[ARM] pxa: update defconfig for Verdex Pro
[linux-2.6/verdex.git] / arch / sparc / mm / init_64.c
blob1886d37d411b2e129c9b711ca381d7856daead4f
1 /*
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
53 #include "init_64.h"
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
71 #define MAX_BANKS 32
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
76 static int cmp_p64(const void *a, const void *b)
78 const struct linux_prom64_registers *x = a, *y = b;
80 if (x->phys_addr > y->phys_addr)
81 return 1;
82 if (x->phys_addr < y->phys_addr)
83 return -1;
84 return 0;
87 static void __init read_obp_memory(const char *property,
88 struct linux_prom64_registers *regs,
89 int *num_ents)
91 int node = prom_finddevice("/memory");
92 int prop_size = prom_getproplen(node, property);
93 int ents, ret, i;
95 ents = prop_size / sizeof(struct linux_prom64_registers);
96 if (ents > MAX_BANKS) {
97 prom_printf("The machine has more %s property entries than "
98 "this kernel can support (%d).\n",
99 property, MAX_BANKS);
100 prom_halt();
103 ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 if (ret == -1) {
105 prom_printf("Couldn't get %s property from /memory.\n");
106 prom_halt();
109 /* Sanitize what we got from the firmware, by page aligning
110 * everything.
112 for (i = 0; i < ents; i++) {
113 unsigned long base, size;
115 base = regs[i].phys_addr;
116 size = regs[i].reg_size;
118 size &= PAGE_MASK;
119 if (base & ~PAGE_MASK) {
120 unsigned long new_base = PAGE_ALIGN(base);
122 size -= new_base - base;
123 if ((long) size < 0L)
124 size = 0UL;
125 base = new_base;
127 if (size == 0UL) {
128 /* If it is empty, simply get rid of it.
129 * This simplifies the logic of the other
130 * functions that process these arrays.
132 memmove(&regs[i], &regs[i + 1],
133 (ents - i - 1) * sizeof(regs[0]));
134 i--;
135 ents--;
136 continue;
138 regs[i].phys_addr = base;
139 regs[i].reg_size = size;
142 *num_ents = ents;
144 sort(regs, ents, sizeof(struct linux_prom64_registers),
145 cmp_p64, NULL);
148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149 sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
152 /* Kernel physical address base and size in bytes. */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
161 struct page *mem_map_zero __read_mostly;
162 EXPORT_SYMBOL(mem_map_zero);
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
170 int num_kernel_image_mappings;
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
179 inline void flush_dcache_page_impl(struct page *page)
181 BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes);
184 #endif
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page),
188 ((tlb_type == spitfire) &&
189 page_mapping(page) != NULL));
190 #else
191 if (page_mapping(page) != NULL &&
192 tlb_type == spitfire)
193 __flush_icache_page(__pa(page_address(page)));
194 #endif
197 #define PG_dcache_dirty PG_arch_1
198 #define PG_dcache_cpu_shift 32UL
199 #define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
202 #define dcache_dirty_cpu(page) \
203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
207 unsigned long mask = this_cpu;
208 unsigned long non_cpu_bits;
210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
213 __asm__ __volatile__("1:\n\t"
214 "ldx [%2], %%g7\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
218 "cmp %%g7, %%g1\n\t"
219 "bne,pn %%xcc, 1b\n\t"
220 " nop"
221 : /* no outputs */
222 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 : "g1", "g7");
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
228 unsigned long mask = (1UL << PG_dcache_dirty);
230 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 "1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
235 "cmp %%g1, %0\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
239 "cmp %%g7, %%g1\n\t"
240 "bne,pn %%xcc, 1b\n\t"
241 " nop\n"
242 "2:"
243 : /* no outputs */
244 : "r" (cpu), "r" (mask), "r" (&page->flags),
245 "i" (PG_dcache_cpu_mask),
246 "i" (PG_dcache_cpu_shift)
247 : "g1", "g7");
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
252 unsigned long tsb_addr = (unsigned long) ent;
254 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 tsb_addr = __pa(tsb_addr);
257 __tsb_insert(tsb_addr, tag, pte);
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
263 static void flush_dcache(unsigned long pfn)
265 struct page *page;
267 page = pfn_to_page(pfn);
268 if (page) {
269 unsigned long pg_flags;
271 pg_flags = page->flags;
272 if (pg_flags & (1UL << PG_dcache_dirty)) {
273 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274 PG_dcache_cpu_mask);
275 int this_cpu = get_cpu();
277 /* This is just to optimize away some function calls
278 * in the SMP case.
280 if (cpu == this_cpu)
281 flush_dcache_page_impl(page);
282 else
283 smp_flush_dcache_page_impl(page, cpu);
285 clear_dcache_dirty_cpu(page, cpu);
287 put_cpu();
292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
294 struct mm_struct *mm;
295 struct tsb *tsb;
296 unsigned long tag, flags;
297 unsigned long tsb_index, tsb_hash_shift;
299 if (tlb_type != hypervisor) {
300 unsigned long pfn = pte_pfn(pte);
302 if (pfn_valid(pfn))
303 flush_dcache(pfn);
306 mm = vma->vm_mm;
308 tsb_index = MM_TSB_BASE;
309 tsb_hash_shift = PAGE_SHIFT;
311 spin_lock_irqsave(&mm->context.lock, flags);
313 #ifdef CONFIG_HUGETLB_PAGE
314 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
315 if ((tlb_type == hypervisor &&
316 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
317 (tlb_type != hypervisor &&
318 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
319 tsb_index = MM_TSB_HUGE;
320 tsb_hash_shift = HPAGE_SHIFT;
323 #endif
325 tsb = mm->context.tsb_block[tsb_index].tsb;
326 tsb += ((address >> tsb_hash_shift) &
327 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
328 tag = (address >> 22UL);
329 tsb_insert(tsb, tag, pte_val(pte));
331 spin_unlock_irqrestore(&mm->context.lock, flags);
334 void flush_dcache_page(struct page *page)
336 struct address_space *mapping;
337 int this_cpu;
339 if (tlb_type == hypervisor)
340 return;
342 /* Do not bother with the expensive D-cache flush if it
343 * is merely the zero page. The 'bigcore' testcase in GDB
344 * causes this case to run millions of times.
346 if (page == ZERO_PAGE(0))
347 return;
349 this_cpu = get_cpu();
351 mapping = page_mapping(page);
352 if (mapping && !mapping_mapped(mapping)) {
353 int dirty = test_bit(PG_dcache_dirty, &page->flags);
354 if (dirty) {
355 int dirty_cpu = dcache_dirty_cpu(page);
357 if (dirty_cpu == this_cpu)
358 goto out;
359 smp_flush_dcache_page_impl(page, dirty_cpu);
361 set_dcache_dirty(page, this_cpu);
362 } else {
363 /* We could delay the flush for the !page_mapping
364 * case too. But that case is for exec env/arg
365 * pages and those are %99 certainly going to get
366 * faulted into the tlb (and thus flushed) anyways.
368 flush_dcache_page_impl(page);
371 out:
372 put_cpu();
374 EXPORT_SYMBOL(flush_dcache_page);
376 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379 if (tlb_type == spitfire) {
380 unsigned long kaddr;
382 /* This code only runs on Spitfire cpus so this is
383 * why we can assume _PAGE_PADDR_4U.
385 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
386 unsigned long paddr, mask = _PAGE_PADDR_4U;
388 if (kaddr >= PAGE_OFFSET)
389 paddr = kaddr & mask;
390 else {
391 pgd_t *pgdp = pgd_offset_k(kaddr);
392 pud_t *pudp = pud_offset(pgdp, kaddr);
393 pmd_t *pmdp = pmd_offset(pudp, kaddr);
394 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396 paddr = pte_val(*ptep) & mask;
398 __flush_icache_page(paddr);
402 EXPORT_SYMBOL(flush_icache_range);
404 void mmu_info(struct seq_file *m)
406 if (tlb_type == cheetah)
407 seq_printf(m, "MMU Type\t: Cheetah\n");
408 else if (tlb_type == cheetah_plus)
409 seq_printf(m, "MMU Type\t: Cheetah+\n");
410 else if (tlb_type == spitfire)
411 seq_printf(m, "MMU Type\t: Spitfire\n");
412 else if (tlb_type == hypervisor)
413 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
414 else
415 seq_printf(m, "MMU Type\t: ???\n");
417 #ifdef CONFIG_DEBUG_DCFLUSH
418 seq_printf(m, "DCPageFlushes\t: %d\n",
419 atomic_read(&dcpage_flushes));
420 #ifdef CONFIG_SMP
421 seq_printf(m, "DCPageFlushesXC\t: %d\n",
422 atomic_read(&dcpage_flushes_xcall));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
427 struct linux_prom_translation prom_trans[512] __read_mostly;
428 unsigned int prom_trans_ents __read_mostly;
430 unsigned long kern_locked_tte_data;
432 /* The obp translations are saved based on 8k pagesize, since obp can
433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434 * HI_OBP_ADDRESS range are handled in ktlb.S.
436 static inline int in_obp_range(unsigned long vaddr)
438 return (vaddr >= LOW_OBP_ADDRESS &&
439 vaddr < HI_OBP_ADDRESS);
442 static int cmp_ptrans(const void *a, const void *b)
444 const struct linux_prom_translation *x = a, *y = b;
446 if (x->virt > y->virt)
447 return 1;
448 if (x->virt < y->virt)
449 return -1;
450 return 0;
453 /* Read OBP translations property into 'prom_trans[]'. */
454 static void __init read_obp_translations(void)
456 int n, node, ents, first, last, i;
458 node = prom_finddevice("/virtual-memory");
459 n = prom_getproplen(node, "translations");
460 if (unlikely(n == 0 || n == -1)) {
461 prom_printf("prom_mappings: Couldn't get size.\n");
462 prom_halt();
464 if (unlikely(n > sizeof(prom_trans))) {
465 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
466 prom_halt();
469 if ((n = prom_getproperty(node, "translations",
470 (char *)&prom_trans[0],
471 sizeof(prom_trans))) == -1) {
472 prom_printf("prom_mappings: Couldn't get property.\n");
473 prom_halt();
476 n = n / sizeof(struct linux_prom_translation);
478 ents = n;
480 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481 cmp_ptrans, NULL);
483 /* Now kick out all the non-OBP entries. */
484 for (i = 0; i < ents; i++) {
485 if (in_obp_range(prom_trans[i].virt))
486 break;
488 first = i;
489 for (; i < ents; i++) {
490 if (!in_obp_range(prom_trans[i].virt))
491 break;
493 last = i;
495 for (i = 0; i < (last - first); i++) {
496 struct linux_prom_translation *src = &prom_trans[i + first];
497 struct linux_prom_translation *dest = &prom_trans[i];
499 *dest = *src;
501 for (; i < ents; i++) {
502 struct linux_prom_translation *dest = &prom_trans[i];
503 dest->virt = dest->size = dest->data = 0x0UL;
506 prom_trans_ents = last - first;
508 if (tlb_type == spitfire) {
509 /* Clear diag TTE bits. */
510 for (i = 0; i < prom_trans_ents; i++)
511 prom_trans[i].data &= ~0x0003fe0000000000UL;
515 static void __init hypervisor_tlb_lock(unsigned long vaddr,
516 unsigned long pte,
517 unsigned long mmu)
519 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
521 if (ret != 0) {
522 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
523 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
524 prom_halt();
528 static unsigned long kern_large_tte(unsigned long paddr);
530 static void __init remap_kernel(void)
532 unsigned long phys_page, tte_vaddr, tte_data;
533 int i, tlb_ent = sparc64_highest_locked_tlbent();
535 tte_vaddr = (unsigned long) KERNBASE;
536 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
537 tte_data = kern_large_tte(phys_page);
539 kern_locked_tte_data = tte_data;
541 /* Now lock us into the TLBs via Hypervisor or OBP. */
542 if (tlb_type == hypervisor) {
543 for (i = 0; i < num_kernel_image_mappings; i++) {
544 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
545 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
546 tte_vaddr += 0x400000;
547 tte_data += 0x400000;
549 } else {
550 for (i = 0; i < num_kernel_image_mappings; i++) {
551 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
552 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
553 tte_vaddr += 0x400000;
554 tte_data += 0x400000;
556 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
558 if (tlb_type == cheetah_plus) {
559 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
560 CTX_CHEETAH_PLUS_NUC);
561 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
562 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
567 static void __init inherit_prom_mappings(void)
569 /* Now fixup OBP's idea about where we really are mapped. */
570 printk("Remapping the kernel... ");
571 remap_kernel();
572 printk("done.\n");
575 void prom_world(int enter)
577 if (!enter)
578 set_fs((mm_segment_t) { get_thread_current_ds() });
580 __asm__ __volatile__("flushw");
583 void __flush_dcache_range(unsigned long start, unsigned long end)
585 unsigned long va;
587 if (tlb_type == spitfire) {
588 int n = 0;
590 for (va = start; va < end; va += 32) {
591 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
592 if (++n >= 512)
593 break;
595 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
596 start = __pa(start);
597 end = __pa(end);
598 for (va = start; va < end; va += 32)
599 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
600 "membar #Sync"
601 : /* no outputs */
602 : "r" (va),
603 "i" (ASI_DCACHE_INVALIDATE));
606 EXPORT_SYMBOL(__flush_dcache_range);
608 /* get_new_mmu_context() uses "cache + 1". */
609 DEFINE_SPINLOCK(ctx_alloc_lock);
610 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
611 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
612 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
613 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
615 /* Caller does TLB context flushing on local CPU if necessary.
616 * The caller also ensures that CTX_VALID(mm->context) is false.
618 * We must be careful about boundary cases so that we never
619 * let the user have CTX 0 (nucleus) or we ever use a CTX
620 * version of zero (and thus NO_CONTEXT would not be caught
621 * by version mis-match tests in mmu_context.h).
623 * Always invoked with interrupts disabled.
625 void get_new_mmu_context(struct mm_struct *mm)
627 unsigned long ctx, new_ctx;
628 unsigned long orig_pgsz_bits;
629 unsigned long flags;
630 int new_version;
632 spin_lock_irqsave(&ctx_alloc_lock, flags);
633 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
634 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
635 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
636 new_version = 0;
637 if (new_ctx >= (1 << CTX_NR_BITS)) {
638 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
639 if (new_ctx >= ctx) {
640 int i;
641 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
642 CTX_FIRST_VERSION;
643 if (new_ctx == 1)
644 new_ctx = CTX_FIRST_VERSION;
646 /* Don't call memset, for 16 entries that's just
647 * plain silly...
649 mmu_context_bmap[0] = 3;
650 mmu_context_bmap[1] = 0;
651 mmu_context_bmap[2] = 0;
652 mmu_context_bmap[3] = 0;
653 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
654 mmu_context_bmap[i + 0] = 0;
655 mmu_context_bmap[i + 1] = 0;
656 mmu_context_bmap[i + 2] = 0;
657 mmu_context_bmap[i + 3] = 0;
659 new_version = 1;
660 goto out;
663 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
664 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
665 out:
666 tlb_context_cache = new_ctx;
667 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
668 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
670 if (unlikely(new_version))
671 smp_new_mmu_context_version();
674 static int numa_enabled = 1;
675 static int numa_debug;
677 static int __init early_numa(char *p)
679 if (!p)
680 return 0;
682 if (strstr(p, "off"))
683 numa_enabled = 0;
685 if (strstr(p, "debug"))
686 numa_debug = 1;
688 return 0;
690 early_param("numa", early_numa);
692 #define numadbg(f, a...) \
693 do { if (numa_debug) \
694 printk(KERN_INFO f, ## a); \
695 } while (0)
697 static void __init find_ramdisk(unsigned long phys_base)
699 #ifdef CONFIG_BLK_DEV_INITRD
700 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
701 unsigned long ramdisk_image;
703 /* Older versions of the bootloader only supported a
704 * 32-bit physical address for the ramdisk image
705 * location, stored at sparc_ramdisk_image. Newer
706 * SILO versions set sparc_ramdisk_image to zero and
707 * provide a full 64-bit physical address at
708 * sparc_ramdisk_image64.
710 ramdisk_image = sparc_ramdisk_image;
711 if (!ramdisk_image)
712 ramdisk_image = sparc_ramdisk_image64;
714 /* Another bootloader quirk. The bootloader normalizes
715 * the physical address to KERNBASE, so we have to
716 * factor that back out and add in the lowest valid
717 * physical page address to get the true physical address.
719 ramdisk_image -= KERNBASE;
720 ramdisk_image += phys_base;
722 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
723 ramdisk_image, sparc_ramdisk_size);
725 initrd_start = ramdisk_image;
726 initrd_end = ramdisk_image + sparc_ramdisk_size;
728 lmb_reserve(initrd_start, sparc_ramdisk_size);
730 initrd_start += PAGE_OFFSET;
731 initrd_end += PAGE_OFFSET;
733 #endif
736 struct node_mem_mask {
737 unsigned long mask;
738 unsigned long val;
739 unsigned long bootmem_paddr;
741 static struct node_mem_mask node_masks[MAX_NUMNODES];
742 static int num_node_masks;
744 int numa_cpu_lookup_table[NR_CPUS];
745 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
747 #ifdef CONFIG_NEED_MULTIPLE_NODES
749 struct mdesc_mblock {
750 u64 base;
751 u64 size;
752 u64 offset; /* RA-to-PA */
754 static struct mdesc_mblock *mblocks;
755 static int num_mblocks;
757 static unsigned long ra_to_pa(unsigned long addr)
759 int i;
761 for (i = 0; i < num_mblocks; i++) {
762 struct mdesc_mblock *m = &mblocks[i];
764 if (addr >= m->base &&
765 addr < (m->base + m->size)) {
766 addr += m->offset;
767 break;
770 return addr;
773 static int find_node(unsigned long addr)
775 int i;
777 addr = ra_to_pa(addr);
778 for (i = 0; i < num_node_masks; i++) {
779 struct node_mem_mask *p = &node_masks[i];
781 if ((addr & p->mask) == p->val)
782 return i;
784 return -1;
787 static unsigned long long nid_range(unsigned long long start,
788 unsigned long long end, int *nid)
790 *nid = find_node(start);
791 start += PAGE_SIZE;
792 while (start < end) {
793 int n = find_node(start);
795 if (n != *nid)
796 break;
797 start += PAGE_SIZE;
800 if (start > end)
801 start = end;
803 return start;
805 #else
806 static unsigned long long nid_range(unsigned long long start,
807 unsigned long long end, int *nid)
809 *nid = 0;
810 return end;
812 #endif
814 /* This must be invoked after performing all of the necessary
815 * add_active_range() calls for 'nid'. We need to be able to get
816 * correct data from get_pfn_range_for_nid().
818 static void __init allocate_node_data(int nid)
820 unsigned long paddr, num_pages, start_pfn, end_pfn;
821 struct pglist_data *p;
823 #ifdef CONFIG_NEED_MULTIPLE_NODES
824 paddr = lmb_alloc_nid(sizeof(struct pglist_data),
825 SMP_CACHE_BYTES, nid, nid_range);
826 if (!paddr) {
827 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
828 prom_halt();
830 NODE_DATA(nid) = __va(paddr);
831 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
833 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
834 #endif
836 p = NODE_DATA(nid);
838 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
839 p->node_start_pfn = start_pfn;
840 p->node_spanned_pages = end_pfn - start_pfn;
842 if (p->node_spanned_pages) {
843 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
845 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
846 nid_range);
847 if (!paddr) {
848 prom_printf("Cannot allocate bootmap for nid[%d]\n",
849 nid);
850 prom_halt();
852 node_masks[nid].bootmem_paddr = paddr;
856 static void init_node_masks_nonnuma(void)
858 int i;
860 numadbg("Initializing tables for non-numa.\n");
862 node_masks[0].mask = node_masks[0].val = 0;
863 num_node_masks = 1;
865 for (i = 0; i < NR_CPUS; i++)
866 numa_cpu_lookup_table[i] = 0;
868 numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
871 #ifdef CONFIG_NEED_MULTIPLE_NODES
872 struct pglist_data *node_data[MAX_NUMNODES];
874 EXPORT_SYMBOL(numa_cpu_lookup_table);
875 EXPORT_SYMBOL(numa_cpumask_lookup_table);
876 EXPORT_SYMBOL(node_data);
878 struct mdesc_mlgroup {
879 u64 node;
880 u64 latency;
881 u64 match;
882 u64 mask;
884 static struct mdesc_mlgroup *mlgroups;
885 static int num_mlgroups;
887 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
888 u32 cfg_handle)
890 u64 arc;
892 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
893 u64 target = mdesc_arc_target(md, arc);
894 const u64 *val;
896 val = mdesc_get_property(md, target,
897 "cfg-handle", NULL);
898 if (val && *val == cfg_handle)
899 return 0;
901 return -ENODEV;
904 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
905 u32 cfg_handle)
907 u64 arc, candidate, best_latency = ~(u64)0;
909 candidate = MDESC_NODE_NULL;
910 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
911 u64 target = mdesc_arc_target(md, arc);
912 const char *name = mdesc_node_name(md, target);
913 const u64 *val;
915 if (strcmp(name, "pio-latency-group"))
916 continue;
918 val = mdesc_get_property(md, target, "latency", NULL);
919 if (!val)
920 continue;
922 if (*val < best_latency) {
923 candidate = target;
924 best_latency = *val;
928 if (candidate == MDESC_NODE_NULL)
929 return -ENODEV;
931 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
934 int of_node_to_nid(struct device_node *dp)
936 const struct linux_prom64_registers *regs;
937 struct mdesc_handle *md;
938 u32 cfg_handle;
939 int count, nid;
940 u64 grp;
942 /* This is the right thing to do on currently supported
943 * SUN4U NUMA platforms as well, as the PCI controller does
944 * not sit behind any particular memory controller.
946 if (!mlgroups)
947 return -1;
949 regs = of_get_property(dp, "reg", NULL);
950 if (!regs)
951 return -1;
953 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
955 md = mdesc_grab();
957 count = 0;
958 nid = -1;
959 mdesc_for_each_node_by_name(md, grp, "group") {
960 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
961 nid = count;
962 break;
964 count++;
967 mdesc_release(md);
969 return nid;
972 static void __init add_node_ranges(void)
974 int i;
976 for (i = 0; i < lmb.memory.cnt; i++) {
977 unsigned long size = lmb_size_bytes(&lmb.memory, i);
978 unsigned long start, end;
980 start = lmb.memory.region[i].base;
981 end = start + size;
982 while (start < end) {
983 unsigned long this_end;
984 int nid;
986 this_end = nid_range(start, end, &nid);
988 numadbg("Adding active range nid[%d] "
989 "start[%lx] end[%lx]\n",
990 nid, start, this_end);
992 add_active_range(nid,
993 start >> PAGE_SHIFT,
994 this_end >> PAGE_SHIFT);
996 start = this_end;
1001 static int __init grab_mlgroups(struct mdesc_handle *md)
1003 unsigned long paddr;
1004 int count = 0;
1005 u64 node;
1007 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1008 count++;
1009 if (!count)
1010 return -ENOENT;
1012 paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1013 SMP_CACHE_BYTES);
1014 if (!paddr)
1015 return -ENOMEM;
1017 mlgroups = __va(paddr);
1018 num_mlgroups = count;
1020 count = 0;
1021 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1022 struct mdesc_mlgroup *m = &mlgroups[count++];
1023 const u64 *val;
1025 m->node = node;
1027 val = mdesc_get_property(md, node, "latency", NULL);
1028 m->latency = *val;
1029 val = mdesc_get_property(md, node, "address-match", NULL);
1030 m->match = *val;
1031 val = mdesc_get_property(md, node, "address-mask", NULL);
1032 m->mask = *val;
1034 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1035 "match[%llx] mask[%llx]\n",
1036 count - 1, m->node, m->latency, m->match, m->mask);
1039 return 0;
1042 static int __init grab_mblocks(struct mdesc_handle *md)
1044 unsigned long paddr;
1045 int count = 0;
1046 u64 node;
1048 mdesc_for_each_node_by_name(md, node, "mblock")
1049 count++;
1050 if (!count)
1051 return -ENOENT;
1053 paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1054 SMP_CACHE_BYTES);
1055 if (!paddr)
1056 return -ENOMEM;
1058 mblocks = __va(paddr);
1059 num_mblocks = count;
1061 count = 0;
1062 mdesc_for_each_node_by_name(md, node, "mblock") {
1063 struct mdesc_mblock *m = &mblocks[count++];
1064 const u64 *val;
1066 val = mdesc_get_property(md, node, "base", NULL);
1067 m->base = *val;
1068 val = mdesc_get_property(md, node, "size", NULL);
1069 m->size = *val;
1070 val = mdesc_get_property(md, node,
1071 "address-congruence-offset", NULL);
1072 m->offset = *val;
1074 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1075 count - 1, m->base, m->size, m->offset);
1078 return 0;
1081 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1082 u64 grp, cpumask_t *mask)
1084 u64 arc;
1086 cpus_clear(*mask);
1088 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1089 u64 target = mdesc_arc_target(md, arc);
1090 const char *name = mdesc_node_name(md, target);
1091 const u64 *id;
1093 if (strcmp(name, "cpu"))
1094 continue;
1095 id = mdesc_get_property(md, target, "id", NULL);
1096 if (*id < nr_cpu_ids)
1097 cpu_set(*id, *mask);
1101 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1103 int i;
1105 for (i = 0; i < num_mlgroups; i++) {
1106 struct mdesc_mlgroup *m = &mlgroups[i];
1107 if (m->node == node)
1108 return m;
1110 return NULL;
1113 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1114 int index)
1116 struct mdesc_mlgroup *candidate = NULL;
1117 u64 arc, best_latency = ~(u64)0;
1118 struct node_mem_mask *n;
1120 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1121 u64 target = mdesc_arc_target(md, arc);
1122 struct mdesc_mlgroup *m = find_mlgroup(target);
1123 if (!m)
1124 continue;
1125 if (m->latency < best_latency) {
1126 candidate = m;
1127 best_latency = m->latency;
1130 if (!candidate)
1131 return -ENOENT;
1133 if (num_node_masks != index) {
1134 printk(KERN_ERR "Inconsistent NUMA state, "
1135 "index[%d] != num_node_masks[%d]\n",
1136 index, num_node_masks);
1137 return -EINVAL;
1140 n = &node_masks[num_node_masks++];
1142 n->mask = candidate->mask;
1143 n->val = candidate->match;
1145 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1146 index, n->mask, n->val, candidate->latency);
1148 return 0;
1151 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1152 int index)
1154 cpumask_t mask;
1155 int cpu;
1157 numa_parse_mdesc_group_cpus(md, grp, &mask);
1159 for_each_cpu_mask(cpu, mask)
1160 numa_cpu_lookup_table[cpu] = index;
1161 numa_cpumask_lookup_table[index] = mask;
1163 if (numa_debug) {
1164 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1165 for_each_cpu_mask(cpu, mask)
1166 printk("%d ", cpu);
1167 printk("]\n");
1170 return numa_attach_mlgroup(md, grp, index);
1173 static int __init numa_parse_mdesc(void)
1175 struct mdesc_handle *md = mdesc_grab();
1176 int i, err, count;
1177 u64 node;
1179 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1180 if (node == MDESC_NODE_NULL) {
1181 mdesc_release(md);
1182 return -ENOENT;
1185 err = grab_mblocks(md);
1186 if (err < 0)
1187 goto out;
1189 err = grab_mlgroups(md);
1190 if (err < 0)
1191 goto out;
1193 count = 0;
1194 mdesc_for_each_node_by_name(md, node, "group") {
1195 err = numa_parse_mdesc_group(md, node, count);
1196 if (err < 0)
1197 break;
1198 count++;
1201 add_node_ranges();
1203 for (i = 0; i < num_node_masks; i++) {
1204 allocate_node_data(i);
1205 node_set_online(i);
1208 err = 0;
1209 out:
1210 mdesc_release(md);
1211 return err;
1214 static int __init numa_parse_jbus(void)
1216 unsigned long cpu, index;
1218 /* NUMA node id is encoded in bits 36 and higher, and there is
1219 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1221 index = 0;
1222 for_each_present_cpu(cpu) {
1223 numa_cpu_lookup_table[cpu] = index;
1224 numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1225 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1226 node_masks[index].val = cpu << 36UL;
1228 index++;
1230 num_node_masks = index;
1232 add_node_ranges();
1234 for (index = 0; index < num_node_masks; index++) {
1235 allocate_node_data(index);
1236 node_set_online(index);
1239 return 0;
1242 static int __init numa_parse_sun4u(void)
1244 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1245 unsigned long ver;
1247 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1248 if ((ver >> 32UL) == __JALAPENO_ID ||
1249 (ver >> 32UL) == __SERRANO_ID)
1250 return numa_parse_jbus();
1252 return -1;
1255 static int __init bootmem_init_numa(void)
1257 int err = -1;
1259 numadbg("bootmem_init_numa()\n");
1261 if (numa_enabled) {
1262 if (tlb_type == hypervisor)
1263 err = numa_parse_mdesc();
1264 else
1265 err = numa_parse_sun4u();
1267 return err;
1270 #else
1272 static int bootmem_init_numa(void)
1274 return -1;
1277 #endif
1279 static void __init bootmem_init_nonnuma(void)
1281 unsigned long top_of_ram = lmb_end_of_DRAM();
1282 unsigned long total_ram = lmb_phys_mem_size();
1283 unsigned int i;
1285 numadbg("bootmem_init_nonnuma()\n");
1287 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1288 top_of_ram, total_ram);
1289 printk(KERN_INFO "Memory hole size: %ldMB\n",
1290 (top_of_ram - total_ram) >> 20);
1292 init_node_masks_nonnuma();
1294 for (i = 0; i < lmb.memory.cnt; i++) {
1295 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1296 unsigned long start_pfn, end_pfn;
1298 if (!size)
1299 continue;
1301 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1302 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1303 add_active_range(0, start_pfn, end_pfn);
1306 allocate_node_data(0);
1308 node_set_online(0);
1311 static void __init reserve_range_in_node(int nid, unsigned long start,
1312 unsigned long end)
1314 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1315 nid, start, end);
1316 while (start < end) {
1317 unsigned long this_end;
1318 int n;
1320 this_end = nid_range(start, end, &n);
1321 if (n == nid) {
1322 numadbg(" MATCH reserving range [%lx:%lx]\n",
1323 start, this_end);
1324 reserve_bootmem_node(NODE_DATA(nid), start,
1325 (this_end - start), BOOTMEM_DEFAULT);
1326 } else
1327 numadbg(" NO MATCH, advancing start to %lx\n",
1328 this_end);
1330 start = this_end;
1334 static void __init trim_reserved_in_node(int nid)
1336 int i;
1338 numadbg(" trim_reserved_in_node(%d)\n", nid);
1340 for (i = 0; i < lmb.reserved.cnt; i++) {
1341 unsigned long start = lmb.reserved.region[i].base;
1342 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1343 unsigned long end = start + size;
1345 reserve_range_in_node(nid, start, end);
1349 static void __init bootmem_init_one_node(int nid)
1351 struct pglist_data *p;
1353 numadbg("bootmem_init_one_node(%d)\n", nid);
1355 p = NODE_DATA(nid);
1357 if (p->node_spanned_pages) {
1358 unsigned long paddr = node_masks[nid].bootmem_paddr;
1359 unsigned long end_pfn;
1361 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1363 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1364 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1366 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1367 p->node_start_pfn, end_pfn);
1369 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1370 nid, end_pfn);
1371 free_bootmem_with_active_regions(nid, end_pfn);
1373 trim_reserved_in_node(nid);
1375 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1376 nid);
1377 sparse_memory_present_with_active_regions(nid);
1381 static unsigned long __init bootmem_init(unsigned long phys_base)
1383 unsigned long end_pfn;
1384 int nid;
1386 end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1387 max_pfn = max_low_pfn = end_pfn;
1388 min_low_pfn = (phys_base >> PAGE_SHIFT);
1390 if (bootmem_init_numa() < 0)
1391 bootmem_init_nonnuma();
1393 /* XXX cpu notifier XXX */
1395 for_each_online_node(nid)
1396 bootmem_init_one_node(nid);
1398 sparse_init();
1400 return end_pfn;
1403 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1404 static int pall_ents __initdata;
1406 #ifdef CONFIG_DEBUG_PAGEALLOC
1407 static unsigned long __ref kernel_map_range(unsigned long pstart,
1408 unsigned long pend, pgprot_t prot)
1410 unsigned long vstart = PAGE_OFFSET + pstart;
1411 unsigned long vend = PAGE_OFFSET + pend;
1412 unsigned long alloc_bytes = 0UL;
1414 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1415 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1416 vstart, vend);
1417 prom_halt();
1420 while (vstart < vend) {
1421 unsigned long this_end, paddr = __pa(vstart);
1422 pgd_t *pgd = pgd_offset_k(vstart);
1423 pud_t *pud;
1424 pmd_t *pmd;
1425 pte_t *pte;
1427 pud = pud_offset(pgd, vstart);
1428 if (pud_none(*pud)) {
1429 pmd_t *new;
1431 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1432 alloc_bytes += PAGE_SIZE;
1433 pud_populate(&init_mm, pud, new);
1436 pmd = pmd_offset(pud, vstart);
1437 if (!pmd_present(*pmd)) {
1438 pte_t *new;
1440 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1441 alloc_bytes += PAGE_SIZE;
1442 pmd_populate_kernel(&init_mm, pmd, new);
1445 pte = pte_offset_kernel(pmd, vstart);
1446 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1447 if (this_end > vend)
1448 this_end = vend;
1450 while (vstart < this_end) {
1451 pte_val(*pte) = (paddr | pgprot_val(prot));
1453 vstart += PAGE_SIZE;
1454 paddr += PAGE_SIZE;
1455 pte++;
1459 return alloc_bytes;
1462 extern unsigned int kvmap_linear_patch[1];
1463 #endif /* CONFIG_DEBUG_PAGEALLOC */
1465 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1467 const unsigned long shift_256MB = 28;
1468 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1469 const unsigned long size_256MB = (1UL << shift_256MB);
1471 while (start < end) {
1472 long remains;
1474 remains = end - start;
1475 if (remains < size_256MB)
1476 break;
1478 if (start & mask_256MB) {
1479 start = (start + size_256MB) & ~mask_256MB;
1480 continue;
1483 while (remains >= size_256MB) {
1484 unsigned long index = start >> shift_256MB;
1486 __set_bit(index, kpte_linear_bitmap);
1488 start += size_256MB;
1489 remains -= size_256MB;
1494 static void __init init_kpte_bitmap(void)
1496 unsigned long i;
1498 for (i = 0; i < pall_ents; i++) {
1499 unsigned long phys_start, phys_end;
1501 phys_start = pall[i].phys_addr;
1502 phys_end = phys_start + pall[i].reg_size;
1504 mark_kpte_bitmap(phys_start, phys_end);
1508 static void __init kernel_physical_mapping_init(void)
1510 #ifdef CONFIG_DEBUG_PAGEALLOC
1511 unsigned long i, mem_alloced = 0UL;
1513 for (i = 0; i < pall_ents; i++) {
1514 unsigned long phys_start, phys_end;
1516 phys_start = pall[i].phys_addr;
1517 phys_end = phys_start + pall[i].reg_size;
1519 mem_alloced += kernel_map_range(phys_start, phys_end,
1520 PAGE_KERNEL);
1523 printk("Allocated %ld bytes for kernel page tables.\n",
1524 mem_alloced);
1526 kvmap_linear_patch[0] = 0x01000000; /* nop */
1527 flushi(&kvmap_linear_patch[0]);
1529 __flush_tlb_all();
1530 #endif
1533 #ifdef CONFIG_DEBUG_PAGEALLOC
1534 void kernel_map_pages(struct page *page, int numpages, int enable)
1536 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1537 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1539 kernel_map_range(phys_start, phys_end,
1540 (enable ? PAGE_KERNEL : __pgprot(0)));
1542 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1543 PAGE_OFFSET + phys_end);
1545 /* we should perform an IPI and flush all tlbs,
1546 * but that can deadlock->flush only current cpu.
1548 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1549 PAGE_OFFSET + phys_end);
1551 #endif
1553 unsigned long __init find_ecache_flush_span(unsigned long size)
1555 int i;
1557 for (i = 0; i < pavail_ents; i++) {
1558 if (pavail[i].reg_size >= size)
1559 return pavail[i].phys_addr;
1562 return ~0UL;
1565 static void __init tsb_phys_patch(void)
1567 struct tsb_ldquad_phys_patch_entry *pquad;
1568 struct tsb_phys_patch_entry *p;
1570 pquad = &__tsb_ldquad_phys_patch;
1571 while (pquad < &__tsb_ldquad_phys_patch_end) {
1572 unsigned long addr = pquad->addr;
1574 if (tlb_type == hypervisor)
1575 *(unsigned int *) addr = pquad->sun4v_insn;
1576 else
1577 *(unsigned int *) addr = pquad->sun4u_insn;
1578 wmb();
1579 __asm__ __volatile__("flush %0"
1580 : /* no outputs */
1581 : "r" (addr));
1583 pquad++;
1586 p = &__tsb_phys_patch;
1587 while (p < &__tsb_phys_patch_end) {
1588 unsigned long addr = p->addr;
1590 *(unsigned int *) addr = p->insn;
1591 wmb();
1592 __asm__ __volatile__("flush %0"
1593 : /* no outputs */
1594 : "r" (addr));
1596 p++;
1600 /* Don't mark as init, we give this to the Hypervisor. */
1601 #ifndef CONFIG_DEBUG_PAGEALLOC
1602 #define NUM_KTSB_DESCR 2
1603 #else
1604 #define NUM_KTSB_DESCR 1
1605 #endif
1606 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1607 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1609 static void __init sun4v_ktsb_init(void)
1611 unsigned long ktsb_pa;
1613 /* First KTSB for PAGE_SIZE mappings. */
1614 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1616 switch (PAGE_SIZE) {
1617 case 8 * 1024:
1618 default:
1619 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1620 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1621 break;
1623 case 64 * 1024:
1624 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1625 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1626 break;
1628 case 512 * 1024:
1629 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1630 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1631 break;
1633 case 4 * 1024 * 1024:
1634 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1635 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1636 break;
1639 ktsb_descr[0].assoc = 1;
1640 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1641 ktsb_descr[0].ctx_idx = 0;
1642 ktsb_descr[0].tsb_base = ktsb_pa;
1643 ktsb_descr[0].resv = 0;
1645 #ifndef CONFIG_DEBUG_PAGEALLOC
1646 /* Second KTSB for 4MB/256MB mappings. */
1647 ktsb_pa = (kern_base +
1648 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1650 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1651 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1652 HV_PGSZ_MASK_256MB);
1653 ktsb_descr[1].assoc = 1;
1654 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1655 ktsb_descr[1].ctx_idx = 0;
1656 ktsb_descr[1].tsb_base = ktsb_pa;
1657 ktsb_descr[1].resv = 0;
1658 #endif
1661 void __cpuinit sun4v_ktsb_register(void)
1663 unsigned long pa, ret;
1665 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1667 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1668 if (ret != 0) {
1669 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1670 "errors with %lx\n", pa, ret);
1671 prom_halt();
1675 /* paging_init() sets up the page tables */
1677 static unsigned long last_valid_pfn;
1678 pgd_t swapper_pg_dir[2048];
1680 static void sun4u_pgprot_init(void);
1681 static void sun4v_pgprot_init(void);
1683 void __init paging_init(void)
1685 unsigned long end_pfn, shift, phys_base;
1686 unsigned long real_end, i;
1688 /* These build time checkes make sure that the dcache_dirty_cpu()
1689 * page->flags usage will work.
1691 * When a page gets marked as dcache-dirty, we store the
1692 * cpu number starting at bit 32 in the page->flags. Also,
1693 * functions like clear_dcache_dirty_cpu use the cpu mask
1694 * in 13-bit signed-immediate instruction fields.
1698 * Page flags must not reach into upper 32 bits that are used
1699 * for the cpu number
1701 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1704 * The bit fields placed in the high range must not reach below
1705 * the 32 bit boundary. Otherwise we cannot place the cpu field
1706 * at the 32 bit boundary.
1708 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1709 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1711 BUILD_BUG_ON(NR_CPUS > 4096);
1713 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1714 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1716 /* Invalidate both kernel TSBs. */
1717 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1718 #ifndef CONFIG_DEBUG_PAGEALLOC
1719 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1720 #endif
1722 if (tlb_type == hypervisor)
1723 sun4v_pgprot_init();
1724 else
1725 sun4u_pgprot_init();
1727 if (tlb_type == cheetah_plus ||
1728 tlb_type == hypervisor)
1729 tsb_phys_patch();
1731 if (tlb_type == hypervisor) {
1732 sun4v_patch_tlb_handlers();
1733 sun4v_ktsb_init();
1736 lmb_init();
1738 /* Find available physical memory...
1740 * Read it twice in order to work around a bug in openfirmware.
1741 * The call to grab this table itself can cause openfirmware to
1742 * allocate memory, which in turn can take away some space from
1743 * the list of available memory. Reading it twice makes sure
1744 * we really do get the final value.
1746 read_obp_translations();
1747 read_obp_memory("reg", &pall[0], &pall_ents);
1748 read_obp_memory("available", &pavail[0], &pavail_ents);
1749 read_obp_memory("available", &pavail[0], &pavail_ents);
1751 phys_base = 0xffffffffffffffffUL;
1752 for (i = 0; i < pavail_ents; i++) {
1753 phys_base = min(phys_base, pavail[i].phys_addr);
1754 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1757 lmb_reserve(kern_base, kern_size);
1759 find_ramdisk(phys_base);
1761 lmb_enforce_memory_limit(cmdline_memory_size);
1763 lmb_analyze();
1764 lmb_dump_all();
1766 set_bit(0, mmu_context_bmap);
1768 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1770 real_end = (unsigned long)_end;
1771 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1772 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1773 num_kernel_image_mappings);
1775 /* Set kernel pgd to upper alias so physical page computations
1776 * work.
1778 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1780 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1782 /* Now can init the kernel/bad page tables. */
1783 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1784 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1786 inherit_prom_mappings();
1788 init_kpte_bitmap();
1790 /* Ok, we can use our TLB miss and window trap handlers safely. */
1791 setup_tba();
1793 __flush_tlb_all();
1795 if (tlb_type == hypervisor)
1796 sun4v_ktsb_register();
1798 prom_build_devicetree();
1799 of_populate_present_mask();
1800 #ifndef CONFIG_SMP
1801 of_fill_in_cpu_data();
1802 #endif
1804 if (tlb_type == hypervisor) {
1805 sun4v_mdesc_init();
1806 mdesc_populate_present_mask(cpu_all_mask);
1807 #ifndef CONFIG_SMP
1808 mdesc_fill_in_cpu_data(cpu_all_mask);
1809 #endif
1812 /* Once the OF device tree and MDESC have been setup, we know
1813 * the list of possible cpus. Therefore we can allocate the
1814 * IRQ stacks.
1816 for_each_possible_cpu(i) {
1817 /* XXX Use node local allocations... XXX */
1818 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1819 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1822 /* Setup bootmem... */
1823 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1825 #ifndef CONFIG_NEED_MULTIPLE_NODES
1826 max_mapnr = last_valid_pfn;
1827 #endif
1828 kernel_physical_mapping_init();
1831 unsigned long max_zone_pfns[MAX_NR_ZONES];
1833 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1835 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1837 free_area_init_nodes(max_zone_pfns);
1840 printk("Booting Linux...\n");
1843 int __devinit page_in_phys_avail(unsigned long paddr)
1845 int i;
1847 paddr &= PAGE_MASK;
1849 for (i = 0; i < pavail_ents; i++) {
1850 unsigned long start, end;
1852 start = pavail[i].phys_addr;
1853 end = start + pavail[i].reg_size;
1855 if (paddr >= start && paddr < end)
1856 return 1;
1858 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1859 return 1;
1860 #ifdef CONFIG_BLK_DEV_INITRD
1861 if (paddr >= __pa(initrd_start) &&
1862 paddr < __pa(PAGE_ALIGN(initrd_end)))
1863 return 1;
1864 #endif
1866 return 0;
1869 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1870 static int pavail_rescan_ents __initdata;
1872 /* Certain OBP calls, such as fetching "available" properties, can
1873 * claim physical memory. So, along with initializing the valid
1874 * address bitmap, what we do here is refetch the physical available
1875 * memory list again, and make sure it provides at least as much
1876 * memory as 'pavail' does.
1878 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1880 int i;
1882 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1884 for (i = 0; i < pavail_ents; i++) {
1885 unsigned long old_start, old_end;
1887 old_start = pavail[i].phys_addr;
1888 old_end = old_start + pavail[i].reg_size;
1889 while (old_start < old_end) {
1890 int n;
1892 for (n = 0; n < pavail_rescan_ents; n++) {
1893 unsigned long new_start, new_end;
1895 new_start = pavail_rescan[n].phys_addr;
1896 new_end = new_start +
1897 pavail_rescan[n].reg_size;
1899 if (new_start <= old_start &&
1900 new_end >= (old_start + PAGE_SIZE)) {
1901 set_bit(old_start >> 22, bitmap);
1902 goto do_next_page;
1906 prom_printf("mem_init: Lost memory in pavail\n");
1907 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1908 pavail[i].phys_addr,
1909 pavail[i].reg_size);
1910 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1911 pavail_rescan[i].phys_addr,
1912 pavail_rescan[i].reg_size);
1913 prom_printf("mem_init: Cannot continue, aborting.\n");
1914 prom_halt();
1916 do_next_page:
1917 old_start += PAGE_SIZE;
1922 static void __init patch_tlb_miss_handler_bitmap(void)
1924 extern unsigned int valid_addr_bitmap_insn[];
1925 extern unsigned int valid_addr_bitmap_patch[];
1927 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1928 mb();
1929 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1930 flushi(&valid_addr_bitmap_insn[0]);
1933 void __init mem_init(void)
1935 unsigned long codepages, datapages, initpages;
1936 unsigned long addr, last;
1938 addr = PAGE_OFFSET + kern_base;
1939 last = PAGE_ALIGN(kern_size) + addr;
1940 while (addr < last) {
1941 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1942 addr += PAGE_SIZE;
1945 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1946 patch_tlb_miss_handler_bitmap();
1948 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1950 #ifdef CONFIG_NEED_MULTIPLE_NODES
1952 int i;
1953 for_each_online_node(i) {
1954 if (NODE_DATA(i)->node_spanned_pages != 0) {
1955 totalram_pages +=
1956 free_all_bootmem_node(NODE_DATA(i));
1960 #else
1961 totalram_pages = free_all_bootmem();
1962 #endif
1964 /* We subtract one to account for the mem_map_zero page
1965 * allocated below.
1967 totalram_pages -= 1;
1968 num_physpages = totalram_pages;
1971 * Set up the zero page, mark it reserved, so that page count
1972 * is not manipulated when freeing the page from user ptes.
1974 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1975 if (mem_map_zero == NULL) {
1976 prom_printf("paging_init: Cannot alloc zero page.\n");
1977 prom_halt();
1979 SetPageReserved(mem_map_zero);
1981 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1982 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1983 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1984 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1985 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1986 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1988 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1989 nr_free_pages() << (PAGE_SHIFT-10),
1990 codepages << (PAGE_SHIFT-10),
1991 datapages << (PAGE_SHIFT-10),
1992 initpages << (PAGE_SHIFT-10),
1993 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1995 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1996 cheetah_ecache_flush_init();
1999 void free_initmem(void)
2001 unsigned long addr, initend;
2002 int do_free = 1;
2004 /* If the physical memory maps were trimmed by kernel command
2005 * line options, don't even try freeing this initmem stuff up.
2006 * The kernel image could have been in the trimmed out region
2007 * and if so the freeing below will free invalid page structs.
2009 if (cmdline_memory_size)
2010 do_free = 0;
2013 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2015 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2016 initend = (unsigned long)(__init_end) & PAGE_MASK;
2017 for (; addr < initend; addr += PAGE_SIZE) {
2018 unsigned long page;
2019 struct page *p;
2021 page = (addr +
2022 ((unsigned long) __va(kern_base)) -
2023 ((unsigned long) KERNBASE));
2024 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2026 if (do_free) {
2027 p = virt_to_page(page);
2029 ClearPageReserved(p);
2030 init_page_count(p);
2031 __free_page(p);
2032 num_physpages++;
2033 totalram_pages++;
2038 #ifdef CONFIG_BLK_DEV_INITRD
2039 void free_initrd_mem(unsigned long start, unsigned long end)
2041 if (start < end)
2042 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2043 for (; start < end; start += PAGE_SIZE) {
2044 struct page *p = virt_to_page(start);
2046 ClearPageReserved(p);
2047 init_page_count(p);
2048 __free_page(p);
2049 num_physpages++;
2050 totalram_pages++;
2053 #endif
2055 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2056 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2057 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2058 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2059 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2060 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2062 pgprot_t PAGE_KERNEL __read_mostly;
2063 EXPORT_SYMBOL(PAGE_KERNEL);
2065 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2066 pgprot_t PAGE_COPY __read_mostly;
2068 pgprot_t PAGE_SHARED __read_mostly;
2069 EXPORT_SYMBOL(PAGE_SHARED);
2071 unsigned long pg_iobits __read_mostly;
2073 unsigned long _PAGE_IE __read_mostly;
2074 EXPORT_SYMBOL(_PAGE_IE);
2076 unsigned long _PAGE_E __read_mostly;
2077 EXPORT_SYMBOL(_PAGE_E);
2079 unsigned long _PAGE_CACHE __read_mostly;
2080 EXPORT_SYMBOL(_PAGE_CACHE);
2082 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2083 unsigned long vmemmap_table[VMEMMAP_SIZE];
2085 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2087 unsigned long vstart = (unsigned long) start;
2088 unsigned long vend = (unsigned long) (start + nr);
2089 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2090 unsigned long phys_end = (vend - VMEMMAP_BASE);
2091 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2092 unsigned long end = VMEMMAP_ALIGN(phys_end);
2093 unsigned long pte_base;
2095 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2096 _PAGE_CP_4U | _PAGE_CV_4U |
2097 _PAGE_P_4U | _PAGE_W_4U);
2098 if (tlb_type == hypervisor)
2099 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2100 _PAGE_CP_4V | _PAGE_CV_4V |
2101 _PAGE_P_4V | _PAGE_W_4V);
2103 for (; addr < end; addr += VMEMMAP_CHUNK) {
2104 unsigned long *vmem_pp =
2105 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2106 void *block;
2108 if (!(*vmem_pp & _PAGE_VALID)) {
2109 block = vmemmap_alloc_block(1UL << 22, node);
2110 if (!block)
2111 return -ENOMEM;
2113 *vmem_pp = pte_base | __pa(block);
2115 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2116 "node=%d entry=%lu/%lu\n", start, block, nr,
2117 node,
2118 addr >> VMEMMAP_CHUNK_SHIFT,
2119 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2122 return 0;
2124 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2126 static void prot_init_common(unsigned long page_none,
2127 unsigned long page_shared,
2128 unsigned long page_copy,
2129 unsigned long page_readonly,
2130 unsigned long page_exec_bit)
2132 PAGE_COPY = __pgprot(page_copy);
2133 PAGE_SHARED = __pgprot(page_shared);
2135 protection_map[0x0] = __pgprot(page_none);
2136 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2137 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2138 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2139 protection_map[0x4] = __pgprot(page_readonly);
2140 protection_map[0x5] = __pgprot(page_readonly);
2141 protection_map[0x6] = __pgprot(page_copy);
2142 protection_map[0x7] = __pgprot(page_copy);
2143 protection_map[0x8] = __pgprot(page_none);
2144 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2145 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2146 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2147 protection_map[0xc] = __pgprot(page_readonly);
2148 protection_map[0xd] = __pgprot(page_readonly);
2149 protection_map[0xe] = __pgprot(page_shared);
2150 protection_map[0xf] = __pgprot(page_shared);
2153 static void __init sun4u_pgprot_init(void)
2155 unsigned long page_none, page_shared, page_copy, page_readonly;
2156 unsigned long page_exec_bit;
2158 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2159 _PAGE_CACHE_4U | _PAGE_P_4U |
2160 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2161 _PAGE_EXEC_4U);
2162 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2163 _PAGE_CACHE_4U | _PAGE_P_4U |
2164 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2165 _PAGE_EXEC_4U | _PAGE_L_4U);
2167 _PAGE_IE = _PAGE_IE_4U;
2168 _PAGE_E = _PAGE_E_4U;
2169 _PAGE_CACHE = _PAGE_CACHE_4U;
2171 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2172 __ACCESS_BITS_4U | _PAGE_E_4U);
2174 #ifdef CONFIG_DEBUG_PAGEALLOC
2175 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2176 0xfffff80000000000UL;
2177 #else
2178 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2179 0xfffff80000000000UL;
2180 #endif
2181 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2182 _PAGE_P_4U | _PAGE_W_4U);
2184 /* XXX Should use 256MB on Panther. XXX */
2185 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2187 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2188 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2189 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2190 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2193 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2194 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2195 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2196 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2197 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2198 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2199 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2201 page_exec_bit = _PAGE_EXEC_4U;
2203 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2204 page_exec_bit);
2207 static void __init sun4v_pgprot_init(void)
2209 unsigned long page_none, page_shared, page_copy, page_readonly;
2210 unsigned long page_exec_bit;
2212 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2213 _PAGE_CACHE_4V | _PAGE_P_4V |
2214 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2215 _PAGE_EXEC_4V);
2216 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2218 _PAGE_IE = _PAGE_IE_4V;
2219 _PAGE_E = _PAGE_E_4V;
2220 _PAGE_CACHE = _PAGE_CACHE_4V;
2222 #ifdef CONFIG_DEBUG_PAGEALLOC
2223 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2224 0xfffff80000000000UL;
2225 #else
2226 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2227 0xfffff80000000000UL;
2228 #endif
2229 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2230 _PAGE_P_4V | _PAGE_W_4V);
2232 #ifdef CONFIG_DEBUG_PAGEALLOC
2233 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2234 0xfffff80000000000UL;
2235 #else
2236 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2237 0xfffff80000000000UL;
2238 #endif
2239 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2240 _PAGE_P_4V | _PAGE_W_4V);
2242 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2243 __ACCESS_BITS_4V | _PAGE_E_4V);
2245 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2246 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2247 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2248 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2249 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2251 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2252 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2253 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2254 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2255 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2256 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2257 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2259 page_exec_bit = _PAGE_EXEC_4V;
2261 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2262 page_exec_bit);
2265 unsigned long pte_sz_bits(unsigned long sz)
2267 if (tlb_type == hypervisor) {
2268 switch (sz) {
2269 case 8 * 1024:
2270 default:
2271 return _PAGE_SZ8K_4V;
2272 case 64 * 1024:
2273 return _PAGE_SZ64K_4V;
2274 case 512 * 1024:
2275 return _PAGE_SZ512K_4V;
2276 case 4 * 1024 * 1024:
2277 return _PAGE_SZ4MB_4V;
2279 } else {
2280 switch (sz) {
2281 case 8 * 1024:
2282 default:
2283 return _PAGE_SZ8K_4U;
2284 case 64 * 1024:
2285 return _PAGE_SZ64K_4U;
2286 case 512 * 1024:
2287 return _PAGE_SZ512K_4U;
2288 case 4 * 1024 * 1024:
2289 return _PAGE_SZ4MB_4U;
2294 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2296 pte_t pte;
2298 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2299 pte_val(pte) |= (((unsigned long)space) << 32);
2300 pte_val(pte) |= pte_sz_bits(page_size);
2302 return pte;
2305 static unsigned long kern_large_tte(unsigned long paddr)
2307 unsigned long val;
2309 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2310 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2311 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2312 if (tlb_type == hypervisor)
2313 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2314 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2315 _PAGE_EXEC_4V | _PAGE_W_4V);
2317 return val | paddr;
2320 /* If not locked, zap it. */
2321 void __flush_tlb_all(void)
2323 unsigned long pstate;
2324 int i;
2326 __asm__ __volatile__("flushw\n\t"
2327 "rdpr %%pstate, %0\n\t"
2328 "wrpr %0, %1, %%pstate"
2329 : "=r" (pstate)
2330 : "i" (PSTATE_IE));
2331 if (tlb_type == hypervisor) {
2332 sun4v_mmu_demap_all();
2333 } else if (tlb_type == spitfire) {
2334 for (i = 0; i < 64; i++) {
2335 /* Spitfire Errata #32 workaround */
2336 /* NOTE: Always runs on spitfire, so no
2337 * cheetah+ page size encodings.
2339 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2340 "flush %%g6"
2341 : /* No outputs */
2342 : "r" (0),
2343 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2345 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2346 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2347 "membar #Sync"
2348 : /* no outputs */
2349 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2350 spitfire_put_dtlb_data(i, 0x0UL);
2353 /* Spitfire Errata #32 workaround */
2354 /* NOTE: Always runs on spitfire, so no
2355 * cheetah+ page size encodings.
2357 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2358 "flush %%g6"
2359 : /* No outputs */
2360 : "r" (0),
2361 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2363 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2364 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2365 "membar #Sync"
2366 : /* no outputs */
2367 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2368 spitfire_put_itlb_data(i, 0x0UL);
2371 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2372 cheetah_flush_dtlb_all();
2373 cheetah_flush_itlb_all();
2375 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2376 : : "r" (pstate));