[ARM] pxa: update defconfig for Verdex Pro
[linux-2.6/verdex.git] / arch / powerpc / sysdev / cpm1.c
blob82424cd7e1287bcc009b81f2327b078229a6050f
1 /*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/8xx_immap.h>
37 #include <asm/cpm1.h>
38 #include <asm/io.h>
39 #include <asm/tlbflush.h>
40 #include <asm/rheap.h>
41 #include <asm/prom.h>
42 #include <asm/cpm.h>
44 #include <asm/fs_pd.h>
46 #ifdef CONFIG_8xx_GPIO
47 #include <linux/of_gpio.h>
48 #endif
50 #define CPM_MAP_SIZE (0x4000)
52 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
53 immap_t __iomem *mpc8xx_immr;
54 static cpic8xx_t __iomem *cpic_reg;
56 static struct irq_host *cpm_pic_host;
58 static void cpm_mask_irq(unsigned int irq)
60 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
62 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
65 static void cpm_unmask_irq(unsigned int irq)
67 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
69 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
72 static void cpm_end_irq(unsigned int irq)
74 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
76 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
79 static struct irq_chip cpm_pic = {
80 .typename = " CPM PIC ",
81 .mask = cpm_mask_irq,
82 .unmask = cpm_unmask_irq,
83 .eoi = cpm_end_irq,
86 int cpm_get_irq(void)
88 int cpm_vec;
90 /* Get the vector by setting the ACK bit and then reading
91 * the register.
93 out_be16(&cpic_reg->cpic_civr, 1);
94 cpm_vec = in_be16(&cpic_reg->cpic_civr);
95 cpm_vec >>= 11;
97 return irq_linear_revmap(cpm_pic_host, cpm_vec);
100 static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
101 irq_hw_number_t hw)
103 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105 get_irq_desc(virq)->status |= IRQ_LEVEL;
106 set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
107 return 0;
110 /* The CPM can generate the error interrupt when there is a race condition
111 * between generating and masking interrupts. All we have to do is ACK it
112 * and return. This is a no-op function so we don't need any special
113 * tests in the interrupt handler.
115 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117 return IRQ_HANDLED;
120 static struct irqaction cpm_error_irqaction = {
121 .handler = cpm_error_interrupt,
122 .name = "error",
125 static struct irq_host_ops cpm_pic_host_ops = {
126 .map = cpm_pic_host_map,
129 unsigned int cpm_pic_init(void)
131 struct device_node *np = NULL;
132 struct resource res;
133 unsigned int sirq = NO_IRQ, hwirq, eirq;
134 int ret;
136 pr_debug("cpm_pic_init\n");
138 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
139 if (np == NULL)
140 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
141 if (np == NULL) {
142 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
143 return sirq;
146 ret = of_address_to_resource(np, 0, &res);
147 if (ret)
148 goto end;
150 cpic_reg = ioremap(res.start, res.end - res.start + 1);
151 if (cpic_reg == NULL)
152 goto end;
154 sirq = irq_of_parse_and_map(np, 0);
155 if (sirq == NO_IRQ)
156 goto end;
158 /* Initialize the CPM interrupt controller. */
159 hwirq = (unsigned int)irq_map[sirq].hwirq;
160 out_be32(&cpic_reg->cpic_cicr,
161 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
162 ((hwirq/2) << 13) | CICR_HP_MASK);
164 out_be32(&cpic_reg->cpic_cimr, 0);
166 cpm_pic_host = irq_alloc_host(np, IRQ_HOST_MAP_LINEAR,
167 64, &cpm_pic_host_ops, 64);
168 if (cpm_pic_host == NULL) {
169 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
170 sirq = NO_IRQ;
171 goto end;
174 /* Install our own error handler. */
175 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
176 if (np == NULL)
177 np = of_find_node_by_type(NULL, "cpm");
178 if (np == NULL) {
179 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
180 goto end;
183 eirq = irq_of_parse_and_map(np, 0);
184 if (eirq == NO_IRQ)
185 goto end;
187 if (setup_irq(eirq, &cpm_error_irqaction))
188 printk(KERN_ERR "Could not allocate CPM error IRQ!");
190 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
192 end:
193 of_node_put(np);
194 return sirq;
197 void __init cpm_reset(void)
199 sysconf8xx_t __iomem *siu_conf;
201 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
202 if (!mpc8xx_immr) {
203 printk(KERN_CRIT "Could not map IMMR\n");
204 return;
207 cpmp = &mpc8xx_immr->im_cpm;
209 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
210 /* Perform a reset.
212 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
214 /* Wait for it.
216 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
217 #endif
219 #ifdef CONFIG_UCODE_PATCH
220 cpm_load_patch(cpmp);
221 #endif
223 /* Set SDMA Bus Request priority 5.
224 * On 860T, this also enables FEC priority 6. I am not sure
225 * this is what we realy want for some applications, but the
226 * manual recommends it.
227 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
229 siu_conf = immr_map(im_siu_conf);
230 out_be32(&siu_conf->sc_sdcr, 1);
231 immr_unmap(siu_conf);
233 cpm_muram_init();
236 static DEFINE_SPINLOCK(cmd_lock);
238 #define MAX_CR_CMD_LOOPS 10000
240 int cpm_command(u32 command, u8 opcode)
242 int i, ret;
243 unsigned long flags;
245 if (command & 0xffffff0f)
246 return -EINVAL;
248 spin_lock_irqsave(&cmd_lock, flags);
250 ret = 0;
251 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
252 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
253 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
254 goto out;
256 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
257 ret = -EIO;
258 out:
259 spin_unlock_irqrestore(&cmd_lock, flags);
260 return ret;
262 EXPORT_SYMBOL(cpm_command);
264 /* Set a baud rate generator. This needs lots of work. There are
265 * four BRGs, any of which can be wired to any channel.
266 * The internal baud rate clock is the system clock divided by 16.
267 * This assumes the baudrate is 16x oversampled by the uart.
269 #define BRG_INT_CLK (get_brgfreq())
270 #define BRG_UART_CLK (BRG_INT_CLK/16)
271 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
273 void
274 cpm_setbrg(uint brg, uint rate)
276 u32 __iomem *bp;
278 /* This is good enough to get SMCs running.....
280 bp = &cpmp->cp_brgc1;
281 bp += brg;
282 /* The BRG has a 12-bit counter. For really slow baud rates (or
283 * really fast processors), we may have to further divide by 16.
285 if (((BRG_UART_CLK / rate) - 1) < 4096)
286 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
287 else
288 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
289 CPM_BRG_EN | CPM_BRG_DIV16);
292 struct cpm_ioport16 {
293 __be16 dir, par, odr_sor, dat, intr;
294 __be16 res[3];
297 struct cpm_ioport32b {
298 __be32 dir, par, odr, dat;
301 struct cpm_ioport32e {
302 __be32 dir, par, sor, odr, dat;
305 static void cpm1_set_pin32(int port, int pin, int flags)
307 struct cpm_ioport32e __iomem *iop;
308 pin = 1 << (31 - pin);
310 if (port == CPM_PORTB)
311 iop = (struct cpm_ioport32e __iomem *)
312 &mpc8xx_immr->im_cpm.cp_pbdir;
313 else
314 iop = (struct cpm_ioport32e __iomem *)
315 &mpc8xx_immr->im_cpm.cp_pedir;
317 if (flags & CPM_PIN_OUTPUT)
318 setbits32(&iop->dir, pin);
319 else
320 clrbits32(&iop->dir, pin);
322 if (!(flags & CPM_PIN_GPIO))
323 setbits32(&iop->par, pin);
324 else
325 clrbits32(&iop->par, pin);
327 if (port == CPM_PORTB) {
328 if (flags & CPM_PIN_OPENDRAIN)
329 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
330 else
331 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
334 if (port == CPM_PORTE) {
335 if (flags & CPM_PIN_SECONDARY)
336 setbits32(&iop->sor, pin);
337 else
338 clrbits32(&iop->sor, pin);
340 if (flags & CPM_PIN_OPENDRAIN)
341 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
342 else
343 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
347 static void cpm1_set_pin16(int port, int pin, int flags)
349 struct cpm_ioport16 __iomem *iop =
350 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
352 pin = 1 << (15 - pin);
354 if (port != 0)
355 iop += port - 1;
357 if (flags & CPM_PIN_OUTPUT)
358 setbits16(&iop->dir, pin);
359 else
360 clrbits16(&iop->dir, pin);
362 if (!(flags & CPM_PIN_GPIO))
363 setbits16(&iop->par, pin);
364 else
365 clrbits16(&iop->par, pin);
367 if (port == CPM_PORTA) {
368 if (flags & CPM_PIN_OPENDRAIN)
369 setbits16(&iop->odr_sor, pin);
370 else
371 clrbits16(&iop->odr_sor, pin);
373 if (port == CPM_PORTC) {
374 if (flags & CPM_PIN_SECONDARY)
375 setbits16(&iop->odr_sor, pin);
376 else
377 clrbits16(&iop->odr_sor, pin);
381 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
383 if (port == CPM_PORTB || port == CPM_PORTE)
384 cpm1_set_pin32(port, pin, flags);
385 else
386 cpm1_set_pin16(port, pin, flags);
389 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
391 int shift;
392 int i, bits = 0;
393 u32 __iomem *reg;
394 u32 mask = 7;
396 u8 clk_map[][3] = {
397 {CPM_CLK_SCC1, CPM_BRG1, 0},
398 {CPM_CLK_SCC1, CPM_BRG2, 1},
399 {CPM_CLK_SCC1, CPM_BRG3, 2},
400 {CPM_CLK_SCC1, CPM_BRG4, 3},
401 {CPM_CLK_SCC1, CPM_CLK1, 4},
402 {CPM_CLK_SCC1, CPM_CLK2, 5},
403 {CPM_CLK_SCC1, CPM_CLK3, 6},
404 {CPM_CLK_SCC1, CPM_CLK4, 7},
406 {CPM_CLK_SCC2, CPM_BRG1, 0},
407 {CPM_CLK_SCC2, CPM_BRG2, 1},
408 {CPM_CLK_SCC2, CPM_BRG3, 2},
409 {CPM_CLK_SCC2, CPM_BRG4, 3},
410 {CPM_CLK_SCC2, CPM_CLK1, 4},
411 {CPM_CLK_SCC2, CPM_CLK2, 5},
412 {CPM_CLK_SCC2, CPM_CLK3, 6},
413 {CPM_CLK_SCC2, CPM_CLK4, 7},
415 {CPM_CLK_SCC3, CPM_BRG1, 0},
416 {CPM_CLK_SCC3, CPM_BRG2, 1},
417 {CPM_CLK_SCC3, CPM_BRG3, 2},
418 {CPM_CLK_SCC3, CPM_BRG4, 3},
419 {CPM_CLK_SCC3, CPM_CLK5, 4},
420 {CPM_CLK_SCC3, CPM_CLK6, 5},
421 {CPM_CLK_SCC3, CPM_CLK7, 6},
422 {CPM_CLK_SCC3, CPM_CLK8, 7},
424 {CPM_CLK_SCC4, CPM_BRG1, 0},
425 {CPM_CLK_SCC4, CPM_BRG2, 1},
426 {CPM_CLK_SCC4, CPM_BRG3, 2},
427 {CPM_CLK_SCC4, CPM_BRG4, 3},
428 {CPM_CLK_SCC4, CPM_CLK5, 4},
429 {CPM_CLK_SCC4, CPM_CLK6, 5},
430 {CPM_CLK_SCC4, CPM_CLK7, 6},
431 {CPM_CLK_SCC4, CPM_CLK8, 7},
433 {CPM_CLK_SMC1, CPM_BRG1, 0},
434 {CPM_CLK_SMC1, CPM_BRG2, 1},
435 {CPM_CLK_SMC1, CPM_BRG3, 2},
436 {CPM_CLK_SMC1, CPM_BRG4, 3},
437 {CPM_CLK_SMC1, CPM_CLK1, 4},
438 {CPM_CLK_SMC1, CPM_CLK2, 5},
439 {CPM_CLK_SMC1, CPM_CLK3, 6},
440 {CPM_CLK_SMC1, CPM_CLK4, 7},
442 {CPM_CLK_SMC2, CPM_BRG1, 0},
443 {CPM_CLK_SMC2, CPM_BRG2, 1},
444 {CPM_CLK_SMC2, CPM_BRG3, 2},
445 {CPM_CLK_SMC2, CPM_BRG4, 3},
446 {CPM_CLK_SMC2, CPM_CLK5, 4},
447 {CPM_CLK_SMC2, CPM_CLK6, 5},
448 {CPM_CLK_SMC2, CPM_CLK7, 6},
449 {CPM_CLK_SMC2, CPM_CLK8, 7},
452 switch (target) {
453 case CPM_CLK_SCC1:
454 reg = &mpc8xx_immr->im_cpm.cp_sicr;
455 shift = 0;
456 break;
458 case CPM_CLK_SCC2:
459 reg = &mpc8xx_immr->im_cpm.cp_sicr;
460 shift = 8;
461 break;
463 case CPM_CLK_SCC3:
464 reg = &mpc8xx_immr->im_cpm.cp_sicr;
465 shift = 16;
466 break;
468 case CPM_CLK_SCC4:
469 reg = &mpc8xx_immr->im_cpm.cp_sicr;
470 shift = 24;
471 break;
473 case CPM_CLK_SMC1:
474 reg = &mpc8xx_immr->im_cpm.cp_simode;
475 shift = 12;
476 break;
478 case CPM_CLK_SMC2:
479 reg = &mpc8xx_immr->im_cpm.cp_simode;
480 shift = 28;
481 break;
483 default:
484 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
485 return -EINVAL;
488 if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX)
489 shift += 3;
491 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
492 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
493 bits = clk_map[i][2];
494 break;
498 if (i == ARRAY_SIZE(clk_map)) {
499 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
500 return -EINVAL;
503 bits <<= shift;
504 mask <<= shift;
505 out_be32(reg, (in_be32(reg) & ~mask) | bits);
507 return 0;
511 * GPIO LIB API implementation
513 #ifdef CONFIG_8xx_GPIO
515 struct cpm1_gpio16_chip {
516 struct of_mm_gpio_chip mm_gc;
517 spinlock_t lock;
519 /* shadowed data register to clear/set bits safely */
520 u16 cpdata;
523 static inline struct cpm1_gpio16_chip *
524 to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
526 return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
529 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
531 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
532 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
534 cpm1_gc->cpdata = in_be16(&iop->dat);
537 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
539 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
540 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
541 u16 pin_mask;
543 pin_mask = 1 << (15 - gpio);
545 return !!(in_be16(&iop->dat) & pin_mask);
548 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
549 int value)
551 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
552 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
554 if (value)
555 cpm1_gc->cpdata |= pin_mask;
556 else
557 cpm1_gc->cpdata &= ~pin_mask;
559 out_be16(&iop->dat, cpm1_gc->cpdata);
562 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
564 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
565 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
566 unsigned long flags;
567 u16 pin_mask = 1 << (15 - gpio);
569 spin_lock_irqsave(&cpm1_gc->lock, flags);
571 __cpm1_gpio16_set(mm_gc, pin_mask, value);
573 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
576 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
578 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
579 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
580 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
581 unsigned long flags;
582 u16 pin_mask = 1 << (15 - gpio);
584 spin_lock_irqsave(&cpm1_gc->lock, flags);
586 setbits16(&iop->dir, pin_mask);
587 __cpm1_gpio16_set(mm_gc, pin_mask, val);
589 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
591 return 0;
594 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
596 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
597 struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
598 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
599 unsigned long flags;
600 u16 pin_mask = 1 << (15 - gpio);
602 spin_lock_irqsave(&cpm1_gc->lock, flags);
604 clrbits16(&iop->dir, pin_mask);
606 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
608 return 0;
611 int cpm1_gpiochip_add16(struct device_node *np)
613 struct cpm1_gpio16_chip *cpm1_gc;
614 struct of_mm_gpio_chip *mm_gc;
615 struct of_gpio_chip *of_gc;
616 struct gpio_chip *gc;
618 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
619 if (!cpm1_gc)
620 return -ENOMEM;
622 spin_lock_init(&cpm1_gc->lock);
624 mm_gc = &cpm1_gc->mm_gc;
625 of_gc = &mm_gc->of_gc;
626 gc = &of_gc->gc;
628 mm_gc->save_regs = cpm1_gpio16_save_regs;
629 of_gc->gpio_cells = 2;
630 gc->ngpio = 16;
631 gc->direction_input = cpm1_gpio16_dir_in;
632 gc->direction_output = cpm1_gpio16_dir_out;
633 gc->get = cpm1_gpio16_get;
634 gc->set = cpm1_gpio16_set;
636 return of_mm_gpiochip_add(np, mm_gc);
639 struct cpm1_gpio32_chip {
640 struct of_mm_gpio_chip mm_gc;
641 spinlock_t lock;
643 /* shadowed data register to clear/set bits safely */
644 u32 cpdata;
647 static inline struct cpm1_gpio32_chip *
648 to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
650 return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
653 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
655 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
656 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
658 cpm1_gc->cpdata = in_be32(&iop->dat);
661 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
663 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
664 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
665 u32 pin_mask;
667 pin_mask = 1 << (31 - gpio);
669 return !!(in_be32(&iop->dat) & pin_mask);
672 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
673 int value)
675 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
676 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
678 if (value)
679 cpm1_gc->cpdata |= pin_mask;
680 else
681 cpm1_gc->cpdata &= ~pin_mask;
683 out_be32(&iop->dat, cpm1_gc->cpdata);
686 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
688 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
689 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
690 unsigned long flags;
691 u32 pin_mask = 1 << (31 - gpio);
693 spin_lock_irqsave(&cpm1_gc->lock, flags);
695 __cpm1_gpio32_set(mm_gc, pin_mask, value);
697 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
700 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
702 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
703 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
704 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
705 unsigned long flags;
706 u32 pin_mask = 1 << (31 - gpio);
708 spin_lock_irqsave(&cpm1_gc->lock, flags);
710 setbits32(&iop->dir, pin_mask);
711 __cpm1_gpio32_set(mm_gc, pin_mask, val);
713 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
715 return 0;
718 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
720 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
721 struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
722 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
723 unsigned long flags;
724 u32 pin_mask = 1 << (31 - gpio);
726 spin_lock_irqsave(&cpm1_gc->lock, flags);
728 clrbits32(&iop->dir, pin_mask);
730 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
732 return 0;
735 int cpm1_gpiochip_add32(struct device_node *np)
737 struct cpm1_gpio32_chip *cpm1_gc;
738 struct of_mm_gpio_chip *mm_gc;
739 struct of_gpio_chip *of_gc;
740 struct gpio_chip *gc;
742 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
743 if (!cpm1_gc)
744 return -ENOMEM;
746 spin_lock_init(&cpm1_gc->lock);
748 mm_gc = &cpm1_gc->mm_gc;
749 of_gc = &mm_gc->of_gc;
750 gc = &of_gc->gc;
752 mm_gc->save_regs = cpm1_gpio32_save_regs;
753 of_gc->gpio_cells = 2;
754 gc->ngpio = 32;
755 gc->direction_input = cpm1_gpio32_dir_in;
756 gc->direction_output = cpm1_gpio32_dir_out;
757 gc->get = cpm1_gpio32_get;
758 gc->set = cpm1_gpio32_set;
760 return of_mm_gpiochip_add(np, mm_gc);
763 static int cpm_init_par_io(void)
765 struct device_node *np;
767 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
768 cpm1_gpiochip_add16(np);
770 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
771 cpm1_gpiochip_add32(np);
773 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
774 cpm1_gpiochip_add16(np);
776 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
777 cpm1_gpiochip_add16(np);
779 /* Port E uses CPM2 layout */
780 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
781 cpm2_gpiochip_add32(np);
782 return 0;
784 arch_initcall(cpm_init_par_io);
786 #endif /* CONFIG_8xx_GPIO */