[ARM] pxa: update defconfig for Verdex Pro
[linux-2.6/verdex.git] / arch / powerpc / platforms / ps3 / spu.c
blobb3c6a993f9f3bc0d16a415391c631d988b887ef2
1 /*
2 * PS3 Platform spu routines.
4 * Copyright (C) 2006 Sony Computer Entertainment Inc.
5 * Copyright 2006 Sony Corp.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mmzone.h>
24 #include <linux/io.h>
25 #include <linux/mm.h>
27 #include <asm/spu.h>
28 #include <asm/spu_priv1.h>
29 #include <asm/lv1call.h>
30 #include <asm/ps3.h>
32 #include "../cell/spufs/spufs.h"
33 #include "platform.h"
35 /* spu_management_ops */
37 /**
38 * enum spe_type - Type of spe to create.
39 * @spe_type_logical: Standard logical spe.
41 * For use with lv1_construct_logical_spe(). The current HV does not support
42 * any types other than those listed.
45 enum spe_type {
46 SPE_TYPE_LOGICAL = 0,
49 /**
50 * struct spe_shadow - logical spe shadow register area.
52 * Read-only shadow of spe registers.
55 struct spe_shadow {
56 u8 padding_0140[0x0140];
57 u64 int_status_class0_RW; /* 0x0140 */
58 u64 int_status_class1_RW; /* 0x0148 */
59 u64 int_status_class2_RW; /* 0x0150 */
60 u8 padding_0158[0x0610-0x0158];
61 u64 mfc_dsisr_RW; /* 0x0610 */
62 u8 padding_0618[0x0620-0x0618];
63 u64 mfc_dar_RW; /* 0x0620 */
64 u8 padding_0628[0x0800-0x0628];
65 u64 mfc_dsipr_R; /* 0x0800 */
66 u8 padding_0808[0x0810-0x0808];
67 u64 mfc_lscrr_R; /* 0x0810 */
68 u8 padding_0818[0x0c00-0x0818];
69 u64 mfc_cer_R; /* 0x0c00 */
70 u8 padding_0c08[0x0f00-0x0c08];
71 u64 spe_execution_status; /* 0x0f00 */
72 u8 padding_0f08[0x1000-0x0f08];
75 /**
76 * enum spe_ex_state - Logical spe execution state.
77 * @spe_ex_state_unexecutable: Uninitialized.
78 * @spe_ex_state_executable: Enabled, not ready.
79 * @spe_ex_state_executed: Ready for use.
81 * The execution state (status) of the logical spe as reported in
82 * struct spe_shadow:spe_execution_status.
85 enum spe_ex_state {
86 SPE_EX_STATE_UNEXECUTABLE = 0,
87 SPE_EX_STATE_EXECUTABLE = 2,
88 SPE_EX_STATE_EXECUTED = 3,
91 /**
92 * struct priv1_cache - Cached values of priv1 registers.
93 * @masks[]: Array of cached spe interrupt masks, indexed by class.
94 * @sr1: Cached mfc_sr1 register.
95 * @tclass_id: Cached mfc_tclass_id register.
98 struct priv1_cache {
99 u64 masks[3];
100 u64 sr1;
101 u64 tclass_id;
105 * struct spu_pdata - Platform state variables.
106 * @spe_id: HV spe id returned by lv1_construct_logical_spe().
107 * @resource_id: HV spe resource id returned by
108 * ps3_repository_read_spe_resource_id().
109 * @priv2_addr: lpar address of spe priv2 area returned by
110 * lv1_construct_logical_spe().
111 * @shadow_addr: lpar address of spe register shadow area returned by
112 * lv1_construct_logical_spe().
113 * @shadow: Virtual (ioremap) address of spe register shadow area.
114 * @cache: Cached values of priv1 registers.
117 struct spu_pdata {
118 u64 spe_id;
119 u64 resource_id;
120 u64 priv2_addr;
121 u64 shadow_addr;
122 struct spe_shadow __iomem *shadow;
123 struct priv1_cache cache;
126 static struct spu_pdata *spu_pdata(struct spu *spu)
128 return spu->pdata;
131 #define dump_areas(_a, _b, _c, _d, _e) \
132 _dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__)
133 static void _dump_areas(unsigned int spe_id, unsigned long priv2,
134 unsigned long problem, unsigned long ls, unsigned long shadow,
135 const char* func, int line)
137 pr_debug("%s:%d: spe_id: %xh (%u)\n", func, line, spe_id, spe_id);
138 pr_debug("%s:%d: priv2: %lxh\n", func, line, priv2);
139 pr_debug("%s:%d: problem: %lxh\n", func, line, problem);
140 pr_debug("%s:%d: ls: %lxh\n", func, line, ls);
141 pr_debug("%s:%d: shadow: %lxh\n", func, line, shadow);
144 inline u64 ps3_get_spe_id(void *arg)
146 return spu_pdata(arg)->spe_id;
148 EXPORT_SYMBOL_GPL(ps3_get_spe_id);
150 static unsigned long get_vas_id(void)
152 u64 id;
154 lv1_get_logical_ppe_id(&id);
155 lv1_get_virtual_address_space_id_of_ppe(id, &id);
157 return id;
160 static int __init construct_spu(struct spu *spu)
162 int result;
163 u64 unused;
164 u64 problem_phys;
165 u64 local_store_phys;
167 result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT,
168 PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL,
169 &spu_pdata(spu)->priv2_addr, &problem_phys,
170 &local_store_phys, &unused,
171 &spu_pdata(spu)->shadow_addr,
172 &spu_pdata(spu)->spe_id);
173 spu->problem_phys = problem_phys;
174 spu->local_store_phys = local_store_phys;
176 if (result) {
177 pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n",
178 __func__, __LINE__, ps3_result(result));
179 return result;
182 return result;
185 static void spu_unmap(struct spu *spu)
187 iounmap(spu->priv2);
188 iounmap(spu->problem);
189 iounmap((__force u8 __iomem *)spu->local_store);
190 iounmap(spu_pdata(spu)->shadow);
194 * setup_areas - Map the spu regions into the address space.
196 * The current HV requires the spu shadow regs to be mapped with the
197 * PTE page protection bits set as read-only (PP=3). This implementation
198 * uses the low level __ioremap() to bypass the page protection settings
199 * inforced by ioremap_flags() to get the needed PTE bits set for the
200 * shadow regs.
203 static int __init setup_areas(struct spu *spu)
205 struct table {char* name; unsigned long addr; unsigned long size;};
206 static const unsigned long shadow_flags = _PAGE_NO_CACHE | 3;
208 spu_pdata(spu)->shadow = __ioremap(spu_pdata(spu)->shadow_addr,
209 sizeof(struct spe_shadow),
210 shadow_flags);
211 if (!spu_pdata(spu)->shadow) {
212 pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__);
213 goto fail_ioremap;
216 spu->local_store = (__force void *)ioremap_flags(spu->local_store_phys,
217 LS_SIZE, _PAGE_NO_CACHE);
219 if (!spu->local_store) {
220 pr_debug("%s:%d: ioremap local_store failed\n",
221 __func__, __LINE__);
222 goto fail_ioremap;
225 spu->problem = ioremap(spu->problem_phys,
226 sizeof(struct spu_problem));
228 if (!spu->problem) {
229 pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__);
230 goto fail_ioremap;
233 spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr,
234 sizeof(struct spu_priv2));
236 if (!spu->priv2) {
237 pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__);
238 goto fail_ioremap;
241 dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr,
242 spu->problem_phys, spu->local_store_phys,
243 spu_pdata(spu)->shadow_addr);
244 dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2,
245 (unsigned long)spu->problem, (unsigned long)spu->local_store,
246 (unsigned long)spu_pdata(spu)->shadow);
248 return 0;
250 fail_ioremap:
251 spu_unmap(spu);
253 return -ENOMEM;
256 static int __init setup_interrupts(struct spu *spu)
258 int result;
260 result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
261 0, &spu->irqs[0]);
263 if (result)
264 goto fail_alloc_0;
266 result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
267 1, &spu->irqs[1]);
269 if (result)
270 goto fail_alloc_1;
272 result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
273 2, &spu->irqs[2]);
275 if (result)
276 goto fail_alloc_2;
278 return result;
280 fail_alloc_2:
281 ps3_spe_irq_destroy(spu->irqs[1]);
282 fail_alloc_1:
283 ps3_spe_irq_destroy(spu->irqs[0]);
284 fail_alloc_0:
285 spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
286 return result;
289 static int __init enable_spu(struct spu *spu)
291 int result;
293 result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id,
294 spu_pdata(spu)->resource_id);
296 if (result) {
297 pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n",
298 __func__, __LINE__, ps3_result(result));
299 goto fail_enable;
302 result = setup_areas(spu);
304 if (result)
305 goto fail_areas;
307 result = setup_interrupts(spu);
309 if (result)
310 goto fail_interrupts;
312 return 0;
314 fail_interrupts:
315 spu_unmap(spu);
316 fail_areas:
317 lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
318 fail_enable:
319 return result;
322 static int ps3_destroy_spu(struct spu *spu)
324 int result;
326 pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
328 result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
329 BUG_ON(result);
331 ps3_spe_irq_destroy(spu->irqs[2]);
332 ps3_spe_irq_destroy(spu->irqs[1]);
333 ps3_spe_irq_destroy(spu->irqs[0]);
335 spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
337 spu_unmap(spu);
339 result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id);
340 BUG_ON(result);
342 kfree(spu->pdata);
343 spu->pdata = NULL;
345 return 0;
348 static int __init ps3_create_spu(struct spu *spu, void *data)
350 int result;
352 pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
354 spu->pdata = kzalloc(sizeof(struct spu_pdata),
355 GFP_KERNEL);
357 if (!spu->pdata) {
358 result = -ENOMEM;
359 goto fail_malloc;
362 spu_pdata(spu)->resource_id = (unsigned long)data;
364 /* Init cached reg values to HV defaults. */
366 spu_pdata(spu)->cache.sr1 = 0x33;
368 result = construct_spu(spu);
370 if (result)
371 goto fail_construct;
373 /* For now, just go ahead and enable it. */
375 result = enable_spu(spu);
377 if (result)
378 goto fail_enable;
380 /* Make sure the spu is in SPE_EX_STATE_EXECUTED. */
382 /* need something better here!!! */
383 while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status)
384 != SPE_EX_STATE_EXECUTED)
385 (void)0;
387 return result;
389 fail_enable:
390 fail_construct:
391 ps3_destroy_spu(spu);
392 fail_malloc:
393 return result;
396 static int __init ps3_enumerate_spus(int (*fn)(void *data))
398 int result;
399 unsigned int num_resource_id;
400 unsigned int i;
402 result = ps3_repository_read_num_spu_resource_id(&num_resource_id);
404 pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__,
405 num_resource_id);
408 * For now, just create logical spus equal to the number
409 * of physical spus reserved for the partition.
412 for (i = 0; i < num_resource_id; i++) {
413 enum ps3_spu_resource_type resource_type;
414 unsigned int resource_id;
416 result = ps3_repository_read_spu_resource_id(i,
417 &resource_type, &resource_id);
419 if (result)
420 break;
422 if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) {
423 result = fn((void*)(unsigned long)resource_id);
425 if (result)
426 break;
430 if (result) {
431 printk(KERN_WARNING "%s:%d: Error initializing spus\n",
432 __func__, __LINE__);
433 return result;
436 return num_resource_id;
439 static int ps3_init_affinity(void)
441 return 0;
445 * ps3_enable_spu - Enable SPU run control.
447 * An outstanding enhancement for the PS3 would be to add a guard to check
448 * for incorrect access to the spu problem state when the spu context is
449 * disabled. This check could be implemented with a flag added to the spu
450 * context that would inhibit mapping problem state pages, and a routine
451 * to unmap spu problem state pages. When the spu is enabled with
452 * ps3_enable_spu() the flag would be set allowing pages to be mapped,
453 * and when the spu is disabled with ps3_disable_spu() the flag would be
454 * cleared and the mapped problem state pages would be unmapped.
457 static void ps3_enable_spu(struct spu_context *ctx)
461 static void ps3_disable_spu(struct spu_context *ctx)
463 ctx->ops->runcntl_stop(ctx);
466 const struct spu_management_ops spu_management_ps3_ops = {
467 .enumerate_spus = ps3_enumerate_spus,
468 .create_spu = ps3_create_spu,
469 .destroy_spu = ps3_destroy_spu,
470 .enable_spu = ps3_enable_spu,
471 .disable_spu = ps3_disable_spu,
472 .init_affinity = ps3_init_affinity,
475 /* spu_priv1_ops */
477 static void int_mask_and(struct spu *spu, int class, u64 mask)
479 u64 old_mask;
481 /* are these serialized by caller??? */
482 old_mask = spu_int_mask_get(spu, class);
483 spu_int_mask_set(spu, class, old_mask & mask);
486 static void int_mask_or(struct spu *spu, int class, u64 mask)
488 u64 old_mask;
490 old_mask = spu_int_mask_get(spu, class);
491 spu_int_mask_set(spu, class, old_mask | mask);
494 static void int_mask_set(struct spu *spu, int class, u64 mask)
496 spu_pdata(spu)->cache.masks[class] = mask;
497 lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class,
498 spu_pdata(spu)->cache.masks[class]);
501 static u64 int_mask_get(struct spu *spu, int class)
503 return spu_pdata(spu)->cache.masks[class];
506 static void int_stat_clear(struct spu *spu, int class, u64 stat)
508 /* Note that MFC_DSISR will be cleared when class1[MF] is set. */
510 lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class,
511 stat, 0);
514 static u64 int_stat_get(struct spu *spu, int class)
516 u64 stat;
518 lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat);
519 return stat;
522 static void cpu_affinity_set(struct spu *spu, int cpu)
524 /* No support. */
527 static u64 mfc_dar_get(struct spu *spu)
529 return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW);
532 static void mfc_dsisr_set(struct spu *spu, u64 dsisr)
534 /* Nothing to do, cleared in int_stat_clear(). */
537 static u64 mfc_dsisr_get(struct spu *spu)
539 return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW);
542 static void mfc_sdr_setup(struct spu *spu)
544 /* Nothing to do. */
547 static void mfc_sr1_set(struct spu *spu, u64 sr1)
549 /* Check bits allowed by HV. */
551 static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK
552 | MFC_STATE1_PROBLEM_STATE_MASK);
554 BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed));
556 spu_pdata(spu)->cache.sr1 = sr1;
557 lv1_set_spe_privilege_state_area_1_register(
558 spu_pdata(spu)->spe_id,
559 offsetof(struct spu_priv1, mfc_sr1_RW),
560 spu_pdata(spu)->cache.sr1);
563 static u64 mfc_sr1_get(struct spu *spu)
565 return spu_pdata(spu)->cache.sr1;
568 static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id)
570 spu_pdata(spu)->cache.tclass_id = tclass_id;
571 lv1_set_spe_privilege_state_area_1_register(
572 spu_pdata(spu)->spe_id,
573 offsetof(struct spu_priv1, mfc_tclass_id_RW),
574 spu_pdata(spu)->cache.tclass_id);
577 static u64 mfc_tclass_id_get(struct spu *spu)
579 return spu_pdata(spu)->cache.tclass_id;
582 static void tlb_invalidate(struct spu *spu)
584 /* Nothing to do. */
587 static void resource_allocation_groupID_set(struct spu *spu, u64 id)
589 /* No support. */
592 static u64 resource_allocation_groupID_get(struct spu *spu)
594 return 0; /* No support. */
597 static void resource_allocation_enable_set(struct spu *spu, u64 enable)
599 /* No support. */
602 static u64 resource_allocation_enable_get(struct spu *spu)
604 return 0; /* No support. */
607 const struct spu_priv1_ops spu_priv1_ps3_ops = {
608 .int_mask_and = int_mask_and,
609 .int_mask_or = int_mask_or,
610 .int_mask_set = int_mask_set,
611 .int_mask_get = int_mask_get,
612 .int_stat_clear = int_stat_clear,
613 .int_stat_get = int_stat_get,
614 .cpu_affinity_set = cpu_affinity_set,
615 .mfc_dar_get = mfc_dar_get,
616 .mfc_dsisr_set = mfc_dsisr_set,
617 .mfc_dsisr_get = mfc_dsisr_get,
618 .mfc_sdr_setup = mfc_sdr_setup,
619 .mfc_sr1_set = mfc_sr1_set,
620 .mfc_sr1_get = mfc_sr1_get,
621 .mfc_tclass_id_set = mfc_tclass_id_set,
622 .mfc_tclass_id_get = mfc_tclass_id_get,
623 .tlb_invalidate = tlb_invalidate,
624 .resource_allocation_groupID_set = resource_allocation_groupID_set,
625 .resource_allocation_groupID_get = resource_allocation_groupID_get,
626 .resource_allocation_enable_set = resource_allocation_enable_set,
627 .resource_allocation_enable_get = resource_allocation_enable_get,
630 void ps3_spu_set_platform(void)
632 spu_priv1_ops = &spu_priv1_ps3_ops;
633 spu_management_ops = &spu_management_ps3_ops;