->port.flags & ASYNC_SAK) {
2397 do_SAK(tty);
2398 EBRDENABLE(brdp);
2400 tty_schedule_flip(tty);
2404 if (nt.data & DT_RXBUSY) {
2405 donerx++;
2406 stli_read(brdp, portp);
2411 * It might seem odd that we are checking for more RX chars here.
2412 * But, we need to handle the case where the tty buffer was previously
2413 * filled, but we had more characters to pass up. The slave will not
2414 * send any more RX notify messages until the RX buffer has been emptied.
2415 * But it will leave the service bits on (since the buffer is not empty).
2416 * So from here we can try to process more RX chars.
2418 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2419 clear_bit(ST_RXING, &portp->state);
2420 stli_read(brdp, portp);
2423 return((test_bit(ST_OPENING, &portp->state) ||
2424 test_bit(ST_CLOSING, &portp->state) ||
2425 test_bit(ST_CMDING, &portp->state) ||
2426 test_bit(ST_TXBUSY, &portp->state) ||
2427 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2430 /*****************************************************************************/
2433 * Service all ports on a particular board. Assumes that the boards
2434 * shared memory is enabled, and that the page pointer is pointed
2435 * at the cdk header structure.
2438 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2440 struct stliport *portp;
2441 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2442 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2443 unsigned char __iomem *slavep;
2444 int bitpos, bitat, bitsize;
2445 int channr, nrdevs, slavebitchange;
2447 bitsize = brdp->bitsize;
2448 nrdevs = brdp->nrdevs;
2451 * Check if slave wants any service. Basically we try to do as
2452 * little work as possible here. There are 2 levels of service
2453 * bits. So if there is nothing to do we bail early. We check
2454 * 8 service bits at a time in the inner loop, so we can bypass
2455 * the lot if none of them want service.
2457 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2458 bitsize);
2460 memset(&slavebits[0], 0, bitsize);
2461 slavebitchange = 0;
2463 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2464 if (hostbits[bitpos] == 0)
2465 continue;
2466 channr = bitpos * 8;
2467 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2468 if (hostbits[bitpos] & bitat) {
2469 portp = brdp->ports[(channr - 1)];
2470 if (stli_hostcmd(brdp, portp)) {
2471 slavebitchange++;
2472 slavebits[bitpos] |= bitat;
2479 * If any of the ports are no longer busy then update them in the
2480 * slave request bits. We need to do this after, since a host port
2481 * service may initiate more slave requests.
2483 if (slavebitchange) {
2484 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2485 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2486 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2487 if (readb(slavebits + bitpos))
2488 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2493 /*****************************************************************************/
2496 * Driver poll routine. This routine polls the boards in use and passes
2497 * messages back up to host when necessary. This is actually very
2498 * CPU efficient, since we will always have the kernel poll clock, it
2499 * adds only a few cycles when idle (since board service can be
2500 * determined very easily), but when loaded generates no interrupts
2501 * (with their expensive associated context change).
2504 static void stli_poll(unsigned long arg)
2506 cdkhdr_t __iomem *hdrp;
2507 struct stlibrd *brdp;
2508 unsigned int brdnr;
2510 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2513 * Check each board and do any servicing required.
2515 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2516 brdp = stli_brds[brdnr];
2517 if (brdp == NULL)
2518 continue;
2519 if ((brdp->state & BST_STARTED) == 0)
2520 continue;
2522 spin_lock(&brd_lock);
2523 EBRDENABLE(brdp);
2524 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2525 if (readb(&hdrp->hostreq))
2526 stli_brdpoll(brdp, hdrp);
2527 EBRDDISABLE(brdp);
2528 spin_unlock(&brd_lock);
2532 /*****************************************************************************/
2535 * Translate the termios settings into the port setting structure of
2536 * the slave.
2539 static void stli_mkasyport(struct stliport *portp, asyport_t *pp, struct ktermios *tiosp)
2541 memset(pp, 0, sizeof(asyport_t));
2544 * Start of by setting the baud, char size, parity and stop bit info.
2546 pp->baudout = tty_get_baud_rate(portp->port.tty);
2547 if ((tiosp->c_cflag & CBAUD) == B38400) {
2548 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2549 pp->baudout = 57600;
2550 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2551 pp->baudout = 115200;
2552 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2553 pp->baudout = 230400;
2554 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2555 pp->baudout = 460800;
2556 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2557 pp->baudout = (portp->baud_base / portp->custom_divisor);
2559 if (pp->baudout > STL_MAXBAUD)
2560 pp->baudout = STL_MAXBAUD;
2561 pp->baudin = pp->baudout;
2563 switch (tiosp->c_cflag & CSIZE) {
2564 case CS5:
2565 pp->csize = 5;
2566 break;
2567 case CS6:
2568 pp->csize = 6;
2569 break;
2570 case CS7:
2571 pp->csize = 7;
2572 break;
2573 default:
2574 pp->csize = 8;
2575 break;
2578 if (tiosp->c_cflag & CSTOPB)
2579 pp->stopbs = PT_STOP2;
2580 else
2581 pp->stopbs = PT_STOP1;
2583 if (tiosp->c_cflag & PARENB) {
2584 if (tiosp->c_cflag & PARODD)
2585 pp->parity = PT_ODDPARITY;
2586 else
2587 pp->parity = PT_EVENPARITY;
2588 } else {
2589 pp->parity = PT_NOPARITY;
2593 * Set up any flow control options enabled.
2595 if (tiosp->c_iflag & IXON) {
2596 pp->flow |= F_IXON;
2597 if (tiosp->c_iflag & IXANY)
2598 pp->flow |= F_IXANY;
2600 if (tiosp->c_cflag & CRTSCTS)
2601 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2603 pp->startin = tiosp->c_cc[VSTART];
2604 pp->stopin = tiosp->c_cc[VSTOP];
2605 pp->startout = tiosp->c_cc[VSTART];
2606 pp->stopout = tiosp->c_cc[VSTOP];
2609 * Set up the RX char marking mask with those RX error types we must
2610 * catch. We can get the slave to help us out a little here, it will
2611 * ignore parity errors and breaks for us, and mark parity errors in
2612 * the data stream.
2614 if (tiosp->c_iflag & IGNPAR)
2615 pp->iflag |= FI_IGNRXERRS;
2616 if (tiosp->c_iflag & IGNBRK)
2617 pp->iflag |= FI_IGNBREAK;
2619 portp->rxmarkmsk = 0;
2620 if (tiosp->c_iflag & (INPCK | PARMRK))
2621 pp->iflag |= FI_1MARKRXERRS;
2622 if (tiosp->c_iflag & BRKINT)
2623 portp->rxmarkmsk |= BRKINT;
2626 * Set up clocal processing as required.
2628 if (tiosp->c_cflag & CLOCAL)
2629 portp->port.flags &= ~ASYNC_CHECK_CD;
2630 else
2631 portp->port.flags |= ASYNC_CHECK_CD;
2634 * Transfer any persistent flags into the asyport structure.
2636 pp->pflag = (portp->pflag & 0xffff);
2637 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2638 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2639 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2642 /*****************************************************************************/
2645 * Construct a slave signals structure for setting the DTR and RTS
2646 * signals as specified.
2649 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2651 memset(sp, 0, sizeof(asysigs_t));
2652 if (dtr >= 0) {
2653 sp->signal |= SG_DTR;
2654 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2656 if (rts >= 0) {
2657 sp->signal |= SG_RTS;
2658 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2662 /*****************************************************************************/
2665 * Convert the signals returned from the slave into a local TIOCM type
2666 * signals value. We keep them locally in TIOCM format.
2669 static long stli_mktiocm(unsigned long sigvalue)
2671 long tiocm = 0;
2672 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2673 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2674 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2675 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2676 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2677 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2678 return(tiocm);
2681 /*****************************************************************************/
2684 * All panels and ports actually attached have been worked out. All
2685 * we need to do here is set up the appropriate per port data structures.
2688 static int stli_initports(struct stlibrd *brdp)
2690 struct stliport *portp;
2691 unsigned int i, panelnr, panelport;
2693 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2694 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2695 if (!portp) {
2696 printk("STALLION: failed to allocate port structure\n");
2697 continue;
2700 portp->magic = STLI_PORTMAGIC;
2701 portp->portnr = i;
2702 portp->brdnr = brdp->brdnr;
2703 portp->panelnr = panelnr;
2704 portp->baud_base = STL_BAUDBASE;
2705 portp->close_delay = STL_CLOSEDELAY;
2706 portp->closing_wait = 30 * HZ;
2707 init_waitqueue_head(&portp->port.open_wait);
2708 init_waitqueue_head(&portp->port.close_wait);
2709 init_waitqueue_head(&portp->raw_wait);
2710 panelport++;
2711 if (panelport >= brdp->panels[panelnr]) {
2712 panelport = 0;
2713 panelnr++;
2715 brdp->ports[i] = portp;
2718 return 0;
2721 /*****************************************************************************/
2724 * All the following routines are board specific hardware operations.
2727 static void stli_ecpinit(struct stlibrd *brdp)
2729 unsigned long memconf;
2731 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2732 udelay(10);
2733 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2734 udelay(100);
2736 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2737 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2740 /*****************************************************************************/
2742 static void stli_ecpenable(struct stlibrd *brdp)
2744 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2747 /*****************************************************************************/
2749 static void stli_ecpdisable(struct stlibrd *brdp)
2751 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2754 /*****************************************************************************/
2756 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2758 void __iomem *ptr;
2759 unsigned char val;
2761 if (offset > brdp->memsize) {
2762 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2763 "range at line=%d(%d), brd=%d\n",
2764 (int) offset, line, __LINE__, brdp->brdnr);
2765 ptr = NULL;
2766 val = 0;
2767 } else {
2768 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2769 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2771 outb(val, (brdp->iobase + ECP_ATMEMPR));
2772 return(ptr);
2775 /*****************************************************************************/
2777 static void stli_ecpreset(struct stlibrd *brdp)
2779 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2780 udelay(10);
2781 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2782 udelay(500);
2785 /*****************************************************************************/
2787 static void stli_ecpintr(struct stlibrd *brdp)
2789 outb(0x1, brdp->iobase);
2792 /*****************************************************************************/
2795 * The following set of functions act on ECP EISA boards.
2798 static void stli_ecpeiinit(struct stlibrd *brdp)
2800 unsigned long memconf;
2802 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2803 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2804 udelay(10);
2805 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2806 udelay(500);
2808 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2809 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2810 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2811 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2814 /*****************************************************************************/
2816 static void stli_ecpeienable(struct stlibrd *brdp)
2818 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2821 /*****************************************************************************/
2823 static void stli_ecpeidisable(struct stlibrd *brdp)
2825 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2828 /*****************************************************************************/
2830 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2832 void __iomem *ptr;
2833 unsigned char val;
2835 if (offset > brdp->memsize) {
2836 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2837 "range at line=%d(%d), brd=%d\n",
2838 (int) offset, line, __LINE__, brdp->brdnr);
2839 ptr = NULL;
2840 val = 0;
2841 } else {
2842 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2843 if (offset < ECP_EIPAGESIZE)
2844 val = ECP_EIENABLE;
2845 else
2846 val = ECP_EIENABLE | 0x40;
2848 outb(val, (brdp->iobase + ECP_EICONFR));
2849 return(ptr);
2852 /*****************************************************************************/
2854 static void stli_ecpeireset(struct stlibrd *brdp)
2856 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2857 udelay(10);
2858 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2859 udelay(500);
2862 /*****************************************************************************/
2865 * The following set of functions act on ECP MCA boards.
2868 static void stli_ecpmcenable(struct stlibrd *brdp)
2870 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2873 /*****************************************************************************/
2875 static void stli_ecpmcdisable(struct stlibrd *brdp)
2877 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2880 /*****************************************************************************/
2882 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2884 void __iomem *ptr;
2885 unsigned char val;
2887 if (offset > brdp->memsize) {
2888 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2889 "range at line=%d(%d), brd=%d\n",
2890 (int) offset, line, __LINE__, brdp->brdnr);
2891 ptr = NULL;
2892 val = 0;
2893 } else {
2894 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2895 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2897 outb(val, (brdp->iobase + ECP_MCCONFR));
2898 return(ptr);
2901 /*****************************************************************************/
2903 static void stli_ecpmcreset(struct stlibrd *brdp)
2905 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2906 udelay(10);
2907 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2908 udelay(500);
2911 /*****************************************************************************/
2914 * The following set of functions act on ECP PCI boards.
2917 static void stli_ecppciinit(struct stlibrd *brdp)
2919 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2920 udelay(10);
2921 outb(0, (brdp->iobase + ECP_PCICONFR));
2922 udelay(500);
2925 /*****************************************************************************/
2927 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2929 void __iomem *ptr;
2930 unsigned char val;
2932 if (offset > brdp->memsize) {
2933 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2934 "range at line=%d(%d), board=%d\n",
2935 (int) offset, line, __LINE__, brdp->brdnr);
2936 ptr = NULL;
2937 val = 0;
2938 } else {
2939 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2940 val = (offset / ECP_PCIPAGESIZE) << 1;
2942 outb(val, (brdp->iobase + ECP_PCICONFR));
2943 return(ptr);
2946 /*****************************************************************************/
2948 static void stli_ecppcireset(struct stlibrd *brdp)
2950 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2951 udelay(10);
2952 outb(0, (brdp->iobase + ECP_PCICONFR));
2953 udelay(500);
2956 /*****************************************************************************/
2959 * The following routines act on ONboards.
2962 static void stli_onbinit(struct stlibrd *brdp)
2964 unsigned long memconf;
2966 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2967 udelay(10);
2968 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2969 mdelay(1000);
2971 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2972 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2973 outb(0x1, brdp->iobase);
2974 mdelay(1);
2977 /*****************************************************************************/
2979 static void stli_onbenable(struct stlibrd *brdp)
2981 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2984 /*****************************************************************************/
2986 static void stli_onbdisable(struct stlibrd *brdp)
2988 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2991 /*****************************************************************************/
2993 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2995 void __iomem *ptr;
2997 if (offset > brdp->memsize) {
2998 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2999 "range at line=%d(%d), brd=%d\n",
3000 (int) offset, line, __LINE__, brdp->brdnr);
3001 ptr = NULL;
3002 } else {
3003 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3005 return(ptr);
3008 /*****************************************************************************/
3010 static void stli_onbreset(struct stlibrd *brdp)
3012 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3013 udelay(10);
3014 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3015 mdelay(1000);
3018 /*****************************************************************************/
3021 * The following routines act on ONboard EISA.
3024 static void stli_onbeinit(struct stlibrd *brdp)
3026 unsigned long memconf;
3028 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3029 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3030 udelay(10);
3031 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3032 mdelay(1000);
3034 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3035 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3036 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3037 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3038 outb(0x1, brdp->iobase);
3039 mdelay(1);
3042 /*****************************************************************************/
3044 static void stli_onbeenable(struct stlibrd *brdp)
3046 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3049 /*****************************************************************************/
3051 static void stli_onbedisable(struct stlibrd *brdp)
3053 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3056 /*****************************************************************************/
3058 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3060 void __iomem *ptr;
3061 unsigned char val;
3063 if (offset > brdp->memsize) {
3064 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3065 "range at line=%d(%d), brd=%d\n",
3066 (int) offset, line, __LINE__, brdp->brdnr);
3067 ptr = NULL;
3068 val = 0;
3069 } else {
3070 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3071 if (offset < ONB_EIPAGESIZE)
3072 val = ONB_EIENABLE;
3073 else
3074 val = ONB_EIENABLE | 0x40;
3076 outb(val, (brdp->iobase + ONB_EICONFR));
3077 return(ptr);
3080 /*****************************************************************************/
3082 static void stli_onbereset(struct stlibrd *brdp)
3084 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3085 udelay(10);
3086 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3087 mdelay(1000);
3090 /*****************************************************************************/
3093 * The following routines act on Brumby boards.
3096 static void stli_bbyinit(struct stlibrd *brdp)
3098 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3099 udelay(10);
3100 outb(0, (brdp->iobase + BBY_ATCONFR));
3101 mdelay(1000);
3102 outb(0x1, brdp->iobase);
3103 mdelay(1);
3106 /*****************************************************************************/
3108 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3110 void __iomem *ptr;
3111 unsigned char val;
3113 BUG_ON(offset > brdp->memsize);
3115 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3116 val = (unsigned char) (offset / BBY_PAGESIZE);
3117 outb(val, (brdp->iobase + BBY_ATCONFR));
3118 return(ptr);
3121 /*****************************************************************************/
3123 static void stli_bbyreset(struct stlibrd *brdp)
3125 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3126 udelay(10);
3127 outb(0, (brdp->iobase + BBY_ATCONFR));
3128 mdelay(1000);
3131 /*****************************************************************************/
3134 * The following routines act on original old Stallion boards.
3137 static void stli_stalinit(struct stlibrd *brdp)
3139 outb(0x1, brdp->iobase);
3140 mdelay(1000);
3143 /*****************************************************************************/
3145 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3147 BUG_ON(offset > brdp->memsize);
3148 return brdp->membase + (offset % STAL_PAGESIZE);
3151 /*****************************************************************************/
3153 static void stli_stalreset(struct stlibrd *brdp)
3155 u32 __iomem *vecp;
3157 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3158 writel(0xffff0000, vecp);
3159 outb(0, brdp->iobase);
3160 mdelay(1000);
3163 /*****************************************************************************/
3166 * Try to find an ECP board and initialize it. This handles only ECP
3167 * board types.
3170 static int stli_initecp(struct stlibrd *brdp)
3172 cdkecpsig_t sig;
3173 cdkecpsig_t __iomem *sigsp;
3174 unsigned int status, nxtid;
3175 char *name;
3176 int retval, panelnr, nrports;
3178 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3179 retval = -ENODEV;
3180 goto err;
3183 brdp->iosize = ECP_IOSIZE;
3185 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3186 retval = -EIO;
3187 goto err;
3191 * Based on the specific board type setup the common vars to access
3192 * and enable shared memory. Set all board specific information now
3193 * as well.
3195 switch (brdp->brdtype) {
3196 case BRD_ECP:
3197 brdp->memsize = ECP_MEMSIZE;
3198 brdp->pagesize = ECP_ATPAGESIZE;
3199 brdp->init = stli_ecpinit;
3200 brdp->enable = stli_ecpenable;
3201 brdp->reenable = stli_ecpenable;
3202 brdp->disable = stli_ecpdisable;
3203 brdp->getmemptr = stli_ecpgetmemptr;
3204 brdp->intr = stli_ecpintr;
3205 brdp->reset = stli_ecpreset;
3206 name = "serial(EC8/64)";
3207 break;
3209 case BRD_ECPE:
3210 brdp->memsize = ECP_MEMSIZE;
3211 brdp->pagesize = ECP_EIPAGESIZE;
3212 brdp->init = stli_ecpeiinit;
3213 brdp->enable = stli_ecpeienable;
3214 brdp->reenable = stli_ecpeienable;
3215 brdp->disable = stli_ecpeidisable;
3216 brdp->getmemptr = stli_ecpeigetmemptr;
3217 brdp->intr = stli_ecpintr;
3218 brdp->reset = stli_ecpeireset;
3219 name = "serial(EC8/64-EI)";
3220 break;
3222 case BRD_ECPMC:
3223 brdp->memsize = ECP_MEMSIZE;
3224 brdp->pagesize = ECP_MCPAGESIZE;
3225 brdp->init = NULL;
3226 brdp->enable = stli_ecpmcenable;
3227 brdp->reenable = stli_ecpmcenable;
3228 brdp->disable = stli_ecpmcdisable;
3229 brdp->getmemptr = stli_ecpmcgetmemptr;
3230 brdp->intr = stli_ecpintr;
3231 brdp->reset = stli_ecpmcreset;
3232 name = "serial(EC8/64-MCA)";
3233 break;
3235 case BRD_ECPPCI:
3236 brdp->memsize = ECP_PCIMEMSIZE;
3237 brdp->pagesize = ECP_PCIPAGESIZE;
3238 brdp->init = stli_ecppciinit;
3239 brdp->enable = NULL;
3240 brdp->reenable = NULL;
3241 brdp->disable = NULL;
3242 brdp->getmemptr = stli_ecppcigetmemptr;
3243 brdp->intr = stli_ecpintr;
3244 brdp->reset = stli_ecppcireset;
3245 name = "serial(EC/RA-PCI)";
3246 break;
3248 default:
3249 retval = -EINVAL;
3250 goto err_reg;
3254 * The per-board operations structure is all set up, so now let's go
3255 * and get the board operational. Firstly initialize board configuration
3256 * registers. Set the memory mapping info so we can get at the boards
3257 * shared memory.
3259 EBRDINIT(brdp);
3261 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3262 if (brdp->membase == NULL) {
3263 retval = -ENOMEM;
3264 goto err_reg;
3268 * Now that all specific code is set up, enable the shared memory and
3269 * look for the a signature area that will tell us exactly what board
3270 * this is, and what it is connected to it.
3272 EBRDENABLE(brdp);
3273 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3274 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3275 EBRDDISABLE(brdp);
3277 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3278 retval = -ENODEV;
3279 goto err_unmap;
3283 * Scan through the signature looking at the panels connected to the
3284 * board. Calculate the total number of ports as we go.
3286 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3287 status = sig.panelid[nxtid];
3288 if ((status & ECH_PNLIDMASK) != nxtid)
3289 break;
3291 brdp->panelids[panelnr] = status;
3292 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3293 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3294 nxtid++;
3295 brdp->panels[panelnr] = nrports;
3296 brdp->nrports += nrports;
3297 nxtid++;
3298 brdp->nrpanels++;
3302 brdp->state |= BST_FOUND;
3303 return 0;
3304 err_unmap:
3305 iounmap(brdp->membase);
3306 brdp->membase = NULL;
3307 err_reg:
3308 release_region(brdp->iobase, brdp->iosize);
3309 err:
3310 return retval;
3313 /*****************************************************************************/
3316 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3317 * This handles only these board types.
3320 static int stli_initonb(struct stlibrd *brdp)
3322 cdkonbsig_t sig;
3323 cdkonbsig_t __iomem *sigsp;
3324 char *name;
3325 int i, retval;
3328 * Do a basic sanity check on the IO and memory addresses.
3330 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3331 retval = -ENODEV;
3332 goto err;
3335 brdp->iosize = ONB_IOSIZE;
3337 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3338 retval = -EIO;
3339 goto err;
3343 * Based on the specific board type setup the common vars to access
3344 * and enable shared memory. Set all board specific information now
3345 * as well.
3347 switch (brdp->brdtype) {
3348 case BRD_ONBOARD:
3349 case BRD_ONBOARD2:
3350 brdp->memsize = ONB_MEMSIZE;
3351 brdp->pagesize = ONB_ATPAGESIZE;
3352 brdp->init = stli_onbinit;
3353 brdp->enable = stli_onbenable;
3354 brdp->reenable = stli_onbenable;
3355 brdp->disable = stli_onbdisable;
3356 brdp->getmemptr = stli_onbgetmemptr;
3357 brdp->intr = stli_ecpintr;
3358 brdp->reset = stli_onbreset;
3359 if (brdp->memaddr > 0x100000)
3360 brdp->enabval = ONB_MEMENABHI;
3361 else
3362 brdp->enabval = ONB_MEMENABLO;
3363 name = "serial(ONBoard)";
3364 break;
3366 case BRD_ONBOARDE:
3367 brdp->memsize = ONB_EIMEMSIZE;
3368 brdp->pagesize = ONB_EIPAGESIZE;
3369 brdp->init = stli_onbeinit;
3370 brdp->enable = stli_onbeenable;
3371 brdp->reenable = stli_onbeenable;
3372 brdp->disable = stli_onbedisable;
3373 brdp->getmemptr = stli_onbegetmemptr;
3374 brdp->intr = stli_ecpintr;
3375 brdp->reset = stli_onbereset;
3376 name = "serial(ONBoard/E)";
3377 break;
3379 case BRD_BRUMBY4:
3380 brdp->memsize = BBY_MEMSIZE;
3381 brdp->pagesize = BBY_PAGESIZE;
3382 brdp->init = stli_bbyinit;
3383 brdp->enable = NULL;
3384 brdp->reenable = NULL;
3385 brdp->disable = NULL;
3386 brdp->getmemptr = stli_bbygetmemptr;
3387 brdp->intr = stli_ecpintr;
3388 brdp->reset = stli_bbyreset;
3389 name = "serial(Brumby)";
3390 break;
3392 case BRD_STALLION:
3393 brdp->memsize = STAL_MEMSIZE;
3394 brdp->pagesize = STAL_PAGESIZE;
3395 brdp->init = stli_stalinit;
3396 brdp->enable = NULL;
3397 brdp->reenable = NULL;
3398 brdp->disable = NULL;
3399 brdp->getmemptr = stli_stalgetmemptr;
3400 brdp->intr = stli_ecpintr;
3401 brdp->reset = stli_stalreset;
3402 name = "serial(Stallion)";
3403 break;
3405 default:
3406 retval = -EINVAL;
3407 goto err_reg;
3411 * The per-board operations structure is all set up, so now let's go
3412 * and get the board operational. Firstly initialize board configuration
3413 * registers. Set the memory mapping info so we can get at the boards
3414 * shared memory.
3416 EBRDINIT(brdp);
3418 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3419 if (brdp->membase == NULL) {
3420 retval = -ENOMEM;
3421 goto err_reg;
3425 * Now that all specific code is set up, enable the shared memory and
3426 * look for the a signature area that will tell us exactly what board
3427 * this is, and how many ports.
3429 EBRDENABLE(brdp);
3430 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3431 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3432 EBRDDISABLE(brdp);
3434 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3435 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3436 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3437 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3438 retval = -ENODEV;
3439 goto err_unmap;
3443 * Scan through the signature alive mask and calculate how many ports
3444 * there are on this board.
3446 brdp->nrpanels = 1;
3447 if (sig.amask1) {
3448 brdp->nrports = 32;
3449 } else {
3450 for (i = 0; (i < 16); i++) {
3451 if (((sig.amask0 << i) & 0x8000) == 0)
3452 break;
3454 brdp->nrports = i;
3456 brdp->panels[0] = brdp->nrports;
3459 brdp->state |= BST_FOUND;
3460 return 0;
3461 err_unmap:
3462 iounmap(brdp->membase);
3463 brdp->membase = NULL;
3464 err_reg:
3465 release_region(brdp->iobase, brdp->iosize);
3466 err:
3467 return retval;
3470 /*****************************************************************************/
3473 * Start up a running board. This routine is only called after the
3474 * code has been down loaded to the board and is operational. It will
3475 * read in the memory map, and get the show on the road...
3478 static int stli_startbrd(struct stlibrd *brdp)
3480 cdkhdr_t __iomem *hdrp;
3481 cdkmem_t __iomem *memp;
3482 cdkasy_t __iomem *ap;
3483 unsigned long flags;
3484 unsigned int portnr, nrdevs, i;
3485 struct stliport *portp;
3486 int rc = 0;
3487 u32 memoff;
3489 spin_lock_irqsave(&brd_lock, flags);
3490 EBRDENABLE(brdp);
3491 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3492 nrdevs = hdrp->nrdevs;
3494 #if 0
3495 printk("%s(%d): CDK version %d.%d.%d --> "
3496 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3497 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3498 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3499 readl(&hdrp->slavep));
3500 #endif
3502 if (nrdevs < (brdp->nrports + 1)) {
3503 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
3504 "all devices, devices=%d\n", nrdevs);
3505 brdp->nrports = nrdevs - 1;
3507 brdp->nrdevs = nrdevs;
3508 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3509 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3510 brdp->bitsize = (nrdevs + 7) / 8;
3511 memoff = readl(&hdrp->memp);
3512 if (memoff > brdp->memsize) {
3513 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
3514 rc = -EIO;
3515 goto stli_donestartup;
3517 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3518 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3519 printk(KERN_ERR "STALLION: no slave control device found\n");
3520 goto stli_donestartup;
3522 memp++;
3525 * Cycle through memory allocation of each port. We are guaranteed to
3526 * have all ports inside the first page of slave window, so no need to
3527 * change pages while reading memory map.
3529 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3530 if (readw(&memp->dtype) != TYP_ASYNC)
3531 break;
3532 portp = brdp->ports[portnr];
3533 if (portp == NULL)
3534 break;
3535 portp->devnr = i;
3536 portp->addr = readl(&memp->offset);
3537 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3538 portp->portidx = (unsigned char) (i / 8);
3539 portp->portbit = (unsigned char) (0x1 << (i % 8));
3542 writeb(0xff, &hdrp->slavereq);
3545 * For each port setup a local copy of the RX and TX buffer offsets
3546 * and sizes. We do this separate from the above, because we need to
3547 * move the shared memory page...
3549 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3550 portp = brdp->ports[portnr];
3551 if (portp == NULL)
3552 break;
3553 if (portp->addr == 0)
3554 break;
3555 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3556 if (ap != NULL) {
3557 portp->rxsize = readw(&ap->rxq.size);
3558 portp->txsize = readw(&ap->txq.size);
3559 portp->rxoffset = readl(&ap->rxq.offset);
3560 portp->txoffset = readl(&ap->txq.offset);
3564 stli_donestartup:
3565 EBRDDISABLE(brdp);
3566 spin_unlock_irqrestore(&brd_lock, flags);
3568 if (rc == 0)
3569 brdp->state |= BST_STARTED;
3571 if (! stli_timeron) {
3572 stli_timeron++;
3573 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3576 return rc;
3579 /*****************************************************************************/
3582 * Probe and initialize the specified board.
3585 static int __devinit stli_brdinit(struct stlibrd *brdp)
3587 int retval;
3589 switch (brdp->brdtype) {
3590 case BRD_ECP:
3591 case BRD_ECPE:
3592 case BRD_ECPMC:
3593 case BRD_ECPPCI:
3594 retval = stli_initecp(brdp);
3595 break;
3596 case BRD_ONBOARD:
3597 case BRD_ONBOARDE:
3598 case BRD_ONBOARD2:
3599 case BRD_BRUMBY4:
3600 case BRD_STALLION:
3601 retval = stli_initonb(brdp);
3602 break;
3603 default:
3604 printk(KERN_ERR "STALLION: board=%d is unknown board "
3605 "type=%d\n", brdp->brdnr, brdp->brdtype);
3606 retval = -ENODEV;
3609 if (retval)
3610 return retval;
3612 stli_initports(brdp);
3613 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
3614 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3615 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3616 brdp->nrpanels, brdp->nrports);
3617 return 0;
3620 #if STLI_EISAPROBE != 0
3621 /*****************************************************************************/
3624 * Probe around trying to find where the EISA boards shared memory
3625 * might be. This is a bit if hack, but it is the best we can do.
3628 static int stli_eisamemprobe(struct stlibrd *brdp)
3630 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3631 cdkonbsig_t onbsig, __iomem *onbsigp;
3632 int i, foundit;
3635 * First up we reset the board, to get it into a known state. There
3636 * is only 2 board types here we need to worry about. Don;t use the
3637 * standard board init routine here, it programs up the shared
3638 * memory address, and we don't know it yet...
3640 if (brdp->brdtype == BRD_ECPE) {
3641 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3642 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3643 udelay(10);
3644 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3645 udelay(500);
3646 stli_ecpeienable(brdp);
3647 } else if (brdp->brdtype == BRD_ONBOARDE) {
3648 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3649 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3650 udelay(10);
3651 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3652 mdelay(100);
3653 outb(0x1, brdp->iobase);
3654 mdelay(1);
3655 stli_onbeenable(brdp);
3656 } else {
3657 return -ENODEV;
3660 foundit = 0;
3661 brdp->memsize = ECP_MEMSIZE;
3664 * Board shared memory is enabled, so now we have a poke around and
3665 * see if we can find it.
3667 for (i = 0; (i < stli_eisamempsize); i++) {
3668 brdp->memaddr = stli_eisamemprobeaddrs[i];
3669 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3670 if (brdp->membase == NULL)
3671 continue;
3673 if (brdp->brdtype == BRD_ECPE) {
3674 ecpsigp = stli_ecpeigetmemptr(brdp,
3675 CDK_SIGADDR, __LINE__);
3676 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3677 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3678 foundit = 1;
3679 } else {
3680 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3681 CDK_SIGADDR, __LINE__);
3682 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3683 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3684 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3685 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3686 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3687 foundit = 1;
3690 iounmap(brdp->membase);
3691 if (foundit)
3692 break;
3696 * Regardless of whether we found the shared memory or not we must
3697 * disable the region. After that return success or failure.
3699 if (brdp->brdtype == BRD_ECPE)
3700 stli_ecpeidisable(brdp);
3701 else
3702 stli_onbedisable(brdp);
3704 if (! foundit) {
3705 brdp->memaddr = 0;
3706 brdp->membase = NULL;
3707 printk(KERN_ERR "STALLION: failed to probe shared memory "
3708 "region for %s in EISA slot=%d\n",
3709 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3710 return -ENODEV;
3712 return 0;
3714 #endif
3716 static int stli_getbrdnr(void)
3718 unsigned int i;
3720 for (i = 0; i < STL_MAXBRDS; i++) {
3721 if (!stli_brds[i]) {
3722 if (i >= stli_nrbrds)
3723 stli_nrbrds = i + 1;
3724 return i;
3727 return -1;
3730 #if STLI_EISAPROBE != 0
3731 /*****************************************************************************/
3734 * Probe around and try to find any EISA boards in system. The biggest
3735 * problem here is finding out what memory address is associated with
3736 * an EISA board after it is found. The registers of the ECPE and
3737 * ONboardE are not readable - so we can't read them from there. We
3738 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3739 * actually have any way to find out the real value. The best we can
3740 * do is go probing around in the usual places hoping we can find it.
3743 static int stli_findeisabrds(void)
3745 struct stlibrd *brdp;
3746 unsigned int iobase, eid, i;
3747 int brdnr, found = 0;
3750 * Firstly check if this is an EISA system. If this is not an EISA system then
3751 * don't bother going any further!
3753 if (EISA_bus)
3754 return 0;
3757 * Looks like an EISA system, so go searching for EISA boards.
3759 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3760 outb(0xff, (iobase + 0xc80));
3761 eid = inb(iobase + 0xc80);
3762 eid |= inb(iobase + 0xc81) << 8;
3763 if (eid != STL_EISAID)
3764 continue;
3767 * We have found a board. Need to check if this board was
3768 * statically configured already (just in case!).
3770 for (i = 0; (i < STL_MAXBRDS); i++) {
3771 brdp = stli_brds[i];
3772 if (brdp == NULL)
3773 continue;
3774 if (brdp->iobase == iobase)
3775 break;
3777 if (i < STL_MAXBRDS)
3778 continue;
3781 * We have found a Stallion board and it is not configured already.
3782 * Allocate a board structure and initialize it.
3784 if ((brdp = stli_allocbrd()) == NULL)
3785 return found ? : -ENOMEM;
3786 brdnr = stli_getbrdnr();
3787 if (brdnr < 0)
3788 return found ? : -ENOMEM;
3789 brdp->brdnr = (unsigned int)brdnr;
3790 eid = inb(iobase + 0xc82);
3791 if (eid == ECP_EISAID)
3792 brdp->brdtype = BRD_ECPE;
3793 else if (eid == ONB_EISAID)
3794 brdp->brdtype = BRD_ONBOARDE;
3795 else
3796 brdp->brdtype = BRD_UNKNOWN;
3797 brdp->iobase = iobase;
3798 outb(0x1, (iobase + 0xc84));
3799 if (stli_eisamemprobe(brdp))
3800 outb(0, (iobase + 0xc84));
3801 if (stli_brdinit(brdp) < 0) {
3802 kfree(brdp);
3803 continue;
3806 stli_brds[brdp->brdnr] = brdp;
3807 found++;
3809 for (i = 0; i < brdp->nrports; i++)
3810 tty_register_device(stli_serial,
3811 brdp->brdnr * STL_MAXPORTS + i, NULL);
3814 return found;
3816 #else
3817 static inline int stli_findeisabrds(void) { return 0; }
3818 #endif
3820 /*****************************************************************************/
3823 * Find the next available board number that is free.
3826 /*****************************************************************************/
3829 * We have a Stallion board. Allocate a board structure and
3830 * initialize it. Read its IO and MEMORY resources from PCI
3831 * configuration space.
3834 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3835 const struct pci_device_id *ent)
3837 struct stlibrd *brdp;
3838 unsigned int i;
3839 int brdnr, retval = -EIO;
3841 retval = pci_enable_device(pdev);
3842 if (retval)
3843 goto err;
3844 brdp = stli_allocbrd();
3845 if (brdp == NULL) {
3846 retval = -ENOMEM;
3847 goto err;
3849 mutex_lock(&stli_brdslock);
3850 brdnr = stli_getbrdnr();
3851 if (brdnr < 0) {
3852 printk(KERN_INFO "STALLION: too many boards found, "
3853 "maximum supported %d\n", STL_MAXBRDS);
3854 mutex_unlock(&stli_brdslock);
3855 retval = -EIO;
3856 goto err_fr;
3858 brdp->brdnr = (unsigned int)brdnr;
3859 stli_brds[brdp->brdnr] = brdp;
3860 mutex_unlock(&stli_brdslock);
3861 brdp->brdtype = BRD_ECPPCI;
3863 * We have all resources from the board, so lets setup the actual
3864 * board structure now.
3866 brdp->iobase = pci_resource_start(pdev, 3);
3867 brdp->memaddr = pci_resource_start(pdev, 2);
3868 retval = stli_brdinit(brdp);
3869 if (retval)
3870 goto err_null;
3872 brdp->state |= BST_PROBED;
3873 pci_set_drvdata(pdev, brdp);
3875 EBRDENABLE(brdp);
3876 brdp->enable = NULL;
3877 brdp->disable = NULL;
3879 for (i = 0; i < brdp->nrports; i++)
3880 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3881 &pdev->dev);
3883 return 0;
3884 err_null:
3885 stli_brds[brdp->brdnr] = NULL;
3886 err_fr:
3887 kfree(brdp);
3888 err:
3889 return retval;
3892 static void stli_pciremove(struct pci_dev *pdev)
3894 struct stlibrd *brdp = pci_get_drvdata(pdev);
3896 stli_cleanup_ports(brdp);
3898 iounmap(brdp->membase);
3899 if (brdp->iosize > 0)
3900 release_region(brdp->iobase, brdp->iosize);
3902 stli_brds[brdp->brdnr] = NULL;
3903 kfree(brdp);
3906 static struct pci_driver stli_pcidriver = {
3907 .name = "istallion",
3908 .id_table = istallion_pci_tbl,
3909 .probe = stli_pciprobe,
3910 .remove = __devexit_p(stli_pciremove)
3912 /*****************************************************************************/
3915 * Allocate a new board structure. Fill out the basic info in it.
3918 static struct stlibrd *stli_allocbrd(void)
3920 struct stlibrd *brdp;
3922 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3923 if (!brdp) {
3924 printk(KERN_ERR "STALLION: failed to allocate memory "
3925 "(size=%Zd)\n", sizeof(struct stlibrd));
3926 return NULL;
3928 brdp->magic = STLI_BOARDMAGIC;
3929 return brdp;
3932 /*****************************************************************************/
3935 * Scan through all the boards in the configuration and see what we
3936 * can find.
3939 static int stli_initbrds(void)
3941 struct stlibrd *brdp, *nxtbrdp;
3942 struct stlconf conf;
3943 unsigned int i, j, found = 0;
3944 int retval;
3946 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3947 stli_nrbrds++) {
3948 memset(&conf, 0, sizeof(conf));
3949 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3950 continue;
3951 if ((brdp = stli_allocbrd()) == NULL)
3952 continue;
3953 brdp->brdnr = stli_nrbrds;
3954 brdp->brdtype = conf.brdtype;
3955 brdp->iobase = conf.ioaddr1;
3956 brdp->memaddr = conf.memaddr;
3957 if (stli_brdinit(brdp) < 0) {
3958 kfree(brdp);
3959 continue;
3961 stli_brds[brdp->brdnr] = brdp;
3962 found++;
3964 for (i = 0; i < brdp->nrports; i++)
3965 tty_register_device(stli_serial,
3966 brdp->brdnr * STL_MAXPORTS + i, NULL);
3969 retval = stli_findeisabrds();
3970 if (retval > 0)
3971 found += retval;
3974 * All found boards are initialized. Now for a little optimization, if
3975 * no boards are sharing the "shared memory" regions then we can just
3976 * leave them all enabled. This is in fact the usual case.
3978 stli_shared = 0;
3979 if (stli_nrbrds > 1) {
3980 for (i = 0; (i < stli_nrbrds); i++) {
3981 brdp = stli_brds[i];
3982 if (brdp == NULL)
3983 continue;
3984 for (j = i + 1; (j < stli_nrbrds); j++) {
3985 nxtbrdp = stli_brds[j];
3986 if (nxtbrdp == NULL)
3987 continue;
3988 if ((brdp->membase >= nxtbrdp->membase) &&
3989 (brdp->membase <= (nxtbrdp->membase +
3990 nxtbrdp->memsize - 1))) {
3991 stli_shared++;
3992 break;
3998 if (stli_shared == 0) {
3999 for (i = 0; (i < stli_nrbrds); i++) {
4000 brdp = stli_brds[i];
4001 if (brdp == NULL)
4002 continue;
4003 if (brdp->state & BST_FOUND) {
4004 EBRDENABLE(brdp);
4005 brdp->enable = NULL;
4006 brdp->disable = NULL;
4011 retval = pci_register_driver(&stli_pcidriver);
4012 if (retval && found == 0) {
4013 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
4014 "driver can be registered!\n");
4015 goto err;
4018 return 0;
4019 err:
4020 return retval;
4023 /*****************************************************************************/
4026 * Code to handle an "staliomem" read operation. This device is the
4027 * contents of the board shared memory. It is used for down loading
4028 * the slave image (and debugging :-)
4031 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4033 unsigned long flags;
4034 void __iomem *memptr;
4035 struct stlibrd *brdp;
4036 unsigned int brdnr;
4037 int size, n;
4038 void *p;
4039 loff_t off = *offp;
4041 brdnr = iminor(fp->f_path.dentry->d_inode);
4042 if (brdnr >= stli_nrbrds)
4043 return -ENODEV;
4044 brdp = stli_brds[brdnr];
4045 if (brdp == NULL)
4046 return -ENODEV;
4047 if (brdp->state == 0)
4048 return -ENODEV;
4049 if (off >= brdp->memsize || off + count < off)
4050 return 0;
4052 size = min(count, (size_t)(brdp->memsize - off));
4055 * Copy the data a page at a time
4058 p = (void *)__get_free_page(GFP_KERNEL);
4059 if(p == NULL)
4060 return -ENOMEM;
4062 while (size > 0) {
4063 spin_lock_irqsave(&brd_lock, flags);
4064 EBRDENABLE(brdp);
4065 memptr = EBRDGETMEMPTR(brdp, off);
4066 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4067 n = min(n, (int)PAGE_SIZE);
4068 memcpy_fromio(p, memptr, n);
4069 EBRDDISABLE(brdp);
4070 spin_unlock_irqrestore(&brd_lock, flags);
4071 if (copy_to_user(buf, p, n)) {
4072 count = -EFAULT;
4073 goto out;
4075 off += n;
4076 buf += n;
4077 size -= n;
4079 out:
4080 *offp = off;
4081 free_page((unsigned long)p);
4082 return count;
4085 /*****************************************************************************/
4088 * Code to handle an "staliomem" write operation. This device is the
4089 * contents of the board shared memory. It is used for down loading
4090 * the slave image (and debugging :-)
4092 * FIXME: copy under lock
4095 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4097 unsigned long flags;
4098 void __iomem *memptr;
4099 struct stlibrd *brdp;
4100 char __user *chbuf;
4101 unsigned int brdnr;
4102 int size, n;
4103 void *p;
4104 loff_t off = *offp;
4106 brdnr = iminor(fp->f_path.dentry->d_inode);
4108 if (brdnr >= stli_nrbrds)
4109 return -ENODEV;
4110 brdp = stli_brds[brdnr];
4111 if (brdp == NULL)
4112 return -ENODEV;
4113 if (brdp->state == 0)
4114 return -ENODEV;
4115 if (off >= brdp->memsize || off + count < off)
4116 return 0;
4118 chbuf = (char __user *) buf;
4119 size = min(count, (size_t)(brdp->memsize - off));
4122 * Copy the data a page at a time
4125 p = (void *)__get_free_page(GFP_KERNEL);
4126 if(p == NULL)
4127 return -ENOMEM;
4129 while (size > 0) {
4130 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4131 n = min(n, (int)PAGE_SIZE);
4132 if (copy_from_user(p, chbuf, n)) {
4133 if (count == 0)
4134 count = -EFAULT;
4135 goto out;
4137 spin_lock_irqsave(&brd_lock, flags);
4138 EBRDENABLE(brdp);
4139 memptr = EBRDGETMEMPTR(brdp, off);
4140 memcpy_toio(memptr, p, n);
4141 EBRDDISABLE(brdp);
4142 spin_unlock_irqrestore(&brd_lock, flags);
4143 off += n;
4144 chbuf += n;
4145 size -= n;
4147 out:
4148 free_page((unsigned long) p);
4149 *offp = off;
4150 return count;
4153 /*****************************************************************************/
4156 * Return the board stats structure to user app.
4159 static int stli_getbrdstats(combrd_t __user *bp)
4161 struct stlibrd *brdp;
4162 unsigned int i;
4164 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4165 return -EFAULT;
4166 if (stli_brdstats.brd >= STL_MAXBRDS)
4167 return -ENODEV;
4168 brdp = stli_brds[stli_brdstats.brd];
4169 if (brdp == NULL)
4170 return -ENODEV;
4172 memset(&stli_brdstats, 0, sizeof(combrd_t));
4173 stli_brdstats.brd = brdp->brdnr;
4174 stli_brdstats.type = brdp->brdtype;
4175 stli_brdstats.hwid = 0;
4176 stli_brdstats.state = brdp->state;
4177 stli_brdstats.ioaddr = brdp->iobase;
4178 stli_brdstats.memaddr = brdp->memaddr;
4179 stli_brdstats.nrpanels = brdp->nrpanels;
4180 stli_brdstats.nrports = brdp->nrports;
4181 for (i = 0; (i < brdp->nrpanels); i++) {
4182 stli_brdstats.panels[i].panel = i;
4183 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4184 stli_brdstats.panels[i].nrports = brdp->panels[i];
4187 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4188 return -EFAULT;
4189 return 0;
4192 /*****************************************************************************/
4195 * Resolve the referenced port number into a port struct pointer.
4198 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4199 unsigned int portnr)
4201 struct stlibrd *brdp;
4202 unsigned int i;
4204 if (brdnr >= STL_MAXBRDS)
4205 return NULL;
4206 brdp = stli_brds[brdnr];
4207 if (brdp == NULL)
4208 return NULL;
4209 for (i = 0; (i < panelnr); i++)
4210 portnr += brdp->panels[i];
4211 if (portnr >= brdp->nrports)
4212 return NULL;
4213 return brdp->ports[portnr];
4216 /*****************************************************************************/
4219 * Return the port stats structure to user app. A NULL port struct
4220 * pointer passed in means that we need to find out from the app
4221 * what port to get stats for (used through board control device).
4224 static int stli_portcmdstats(struct stliport *portp)
4226 unsigned long flags;
4227 struct stlibrd *brdp;
4228 int rc;
4230 memset(&stli_comstats, 0, sizeof(comstats_t));
4232 if (portp == NULL)
4233 return -ENODEV;
4234 brdp = stli_brds[portp->brdnr];
4235 if (brdp == NULL)
4236 return -ENODEV;
4238 if (brdp->state & BST_STARTED) {
4239 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4240 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4241 return rc;
4242 } else {
4243 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4246 stli_comstats.brd = portp->brdnr;
4247 stli_comstats.panel = portp->panelnr;
4248 stli_comstats.port = portp->portnr;
4249 stli_comstats.state = portp->state;
4250 stli_comstats.flags = portp->port.flags;
4252 spin_lock_irqsave(&brd_lock, flags);
4253 if (portp->port.tty != NULL) {
4254 if (portp->port.tty->driver_data == portp) {
4255 stli_comstats.ttystate = portp->port.tty->flags;
4256 stli_comstats.rxbuffered = -1;
4257 if (portp->port.tty->termios != NULL) {
4258 stli_comstats.cflags = portp->port.tty->termios->c_cflag;
4259 stli_comstats.iflags = portp->port.tty->termios->c_iflag;
4260 stli_comstats.oflags = portp->port.tty->termios->c_oflag;
4261 stli_comstats.lflags = portp->port.tty->termios->c_lflag;
4265 spin_unlock_irqrestore(&brd_lock, flags);
4267 stli_comstats.txtotal = stli_cdkstats.txchars;
4268 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4269 stli_comstats.txbuffered = stli_cdkstats.txringq;
4270 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4271 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4272 stli_comstats.rxparity = stli_cdkstats.parity;
4273 stli_comstats.rxframing = stli_cdkstats.framing;
4274 stli_comstats.rxlost = stli_cdkstats.ringover;
4275 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4276 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4277 stli_comstats.txxon = stli_cdkstats.txstart;
4278 stli_comstats.txxoff = stli_cdkstats.txstop;
4279 stli_comstats.rxxon = stli_cdkstats.rxstart;
4280 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4281 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4282 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4283 stli_comstats.modem = stli_cdkstats.dcdcnt;
4284 stli_comstats.hwid = stli_cdkstats.hwid;
4285 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4287 return 0;
4290 /*****************************************************************************/
4293 * Return the port stats structure to user app. A NULL port struct
4294 * pointer passed in means that we need to find out from the app
4295 * what port to get stats for (used through board control device).
4298 static int stli_getportstats(struct stliport *portp, comstats_t __user *cp)
4300 struct stlibrd *brdp;
4301 int rc;
4303 if (!portp) {
4304 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4305 return -EFAULT;
4306 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4307 stli_comstats.port);
4308 if (!portp)
4309 return -ENODEV;
4312 brdp = stli_brds[portp->brdnr];
4313 if (!brdp)
4314 return -ENODEV;
4316 if ((rc = stli_portcmdstats(portp)) < 0)
4317 return rc;
4319 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4320 -EFAULT : 0;
4323 /*****************************************************************************/
4326 * Clear the port stats structure. We also return it zeroed out...
4329 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4331 struct stlibrd *brdp;
4332 int rc;
4334 if (!portp) {
4335 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4336 return -EFAULT;
4337 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4338 stli_comstats.port);
4339 if (!portp)
4340 return -ENODEV;
4343 brdp = stli_brds[portp->brdnr];
4344 if (!brdp)
4345 return -ENODEV;
4347 if (brdp->state & BST_STARTED) {
4348 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4349 return rc;
4352 memset(&stli_comstats, 0, sizeof(comstats_t));
4353 stli_comstats.brd = portp->brdnr;
4354 stli_comstats.panel = portp->panelnr;
4355 stli_comstats.port = portp->portnr;
4357 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4358 return -EFAULT;
4359 return 0;
4362 /*****************************************************************************/
4365 * Return the entire driver ports structure to a user app.
4368 static int stli_getportstruct(struct stliport __user *arg)
4370 struct stliport stli_dummyport;
4371 struct stliport *portp;
4373 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4374 return -EFAULT;
4375 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4376 stli_dummyport.portnr);
4377 if (!portp)
4378 return -ENODEV;
4379 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4380 return -EFAULT;
4381 return 0;
4384 /*****************************************************************************/
4387 * Return the entire driver board structure to a user app.
4390 static int stli_getbrdstruct(struct stlibrd __user *arg)
4392 struct stlibrd stli_dummybrd;
4393 struct stlibrd *brdp;
4395 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4396 return -EFAULT;
4397 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4398 return -ENODEV;
4399 brdp = stli_brds[stli_dummybrd.brdnr];
4400 if (!brdp)
4401 return -ENODEV;
4402 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4403 return -EFAULT;
4404 return 0;
4407 /*****************************************************************************/
4410 * The "staliomem" device is also required to do some special operations on
4411 * the board. We need to be able to send an interrupt to the board,
4412 * reset it, and start/stop it.
4415 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4417 struct stlibrd *brdp;
4418 int brdnr, rc, done;
4419 void __user *argp = (void __user *)arg;
4422 * First up handle the board independent ioctls.
4424 done = 0;
4425 rc = 0;
4427 lock_kernel();
4429 switch (cmd) {
4430 case COM_GETPORTSTATS:
4431 rc = stli_getportstats(NULL, argp);
4432 done++;
4433 break;
4434 case COM_CLRPORTSTATS:
4435 rc = stli_clrportstats(NULL, argp);
4436 done++;
4437 break;
4438 case COM_GETBRDSTATS:
4439 rc = stli_getbrdstats(argp);
4440 done++;
4441 break;
4442 case COM_READPORT:
4443 rc = stli_getportstruct(argp);
4444 done++;
4445 break;
4446 case COM_READBOARD:
4447 rc = stli_getbrdstruct(argp);
4448 done++;
4449 break;
4451 unlock_kernel();
4453 if (done)
4454 return rc;
4457 * Now handle the board specific ioctls. These all depend on the
4458 * minor number of the device they were called from.
4460 brdnr = iminor(ip);
4461 if (brdnr >= STL_MAXBRDS)
4462 return -ENODEV;
4463 brdp = stli_brds[brdnr];
4464 if (!brdp)
4465 return -ENODEV;
4466 if (brdp->state == 0)
4467 return -ENODEV;
4469 lock_kernel();
4471 switch (cmd) {
4472 case STL_BINTR:
4473 EBRDINTR(brdp);
4474 break;
4475 case STL_BSTART:
4476 rc = stli_startbrd(brdp);
4477 break;
4478 case STL_BSTOP:
4479 brdp->state &= ~BST_STARTED;
4480 break;
4481 case STL_BRESET:
4482 brdp->state &= ~BST_STARTED;
4483 EBRDRESET(brdp);
4484 if (stli_shared == 0) {
4485 if (brdp->reenable != NULL)
4486 (* brdp->reenable)(brdp);
4488 break;
4489 default:
4490 rc = -ENOIOCTLCMD;
4491 break;
4493 unlock_kernel();
4494 return rc;
4497 static const struct tty_operations stli_ops = {
4498 .open = stli_open,
4499 .close = stli_close,
4500 .write = stli_write,
4501 .put_char = stli_putchar,
4502 .flush_chars = stli_flushchars,
4503 .write_room = stli_writeroom,
4504 .chars_in_buffer = stli_charsinbuffer,
4505 .ioctl = stli_ioctl,
4506 .set_termios = stli_settermios,
4507 .throttle = stli_throttle,
4508 .unthrottle = stli_unthrottle,
4509 .stop = stli_stop,
4510 .start = stli_start,
4511 .hangup = stli_hangup,
4512 .flush_buffer = stli_flushbuffer,
4513 .break_ctl = stli_breakctl,
4514 .wait_until_sent = stli_waituntilsent,
4515 .send_xchar = stli_sendxchar,
4516 .read_proc = stli_readproc,
4517 .tiocmget = stli_tiocmget,
4518 .tiocmset = stli_tiocmset,
4521 /*****************************************************************************/
4523 * Loadable module initialization stuff.
4526 static void istallion_cleanup_isa(void)
4528 struct stlibrd *brdp;
4529 unsigned int j;
4531 for (j = 0; (j < stli_nrbrds); j++) {
4532 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4533 continue;
4535 stli_cleanup_ports(brdp);
4537 iounmap(brdp->membase);
4538 if (brdp->iosize > 0)
4539 release_region(brdp->iobase, brdp->iosize);
4540 kfree(brdp);
4541 stli_brds[j] = NULL;
4545 static int __init istallion_module_init(void)
4547 unsigned int i;
4548 int retval;
4550 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4552 spin_lock_init(&stli_lock);
4553 spin_lock_init(&brd_lock);
4555 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4556 if (!stli_txcookbuf) {
4557 printk(KERN_ERR "STALLION: failed to allocate memory "
4558 "(size=%d)\n", STLI_TXBUFSIZE);
4559 retval = -ENOMEM;
4560 goto err;
4563 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4564 if (!stli_serial) {
4565 retval = -ENOMEM;
4566 goto err_free;
4569 stli_serial->owner = THIS_MODULE;
4570 stli_serial->driver_name = stli_drvname;
4571 stli_serial->name = stli_serialname;
4572 stli_serial->major = STL_SERIALMAJOR;
4573 stli_serial->minor_start = 0;
4574 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4575 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4576 stli_serial->init_termios = stli_deftermios;
4577 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4578 tty_set_operations(stli_serial, &stli_ops);
4580 retval = tty_register_driver(stli_serial);
4581 if (retval) {
4582 printk(KERN_ERR "STALLION: failed to register serial driver\n");
4583 goto err_ttyput;
4586 retval = stli_initbrds();
4587 if (retval)
4588 goto err_ttyunr;
4591 * Set up a character driver for the shared memory region. We need this
4592 * to down load the slave code image. Also it is a useful debugging tool.
4594 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4595 if (retval) {
4596 printk(KERN_ERR "STALLION: failed to register serial memory "
4597 "device\n");
4598 goto err_deinit;
4601 istallion_class = class_create(THIS_MODULE, "staliomem");
4602 for (i = 0; i < 4; i++)
4603 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4604 "staliomem%d", i);
4606 return 0;
4607 err_deinit:
4608 pci_unregister_driver(&stli_pcidriver);
4609 istallion_cleanup_isa();
4610 err_ttyunr:
4611 tty_unregister_driver(stli_serial);
4612 err_ttyput:
4613 put_tty_driver(stli_serial);
4614 err_free:
4615 kfree(stli_txcookbuf);
4616 err:
4617 return retval;
4620 /*****************************************************************************/
4622 static void __exit istallion_module_exit(void)
4624 unsigned int j;
4626 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4627 stli_drvversion);
4629 if (stli_timeron) {
4630 stli_timeron = 0;
4631 del_timer_sync(&stli_timerlist);
4634 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4636 for (j = 0; j < 4; j++)
4637 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4638 class_destroy(istallion_class);
4640 pci_unregister_driver(&stli_pcidriver);
4641 istallion_cleanup_isa();
4643 tty_unregister_driver(stli_serial);
4644 put_tty_driver(stli_serial);
4646 kfree(stli_txcookbuf);
4649 module_init(istallion_module_init);
4650 module_exit(istallion_module_exit);