2 * SN2 Platform specific SMP Support
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
26 #include <asm/processor.h>
29 #include <asm/system.h>
30 #include <asm/delay.h>
35 #include <asm/hw_irq.h>
36 #include <asm/current.h>
37 #include <asm/sn/sn_cpuid.h>
38 #include <asm/sn/sn_sal.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/shub_mmr.h>
41 #include <asm/sn/nodepda.h>
42 #include <asm/sn/rw_mmr.h>
43 #include <asm/sn/sn_feature_sets.h>
45 DEFINE_PER_CPU(struct ptc_stats
, ptcstats
);
46 DECLARE_PER_CPU(struct ptc_stats
, ptcstats
);
48 static __cacheline_aligned
DEFINE_SPINLOCK(sn2_global_ptc_lock
);
50 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
51 static int sn2_flush_opt
= 0;
54 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
55 volatile unsigned long *, unsigned long,
56 volatile unsigned long *, unsigned long);
58 sn2_ptc_deadlock_recovery(short *, short, short, int,
59 volatile unsigned long *, unsigned long,
60 volatile unsigned long *, unsigned long);
63 * Note: some is the following is captured here to make degugging easier
64 * (the macros make more sense if you see the debug patch - not posted)
67 #define local_node_uses_ptc_ga(sh1) ((sh1) ? 1 : 0)
68 #define max_active_pio(sh1) ((sh1) ? 32 : 7)
69 #define reset_max_active_on_deadlock() 1
70 #define PTC_LOCK(sh1) ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
74 unsigned long change_rid
;
75 unsigned long shub_ptc_flushes
;
76 unsigned long nodes_flushed
;
77 unsigned long deadlocks
;
78 unsigned long deadlocks2
;
79 unsigned long lock_itc_clocks
;
80 unsigned long shub_itc_clocks
;
81 unsigned long shub_itc_clocks_max
;
82 unsigned long shub_ptc_flushes_not_my_mm
;
83 unsigned long shub_ipi_flushes
;
84 unsigned long shub_ipi_flushes_itc_clocks
;
89 static inline unsigned long wait_piowc(void)
91 volatile unsigned long *piows
;
92 unsigned long zeroval
, ws
;
94 piows
= pda
->pio_write_status_addr
;
95 zeroval
= pda
->pio_write_status_val
;
98 } while (((ws
= *piows
) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK
) != zeroval
);
99 return (ws
& SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK
) != 0;
103 * sn_migrate - SN-specific task migration actions
104 * @task: Task being migrated to new CPU
106 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
107 * Context switching user threads which have memory-mapped MMIO may cause
108 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
109 * from the previous CPU's Shub before execution resumes on the new CPU.
111 void sn_migrate(struct task_struct
*task
)
113 pda_t
*last_pda
= pdacpu(task_thread_info(task
)->last_cpu
);
114 volatile unsigned long *adr
= last_pda
->pio_write_status_addr
;
115 unsigned long val
= last_pda
->pio_write_status_val
;
117 /* Drain PIO writes from old CPU's Shub */
118 while (unlikely((*adr
& SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK
)
123 void sn_tlb_migrate_finish(struct mm_struct
*mm
)
125 /* flush_tlb_mm is inefficient if more than 1 users of mm */
126 if (mm
== current
->mm
&& mm
&& atomic_read(&mm
->mm_users
) == 1)
131 sn2_ipi_flush_all_tlb(struct mm_struct
*mm
)
135 itc
= ia64_get_itc();
136 smp_flush_tlb_cpumask(*mm_cpumask(mm
));
137 itc
= ia64_get_itc() - itc
;
138 __get_cpu_var(ptcstats
).shub_ipi_flushes_itc_clocks
+= itc
;
139 __get_cpu_var(ptcstats
).shub_ipi_flushes
++;
143 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
144 * @mm: mm_struct containing virtual address range
145 * @start: start of virtual address range
146 * @end: end of virtual address range
147 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
149 * Purges the translation caches of all processors of the given virtual address
153 * - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
154 * - cpu_vm_mask is converted into a nodemask of the nodes containing the
155 * cpus in cpu_vm_mask.
156 * - if only one bit is set in cpu_vm_mask & it is the current cpu & the
157 * process is purging its own virtual address range, then only the
158 * local TLB needs to be flushed. This flushing can be done using
159 * ptc.l. This is the common case & avoids the global spinlock.
160 * - if multiple cpus have loaded the context, then flushing has to be
161 * done with ptc.g/MMRs under protection of the global ptc_lock.
165 sn2_global_tlb_purge(struct mm_struct
*mm
, unsigned long start
,
166 unsigned long end
, unsigned long nbits
)
168 int i
, ibegin
, shub1
, cnode
, mynasid
, cpu
, lcpu
= 0, nasid
;
169 int mymm
= (mm
== current
->active_mm
&& mm
== current
->mm
);
171 volatile unsigned long *ptc0
, *ptc1
;
172 unsigned long itc
, itc2
, flags
, data0
= 0, data1
= 0, rr_value
, old_rr
= 0;
173 short nasids
[MAX_NUMNODES
], nix
;
174 nodemask_t nodes_flushed
;
175 int active
, max_active
, deadlock
, flush_opt
= sn2_flush_opt
;
178 sn2_ipi_flush_all_tlb(mm
);
182 nodes_clear(nodes_flushed
);
185 for_each_cpu(cpu
, mm_cpumask(mm
)) {
186 cnode
= cpu_to_node(cpu
);
187 node_set(cnode
, nodes_flushed
);
197 if (likely(i
== 1 && lcpu
== smp_processor_id() && mymm
)) {
199 ia64_ptcl(start
, nbits
<< 2);
200 start
+= (1UL << nbits
);
201 } while (start
< end
);
203 __get_cpu_var(ptcstats
).ptc_l
++;
208 if (atomic_read(&mm
->mm_users
) == 1 && mymm
) {
210 __get_cpu_var(ptcstats
).change_rid
++;
215 if (flush_opt
== 2) {
216 sn2_ipi_flush_all_tlb(mm
);
221 itc
= ia64_get_itc();
223 for_each_node_mask(cnode
, nodes_flushed
)
224 nasids
[nix
++] = cnodeid_to_nasid(cnode
);
226 rr_value
= (mm
->context
<< 3) | REGION_NUMBER(start
);
230 data0
= (1UL << SH1_PTC_0_A_SHFT
) |
231 (nbits
<< SH1_PTC_0_PS_SHFT
) |
232 (rr_value
<< SH1_PTC_0_RID_SHFT
) |
233 (1UL << SH1_PTC_0_START_SHFT
);
234 ptc0
= (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0
);
235 ptc1
= (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1
);
237 data0
= (1UL << SH2_PTC_A_SHFT
) |
238 (nbits
<< SH2_PTC_PS_SHFT
) |
239 (1UL << SH2_PTC_START_SHFT
);
240 ptc0
= (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC
+
241 (rr_value
<< SH2_PTC_RID_SHFT
));
246 mynasid
= get_nasid();
247 use_cpu_ptcga
= local_node_uses_ptc_ga(shub1
);
248 max_active
= max_active_pio(shub1
);
250 itc
= ia64_get_itc();
251 spin_lock_irqsave(PTC_LOCK(shub1
), flags
);
252 itc2
= ia64_get_itc();
254 __get_cpu_var(ptcstats
).lock_itc_clocks
+= itc2
- itc
;
255 __get_cpu_var(ptcstats
).shub_ptc_flushes
++;
256 __get_cpu_var(ptcstats
).nodes_flushed
+= nix
;
258 __get_cpu_var(ptcstats
).shub_ptc_flushes_not_my_mm
++;
260 if (use_cpu_ptcga
&& !mymm
) {
261 old_rr
= ia64_get_rr(start
);
262 ia64_set_rr(start
, (old_rr
& 0xff) | (rr_value
<< 8));
269 data1
= start
| (1UL << SH1_PTC_1_START_SHFT
);
271 data0
= (data0
& ~SH2_PTC_ADDR_MASK
) | (start
& SH2_PTC_ADDR_MASK
);
274 for (ibegin
= 0, i
= 0; i
< nix
; i
++) {
276 if (use_cpu_ptcga
&& unlikely(nasid
== mynasid
)) {
277 ia64_ptcga(start
, nbits
<< 2);
280 ptc0
= CHANGE_NASID(nasid
, ptc0
);
282 ptc1
= CHANGE_NASID(nasid
, ptc1
);
283 pio_atomic_phys_write_mmrs(ptc0
, data0
, ptc1
, data1
);
286 if (active
>= max_active
|| i
== (nix
- 1)) {
287 if ((deadlock
= wait_piowc())) {
290 sn2_ptc_deadlock_recovery(nasids
, ibegin
, i
, mynasid
, ptc0
, data0
, ptc1
, data1
);
291 if (reset_max_active_on_deadlock())
298 start
+= (1UL << nbits
);
299 } while (start
< end
);
302 itc2
= ia64_get_itc() - itc2
;
303 __get_cpu_var(ptcstats
).shub_itc_clocks
+= itc2
;
304 if (itc2
> __get_cpu_var(ptcstats
).shub_itc_clocks_max
)
305 __get_cpu_var(ptcstats
).shub_itc_clocks_max
= itc2
;
308 ia64_set_rr(start
, old_rr
);
312 spin_unlock_irqrestore(PTC_LOCK(shub1
), flags
);
314 if (flush_opt
== 1 && deadlock
) {
315 __get_cpu_var(ptcstats
).deadlocks
++;
316 sn2_ipi_flush_all_tlb(mm
);
323 * sn2_ptc_deadlock_recovery
325 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
326 * TLB flush transaction. The recovery sequence is somewhat tricky & is
327 * coded in assembly language.
331 sn2_ptc_deadlock_recovery(short *nasids
, short ib
, short ie
, int mynasid
,
332 volatile unsigned long *ptc0
, unsigned long data0
,
333 volatile unsigned long *ptc1
, unsigned long data1
)
336 unsigned long *piows
, zeroval
, n
;
338 __get_cpu_var(ptcstats
).deadlocks
++;
340 piows
= (unsigned long *) pda
->pio_write_status_addr
;
341 zeroval
= pda
->pio_write_status_val
;
344 for (i
=ib
; i
<= ie
; i
++) {
346 if (local_node_uses_ptc_ga(is_shub1()) && nasid
== mynasid
)
348 ptc0
= CHANGE_NASID(nasid
, ptc0
);
350 ptc1
= CHANGE_NASID(nasid
, ptc1
);
352 n
= sn2_ptc_deadlock_recovery_core(ptc0
, data0
, ptc1
, data1
, piows
, zeroval
);
353 __get_cpu_var(ptcstats
).deadlocks2
+= n
;
359 * sn_send_IPI_phys - send an IPI to a Nasid and slice
360 * @nasid: nasid to receive the interrupt (may be outside partition)
361 * @physid: physical cpuid to receive the interrupt.
362 * @vector: command to send
363 * @delivery_mode: delivery mechanism
365 * Sends an IPI (interprocessor interrupt) to the processor specified by
368 * @delivery_mode can be one of the following
370 * %IA64_IPI_DM_INT - pend an interrupt
371 * %IA64_IPI_DM_PMI - pend a PMI
372 * %IA64_IPI_DM_NMI - pend an NMI
373 * %IA64_IPI_DM_INIT - pend an INIT interrupt
375 void sn_send_IPI_phys(int nasid
, long physid
, int vector
, int delivery_mode
)
378 unsigned long flags
= 0;
381 p
= (long *)GLOBAL_MMR_PHYS_ADDR(nasid
, SH_IPI_INT
);
382 val
= (1UL << SH_IPI_INT_SEND_SHFT
) |
383 (physid
<< SH_IPI_INT_PID_SHFT
) |
384 ((long)delivery_mode
<< SH_IPI_INT_TYPE_SHFT
) |
385 ((long)vector
<< SH_IPI_INT_IDX_SHFT
) |
386 (0x000feeUL
<< SH_IPI_INT_BASE_SHFT
);
389 if (enable_shub_wars_1_1()) {
390 spin_lock_irqsave(&sn2_global_ptc_lock
, flags
);
392 pio_phys_write_mmr(p
, val
);
393 if (enable_shub_wars_1_1()) {
395 spin_unlock_irqrestore(&sn2_global_ptc_lock
, flags
);
400 EXPORT_SYMBOL(sn_send_IPI_phys
);
403 * sn2_send_IPI - send an IPI to a processor
404 * @cpuid: target of the IPI
405 * @vector: command to send
406 * @delivery_mode: delivery mechanism
407 * @redirect: redirect the IPI?
409 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
410 * @cpuid. @vector specifies the command to send, while @delivery_mode can
411 * be one of the following
413 * %IA64_IPI_DM_INT - pend an interrupt
414 * %IA64_IPI_DM_PMI - pend a PMI
415 * %IA64_IPI_DM_NMI - pend an NMI
416 * %IA64_IPI_DM_INIT - pend an INIT interrupt
418 void sn2_send_IPI(int cpuid
, int vector
, int delivery_mode
, int redirect
)
423 physid
= cpu_physical_id(cpuid
);
424 nasid
= cpuid_to_nasid(cpuid
);
426 /* the following is used only when starting cpus at boot time */
427 if (unlikely(nasid
== -1))
428 ia64_sn_get_sapic_info(physid
, &nasid
, NULL
, NULL
);
430 sn_send_IPI_phys(nasid
, physid
, vector
, delivery_mode
);
433 #ifdef CONFIG_HOTPLUG_CPU
435 * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
436 * @cpu - CPU that is requested to be disabled.
438 * CPU disable is only allowed on SHub2 systems running with a PROM
439 * that supports CPU disable. It is not permitted to disable the boot processor.
441 bool sn_cpu_disable_allowed(int cpu
)
443 if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT
)) {
448 "Disabling the boot processor is not allowed.\n");
452 "CPU disable is not supported on this system.\n");
456 #endif /* CONFIG_HOTPLUG_CPU */
458 #ifdef CONFIG_PROC_FS
460 #define PTC_BASENAME "sgi_sn/ptc_statistics"
462 static void *sn2_ptc_seq_start(struct seq_file
*file
, loff_t
* offset
)
464 if (*offset
< nr_cpu_ids
)
469 static void *sn2_ptc_seq_next(struct seq_file
*file
, void *data
, loff_t
* offset
)
472 if (*offset
< nr_cpu_ids
)
477 static void sn2_ptc_seq_stop(struct seq_file
*file
, void *data
)
481 static int sn2_ptc_seq_show(struct seq_file
*file
, void *data
)
483 struct ptc_stats
*stat
;
486 cpu
= *(loff_t
*) data
;
490 "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
491 seq_printf(file
, "# ptctest %d, flushopt %d\n", sn2_ptctest
, sn2_flush_opt
);
494 if (cpu
< nr_cpu_ids
&& cpu_online(cpu
)) {
495 stat
= &per_cpu(ptcstats
, cpu
);
496 seq_printf(file
, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu
, stat
->ptc_l
,
497 stat
->change_rid
, stat
->shub_ptc_flushes
, stat
->nodes_flushed
,
499 1000 * stat
->lock_itc_clocks
/ per_cpu(cpu_info
, cpu
).cyc_per_usec
,
500 1000 * stat
->shub_itc_clocks
/ per_cpu(cpu_info
, cpu
).cyc_per_usec
,
501 1000 * stat
->shub_itc_clocks_max
/ per_cpu(cpu_info
, cpu
).cyc_per_usec
,
502 stat
->shub_ptc_flushes_not_my_mm
,
504 stat
->shub_ipi_flushes
,
505 1000 * stat
->shub_ipi_flushes_itc_clocks
/ per_cpu(cpu_info
, cpu
).cyc_per_usec
);
510 static ssize_t
sn2_ptc_proc_write(struct file
*file
, const char __user
*user
, size_t count
, loff_t
*data
)
515 if (count
== 0 || count
> sizeof(optstr
))
517 if (copy_from_user(optstr
, user
, count
))
519 optstr
[count
- 1] = '\0';
520 sn2_flush_opt
= simple_strtoul(optstr
, NULL
, 0);
522 for_each_online_cpu(cpu
)
523 memset(&per_cpu(ptcstats
, cpu
), 0, sizeof(struct ptc_stats
));
528 static const struct seq_operations sn2_ptc_seq_ops
= {
529 .start
= sn2_ptc_seq_start
,
530 .next
= sn2_ptc_seq_next
,
531 .stop
= sn2_ptc_seq_stop
,
532 .show
= sn2_ptc_seq_show
535 static int sn2_ptc_proc_open(struct inode
*inode
, struct file
*file
)
537 return seq_open(file
, &sn2_ptc_seq_ops
);
540 static const struct file_operations proc_sn2_ptc_operations
= {
541 .open
= sn2_ptc_proc_open
,
543 .write
= sn2_ptc_proc_write
,
545 .release
= seq_release
,
548 static struct proc_dir_entry
*proc_sn2_ptc
;
550 static int __init
sn2_ptc_init(void)
552 if (!ia64_platform_is("sn2"))
555 proc_sn2_ptc
= proc_create(PTC_BASENAME
, 0444,
556 NULL
, &proc_sn2_ptc_operations
);
558 printk(KERN_ERR
"unable to create %s proc entry", PTC_BASENAME
);
561 spin_lock_init(&sn2_global_ptc_lock
);
565 static void __exit
sn2_ptc_exit(void)
567 remove_proc_entry(PTC_BASENAME
, NULL
);
570 module_init(sn2_ptc_init
);
571 module_exit(sn2_ptc_exit
);
572 #endif /* CONFIG_PROC_FS */