1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pm_qos_params.h>
47 #define DRV_VERSION "1.0.0-k0"
48 char igbvf_driver_name
[] = "igbvf";
49 const char igbvf_driver_version
[] = DRV_VERSION
;
50 static const char igbvf_driver_string
[] =
51 "Intel(R) Virtual Function Network Driver";
52 static const char igbvf_copyright
[] = "Copyright (c) 2009 Intel Corporation.";
54 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
55 static void igbvf_reset(struct igbvf_adapter
*);
56 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
57 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
59 static struct igbvf_info igbvf_vf_info
= {
63 .init_ops
= e1000_init_function_pointers_vf
,
66 static const struct igbvf_info
*igbvf_info_tbl
[] = {
67 [board_vf
] = &igbvf_vf_info
,
71 * igbvf_desc_unused - calculate if we have unused descriptors
73 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
75 if (ring
->next_to_clean
> ring
->next_to_use
)
76 return ring
->next_to_clean
- ring
->next_to_use
- 1;
78 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
82 * igbvf_receive_skb - helper function to handle Rx indications
83 * @adapter: board private structure
84 * @status: descriptor status field as written by hardware
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
86 * @skb: pointer to sk_buff to be indicated to stack
88 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
89 struct net_device
*netdev
,
93 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
94 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
96 E1000_RXD_SPC_VLAN_MASK
);
98 netif_receive_skb(skb
);
101 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
102 u32 status_err
, struct sk_buff
*skb
)
104 skb
->ip_summed
= CHECKSUM_NONE
;
106 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
107 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
108 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
111 /* TCP/UDP checksum error bit is set */
113 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
114 /* let the stack verify checksum errors */
115 adapter
->hw_csum_err
++;
119 /* It must be a TCP or UDP packet with a valid checksum */
120 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
121 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
123 adapter
->hw_csum_good
++;
127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128 * @rx_ring: address of ring structure to repopulate
129 * @cleaned_count: number of buffers to repopulate
131 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
134 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
135 struct net_device
*netdev
= adapter
->netdev
;
136 struct pci_dev
*pdev
= adapter
->pdev
;
137 union e1000_adv_rx_desc
*rx_desc
;
138 struct igbvf_buffer
*buffer_info
;
143 i
= rx_ring
->next_to_use
;
144 buffer_info
= &rx_ring
->buffer_info
[i
];
146 if (adapter
->rx_ps_hdr_size
)
147 bufsz
= adapter
->rx_ps_hdr_size
;
149 bufsz
= adapter
->rx_buffer_len
;
151 while (cleaned_count
--) {
152 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
154 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
155 if (!buffer_info
->page
) {
156 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
157 if (!buffer_info
->page
) {
158 adapter
->alloc_rx_buff_failed
++;
161 buffer_info
->page_offset
= 0;
163 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
165 buffer_info
->page_dma
=
166 pci_map_page(pdev
, buffer_info
->page
,
167 buffer_info
->page_offset
,
172 if (!buffer_info
->skb
) {
173 skb
= netdev_alloc_skb(netdev
, bufsz
+ NET_IP_ALIGN
);
175 adapter
->alloc_rx_buff_failed
++;
179 /* Make buffer alignment 2 beyond a 16 byte boundary
180 * this will result in a 16 byte aligned IP header after
181 * the 14 byte MAC header is removed
183 skb_reserve(skb
, NET_IP_ALIGN
);
185 buffer_info
->skb
= skb
;
186 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
190 /* Refresh the desc even if buffer_addrs didn't change because
191 * each write-back erases this info. */
192 if (adapter
->rx_ps_hdr_size
) {
193 rx_desc
->read
.pkt_addr
=
194 cpu_to_le64(buffer_info
->page_dma
);
195 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
197 rx_desc
->read
.pkt_addr
=
198 cpu_to_le64(buffer_info
->dma
);
199 rx_desc
->read
.hdr_addr
= 0;
203 if (i
== rx_ring
->count
)
205 buffer_info
= &rx_ring
->buffer_info
[i
];
209 if (rx_ring
->next_to_use
!= i
) {
210 rx_ring
->next_to_use
= i
;
212 i
= (rx_ring
->count
- 1);
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
221 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
226 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
227 * @adapter: board private structure
229 * the return value indicates whether actual cleaning was done, there
230 * is no guarantee that everything was cleaned
232 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
233 int *work_done
, int work_to_do
)
235 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
236 struct net_device
*netdev
= adapter
->netdev
;
237 struct pci_dev
*pdev
= adapter
->pdev
;
238 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
239 struct igbvf_buffer
*buffer_info
, *next_buffer
;
241 bool cleaned
= false;
242 int cleaned_count
= 0;
243 unsigned int total_bytes
= 0, total_packets
= 0;
245 u32 length
, hlen
, staterr
;
247 i
= rx_ring
->next_to_clean
;
248 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
249 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
251 while (staterr
& E1000_RXD_STAT_DD
) {
252 if (*work_done
>= work_to_do
)
256 buffer_info
= &rx_ring
->buffer_info
[i
];
258 /* HW will not DMA in data larger than the given buffer, even
259 * if it parses the (NFS, of course) header to be larger. In
260 * that case, it fills the header buffer and spills the rest
263 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
) &
264 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
265 if (hlen
> adapter
->rx_ps_hdr_size
)
266 hlen
= adapter
->rx_ps_hdr_size
;
268 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
272 skb
= buffer_info
->skb
;
273 prefetch(skb
->data
- NET_IP_ALIGN
);
274 buffer_info
->skb
= NULL
;
275 if (!adapter
->rx_ps_hdr_size
) {
276 pci_unmap_single(pdev
, buffer_info
->dma
,
277 adapter
->rx_buffer_len
,
279 buffer_info
->dma
= 0;
280 skb_put(skb
, length
);
284 if (!skb_shinfo(skb
)->nr_frags
) {
285 pci_unmap_single(pdev
, buffer_info
->dma
,
286 adapter
->rx_ps_hdr_size
,
292 pci_unmap_page(pdev
, buffer_info
->page_dma
,
295 buffer_info
->page_dma
= 0;
297 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
299 buffer_info
->page_offset
,
302 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
303 (page_count(buffer_info
->page
) != 1))
304 buffer_info
->page
= NULL
;
306 get_page(buffer_info
->page
);
309 skb
->data_len
+= length
;
310 skb
->truesize
+= length
;
314 if (i
== rx_ring
->count
)
316 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
318 next_buffer
= &rx_ring
->buffer_info
[i
];
320 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
321 buffer_info
->skb
= next_buffer
->skb
;
322 buffer_info
->dma
= next_buffer
->dma
;
323 next_buffer
->skb
= skb
;
324 next_buffer
->dma
= 0;
328 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
329 dev_kfree_skb_irq(skb
);
333 total_bytes
+= skb
->len
;
336 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
338 skb
->protocol
= eth_type_trans(skb
, netdev
);
340 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
341 rx_desc
->wb
.upper
.vlan
);
344 rx_desc
->wb
.upper
.status_error
= 0;
346 /* return some buffers to hardware, one at a time is too slow */
347 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
348 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
352 /* use prefetched values */
354 buffer_info
= next_buffer
;
356 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
359 rx_ring
->next_to_clean
= i
;
360 cleaned_count
= igbvf_desc_unused(rx_ring
);
363 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
365 adapter
->total_rx_packets
+= total_packets
;
366 adapter
->total_rx_bytes
+= total_bytes
;
367 adapter
->net_stats
.rx_bytes
+= total_bytes
;
368 adapter
->net_stats
.rx_packets
+= total_packets
;
372 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
373 struct igbvf_buffer
*buffer_info
)
375 buffer_info
->dma
= 0;
376 if (buffer_info
->skb
) {
377 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
379 dev_kfree_skb_any(buffer_info
->skb
);
380 buffer_info
->skb
= NULL
;
382 buffer_info
->time_stamp
= 0;
385 static void igbvf_print_tx_hang(struct igbvf_adapter
*adapter
)
387 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
388 unsigned int i
= tx_ring
->next_to_clean
;
389 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
390 union e1000_adv_tx_desc
*eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
392 /* detected Tx unit hang */
393 dev_err(&adapter
->pdev
->dev
,
394 "Detected Tx Unit Hang:\n"
397 " next_to_use <%x>\n"
398 " next_to_clean <%x>\n"
399 "buffer_info[next_to_clean]:\n"
400 " time_stamp <%lx>\n"
401 " next_to_watch <%x>\n"
403 " next_to_watch.status <%x>\n",
404 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
405 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
406 tx_ring
->next_to_use
,
407 tx_ring
->next_to_clean
,
408 tx_ring
->buffer_info
[eop
].time_stamp
,
411 eop_desc
->wb
.status
);
415 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
416 * @adapter: board private structure
418 * Return 0 on success, negative on failure
420 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
421 struct igbvf_ring
*tx_ring
)
423 struct pci_dev
*pdev
= adapter
->pdev
;
426 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
427 tx_ring
->buffer_info
= vmalloc(size
);
428 if (!tx_ring
->buffer_info
)
430 memset(tx_ring
->buffer_info
, 0, size
);
432 /* round up to nearest 4K */
433 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
434 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
436 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
442 tx_ring
->adapter
= adapter
;
443 tx_ring
->next_to_use
= 0;
444 tx_ring
->next_to_clean
= 0;
448 vfree(tx_ring
->buffer_info
);
449 dev_err(&adapter
->pdev
->dev
,
450 "Unable to allocate memory for the transmit descriptor ring\n");
455 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
456 * @adapter: board private structure
458 * Returns 0 on success, negative on failure
460 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
461 struct igbvf_ring
*rx_ring
)
463 struct pci_dev
*pdev
= adapter
->pdev
;
466 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
467 rx_ring
->buffer_info
= vmalloc(size
);
468 if (!rx_ring
->buffer_info
)
470 memset(rx_ring
->buffer_info
, 0, size
);
472 desc_len
= sizeof(union e1000_adv_rx_desc
);
474 /* Round up to nearest 4K */
475 rx_ring
->size
= rx_ring
->count
* desc_len
;
476 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
478 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
484 rx_ring
->next_to_clean
= 0;
485 rx_ring
->next_to_use
= 0;
487 rx_ring
->adapter
= adapter
;
492 vfree(rx_ring
->buffer_info
);
493 rx_ring
->buffer_info
= NULL
;
494 dev_err(&adapter
->pdev
->dev
,
495 "Unable to allocate memory for the receive descriptor ring\n");
500 * igbvf_clean_tx_ring - Free Tx Buffers
501 * @tx_ring: ring to be cleaned
503 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
505 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
506 struct igbvf_buffer
*buffer_info
;
510 if (!tx_ring
->buffer_info
)
513 /* Free all the Tx ring sk_buffs */
514 for (i
= 0; i
< tx_ring
->count
; i
++) {
515 buffer_info
= &tx_ring
->buffer_info
[i
];
516 igbvf_put_txbuf(adapter
, buffer_info
);
519 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
520 memset(tx_ring
->buffer_info
, 0, size
);
522 /* Zero out the descriptor ring */
523 memset(tx_ring
->desc
, 0, tx_ring
->size
);
525 tx_ring
->next_to_use
= 0;
526 tx_ring
->next_to_clean
= 0;
528 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
529 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
533 * igbvf_free_tx_resources - Free Tx Resources per Queue
534 * @tx_ring: ring to free resources from
536 * Free all transmit software resources
538 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
540 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
542 igbvf_clean_tx_ring(tx_ring
);
544 vfree(tx_ring
->buffer_info
);
545 tx_ring
->buffer_info
= NULL
;
547 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
549 tx_ring
->desc
= NULL
;
553 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
554 * @adapter: board private structure
556 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
558 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
559 struct igbvf_buffer
*buffer_info
;
560 struct pci_dev
*pdev
= adapter
->pdev
;
564 if (!rx_ring
->buffer_info
)
567 /* Free all the Rx ring sk_buffs */
568 for (i
= 0; i
< rx_ring
->count
; i
++) {
569 buffer_info
= &rx_ring
->buffer_info
[i
];
570 if (buffer_info
->dma
) {
571 if (adapter
->rx_ps_hdr_size
){
572 pci_unmap_single(pdev
, buffer_info
->dma
,
573 adapter
->rx_ps_hdr_size
,
576 pci_unmap_single(pdev
, buffer_info
->dma
,
577 adapter
->rx_buffer_len
,
580 buffer_info
->dma
= 0;
583 if (buffer_info
->skb
) {
584 dev_kfree_skb(buffer_info
->skb
);
585 buffer_info
->skb
= NULL
;
588 if (buffer_info
->page
) {
589 if (buffer_info
->page_dma
)
590 pci_unmap_page(pdev
, buffer_info
->page_dma
,
593 put_page(buffer_info
->page
);
594 buffer_info
->page
= NULL
;
595 buffer_info
->page_dma
= 0;
596 buffer_info
->page_offset
= 0;
600 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
601 memset(rx_ring
->buffer_info
, 0, size
);
603 /* Zero out the descriptor ring */
604 memset(rx_ring
->desc
, 0, rx_ring
->size
);
606 rx_ring
->next_to_clean
= 0;
607 rx_ring
->next_to_use
= 0;
609 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
610 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
614 * igbvf_free_rx_resources - Free Rx Resources
615 * @rx_ring: ring to clean the resources from
617 * Free all receive software resources
620 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
622 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
624 igbvf_clean_rx_ring(rx_ring
);
626 vfree(rx_ring
->buffer_info
);
627 rx_ring
->buffer_info
= NULL
;
629 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
631 rx_ring
->desc
= NULL
;
635 * igbvf_update_itr - update the dynamic ITR value based on statistics
636 * @adapter: pointer to adapter
637 * @itr_setting: current adapter->itr
638 * @packets: the number of packets during this measurement interval
639 * @bytes: the number of bytes during this measurement interval
641 * Stores a new ITR value based on packets and byte
642 * counts during the last interrupt. The advantage of per interrupt
643 * computation is faster updates and more accurate ITR for the current
644 * traffic pattern. Constants in this function were computed
645 * based on theoretical maximum wire speed and thresholds were set based
646 * on testing data as well as attempting to minimize response time
647 * while increasing bulk throughput. This functionality is controlled
648 * by the InterruptThrottleRate module parameter.
650 static unsigned int igbvf_update_itr(struct igbvf_adapter
*adapter
,
651 u16 itr_setting
, int packets
,
654 unsigned int retval
= itr_setting
;
657 goto update_itr_done
;
659 switch (itr_setting
) {
661 /* handle TSO and jumbo frames */
662 if (bytes
/packets
> 8000)
663 retval
= bulk_latency
;
664 else if ((packets
< 5) && (bytes
> 512))
665 retval
= low_latency
;
667 case low_latency
: /* 50 usec aka 20000 ints/s */
669 /* this if handles the TSO accounting */
670 if (bytes
/packets
> 8000)
671 retval
= bulk_latency
;
672 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
673 retval
= bulk_latency
;
674 else if ((packets
> 35))
675 retval
= lowest_latency
;
676 } else if (bytes
/packets
> 2000) {
677 retval
= bulk_latency
;
678 } else if (packets
<= 2 && bytes
< 512) {
679 retval
= lowest_latency
;
682 case bulk_latency
: /* 250 usec aka 4000 ints/s */
685 retval
= low_latency
;
686 } else if (bytes
< 6000) {
687 retval
= low_latency
;
696 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
698 struct e1000_hw
*hw
= &adapter
->hw
;
700 u32 new_itr
= adapter
->itr
;
702 adapter
->tx_itr
= igbvf_update_itr(adapter
, adapter
->tx_itr
,
703 adapter
->total_tx_packets
,
704 adapter
->total_tx_bytes
);
705 /* conservative mode (itr 3) eliminates the lowest_latency setting */
706 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
707 adapter
->tx_itr
= low_latency
;
709 adapter
->rx_itr
= igbvf_update_itr(adapter
, adapter
->rx_itr
,
710 adapter
->total_rx_packets
,
711 adapter
->total_rx_bytes
);
712 /* conservative mode (itr 3) eliminates the lowest_latency setting */
713 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
714 adapter
->rx_itr
= low_latency
;
716 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
718 switch (current_itr
) {
719 /* counts and packets in update_itr are dependent on these numbers */
724 new_itr
= 20000; /* aka hwitr = ~200 */
733 if (new_itr
!= adapter
->itr
) {
735 * this attempts to bias the interrupt rate towards Bulk
736 * by adding intermediate steps when interrupt rate is
739 new_itr
= new_itr
> adapter
->itr
?
740 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
742 adapter
->itr
= new_itr
;
743 adapter
->rx_ring
->itr_val
= 1952;
745 if (adapter
->msix_entries
)
746 adapter
->rx_ring
->set_itr
= 1;
753 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
754 * @adapter: board private structure
755 * returns true if ring is completely cleaned
757 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
759 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
760 struct e1000_hw
*hw
= &adapter
->hw
;
761 struct net_device
*netdev
= adapter
->netdev
;
762 struct igbvf_buffer
*buffer_info
;
764 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
765 unsigned int total_bytes
= 0, total_packets
= 0;
766 unsigned int i
, eop
, count
= 0;
767 bool cleaned
= false;
769 i
= tx_ring
->next_to_clean
;
770 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
771 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
773 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
774 (count
< tx_ring
->count
)) {
775 for (cleaned
= false; !cleaned
; count
++) {
776 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
777 buffer_info
= &tx_ring
->buffer_info
[i
];
778 cleaned
= (i
== eop
);
779 skb
= buffer_info
->skb
;
782 unsigned int segs
, bytecount
;
784 /* gso_segs is currently only valid for tcp */
785 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
786 /* multiply data chunks by size of headers */
787 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
789 total_packets
+= segs
;
790 total_bytes
+= bytecount
;
793 igbvf_put_txbuf(adapter
, buffer_info
);
794 tx_desc
->wb
.status
= 0;
797 if (i
== tx_ring
->count
)
800 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
801 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
804 tx_ring
->next_to_clean
= i
;
806 if (unlikely(count
&&
807 netif_carrier_ok(netdev
) &&
808 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
809 /* Make sure that anybody stopping the queue after this
810 * sees the new next_to_clean.
813 if (netif_queue_stopped(netdev
) &&
814 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
815 netif_wake_queue(netdev
);
816 ++adapter
->restart_queue
;
820 if (adapter
->detect_tx_hung
) {
821 /* Detect a transmit hang in hardware, this serializes the
822 * check with the clearing of time_stamp and movement of i */
823 adapter
->detect_tx_hung
= false;
824 if (tx_ring
->buffer_info
[i
].time_stamp
&&
825 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
826 (adapter
->tx_timeout_factor
* HZ
))
827 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
829 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
830 /* detected Tx unit hang */
831 igbvf_print_tx_hang(adapter
);
833 netif_stop_queue(netdev
);
836 adapter
->net_stats
.tx_bytes
+= total_bytes
;
837 adapter
->net_stats
.tx_packets
+= total_packets
;
838 return (count
< tx_ring
->count
);
841 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
843 struct net_device
*netdev
= data
;
844 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
845 struct e1000_hw
*hw
= &adapter
->hw
;
847 adapter
->int_counter1
++;
849 netif_carrier_off(netdev
);
850 hw
->mac
.get_link_status
= 1;
851 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
852 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
854 ew32(EIMS
, adapter
->eims_other
);
859 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
861 struct net_device
*netdev
= data
;
862 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
863 struct e1000_hw
*hw
= &adapter
->hw
;
864 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
867 adapter
->total_tx_bytes
= 0;
868 adapter
->total_tx_packets
= 0;
870 /* auto mask will automatically reenable the interrupt when we write
872 if (!igbvf_clean_tx_irq(tx_ring
))
873 /* Ring was not completely cleaned, so fire another interrupt */
874 ew32(EICS
, tx_ring
->eims_value
);
876 ew32(EIMS
, tx_ring
->eims_value
);
881 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
883 struct net_device
*netdev
= data
;
884 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
886 adapter
->int_counter0
++;
888 /* Write the ITR value calculated at the end of the
889 * previous interrupt.
891 if (adapter
->rx_ring
->set_itr
) {
892 writel(adapter
->rx_ring
->itr_val
,
893 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
894 adapter
->rx_ring
->set_itr
= 0;
897 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
898 adapter
->total_rx_bytes
= 0;
899 adapter
->total_rx_packets
= 0;
900 __napi_schedule(&adapter
->rx_ring
->napi
);
906 #define IGBVF_NO_QUEUE -1
908 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
909 int tx_queue
, int msix_vector
)
911 struct e1000_hw
*hw
= &adapter
->hw
;
914 /* 82576 uses a table-based method for assigning vectors.
915 Each queue has a single entry in the table to which we write
916 a vector number along with a "valid" bit. Sadly, the layout
917 of the table is somewhat counterintuitive. */
918 if (rx_queue
> IGBVF_NO_QUEUE
) {
919 index
= (rx_queue
>> 1);
920 ivar
= array_er32(IVAR0
, index
);
921 if (rx_queue
& 0x1) {
922 /* vector goes into third byte of register */
923 ivar
= ivar
& 0xFF00FFFF;
924 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
926 /* vector goes into low byte of register */
927 ivar
= ivar
& 0xFFFFFF00;
928 ivar
|= msix_vector
| E1000_IVAR_VALID
;
930 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
931 array_ew32(IVAR0
, index
, ivar
);
933 if (tx_queue
> IGBVF_NO_QUEUE
) {
934 index
= (tx_queue
>> 1);
935 ivar
= array_er32(IVAR0
, index
);
936 if (tx_queue
& 0x1) {
937 /* vector goes into high byte of register */
938 ivar
= ivar
& 0x00FFFFFF;
939 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
941 /* vector goes into second byte of register */
942 ivar
= ivar
& 0xFFFF00FF;
943 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
945 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
946 array_ew32(IVAR0
, index
, ivar
);
951 * igbvf_configure_msix - Configure MSI-X hardware
953 * igbvf_configure_msix sets up the hardware to properly
954 * generate MSI-X interrupts.
956 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
959 struct e1000_hw
*hw
= &adapter
->hw
;
960 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
961 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
964 adapter
->eims_enable_mask
= 0;
966 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
967 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
968 if (tx_ring
->itr_val
)
969 writel(tx_ring
->itr_val
,
970 hw
->hw_addr
+ tx_ring
->itr_register
);
972 writel(1952, hw
->hw_addr
+ tx_ring
->itr_register
);
974 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
975 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
976 if (rx_ring
->itr_val
)
977 writel(rx_ring
->itr_val
,
978 hw
->hw_addr
+ rx_ring
->itr_register
);
980 writel(1952, hw
->hw_addr
+ rx_ring
->itr_register
);
982 /* set vector for other causes, i.e. link changes */
984 tmp
= (vector
++ | E1000_IVAR_VALID
);
986 ew32(IVAR_MISC
, tmp
);
988 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
989 adapter
->eims_other
= 1 << (vector
- 1);
993 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
995 if (adapter
->msix_entries
) {
996 pci_disable_msix(adapter
->pdev
);
997 kfree(adapter
->msix_entries
);
998 adapter
->msix_entries
= NULL
;
1003 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1005 * Attempt to configure interrupts using the best available
1006 * capabilities of the hardware and kernel.
1008 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
1013 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1014 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
1016 if (adapter
->msix_entries
) {
1017 for (i
= 0; i
< 3; i
++)
1018 adapter
->msix_entries
[i
].entry
= i
;
1020 err
= pci_enable_msix(adapter
->pdev
,
1021 adapter
->msix_entries
, 3);
1026 dev_err(&adapter
->pdev
->dev
,
1027 "Failed to initialize MSI-X interrupts.\n");
1028 igbvf_reset_interrupt_capability(adapter
);
1033 * igbvf_request_msix - Initialize MSI-X interrupts
1035 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1038 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1040 struct net_device
*netdev
= adapter
->netdev
;
1041 int err
= 0, vector
= 0;
1043 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1044 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1045 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1047 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1048 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1051 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1052 &igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1057 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1058 adapter
->tx_ring
->itr_val
= 1952;
1061 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1062 &igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1067 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1068 adapter
->rx_ring
->itr_val
= 1952;
1071 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1072 &igbvf_msix_other
, 0, netdev
->name
, netdev
);
1076 igbvf_configure_msix(adapter
);
1083 * igbvf_alloc_queues - Allocate memory for all rings
1084 * @adapter: board private structure to initialize
1086 static int __devinit
igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1088 struct net_device
*netdev
= adapter
->netdev
;
1090 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1091 if (!adapter
->tx_ring
)
1094 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1095 if (!adapter
->rx_ring
) {
1096 kfree(adapter
->tx_ring
);
1100 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1106 * igbvf_request_irq - initialize interrupts
1108 * Attempts to configure interrupts using the best available
1109 * capabilities of the hardware and kernel.
1111 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1115 /* igbvf supports msi-x only */
1116 if (adapter
->msix_entries
)
1117 err
= igbvf_request_msix(adapter
);
1122 dev_err(&adapter
->pdev
->dev
,
1123 "Unable to allocate interrupt, Error: %d\n", err
);
1128 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1130 struct net_device
*netdev
= adapter
->netdev
;
1133 if (adapter
->msix_entries
) {
1134 for (vector
= 0; vector
< 3; vector
++)
1135 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1140 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1142 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1144 struct e1000_hw
*hw
= &adapter
->hw
;
1148 if (adapter
->msix_entries
)
1153 * igbvf_irq_enable - Enable default interrupt generation settings
1155 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1157 struct e1000_hw
*hw
= &adapter
->hw
;
1159 ew32(EIAC
, adapter
->eims_enable_mask
);
1160 ew32(EIAM
, adapter
->eims_enable_mask
);
1161 ew32(EIMS
, adapter
->eims_enable_mask
);
1165 * igbvf_poll - NAPI Rx polling callback
1166 * @napi: struct associated with this polling callback
1167 * @budget: amount of packets driver is allowed to process this poll
1169 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1171 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1172 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1173 struct e1000_hw
*hw
= &adapter
->hw
;
1176 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1178 /* If not enough Rx work done, exit the polling mode */
1179 if (work_done
< budget
) {
1180 napi_complete(napi
);
1182 if (adapter
->itr_setting
& 3)
1183 igbvf_set_itr(adapter
);
1185 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1186 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1193 * igbvf_set_rlpml - set receive large packet maximum length
1194 * @adapter: board private structure
1196 * Configure the maximum size of packets that will be received
1198 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1200 int max_frame_size
= adapter
->max_frame_size
;
1201 struct e1000_hw
*hw
= &adapter
->hw
;
1204 max_frame_size
+= VLAN_TAG_SIZE
;
1206 e1000_rlpml_set_vf(hw
, max_frame_size
);
1209 static void igbvf_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1211 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1212 struct e1000_hw
*hw
= &adapter
->hw
;
1214 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true))
1215 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1218 static void igbvf_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1220 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1221 struct e1000_hw
*hw
= &adapter
->hw
;
1223 igbvf_irq_disable(adapter
);
1224 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1226 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1227 igbvf_irq_enable(adapter
);
1229 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false))
1230 dev_err(&adapter
->pdev
->dev
,
1231 "Failed to remove vlan id %d\n", vid
);
1234 static void igbvf_vlan_rx_register(struct net_device
*netdev
,
1235 struct vlan_group
*grp
)
1237 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1239 adapter
->vlgrp
= grp
;
1242 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1246 if (!adapter
->vlgrp
)
1249 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
1250 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1252 igbvf_vlan_rx_add_vid(adapter
->netdev
, vid
);
1255 igbvf_set_rlpml(adapter
);
1259 * igbvf_configure_tx - Configure Transmit Unit after Reset
1260 * @adapter: board private structure
1262 * Configure the Tx unit of the MAC after a reset.
1264 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1266 struct e1000_hw
*hw
= &adapter
->hw
;
1267 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1269 u32 txdctl
, dca_txctrl
;
1271 /* disable transmits */
1272 txdctl
= er32(TXDCTL(0));
1273 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1276 /* Setup the HW Tx Head and Tail descriptor pointers */
1277 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1278 tdba
= tx_ring
->dma
;
1279 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1280 ew32(TDBAH(0), (tdba
>> 32));
1283 tx_ring
->head
= E1000_TDH(0);
1284 tx_ring
->tail
= E1000_TDT(0);
1286 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1287 * MUST be delivered in order or it will completely screw up
1290 dca_txctrl
= er32(DCA_TXCTRL(0));
1291 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1292 ew32(DCA_TXCTRL(0), dca_txctrl
);
1294 /* enable transmits */
1295 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1296 ew32(TXDCTL(0), txdctl
);
1298 /* Setup Transmit Descriptor Settings for eop descriptor */
1299 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1301 /* enable Report Status bit */
1302 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1304 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
1308 * igbvf_setup_srrctl - configure the receive control registers
1309 * @adapter: Board private structure
1311 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1313 struct e1000_hw
*hw
= &adapter
->hw
;
1316 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1317 E1000_SRRCTL_BSIZEHDR_MASK
|
1318 E1000_SRRCTL_BSIZEPKT_MASK
);
1320 /* Enable queue drop to avoid head of line blocking */
1321 srrctl
|= E1000_SRRCTL_DROP_EN
;
1323 /* Setup buffer sizes */
1324 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1325 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1327 if (adapter
->rx_buffer_len
< 2048) {
1328 adapter
->rx_ps_hdr_size
= 0;
1329 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1331 adapter
->rx_ps_hdr_size
= 128;
1332 srrctl
|= adapter
->rx_ps_hdr_size
<<
1333 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1334 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1337 ew32(SRRCTL(0), srrctl
);
1341 * igbvf_configure_rx - Configure Receive Unit after Reset
1342 * @adapter: board private structure
1344 * Configure the Rx unit of the MAC after a reset.
1346 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1348 struct e1000_hw
*hw
= &adapter
->hw
;
1349 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1353 /* disable receives */
1354 rxdctl
= er32(RXDCTL(0));
1355 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1358 rdlen
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
1361 * Setup the HW Rx Head and Tail Descriptor Pointers and
1362 * the Base and Length of the Rx Descriptor Ring
1364 rdba
= rx_ring
->dma
;
1365 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1366 ew32(RDBAH(0), (rdba
>> 32));
1367 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1368 rx_ring
->head
= E1000_RDH(0);
1369 rx_ring
->tail
= E1000_RDT(0);
1373 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1374 rxdctl
&= 0xFFF00000;
1375 rxdctl
|= IGBVF_RX_PTHRESH
;
1376 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1377 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1379 igbvf_set_rlpml(adapter
);
1381 /* enable receives */
1382 ew32(RXDCTL(0), rxdctl
);
1386 * igbvf_set_multi - Multicast and Promiscuous mode set
1387 * @netdev: network interface device structure
1389 * The set_multi entry point is called whenever the multicast address
1390 * list or the network interface flags are updated. This routine is
1391 * responsible for configuring the hardware for proper multicast,
1392 * promiscuous mode, and all-multi behavior.
1394 static void igbvf_set_multi(struct net_device
*netdev
)
1396 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1397 struct e1000_hw
*hw
= &adapter
->hw
;
1398 struct dev_mc_list
*mc_ptr
;
1399 u8
*mta_list
= NULL
;
1402 if (netdev
->mc_count
) {
1403 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
1405 dev_err(&adapter
->pdev
->dev
,
1406 "failed to allocate multicast filter list\n");
1411 /* prepare a packed array of only addresses. */
1412 mc_ptr
= netdev
->mc_list
;
1414 for (i
= 0; i
< netdev
->mc_count
; i
++) {
1417 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
1419 mc_ptr
= mc_ptr
->next
;
1422 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1427 * igbvf_configure - configure the hardware for Rx and Tx
1428 * @adapter: private board structure
1430 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1432 igbvf_set_multi(adapter
->netdev
);
1434 igbvf_restore_vlan(adapter
);
1436 igbvf_configure_tx(adapter
);
1437 igbvf_setup_srrctl(adapter
);
1438 igbvf_configure_rx(adapter
);
1439 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1440 igbvf_desc_unused(adapter
->rx_ring
));
1443 /* igbvf_reset - bring the hardware into a known good state
1445 * This function boots the hardware and enables some settings that
1446 * require a configuration cycle of the hardware - those cannot be
1447 * set/changed during runtime. After reset the device needs to be
1448 * properly configured for Rx, Tx etc.
1450 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1452 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1453 struct net_device
*netdev
= adapter
->netdev
;
1454 struct e1000_hw
*hw
= &adapter
->hw
;
1456 /* Allow time for pending master requests to run */
1457 if (mac
->ops
.reset_hw(hw
))
1458 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1460 mac
->ops
.init_hw(hw
);
1462 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1463 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1465 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1470 int igbvf_up(struct igbvf_adapter
*adapter
)
1472 struct e1000_hw
*hw
= &adapter
->hw
;
1474 /* hardware has been reset, we need to reload some things */
1475 igbvf_configure(adapter
);
1477 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1479 napi_enable(&adapter
->rx_ring
->napi
);
1480 if (adapter
->msix_entries
)
1481 igbvf_configure_msix(adapter
);
1483 /* Clear any pending interrupts. */
1485 igbvf_irq_enable(adapter
);
1487 /* start the watchdog */
1488 hw
->mac
.get_link_status
= 1;
1489 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1495 void igbvf_down(struct igbvf_adapter
*adapter
)
1497 struct net_device
*netdev
= adapter
->netdev
;
1498 struct e1000_hw
*hw
= &adapter
->hw
;
1502 * signal that we're down so the interrupt handler does not
1503 * reschedule our watchdog timer
1505 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1507 /* disable receives in the hardware */
1508 rxdctl
= er32(RXDCTL(0));
1509 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1511 netif_stop_queue(netdev
);
1513 /* disable transmits in the hardware */
1514 txdctl
= er32(TXDCTL(0));
1515 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1517 /* flush both disables and wait for them to finish */
1521 napi_disable(&adapter
->rx_ring
->napi
);
1523 igbvf_irq_disable(adapter
);
1525 del_timer_sync(&adapter
->watchdog_timer
);
1527 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1528 netif_carrier_off(netdev
);
1530 /* record the stats before reset*/
1531 igbvf_update_stats(adapter
);
1533 adapter
->link_speed
= 0;
1534 adapter
->link_duplex
= 0;
1536 igbvf_reset(adapter
);
1537 igbvf_clean_tx_ring(adapter
->tx_ring
);
1538 igbvf_clean_rx_ring(adapter
->rx_ring
);
1541 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1544 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1546 igbvf_down(adapter
);
1548 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1552 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1553 * @adapter: board private structure to initialize
1555 * igbvf_sw_init initializes the Adapter private data structure.
1556 * Fields are initialized based on PCI device information and
1557 * OS network device settings (MTU size).
1559 static int __devinit
igbvf_sw_init(struct igbvf_adapter
*adapter
)
1561 struct net_device
*netdev
= adapter
->netdev
;
1564 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1565 adapter
->rx_ps_hdr_size
= 0;
1566 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1567 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1569 adapter
->tx_int_delay
= 8;
1570 adapter
->tx_abs_int_delay
= 32;
1571 adapter
->rx_int_delay
= 0;
1572 adapter
->rx_abs_int_delay
= 8;
1573 adapter
->itr_setting
= 3;
1574 adapter
->itr
= 20000;
1576 /* Set various function pointers */
1577 adapter
->ei
->init_ops(&adapter
->hw
);
1579 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1583 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1587 igbvf_set_interrupt_capability(adapter
);
1589 if (igbvf_alloc_queues(adapter
))
1592 spin_lock_init(&adapter
->tx_queue_lock
);
1594 /* Explicitly disable IRQ since the NIC can be in any state. */
1595 igbvf_irq_disable(adapter
);
1597 spin_lock_init(&adapter
->stats_lock
);
1599 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1603 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1605 struct e1000_hw
*hw
= &adapter
->hw
;
1607 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1608 adapter
->stats
.last_gorc
= er32(VFGORC
);
1609 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1610 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1611 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1612 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1613 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1614 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1615 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1617 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1618 adapter
->stats
.base_gorc
= er32(VFGORC
);
1619 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1620 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1621 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1622 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1623 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1624 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1625 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1629 * igbvf_open - Called when a network interface is made active
1630 * @netdev: network interface device structure
1632 * Returns 0 on success, negative value on failure
1634 * The open entry point is called when a network interface is made
1635 * active by the system (IFF_UP). At this point all resources needed
1636 * for transmit and receive operations are allocated, the interrupt
1637 * handler is registered with the OS, the watchdog timer is started,
1638 * and the stack is notified that the interface is ready.
1640 static int igbvf_open(struct net_device
*netdev
)
1642 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1643 struct e1000_hw
*hw
= &adapter
->hw
;
1646 /* disallow open during test */
1647 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1650 /* allocate transmit descriptors */
1651 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1655 /* allocate receive descriptors */
1656 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1661 * before we allocate an interrupt, we must be ready to handle it.
1662 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1663 * as soon as we call pci_request_irq, so we have to setup our
1664 * clean_rx handler before we do so.
1666 igbvf_configure(adapter
);
1668 err
= igbvf_request_irq(adapter
);
1672 /* From here on the code is the same as igbvf_up() */
1673 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1675 napi_enable(&adapter
->rx_ring
->napi
);
1677 /* clear any pending interrupts */
1680 igbvf_irq_enable(adapter
);
1682 /* start the watchdog */
1683 hw
->mac
.get_link_status
= 1;
1684 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1689 igbvf_free_rx_resources(adapter
->rx_ring
);
1691 igbvf_free_tx_resources(adapter
->tx_ring
);
1693 igbvf_reset(adapter
);
1699 * igbvf_close - Disables a network interface
1700 * @netdev: network interface device structure
1702 * Returns 0, this is not allowed to fail
1704 * The close entry point is called when an interface is de-activated
1705 * by the OS. The hardware is still under the drivers control, but
1706 * needs to be disabled. A global MAC reset is issued to stop the
1707 * hardware, and all transmit and receive resources are freed.
1709 static int igbvf_close(struct net_device
*netdev
)
1711 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1713 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1714 igbvf_down(adapter
);
1716 igbvf_free_irq(adapter
);
1718 igbvf_free_tx_resources(adapter
->tx_ring
);
1719 igbvf_free_rx_resources(adapter
->rx_ring
);
1724 * igbvf_set_mac - Change the Ethernet Address of the NIC
1725 * @netdev: network interface device structure
1726 * @p: pointer to an address structure
1728 * Returns 0 on success, negative on failure
1730 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1732 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1733 struct e1000_hw
*hw
= &adapter
->hw
;
1734 struct sockaddr
*addr
= p
;
1736 if (!is_valid_ether_addr(addr
->sa_data
))
1737 return -EADDRNOTAVAIL
;
1739 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1741 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1743 if (memcmp(addr
->sa_data
, hw
->mac
.addr
, 6))
1744 return -EADDRNOTAVAIL
;
1746 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1751 #define UPDATE_VF_COUNTER(reg, name) \
1753 u32 current_counter = er32(reg); \
1754 if (current_counter < adapter->stats.last_##name) \
1755 adapter->stats.name += 0x100000000LL; \
1756 adapter->stats.last_##name = current_counter; \
1757 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1758 adapter->stats.name |= current_counter; \
1762 * igbvf_update_stats - Update the board statistics counters
1763 * @adapter: board private structure
1765 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1767 struct e1000_hw
*hw
= &adapter
->hw
;
1768 struct pci_dev
*pdev
= adapter
->pdev
;
1771 * Prevent stats update while adapter is being reset, link is down
1772 * or if the pci connection is down.
1774 if (adapter
->link_speed
== 0)
1777 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1780 if (pci_channel_offline(pdev
))
1783 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1784 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1785 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1786 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1787 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1788 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1789 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1790 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1791 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1793 /* Fill out the OS statistics structure */
1794 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
1797 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1799 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s\n",
1800 adapter
->link_speed
,
1801 ((adapter
->link_duplex
== FULL_DUPLEX
) ?
1802 "Full Duplex" : "Half Duplex"));
1805 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1807 struct e1000_hw
*hw
= &adapter
->hw
;
1808 s32 ret_val
= E1000_SUCCESS
;
1811 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1812 link_active
= !hw
->mac
.get_link_status
;
1814 /* if check for link returns error we will need to reset */
1816 schedule_work(&adapter
->reset_task
);
1822 * igbvf_watchdog - Timer Call-back
1823 * @data: pointer to adapter cast into an unsigned long
1825 static void igbvf_watchdog(unsigned long data
)
1827 struct igbvf_adapter
*adapter
= (struct igbvf_adapter
*) data
;
1829 /* Do the rest outside of interrupt context */
1830 schedule_work(&adapter
->watchdog_task
);
1833 static void igbvf_watchdog_task(struct work_struct
*work
)
1835 struct igbvf_adapter
*adapter
= container_of(work
,
1836 struct igbvf_adapter
,
1838 struct net_device
*netdev
= adapter
->netdev
;
1839 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1840 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1841 struct e1000_hw
*hw
= &adapter
->hw
;
1845 link
= igbvf_has_link(adapter
);
1848 if (!netif_carrier_ok(netdev
)) {
1851 mac
->ops
.get_link_up_info(&adapter
->hw
,
1852 &adapter
->link_speed
,
1853 &adapter
->link_duplex
);
1854 igbvf_print_link_info(adapter
);
1857 * tweak tx_queue_len according to speed/duplex
1858 * and adjust the timeout factor
1860 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1861 adapter
->tx_timeout_factor
= 1;
1862 switch (adapter
->link_speed
) {
1865 netdev
->tx_queue_len
= 10;
1866 adapter
->tx_timeout_factor
= 16;
1870 netdev
->tx_queue_len
= 100;
1871 /* maybe add some timeout factor ? */
1875 netif_carrier_on(netdev
);
1876 netif_wake_queue(netdev
);
1879 if (netif_carrier_ok(netdev
)) {
1880 adapter
->link_speed
= 0;
1881 adapter
->link_duplex
= 0;
1882 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1883 netif_carrier_off(netdev
);
1884 netif_stop_queue(netdev
);
1888 if (netif_carrier_ok(netdev
)) {
1889 igbvf_update_stats(adapter
);
1891 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1895 * We've lost link, so the controller stops DMA,
1896 * but we've got queued Tx work that's never going
1897 * to get done, so reset controller to flush Tx.
1898 * (Do the reset outside of interrupt context).
1900 adapter
->tx_timeout_count
++;
1901 schedule_work(&adapter
->reset_task
);
1905 /* Cause software interrupt to ensure Rx ring is cleaned */
1906 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1908 /* Force detection of hung controller every watchdog period */
1909 adapter
->detect_tx_hung
= 1;
1911 /* Reset the timer */
1912 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1913 mod_timer(&adapter
->watchdog_timer
,
1914 round_jiffies(jiffies
+ (2 * HZ
)));
1917 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1918 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1919 #define IGBVF_TX_FLAGS_TSO 0x00000004
1920 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1921 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1922 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1924 static int igbvf_tso(struct igbvf_adapter
*adapter
,
1925 struct igbvf_ring
*tx_ring
,
1926 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
1928 struct e1000_adv_tx_context_desc
*context_desc
;
1931 struct igbvf_buffer
*buffer_info
;
1932 u32 info
= 0, tu_cmd
= 0;
1933 u32 mss_l4len_idx
, l4len
;
1936 if (skb_header_cloned(skb
)) {
1937 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1939 dev_err(&adapter
->pdev
->dev
,
1940 "igbvf_tso returning an error\n");
1945 l4len
= tcp_hdrlen(skb
);
1948 if (skb
->protocol
== htons(ETH_P_IP
)) {
1949 struct iphdr
*iph
= ip_hdr(skb
);
1952 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
1956 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
1957 ipv6_hdr(skb
)->payload_len
= 0;
1958 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1959 &ipv6_hdr(skb
)->daddr
,
1963 i
= tx_ring
->next_to_use
;
1965 buffer_info
= &tx_ring
->buffer_info
[i
];
1966 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1967 /* VLAN MACLEN IPLEN */
1968 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1969 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1970 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1971 *hdr_len
+= skb_network_offset(skb
);
1972 info
|= (skb_transport_header(skb
) - skb_network_header(skb
));
1973 *hdr_len
+= (skb_transport_header(skb
) - skb_network_header(skb
));
1974 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1976 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1977 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1979 if (skb
->protocol
== htons(ETH_P_IP
))
1980 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1981 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1983 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1986 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
1987 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
1989 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1990 context_desc
->seqnum_seed
= 0;
1992 buffer_info
->time_stamp
= jiffies
;
1993 buffer_info
->next_to_watch
= i
;
1994 buffer_info
->dma
= 0;
1996 if (i
== tx_ring
->count
)
1999 tx_ring
->next_to_use
= i
;
2004 static inline bool igbvf_tx_csum(struct igbvf_adapter
*adapter
,
2005 struct igbvf_ring
*tx_ring
,
2006 struct sk_buff
*skb
, u32 tx_flags
)
2008 struct e1000_adv_tx_context_desc
*context_desc
;
2010 struct igbvf_buffer
*buffer_info
;
2011 u32 info
= 0, tu_cmd
= 0;
2013 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2014 (tx_flags
& IGBVF_TX_FLAGS_VLAN
)) {
2015 i
= tx_ring
->next_to_use
;
2016 buffer_info
= &tx_ring
->buffer_info
[i
];
2017 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
2019 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2020 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
2022 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2023 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2024 info
|= (skb_transport_header(skb
) -
2025 skb_network_header(skb
));
2028 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2030 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2032 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2033 switch (skb
->protocol
) {
2034 case __constant_htons(ETH_P_IP
):
2035 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2036 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2037 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2039 case __constant_htons(ETH_P_IPV6
):
2040 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2041 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2048 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2049 context_desc
->seqnum_seed
= 0;
2050 context_desc
->mss_l4len_idx
= 0;
2052 buffer_info
->time_stamp
= jiffies
;
2053 buffer_info
->next_to_watch
= i
;
2054 buffer_info
->dma
= 0;
2056 if (i
== tx_ring
->count
)
2058 tx_ring
->next_to_use
= i
;
2066 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
2068 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2070 /* there is enough descriptors then we don't need to worry */
2071 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2074 netif_stop_queue(netdev
);
2078 /* We need to check again just in case room has been made available */
2079 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2082 netif_wake_queue(netdev
);
2084 ++adapter
->restart_queue
;
2088 #define IGBVF_MAX_TXD_PWR 16
2089 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2091 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2092 struct igbvf_ring
*tx_ring
,
2093 struct sk_buff
*skb
,
2096 struct igbvf_buffer
*buffer_info
;
2097 unsigned int len
= skb_headlen(skb
);
2098 unsigned int count
= 0, i
;
2102 i
= tx_ring
->next_to_use
;
2104 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
2105 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2109 map
= skb_shinfo(skb
)->dma_maps
;
2111 buffer_info
= &tx_ring
->buffer_info
[i
];
2112 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2113 buffer_info
->length
= len
;
2114 /* set time_stamp *before* dma to help avoid a possible race */
2115 buffer_info
->time_stamp
= jiffies
;
2116 buffer_info
->next_to_watch
= i
;
2117 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
;
2119 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2120 struct skb_frag_struct
*frag
;
2123 if (i
== tx_ring
->count
)
2126 frag
= &skb_shinfo(skb
)->frags
[f
];
2129 buffer_info
= &tx_ring
->buffer_info
[i
];
2130 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2131 buffer_info
->length
= len
;
2132 buffer_info
->time_stamp
= jiffies
;
2133 buffer_info
->next_to_watch
= i
;
2134 buffer_info
->dma
= map
[count
];
2138 tx_ring
->buffer_info
[i
].skb
= skb
;
2139 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2144 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2145 struct igbvf_ring
*tx_ring
,
2146 int tx_flags
, int count
, u32 paylen
,
2149 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2150 struct igbvf_buffer
*buffer_info
;
2151 u32 olinfo_status
= 0, cmd_type_len
;
2154 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2155 E1000_ADVTXD_DCMD_DEXT
);
2157 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2158 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2160 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2161 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2163 /* insert tcp checksum */
2164 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2166 /* insert ip checksum */
2167 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2168 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2170 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2171 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2174 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2176 i
= tx_ring
->next_to_use
;
2178 buffer_info
= &tx_ring
->buffer_info
[i
];
2179 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2180 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2181 tx_desc
->read
.cmd_type_len
=
2182 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2183 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2185 if (i
== tx_ring
->count
)
2189 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2190 /* Force memory writes to complete before letting h/w
2191 * know there are new descriptors to fetch. (Only
2192 * applicable for weak-ordered memory model archs,
2193 * such as IA-64). */
2196 tx_ring
->next_to_use
= i
;
2197 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2198 /* we need this if more than one processor can write to our tail
2199 * at a time, it syncronizes IO on IA64/Altix systems */
2203 static netdev_tx_t
igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2204 struct net_device
*netdev
,
2205 struct igbvf_ring
*tx_ring
)
2207 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2208 unsigned int first
, tx_flags
= 0;
2213 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2214 dev_kfree_skb_any(skb
);
2215 return NETDEV_TX_OK
;
2218 if (skb
->len
<= 0) {
2219 dev_kfree_skb_any(skb
);
2220 return NETDEV_TX_OK
;
2224 * need: count + 4 desc gap to keep tail from touching
2225 * + 2 desc gap to keep tail from touching head,
2226 * + 1 desc for skb->data,
2227 * + 1 desc for context descriptor,
2228 * head, otherwise try next time
2230 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2231 /* this is a hard error */
2232 return NETDEV_TX_BUSY
;
2235 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2236 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2237 tx_flags
|= (vlan_tx_tag_get(skb
) << IGBVF_TX_FLAGS_VLAN_SHIFT
);
2240 if (skb
->protocol
== htons(ETH_P_IP
))
2241 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2243 first
= tx_ring
->next_to_use
;
2245 tso
= skb_is_gso(skb
) ?
2246 igbvf_tso(adapter
, tx_ring
, skb
, tx_flags
, &hdr_len
) : 0;
2247 if (unlikely(tso
< 0)) {
2248 dev_kfree_skb_any(skb
);
2249 return NETDEV_TX_OK
;
2253 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2254 else if (igbvf_tx_csum(adapter
, tx_ring
, skb
, tx_flags
) &&
2255 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2256 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2259 * count reflects descriptors mapped, if 0 then mapping error
2260 * has occured and we need to rewind the descriptor queue
2262 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
, first
);
2265 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2267 /* Make sure there is space in the ring for the next send. */
2268 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2270 dev_kfree_skb_any(skb
);
2271 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2272 tx_ring
->next_to_use
= first
;
2275 return NETDEV_TX_OK
;
2278 static netdev_tx_t
igbvf_xmit_frame(struct sk_buff
*skb
,
2279 struct net_device
*netdev
)
2281 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2282 struct igbvf_ring
*tx_ring
;
2284 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2285 dev_kfree_skb_any(skb
);
2286 return NETDEV_TX_OK
;
2289 tx_ring
= &adapter
->tx_ring
[0];
2291 return igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2295 * igbvf_tx_timeout - Respond to a Tx Hang
2296 * @netdev: network interface device structure
2298 static void igbvf_tx_timeout(struct net_device
*netdev
)
2300 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2302 /* Do the reset outside of interrupt context */
2303 adapter
->tx_timeout_count
++;
2304 schedule_work(&adapter
->reset_task
);
2307 static void igbvf_reset_task(struct work_struct
*work
)
2309 struct igbvf_adapter
*adapter
;
2310 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2312 igbvf_reinit_locked(adapter
);
2316 * igbvf_get_stats - Get System Network Statistics
2317 * @netdev: network interface device structure
2319 * Returns the address of the device statistics structure.
2320 * The statistics are actually updated from the timer callback.
2322 static struct net_device_stats
*igbvf_get_stats(struct net_device
*netdev
)
2324 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2326 /* only return the current stats */
2327 return &adapter
->net_stats
;
2331 * igbvf_change_mtu - Change the Maximum Transfer Unit
2332 * @netdev: network interface device structure
2333 * @new_mtu: new value for maximum frame size
2335 * Returns 0 on success, negative on failure
2337 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2339 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2340 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2342 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2343 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2347 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2348 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2349 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2353 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2355 /* igbvf_down has a dependency on max_frame_size */
2356 adapter
->max_frame_size
= max_frame
;
2357 if (netif_running(netdev
))
2358 igbvf_down(adapter
);
2361 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2362 * means we reserve 2 more, this pushes us to allocate from the next
2364 * i.e. RXBUFFER_2048 --> size-4096 slab
2365 * However with the new *_jumbo_rx* routines, jumbo receives will use
2369 if (max_frame
<= 1024)
2370 adapter
->rx_buffer_len
= 1024;
2371 else if (max_frame
<= 2048)
2372 adapter
->rx_buffer_len
= 2048;
2374 #if (PAGE_SIZE / 2) > 16384
2375 adapter
->rx_buffer_len
= 16384;
2377 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2381 /* adjust allocation if LPE protects us, and we aren't using SBP */
2382 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2383 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2384 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2387 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2388 netdev
->mtu
, new_mtu
);
2389 netdev
->mtu
= new_mtu
;
2391 if (netif_running(netdev
))
2394 igbvf_reset(adapter
);
2396 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2401 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2409 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2411 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2412 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2417 netif_device_detach(netdev
);
2419 if (netif_running(netdev
)) {
2420 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2421 igbvf_down(adapter
);
2422 igbvf_free_irq(adapter
);
2426 retval
= pci_save_state(pdev
);
2431 pci_disable_device(pdev
);
2437 static int igbvf_resume(struct pci_dev
*pdev
)
2439 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2440 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2443 pci_restore_state(pdev
);
2444 err
= pci_enable_device_mem(pdev
);
2446 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2450 pci_set_master(pdev
);
2452 if (netif_running(netdev
)) {
2453 err
= igbvf_request_irq(adapter
);
2458 igbvf_reset(adapter
);
2460 if (netif_running(netdev
))
2463 netif_device_attach(netdev
);
2469 static void igbvf_shutdown(struct pci_dev
*pdev
)
2471 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2474 #ifdef CONFIG_NET_POLL_CONTROLLER
2476 * Polling 'interrupt' - used by things like netconsole to send skbs
2477 * without having to re-enable interrupts. It's not called while
2478 * the interrupt routine is executing.
2480 static void igbvf_netpoll(struct net_device
*netdev
)
2482 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2484 disable_irq(adapter
->pdev
->irq
);
2486 igbvf_clean_tx_irq(adapter
->tx_ring
);
2488 enable_irq(adapter
->pdev
->irq
);
2493 * igbvf_io_error_detected - called when PCI error is detected
2494 * @pdev: Pointer to PCI device
2495 * @state: The current pci connection state
2497 * This function is called after a PCI bus error affecting
2498 * this device has been detected.
2500 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2501 pci_channel_state_t state
)
2503 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2504 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2506 netif_device_detach(netdev
);
2508 if (state
== pci_channel_io_perm_failure
)
2509 return PCI_ERS_RESULT_DISCONNECT
;
2511 if (netif_running(netdev
))
2512 igbvf_down(adapter
);
2513 pci_disable_device(pdev
);
2515 /* Request a slot slot reset. */
2516 return PCI_ERS_RESULT_NEED_RESET
;
2520 * igbvf_io_slot_reset - called after the pci bus has been reset.
2521 * @pdev: Pointer to PCI device
2523 * Restart the card from scratch, as if from a cold-boot. Implementation
2524 * resembles the first-half of the igbvf_resume routine.
2526 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2528 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2529 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2531 if (pci_enable_device_mem(pdev
)) {
2533 "Cannot re-enable PCI device after reset.\n");
2534 return PCI_ERS_RESULT_DISCONNECT
;
2536 pci_set_master(pdev
);
2538 igbvf_reset(adapter
);
2540 return PCI_ERS_RESULT_RECOVERED
;
2544 * igbvf_io_resume - called when traffic can start flowing again.
2545 * @pdev: Pointer to PCI device
2547 * This callback is called when the error recovery driver tells us that
2548 * its OK to resume normal operation. Implementation resembles the
2549 * second-half of the igbvf_resume routine.
2551 static void igbvf_io_resume(struct pci_dev
*pdev
)
2553 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2554 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2556 if (netif_running(netdev
)) {
2557 if (igbvf_up(adapter
)) {
2559 "can't bring device back up after reset\n");
2564 netif_device_attach(netdev
);
2567 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2569 struct e1000_hw
*hw
= &adapter
->hw
;
2570 struct net_device
*netdev
= adapter
->netdev
;
2571 struct pci_dev
*pdev
= adapter
->pdev
;
2573 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2574 dev_info(&pdev
->dev
, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2576 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
2577 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
2578 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2579 dev_info(&pdev
->dev
, "MAC: %d\n", hw
->mac
.type
);
2582 static const struct net_device_ops igbvf_netdev_ops
= {
2583 .ndo_open
= igbvf_open
,
2584 .ndo_stop
= igbvf_close
,
2585 .ndo_start_xmit
= igbvf_xmit_frame
,
2586 .ndo_get_stats
= igbvf_get_stats
,
2587 .ndo_set_multicast_list
= igbvf_set_multi
,
2588 .ndo_set_mac_address
= igbvf_set_mac
,
2589 .ndo_change_mtu
= igbvf_change_mtu
,
2590 .ndo_do_ioctl
= igbvf_ioctl
,
2591 .ndo_tx_timeout
= igbvf_tx_timeout
,
2592 .ndo_vlan_rx_register
= igbvf_vlan_rx_register
,
2593 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2594 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2595 #ifdef CONFIG_NET_POLL_CONTROLLER
2596 .ndo_poll_controller
= igbvf_netpoll
,
2601 * igbvf_probe - Device Initialization Routine
2602 * @pdev: PCI device information struct
2603 * @ent: entry in igbvf_pci_tbl
2605 * Returns 0 on success, negative on failure
2607 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2608 * The OS initialization, configuring of the adapter private structure,
2609 * and a hardware reset occur.
2611 static int __devinit
igbvf_probe(struct pci_dev
*pdev
,
2612 const struct pci_device_id
*ent
)
2614 struct net_device
*netdev
;
2615 struct igbvf_adapter
*adapter
;
2616 struct e1000_hw
*hw
;
2617 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2619 static int cards_found
;
2620 int err
, pci_using_dac
;
2622 err
= pci_enable_device_mem(pdev
);
2627 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
2629 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
2633 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2635 err
= pci_set_consistent_dma_mask(pdev
,
2638 dev_err(&pdev
->dev
, "No usable DMA "
2639 "configuration, aborting\n");
2645 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2649 pci_set_master(pdev
);
2652 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2654 goto err_alloc_etherdev
;
2656 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2658 pci_set_drvdata(pdev
, netdev
);
2659 adapter
= netdev_priv(netdev
);
2661 adapter
->netdev
= netdev
;
2662 adapter
->pdev
= pdev
;
2664 adapter
->pba
= ei
->pba
;
2665 adapter
->flags
= ei
->flags
;
2666 adapter
->hw
.back
= adapter
;
2667 adapter
->hw
.mac
.type
= ei
->mac
;
2668 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
2670 /* PCI config space info */
2672 hw
->vendor_id
= pdev
->vendor
;
2673 hw
->device_id
= pdev
->device
;
2674 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2675 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2677 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
2680 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2681 pci_resource_len(pdev
, 0));
2683 if (!adapter
->hw
.hw_addr
)
2686 if (ei
->get_variants
) {
2687 err
= ei
->get_variants(adapter
);
2692 /* setup adapter struct */
2693 err
= igbvf_sw_init(adapter
);
2697 /* construct the net_device struct */
2698 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2700 igbvf_set_ethtool_ops(netdev
);
2701 netdev
->watchdog_timeo
= 5 * HZ
;
2702 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2704 adapter
->bd_number
= cards_found
++;
2706 netdev
->features
= NETIF_F_SG
|
2708 NETIF_F_HW_VLAN_TX
|
2709 NETIF_F_HW_VLAN_RX
|
2710 NETIF_F_HW_VLAN_FILTER
;
2712 netdev
->features
|= NETIF_F_IPV6_CSUM
;
2713 netdev
->features
|= NETIF_F_TSO
;
2714 netdev
->features
|= NETIF_F_TSO6
;
2717 netdev
->features
|= NETIF_F_HIGHDMA
;
2719 netdev
->vlan_features
|= NETIF_F_TSO
;
2720 netdev
->vlan_features
|= NETIF_F_TSO6
;
2721 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
2722 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
2723 netdev
->vlan_features
|= NETIF_F_SG
;
2725 /*reset the controller to put the device in a known good state */
2726 err
= hw
->mac
.ops
.reset_hw(hw
);
2728 dev_info(&pdev
->dev
,
2729 "PF still in reset state, assigning new address\n");
2730 random_ether_addr(hw
->mac
.addr
);
2732 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2734 dev_err(&pdev
->dev
, "Error reading MAC address\n");
2739 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2740 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2742 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2743 dev_err(&pdev
->dev
, "Invalid MAC Address: "
2744 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2745 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
2746 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
2747 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2752 setup_timer(&adapter
->watchdog_timer
, &igbvf_watchdog
,
2753 (unsigned long) adapter
);
2755 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2756 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2758 /* ring size defaults */
2759 adapter
->rx_ring
->count
= 1024;
2760 adapter
->tx_ring
->count
= 1024;
2762 /* reset the hardware with the new settings */
2763 igbvf_reset(adapter
);
2765 /* tell the stack to leave us alone until igbvf_open() is called */
2766 netif_carrier_off(netdev
);
2767 netif_stop_queue(netdev
);
2769 strcpy(netdev
->name
, "eth%d");
2770 err
= register_netdev(netdev
);
2774 igbvf_print_device_info(adapter
);
2776 igbvf_initialize_last_counter_stats(adapter
);
2781 kfree(adapter
->tx_ring
);
2782 kfree(adapter
->rx_ring
);
2784 igbvf_reset_interrupt_capability(adapter
);
2785 iounmap(adapter
->hw
.hw_addr
);
2787 free_netdev(netdev
);
2789 pci_release_regions(pdev
);
2792 pci_disable_device(pdev
);
2797 * igbvf_remove - Device Removal Routine
2798 * @pdev: PCI device information struct
2800 * igbvf_remove is called by the PCI subsystem to alert the driver
2801 * that it should release a PCI device. The could be caused by a
2802 * Hot-Plug event, or because the driver is going to be removed from
2805 static void __devexit
igbvf_remove(struct pci_dev
*pdev
)
2807 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2808 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2809 struct e1000_hw
*hw
= &adapter
->hw
;
2812 * flush_scheduled work may reschedule our watchdog task, so
2813 * explicitly disable watchdog tasks from being rescheduled
2815 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2816 del_timer_sync(&adapter
->watchdog_timer
);
2818 flush_scheduled_work();
2820 unregister_netdev(netdev
);
2822 igbvf_reset_interrupt_capability(adapter
);
2825 * it is important to delete the napi struct prior to freeing the
2826 * rx ring so that you do not end up with null pointer refs
2828 netif_napi_del(&adapter
->rx_ring
->napi
);
2829 kfree(adapter
->tx_ring
);
2830 kfree(adapter
->rx_ring
);
2832 iounmap(hw
->hw_addr
);
2833 if (hw
->flash_address
)
2834 iounmap(hw
->flash_address
);
2835 pci_release_regions(pdev
);
2837 free_netdev(netdev
);
2839 pci_disable_device(pdev
);
2842 /* PCI Error Recovery (ERS) */
2843 static struct pci_error_handlers igbvf_err_handler
= {
2844 .error_detected
= igbvf_io_error_detected
,
2845 .slot_reset
= igbvf_io_slot_reset
,
2846 .resume
= igbvf_io_resume
,
2849 static struct pci_device_id igbvf_pci_tbl
[] = {
2850 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2851 { } /* terminate list */
2853 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2855 /* PCI Device API Driver */
2856 static struct pci_driver igbvf_driver
= {
2857 .name
= igbvf_driver_name
,
2858 .id_table
= igbvf_pci_tbl
,
2859 .probe
= igbvf_probe
,
2860 .remove
= __devexit_p(igbvf_remove
),
2862 /* Power Management Hooks */
2863 .suspend
= igbvf_suspend
,
2864 .resume
= igbvf_resume
,
2866 .shutdown
= igbvf_shutdown
,
2867 .err_handler
= &igbvf_err_handler
2871 * igbvf_init_module - Driver Registration Routine
2873 * igbvf_init_module is the first routine called when the driver is
2874 * loaded. All it does is register with the PCI subsystem.
2876 static int __init
igbvf_init_module(void)
2879 printk(KERN_INFO
"%s - version %s\n",
2880 igbvf_driver_string
, igbvf_driver_version
);
2881 printk(KERN_INFO
"%s\n", igbvf_copyright
);
2883 ret
= pci_register_driver(&igbvf_driver
);
2884 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
, igbvf_driver_name
,
2885 PM_QOS_DEFAULT_VALUE
);
2889 module_init(igbvf_init_module
);
2892 * igbvf_exit_module - Driver Exit Cleanup Routine
2894 * igbvf_exit_module is called just before the driver is removed
2897 static void __exit
igbvf_exit_module(void)
2899 pci_unregister_driver(&igbvf_driver
);
2900 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
, igbvf_driver_name
);
2902 module_exit(igbvf_exit_module
);
2905 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2906 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2907 MODULE_LICENSE("GPL");
2908 MODULE_VERSION(DRV_VERSION
);