2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
27 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
31 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33 * can be used with gadget ether.
37 /* #define UDC_VERBOSE */
40 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
41 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/delay.h>
48 #include <linux/ioport.h>
49 #include <linux/sched.h>
50 #include <linux/slab.h>
51 #include <linux/errno.h>
52 #include <linux/init.h>
53 #include <linux/timer.h>
54 #include <linux/list.h>
55 #include <linux/interrupt.h>
56 #include <linux/ioctl.h>
58 #include <linux/dmapool.h>
59 #include <linux/moduleparam.h>
60 #include <linux/device.h>
62 #include <linux/irq.h>
64 #include <asm/byteorder.h>
65 #include <asm/system.h>
66 #include <asm/unaligned.h>
69 #include <linux/usb/ch9.h>
70 #include <linux/usb/gadget.h>
73 #include "amd5536udc.h"
76 static void udc_tasklet_disconnect(unsigned long);
77 static void empty_req_queue(struct udc_ep
*);
78 static int udc_probe(struct udc
*dev
);
79 static void udc_basic_init(struct udc
*dev
);
80 static void udc_setup_endpoints(struct udc
*dev
);
81 static void udc_soft_reset(struct udc
*dev
);
82 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
83 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
84 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
);
85 static int udc_create_dma_chain(struct udc_ep
*ep
, struct udc_request
*req
,
86 unsigned long buf_len
, gfp_t gfp_flags
);
87 static int udc_remote_wakeup(struct udc
*dev
);
88 static int udc_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
);
89 static void udc_pci_remove(struct pci_dev
*pdev
);
92 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
93 static const char name
[] = "amd5536udc";
95 /* structure to hold endpoint function pointers */
96 static const struct usb_ep_ops udc_ep_ops
;
98 /* received setup data */
99 static union udc_setup_data setup_data
;
101 /* pointer to device object */
102 static struct udc
*udc
;
104 /* irq spin lock for soft reset */
105 static DEFINE_SPINLOCK(udc_irq_spinlock
);
106 /* stall spin lock */
107 static DEFINE_SPINLOCK(udc_stall_spinlock
);
110 * slave mode: pending bytes in rx fifo after nyet,
111 * used if EPIN irq came but no req was available
113 static unsigned int udc_rxfifo_pending
;
115 /* count soft resets after suspend to avoid loop */
116 static int soft_reset_occured
;
117 static int soft_reset_after_usbreset_occured
;
120 static struct timer_list udc_timer
;
121 static int stop_timer
;
123 /* set_rde -- Is used to control enabling of RX DMA. Problem is
124 * that UDC has only one bit (RDE) to enable/disable RX DMA for
125 * all OUT endpoints. So we have to handle race conditions like
126 * when OUT data reaches the fifo but no request was queued yet.
127 * This cannot be solved by letting the RX DMA disabled until a
128 * request gets queued because there may be other OUT packets
129 * in the FIFO (important for not blocking control traffic).
130 * The value of set_rde controls the correspondig timer.
132 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
133 * set_rde 0 == do not touch RDE, do no start the RDE timer
134 * set_rde 1 == timer function will look whether FIFO has data
135 * set_rde 2 == set by timer function to enable RX DMA on next call
137 static int set_rde
= -1;
139 static DECLARE_COMPLETION(on_exit
);
140 static struct timer_list udc_pollstall_timer
;
141 static int stop_pollstall_timer
;
142 static DECLARE_COMPLETION(on_pollstall_exit
);
144 /* tasklet for usb disconnect */
145 static DECLARE_TASKLET(disconnect_tasklet
, udc_tasklet_disconnect
,
146 (unsigned long) &udc
);
149 /* endpoint names used for print */
150 static const char ep0_string
[] = "ep0in";
151 static const char *ep_string
[] = {
153 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
154 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
155 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
156 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
157 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
158 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
159 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
163 static int use_dma
= 1;
164 /* packet per buffer dma */
165 static int use_dma_ppb
= 1;
166 /* with per descr. update */
167 static int use_dma_ppb_du
;
168 /* buffer fill mode */
169 static int use_dma_bufferfill_mode
;
170 /* full speed only mode */
171 static int use_fullspeed
;
172 /* tx buffer size for high speed */
173 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
175 /* module parameters */
176 module_param(use_dma
, bool, S_IRUGO
);
177 MODULE_PARM_DESC(use_dma
, "true for DMA");
178 module_param(use_dma_ppb
, bool, S_IRUGO
);
179 MODULE_PARM_DESC(use_dma_ppb
, "true for DMA in packet per buffer mode");
180 module_param(use_dma_ppb_du
, bool, S_IRUGO
);
181 MODULE_PARM_DESC(use_dma_ppb_du
,
182 "true for DMA in packet per buffer mode with descriptor update");
183 module_param(use_fullspeed
, bool, S_IRUGO
);
184 MODULE_PARM_DESC(use_fullspeed
, "true for fullspeed only");
186 /*---------------------------------------------------------------------------*/
187 /* Prints UDC device registers and endpoint irq registers */
188 static void print_regs(struct udc
*dev
)
190 DBG(dev
, "------- Device registers -------\n");
191 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
192 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
193 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
195 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
196 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
198 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
199 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
201 DBG(dev
, "USE DMA = %d\n", use_dma
);
202 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
203 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
204 "WITHOUT desc. update)\n");
205 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBNDU");
206 } else if (use_dma
&& use_dma_ppb_du
&& use_dma_ppb_du
) {
207 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
208 "WITH desc. update)\n");
209 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBDU");
211 if (use_dma
&& use_dma_bufferfill_mode
) {
212 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
213 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "BF");
216 dev_info(&dev
->pdev
->dev
, "FIFO mode\n");
218 DBG(dev
, "-------------------------------------------------------\n");
221 /* Masks unused interrupts */
222 static int udc_mask_unused_interrupts(struct udc
*dev
)
226 /* mask all dev interrupts */
227 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
228 AMD_BIT(UDC_DEVINT_ENUM
) |
229 AMD_BIT(UDC_DEVINT_US
) |
230 AMD_BIT(UDC_DEVINT_UR
) |
231 AMD_BIT(UDC_DEVINT_ES
) |
232 AMD_BIT(UDC_DEVINT_SI
) |
233 AMD_BIT(UDC_DEVINT_SOF
)|
234 AMD_BIT(UDC_DEVINT_SC
);
235 writel(tmp
, &dev
->regs
->irqmsk
);
237 /* mask all ep interrupts */
238 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
243 /* Enables endpoint 0 interrupts */
244 static int udc_enable_ep0_interrupts(struct udc
*dev
)
248 DBG(dev
, "udc_enable_ep0_interrupts()\n");
251 tmp
= readl(&dev
->regs
->ep_irqmsk
);
252 /* enable ep0 irq's */
253 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
254 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
255 writel(tmp
, &dev
->regs
->ep_irqmsk
);
260 /* Enables device interrupts for SET_INTF and SET_CONFIG */
261 static int udc_enable_dev_setup_interrupts(struct udc
*dev
)
265 DBG(dev
, "enable device interrupts for setup data\n");
268 tmp
= readl(&dev
->regs
->irqmsk
);
270 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
271 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
272 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
273 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
275 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
276 writel(tmp
, &dev
->regs
->irqmsk
);
281 /* Calculates fifo start of endpoint based on preceeding endpoints */
282 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
288 if (!ep
|| !(ep
->in
))
292 ep
->txfifo
= dev
->txfifo
;
295 for (i
= 0; i
< ep
->num
; i
++) {
296 if (dev
->ep
[i
].regs
) {
298 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
299 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
306 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
307 static u32 cnak_pending
;
309 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
311 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
312 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
313 cnak_pending
|= 1 << (num
);
316 cnak_pending
= cnak_pending
& (~(1 << (num
)));
320 /* Enables endpoint, is called by gadget driver */
322 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
327 unsigned long iflags
;
332 || usbep
->name
== ep0_string
334 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
337 ep
= container_of(usbep
, struct udc_ep
, ep
);
340 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
342 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
345 spin_lock_irqsave(&dev
->lock
, iflags
);
350 /* set traffic type */
351 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
352 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
353 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
355 /* set max packet size */
356 maxpacket
= le16_to_cpu(desc
->wMaxPacketSize
);
357 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
358 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
359 ep
->ep
.maxpacket
= maxpacket
;
360 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
365 /* ep ix in UDC CSR register space */
366 udc_csr_epix
= ep
->num
;
368 /* set buffer size (tx fifo entries) */
369 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
370 /* double buffering: fifo size = 2 x max packet size */
373 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
376 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
378 /* calc. tx fifo base addr */
379 udc_set_txfifo_addr(ep
);
382 tmp
= readl(&ep
->regs
->ctl
);
383 tmp
|= AMD_BIT(UDC_EPCTL_F
);
384 writel(tmp
, &ep
->regs
->ctl
);
388 /* ep ix in UDC CSR register space */
389 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
391 /* set max packet size UDC CSR */
392 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
393 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
395 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
397 if (use_dma
&& !ep
->in
) {
398 /* alloc and init BNA dummy request */
399 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
400 ep
->bna_occurred
= 0;
403 if (ep
->num
!= UDC_EP0OUT_IX
)
404 dev
->data_ep_enabled
= 1;
408 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
410 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
412 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
414 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
416 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
418 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
420 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
422 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
424 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
427 tmp
= readl(&dev
->regs
->ep_irqmsk
);
428 tmp
&= AMD_UNMASK_BIT(ep
->num
);
429 writel(tmp
, &dev
->regs
->ep_irqmsk
);
432 * clear NAK by writing CNAK
433 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
435 if (!use_dma
|| ep
->in
) {
436 tmp
= readl(&ep
->regs
->ctl
);
437 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
438 writel(tmp
, &ep
->regs
->ctl
);
440 UDC_QUEUE_CNAK(ep
, ep
->num
);
442 tmp
= desc
->bEndpointAddress
;
443 DBG(dev
, "%s enabled\n", usbep
->name
);
445 spin_unlock_irqrestore(&dev
->lock
, iflags
);
449 /* Resets endpoint */
450 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
454 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
456 ep
->ep
.ops
= &udc_ep_ops
;
457 INIT_LIST_HEAD(&ep
->queue
);
459 ep
->ep
.maxpacket
= (u16
) ~0;
461 tmp
= readl(&ep
->regs
->ctl
);
462 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
463 writel(tmp
, &ep
->regs
->ctl
);
466 /* disable interrupt */
467 tmp
= readl(®s
->ep_irqmsk
);
468 tmp
|= AMD_BIT(ep
->num
);
469 writel(tmp
, ®s
->ep_irqmsk
);
472 /* unset P and IN bit of potential former DMA */
473 tmp
= readl(&ep
->regs
->ctl
);
474 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
475 writel(tmp
, &ep
->regs
->ctl
);
477 tmp
= readl(&ep
->regs
->sts
);
478 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
479 writel(tmp
, &ep
->regs
->sts
);
482 tmp
= readl(&ep
->regs
->ctl
);
483 tmp
|= AMD_BIT(UDC_EPCTL_F
);
484 writel(tmp
, &ep
->regs
->ctl
);
487 /* reset desc pointer */
488 writel(0, &ep
->regs
->desptr
);
491 /* Disables endpoint, is called by gadget driver */
492 static int udc_ep_disable(struct usb_ep
*usbep
)
494 struct udc_ep
*ep
= NULL
;
495 unsigned long iflags
;
500 ep
= container_of(usbep
, struct udc_ep
, ep
);
501 if (usbep
->name
== ep0_string
|| !ep
->desc
)
504 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
506 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
507 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
509 ep_init(ep
->dev
->regs
, ep
);
510 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
515 /* Allocates request packet, called by gadget driver */
516 static struct usb_request
*
517 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
519 struct udc_request
*req
;
520 struct udc_data_dma
*dma_desc
;
526 ep
= container_of(usbep
, struct udc_ep
, ep
);
528 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
529 req
= kzalloc(sizeof(struct udc_request
), gfp
);
533 req
->req
.dma
= DMA_DONT_USE
;
534 INIT_LIST_HEAD(&req
->queue
);
537 /* ep0 in requests are allocated from data pool here */
538 dma_desc
= pci_pool_alloc(ep
->dev
->data_requests
, gfp
,
545 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
548 (unsigned long)req
->td_phys
);
549 /* prevent from using desc. - set HOST BUSY */
550 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
551 UDC_DMA_STP_STS_BS_HOST_BUSY
,
553 dma_desc
->bufptr
= cpu_to_le32(DMA_DONT_USE
);
554 req
->td_data
= dma_desc
;
555 req
->td_data_last
= NULL
;
562 /* Frees request packet, called by gadget driver */
564 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
567 struct udc_request
*req
;
569 if (!usbep
|| !usbreq
)
572 ep
= container_of(usbep
, struct udc_ep
, ep
);
573 req
= container_of(usbreq
, struct udc_request
, req
);
574 VDBG(ep
->dev
, "free_req req=%p\n", req
);
575 BUG_ON(!list_empty(&req
->queue
));
577 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
579 /* free dma chain if created */
580 if (req
->chain_len
> 1) {
581 udc_free_dma_chain(ep
->dev
, req
);
584 pci_pool_free(ep
->dev
->data_requests
, req
->td_data
,
590 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
591 static void udc_init_bna_dummy(struct udc_request
*req
)
595 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
596 /* set next pointer to itself */
597 req
->td_data
->next
= req
->td_phys
;
600 = AMD_ADDBITS(req
->td_data
->status
,
601 UDC_DMA_STP_STS_BS_DMA_DONE
,
604 pr_debug("bna desc = %p, sts = %08x\n",
605 req
->td_data
, req
->td_data
->status
);
610 /* Allocate BNA dummy descriptor */
611 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
613 struct udc_request
*req
= NULL
;
614 struct usb_request
*_req
= NULL
;
616 /* alloc the dummy request */
617 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
619 req
= container_of(_req
, struct udc_request
, req
);
620 ep
->bna_dummy_req
= req
;
621 udc_init_bna_dummy(req
);
626 /* Write data to TX fifo for IN packets */
628 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
634 unsigned remaining
= 0;
639 req_buf
= req
->buf
+ req
->actual
;
641 remaining
= req
->length
- req
->actual
;
643 buf
= (u32
*) req_buf
;
645 bytes
= ep
->ep
.maxpacket
;
646 if (bytes
> remaining
)
650 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
651 writel(*(buf
+ i
), ep
->txfifo
);
654 /* remaining bytes must be written by byte access */
655 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
656 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
660 /* dummy write confirm */
661 writel(0, &ep
->regs
->confirm
);
664 /* Read dwords from RX fifo for OUT transfers */
665 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
669 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
671 for (i
= 0; i
< dwords
; i
++) {
672 *(buf
+ i
) = readl(dev
->rxfifo
);
677 /* Read bytes from RX fifo for OUT transfers */
678 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
683 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
686 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
687 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
690 /* remaining bytes must be read by byte access */
691 if (bytes
% UDC_DWORD_BYTES
) {
692 tmp
= readl(dev
->rxfifo
);
693 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
694 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
695 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
702 /* Read data from RX fifo for OUT transfers */
704 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
709 unsigned finished
= 0;
711 /* received number bytes */
712 bytes
= readl(&ep
->regs
->sts
);
713 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
715 buf_space
= req
->req
.length
- req
->req
.actual
;
716 buf
= req
->req
.buf
+ req
->req
.actual
;
717 if (bytes
> buf_space
) {
718 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
720 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
721 ep
->ep
.name
, bytes
, buf_space
);
722 req
->req
.status
= -EOVERFLOW
;
726 req
->req
.actual
+= bytes
;
729 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
730 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
733 /* read rx fifo bytes */
734 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
735 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
740 /* create/re-init a DMA descriptor or a DMA descriptor chain */
741 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
746 VDBG(ep
->dev
, "prep_dma\n");
747 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
748 ep
->num
, req
->td_data
);
750 /* set buffer pointer */
751 req
->td_data
->bufptr
= req
->req
.dma
;
754 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
756 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
759 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
761 if (retval
== -ENOMEM
)
762 DBG(ep
->dev
, "Out of DMA memory\n");
766 if (req
->req
.length
== ep
->ep
.maxpacket
) {
768 req
->td_data
->status
=
769 AMD_ADDBITS(req
->td_data
->status
,
771 UDC_DMA_IN_STS_TXBYTES
);
779 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
780 "maxpacket=%d ep%d\n",
781 use_dma_ppb
, req
->req
.length
,
782 ep
->ep
.maxpacket
, ep
->num
);
784 * if bytes < max packet then tx bytes must
785 * be written in packet per buffer mode
787 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
788 || ep
->num
== UDC_EP0OUT_IX
789 || ep
->num
== UDC_EP0IN_IX
) {
791 req
->td_data
->status
=
792 AMD_ADDBITS(req
->td_data
->status
,
794 UDC_DMA_IN_STS_TXBYTES
);
795 /* reset frame num */
796 req
->td_data
->status
=
797 AMD_ADDBITS(req
->td_data
->status
,
799 UDC_DMA_IN_STS_FRAMENUM
);
802 req
->td_data
->status
=
803 AMD_ADDBITS(req
->td_data
->status
,
804 UDC_DMA_STP_STS_BS_HOST_BUSY
,
807 VDBG(ep
->dev
, "OUT set host ready\n");
809 req
->td_data
->status
=
810 AMD_ADDBITS(req
->td_data
->status
,
811 UDC_DMA_STP_STS_BS_HOST_READY
,
815 /* clear NAK by writing CNAK */
817 tmp
= readl(&ep
->regs
->ctl
);
818 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
819 writel(tmp
, &ep
->regs
->ctl
);
821 UDC_QUEUE_CNAK(ep
, ep
->num
);
829 /* Completes request packet ... caller MUST hold lock */
831 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
832 __releases(ep
->dev
->lock
)
833 __acquires(ep
->dev
->lock
)
838 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
842 if (req
->dma_mapping
) {
844 pci_unmap_single(dev
->pdev
,
849 pci_unmap_single(dev
->pdev
,
853 req
->dma_mapping
= 0;
854 req
->req
.dma
= DMA_DONT_USE
;
860 /* set new status if pending */
861 if (req
->req
.status
== -EINPROGRESS
)
862 req
->req
.status
= sts
;
864 /* remove from ep queue */
865 list_del_init(&req
->queue
);
867 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
868 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
870 spin_unlock(&dev
->lock
);
871 req
->req
.complete(&ep
->ep
, &req
->req
);
872 spin_lock(&dev
->lock
);
876 /* frees pci pool descriptors of a DMA chain */
877 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
881 struct udc_data_dma
*td
;
882 struct udc_data_dma
*td_last
= NULL
;
885 DBG(dev
, "free chain req = %p\n", req
);
887 /* do not free first desc., will be done by free for request */
888 td_last
= req
->td_data
;
889 td
= phys_to_virt(td_last
->next
);
891 for (i
= 1; i
< req
->chain_len
; i
++) {
893 pci_pool_free(dev
->data_requests
, td
,
894 (dma_addr_t
) td_last
->next
);
896 td
= phys_to_virt(td_last
->next
);
902 /* Iterates to the end of a DMA chain and returns last descriptor */
903 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
905 struct udc_data_dma
*td
;
908 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
909 td
= phys_to_virt(td
->next
);
916 /* Iterates to the end of a DMA chain and counts bytes received */
917 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
919 struct udc_data_dma
*td
;
923 /* received number bytes */
924 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
926 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
927 td
= phys_to_virt(td
->next
);
928 /* received number bytes */
930 count
+= AMD_GETBITS(td
->status
,
931 UDC_DMA_OUT_STS_RXBYTES
);
939 /* Creates or re-inits a DMA chain */
940 static int udc_create_dma_chain(
942 struct udc_request
*req
,
943 unsigned long buf_len
, gfp_t gfp_flags
946 unsigned long bytes
= req
->req
.length
;
949 struct udc_data_dma
*td
= NULL
;
950 struct udc_data_dma
*last
= NULL
;
951 unsigned long txbytes
;
952 unsigned create_new_chain
= 0;
955 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
957 dma_addr
= DMA_DONT_USE
;
959 /* unset L bit in first desc for OUT */
961 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
964 /* alloc only new desc's if not already available */
965 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
966 if (req
->req
.length
% ep
->ep
.maxpacket
) {
970 if (len
> req
->chain_len
) {
971 /* shorter chain already allocated before */
972 if (req
->chain_len
> 1) {
973 udc_free_dma_chain(ep
->dev
, req
);
975 req
->chain_len
= len
;
976 create_new_chain
= 1;
980 /* gen. required number of descriptors and buffers */
981 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
982 /* create or determine next desc. */
983 if (create_new_chain
) {
985 td
= pci_pool_alloc(ep
->dev
->data_requests
,
986 gfp_flags
, &dma_addr
);
991 } else if (i
== buf_len
) {
993 td
= (struct udc_data_dma
*) phys_to_virt(
997 td
= (struct udc_data_dma
*) phys_to_virt(last
->next
);
1003 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
1007 /* short packet ? */
1008 if ((bytes
- i
) >= buf_len
) {
1012 txbytes
= bytes
- i
;
1015 /* link td and assign tx bytes */
1017 if (create_new_chain
) {
1018 req
->td_data
->next
= dma_addr
;
1020 /* req->td_data->next = virt_to_phys(td); */
1022 /* write tx bytes */
1025 req
->td_data
->status
=
1026 AMD_ADDBITS(req
->td_data
->status
,
1028 UDC_DMA_IN_STS_TXBYTES
);
1030 td
->status
= AMD_ADDBITS(td
->status
,
1032 UDC_DMA_IN_STS_TXBYTES
);
1035 if (create_new_chain
) {
1036 last
->next
= dma_addr
;
1038 /* last->next = virt_to_phys(td); */
1041 /* write tx bytes */
1042 td
->status
= AMD_ADDBITS(td
->status
,
1044 UDC_DMA_IN_STS_TXBYTES
);
1051 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
1052 /* last desc. points to itself */
1053 req
->td_data_last
= td
;
1059 /* Enabling RX DMA */
1060 static void udc_set_rde(struct udc
*dev
)
1064 VDBG(dev
, "udc_set_rde()\n");
1065 /* stop RDE timer */
1066 if (timer_pending(&udc_timer
)) {
1068 mod_timer(&udc_timer
, jiffies
- 1);
1071 tmp
= readl(&dev
->regs
->ctl
);
1072 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1073 writel(tmp
, &dev
->regs
->ctl
);
1076 /* Queues a request packet, called by gadget driver */
1078 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1082 unsigned long iflags
;
1084 struct udc_request
*req
;
1088 /* check the inputs */
1089 req
= container_of(usbreq
, struct udc_request
, req
);
1091 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1092 || !list_empty(&req
->queue
))
1095 ep
= container_of(usbep
, struct udc_ep
, ep
);
1096 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1099 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1102 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1105 /* map dma (usually done before) */
1106 if (ep
->dma
&& usbreq
->length
!= 0
1107 && (usbreq
->dma
== DMA_DONT_USE
|| usbreq
->dma
== 0)) {
1108 VDBG(dev
, "DMA map req %p\n", req
);
1110 usbreq
->dma
= pci_map_single(dev
->pdev
,
1115 usbreq
->dma
= pci_map_single(dev
->pdev
,
1118 PCI_DMA_FROMDEVICE
);
1119 req
->dma_mapping
= 1;
1122 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1123 usbep
->name
, usbreq
, usbreq
->length
,
1124 req
->td_data
, usbreq
->buf
);
1126 spin_lock_irqsave(&dev
->lock
, iflags
);
1128 usbreq
->status
= -EINPROGRESS
;
1131 /* on empty queue just do first transfer */
1132 if (list_empty(&ep
->queue
)) {
1134 if (usbreq
->length
== 0) {
1135 /* IN zlp's are handled by hardware */
1136 complete_req(ep
, req
, 0);
1137 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1139 * if set_config or set_intf is waiting for ack by zlp
1142 if (dev
->set_cfg_not_acked
) {
1143 tmp
= readl(&dev
->regs
->ctl
);
1144 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1145 writel(tmp
, &dev
->regs
->ctl
);
1146 dev
->set_cfg_not_acked
= 0;
1148 /* setup command is ACK'ed now by zlp */
1149 if (dev
->waiting_zlp_ack_ep0in
) {
1150 /* clear NAK by writing CNAK in EP0_IN */
1151 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1152 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1153 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1154 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1155 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1157 dev
->waiting_zlp_ack_ep0in
= 0;
1162 retval
= prep_dma(ep
, req
, gfp
);
1165 /* write desc pointer to enable DMA */
1167 /* set HOST READY */
1168 req
->td_data
->status
=
1169 AMD_ADDBITS(req
->td_data
->status
,
1170 UDC_DMA_IN_STS_BS_HOST_READY
,
1174 /* disabled rx dma while descriptor update */
1176 /* stop RDE timer */
1177 if (timer_pending(&udc_timer
)) {
1179 mod_timer(&udc_timer
, jiffies
- 1);
1182 tmp
= readl(&dev
->regs
->ctl
);
1183 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1184 writel(tmp
, &dev
->regs
->ctl
);
1188 * if BNA occurred then let BNA dummy desc.
1189 * point to current desc.
1191 if (ep
->bna_occurred
) {
1192 VDBG(dev
, "copy to BNA dummy desc.\n");
1193 memcpy(ep
->bna_dummy_req
->td_data
,
1195 sizeof(struct udc_data_dma
));
1198 /* write desc pointer */
1199 writel(req
->td_phys
, &ep
->regs
->desptr
);
1201 /* clear NAK by writing CNAK */
1203 tmp
= readl(&ep
->regs
->ctl
);
1204 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1205 writel(tmp
, &ep
->regs
->ctl
);
1207 UDC_QUEUE_CNAK(ep
, ep
->num
);
1212 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1213 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1214 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1218 } else if (ep
->dma
) {
1221 * prep_dma not used for OUT ep's, this is not possible
1222 * for PPB modes, because of chain creation reasons
1225 retval
= prep_dma(ep
, req
, gfp
);
1230 VDBG(dev
, "list_add\n");
1231 /* add request to ep queue */
1234 list_add_tail(&req
->queue
, &ep
->queue
);
1236 /* open rxfifo if out data queued */
1241 if (ep
->num
!= UDC_EP0OUT_IX
)
1242 dev
->data_ep_queued
= 1;
1244 /* stop OUT naking */
1246 if (!use_dma
&& udc_rxfifo_pending
) {
1247 DBG(dev
, "udc_queue(): pending bytes in "
1248 "rxfifo after nyet\n");
1250 * read pending bytes afer nyet:
1253 if (udc_rxfifo_read(ep
, req
)) {
1255 complete_req(ep
, req
, 0);
1257 udc_rxfifo_pending
= 0;
1264 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1268 /* Empty request queue of an endpoint; caller holds spinlock */
1269 static void empty_req_queue(struct udc_ep
*ep
)
1271 struct udc_request
*req
;
1274 while (!list_empty(&ep
->queue
)) {
1275 req
= list_entry(ep
->queue
.next
,
1278 complete_req(ep
, req
, -ESHUTDOWN
);
1282 /* Dequeues a request packet, called by gadget driver */
1283 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1286 struct udc_request
*req
;
1288 unsigned long iflags
;
1290 ep
= container_of(usbep
, struct udc_ep
, ep
);
1291 if (!usbep
|| !usbreq
|| (!ep
->desc
&& (ep
->num
!= 0
1292 && ep
->num
!= UDC_EP0OUT_IX
)))
1295 req
= container_of(usbreq
, struct udc_request
, req
);
1297 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1298 halted
= ep
->halted
;
1300 /* request in processing or next one */
1301 if (ep
->queue
.next
== &req
->queue
) {
1302 if (ep
->dma
&& req
->dma_going
) {
1304 ep
->cancel_transfer
= 1;
1308 /* stop potential receive DMA */
1309 tmp
= readl(&udc
->regs
->ctl
);
1310 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1313 * Cancel transfer later in ISR
1314 * if descriptor was touched.
1316 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1317 UDC_DMA_OUT_STS_BS
);
1318 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1319 ep
->cancel_transfer
= 1;
1321 udc_init_bna_dummy(ep
->req
);
1322 writel(ep
->bna_dummy_req
->td_phys
,
1325 writel(tmp
, &udc
->regs
->ctl
);
1329 complete_req(ep
, req
, -ECONNRESET
);
1330 ep
->halted
= halted
;
1332 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1336 /* Halt or clear halt of endpoint */
1338 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1342 unsigned long iflags
;
1348 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1350 ep
= container_of(usbep
, struct udc_ep
, ep
);
1351 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1353 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1356 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1357 /* halt or clear halt */
1360 ep
->dev
->stall_ep0in
= 1;
1364 * rxfifo empty not taken into acount
1366 tmp
= readl(&ep
->regs
->ctl
);
1367 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1368 writel(tmp
, &ep
->regs
->ctl
);
1371 /* setup poll timer */
1372 if (!timer_pending(&udc_pollstall_timer
)) {
1373 udc_pollstall_timer
.expires
= jiffies
+
1374 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1376 if (!stop_pollstall_timer
) {
1377 DBG(ep
->dev
, "start polltimer\n");
1378 add_timer(&udc_pollstall_timer
);
1383 /* ep is halted by set_halt() before */
1385 tmp
= readl(&ep
->regs
->ctl
);
1386 /* clear stall bit */
1387 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1388 /* clear NAK by writing CNAK */
1389 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1390 writel(tmp
, &ep
->regs
->ctl
);
1392 UDC_QUEUE_CNAK(ep
, ep
->num
);
1395 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1399 /* gadget interface */
1400 static const struct usb_ep_ops udc_ep_ops
= {
1401 .enable
= udc_ep_enable
,
1402 .disable
= udc_ep_disable
,
1404 .alloc_request
= udc_alloc_request
,
1405 .free_request
= udc_free_request
,
1408 .dequeue
= udc_dequeue
,
1410 .set_halt
= udc_set_halt
,
1411 /* fifo ops not implemented */
1414 /*-------------------------------------------------------------------------*/
1416 /* Get frame counter (not implemented) */
1417 static int udc_get_frame(struct usb_gadget
*gadget
)
1422 /* Remote wakeup gadget interface */
1423 static int udc_wakeup(struct usb_gadget
*gadget
)
1429 dev
= container_of(gadget
, struct udc
, gadget
);
1430 udc_remote_wakeup(dev
);
1435 /* gadget operations */
1436 static const struct usb_gadget_ops udc_ops
= {
1437 .wakeup
= udc_wakeup
,
1438 .get_frame
= udc_get_frame
,
1441 /* Setups endpoint parameters, adds endpoints to linked list */
1442 static void make_ep_lists(struct udc
*dev
)
1444 /* make gadget ep lists */
1445 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1446 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1447 &dev
->gadget
.ep_list
);
1448 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1449 &dev
->gadget
.ep_list
);
1450 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1451 &dev
->gadget
.ep_list
);
1454 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1455 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1456 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1457 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1458 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1459 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1462 /* init registers at driver load time */
1463 static int startup_registers(struct udc
*dev
)
1467 /* init controller by soft reset */
1468 udc_soft_reset(dev
);
1470 /* mask not needed interrupts */
1471 udc_mask_unused_interrupts(dev
);
1473 /* put into initial config */
1474 udc_basic_init(dev
);
1475 /* link up all endpoints */
1476 udc_setup_endpoints(dev
);
1479 tmp
= readl(&dev
->regs
->cfg
);
1480 if (use_fullspeed
) {
1481 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1483 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1485 writel(tmp
, &dev
->regs
->cfg
);
1490 /* Inits UDC context */
1491 static void udc_basic_init(struct udc
*dev
)
1495 DBG(dev
, "udc_basic_init()\n");
1497 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1499 /* stop RDE timer */
1500 if (timer_pending(&udc_timer
)) {
1502 mod_timer(&udc_timer
, jiffies
- 1);
1504 /* stop poll stall timer */
1505 if (timer_pending(&udc_pollstall_timer
)) {
1506 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1509 tmp
= readl(&dev
->regs
->ctl
);
1510 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1511 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1512 writel(tmp
, &dev
->regs
->ctl
);
1514 /* enable dynamic CSR programming */
1515 tmp
= readl(&dev
->regs
->cfg
);
1516 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1517 /* set self powered */
1518 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1519 /* set remote wakeupable */
1520 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1521 writel(tmp
, &dev
->regs
->cfg
);
1525 dev
->data_ep_enabled
= 0;
1526 dev
->data_ep_queued
= 0;
1529 /* Sets initial endpoint parameters */
1530 static void udc_setup_endpoints(struct udc
*dev
)
1536 DBG(dev
, "udc_setup_endpoints()\n");
1538 /* read enum speed */
1539 tmp
= readl(&dev
->regs
->sts
);
1540 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1541 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
) {
1542 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1543 } else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
) {
1544 dev
->gadget
.speed
= USB_SPEED_FULL
;
1547 /* set basic ep parameters */
1548 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1551 ep
->ep
.name
= ep_string
[tmp
];
1553 /* txfifo size is calculated at enable time */
1554 ep
->txfifo
= dev
->txfifo
;
1557 if (tmp
< UDC_EPIN_NUM
) {
1558 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1561 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1565 ep
->regs
= &dev
->ep_regs
[tmp
];
1567 * ep will be reset only if ep was not enabled before to avoid
1568 * disabling ep interrupts when ENUM interrupt occurs but ep is
1569 * not enabled by gadget driver
1572 ep_init(dev
->regs
, ep
);
1577 * ep->dma is not really used, just to indicate that
1578 * DMA is active: remove this
1579 * dma regs = dev control regs
1581 ep
->dma
= &dev
->regs
->ctl
;
1583 /* nak OUT endpoints until enable - not for ep0 */
1584 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1585 && tmp
> UDC_EPIN_NUM
) {
1587 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1588 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1589 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1590 dev
->ep
[tmp
].naking
= 1;
1595 /* EP0 max packet */
1596 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1597 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_FS_EP0IN_MAX_PKT_SIZE
;
1598 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
=
1599 UDC_FS_EP0OUT_MAX_PKT_SIZE
;
1600 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1601 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_EP0IN_MAX_PKT_SIZE
;
1602 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
= UDC_EP0OUT_MAX_PKT_SIZE
;
1606 * with suspend bug workaround, ep0 params for gadget driver
1607 * are set at gadget driver bind() call
1609 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1610 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1611 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1613 /* init cfg/alt/int */
1614 dev
->cur_config
= 0;
1619 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1620 static void usb_connect(struct udc
*dev
)
1623 dev_info(&dev
->pdev
->dev
, "USB Connect\n");
1627 /* put into initial config */
1628 udc_basic_init(dev
);
1630 /* enable device setup interrupts */
1631 udc_enable_dev_setup_interrupts(dev
);
1635 * Calls gadget with disconnect event and resets the UDC and makes
1636 * initial bringup to be ready for ep0 events
1638 static void usb_disconnect(struct udc
*dev
)
1641 dev_info(&dev
->pdev
->dev
, "USB Disconnect\n");
1645 /* mask interrupts */
1646 udc_mask_unused_interrupts(dev
);
1648 /* REVISIT there doesn't seem to be a point to having this
1649 * talk to a tasklet ... do it directly, we already hold
1650 * the spinlock needed to process the disconnect.
1653 tasklet_schedule(&disconnect_tasklet
);
1656 /* Tasklet for disconnect to be outside of interrupt context */
1657 static void udc_tasklet_disconnect(unsigned long par
)
1659 struct udc
*dev
= (struct udc
*)(*((struct udc
**) par
));
1662 DBG(dev
, "Tasklet disconnect\n");
1663 spin_lock_irq(&dev
->lock
);
1666 spin_unlock(&dev
->lock
);
1667 dev
->driver
->disconnect(&dev
->gadget
);
1668 spin_lock(&dev
->lock
);
1671 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1672 empty_req_queue(&dev
->ep
[tmp
]);
1679 &dev
->ep
[UDC_EP0IN_IX
]);
1682 if (!soft_reset_occured
) {
1683 /* init controller by soft reset */
1684 udc_soft_reset(dev
);
1685 soft_reset_occured
++;
1688 /* re-enable dev interrupts */
1689 udc_enable_dev_setup_interrupts(dev
);
1690 /* back to full speed ? */
1691 if (use_fullspeed
) {
1692 tmp
= readl(&dev
->regs
->cfg
);
1693 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1694 writel(tmp
, &dev
->regs
->cfg
);
1697 spin_unlock_irq(&dev
->lock
);
1700 /* Reset the UDC core */
1701 static void udc_soft_reset(struct udc
*dev
)
1703 unsigned long flags
;
1705 DBG(dev
, "Soft reset\n");
1707 * reset possible waiting interrupts, because int.
1708 * status is lost after soft reset,
1709 * ep int. status reset
1711 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1712 /* device int. status reset */
1713 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1715 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1716 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1717 readl(&dev
->regs
->cfg
);
1718 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1722 /* RDE timer callback to set RDE bit */
1723 static void udc_timer_function(unsigned long v
)
1727 spin_lock_irq(&udc_irq_spinlock
);
1731 * open the fifo if fifo was filled on last timer call
1735 /* set RDE to receive setup data */
1736 tmp
= readl(&udc
->regs
->ctl
);
1737 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1738 writel(tmp
, &udc
->regs
->ctl
);
1740 } else if (readl(&udc
->regs
->sts
)
1741 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1743 * if fifo empty setup polling, do not just
1746 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1748 add_timer(&udc_timer
);
1752 * fifo contains data now, setup timer for opening
1753 * the fifo when timer expires to be able to receive
1754 * setup packets, when data packets gets queued by
1755 * gadget layer then timer will forced to expire with
1756 * set_rde=0 (RDE is set in udc_queue())
1759 /* debug: lhadmot_timer_start = 221070 */
1760 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1762 add_timer(&udc_timer
);
1767 set_rde
= -1; /* RDE was set by udc_queue() */
1768 spin_unlock_irq(&udc_irq_spinlock
);
1774 /* Handle halt state, used in stall poll timer */
1775 static void udc_handle_halt_state(struct udc_ep
*ep
)
1778 /* set stall as long not halted */
1779 if (ep
->halted
== 1) {
1780 tmp
= readl(&ep
->regs
->ctl
);
1781 /* STALL cleared ? */
1782 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1784 * FIXME: MSC spec requires that stall remains
1785 * even on receivng of CLEAR_FEATURE HALT. So
1786 * we would set STALL again here to be compliant.
1787 * But with current mass storage drivers this does
1788 * not work (would produce endless host retries).
1789 * So we clear halt on CLEAR_FEATURE.
1791 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1792 tmp |= AMD_BIT(UDC_EPCTL_S);
1793 writel(tmp, &ep->regs->ctl);*/
1795 /* clear NAK by writing CNAK */
1796 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1797 writel(tmp
, &ep
->regs
->ctl
);
1799 UDC_QUEUE_CNAK(ep
, ep
->num
);
1804 /* Stall timer callback to poll S bit and set it again after */
1805 static void udc_pollstall_timer_function(unsigned long v
)
1810 spin_lock_irq(&udc_stall_spinlock
);
1812 * only one IN and OUT endpoints are handled
1815 ep
= &udc
->ep
[UDC_EPIN_IX
];
1816 udc_handle_halt_state(ep
);
1819 /* OUT poll stall */
1820 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1821 udc_handle_halt_state(ep
);
1825 /* setup timer again when still halted */
1826 if (!stop_pollstall_timer
&& halted
) {
1827 udc_pollstall_timer
.expires
= jiffies
+
1828 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1830 add_timer(&udc_pollstall_timer
);
1832 spin_unlock_irq(&udc_stall_spinlock
);
1834 if (stop_pollstall_timer
)
1835 complete(&on_pollstall_exit
);
1838 /* Inits endpoint 0 so that SETUP packets are processed */
1839 static void activate_control_endpoints(struct udc
*dev
)
1843 DBG(dev
, "activate_control_endpoints\n");
1846 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1847 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1848 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1850 /* set ep0 directions */
1851 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1852 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1854 /* set buffer size (tx fifo entries) of EP0_IN */
1855 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1856 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1857 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1858 UDC_EPIN_BUFF_SIZE
);
1859 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1860 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1861 UDC_EPIN_BUFF_SIZE
);
1862 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1864 /* set max packet size of EP0_IN */
1865 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1866 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1867 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1868 UDC_EP_MAX_PKT_SIZE
);
1869 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1870 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1871 UDC_EP_MAX_PKT_SIZE
);
1872 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1874 /* set max packet size of EP0_OUT */
1875 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1876 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1877 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1878 UDC_EP_MAX_PKT_SIZE
);
1879 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1880 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1881 UDC_EP_MAX_PKT_SIZE
);
1882 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1884 /* set max packet size of EP0 in UDC CSR */
1885 tmp
= readl(&dev
->csr
->ne
[0]);
1886 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1887 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1888 UDC_CSR_NE_MAX_PKT
);
1889 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1890 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1891 UDC_CSR_NE_MAX_PKT
);
1892 writel(tmp
, &dev
->csr
->ne
[0]);
1895 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1896 AMD_BIT(UDC_DMA_OUT_STS_L
);
1897 /* write dma desc address */
1898 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1899 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1900 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1901 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1902 /* stop RDE timer */
1903 if (timer_pending(&udc_timer
)) {
1905 mod_timer(&udc_timer
, jiffies
- 1);
1907 /* stop pollstall timer */
1908 if (timer_pending(&udc_pollstall_timer
)) {
1909 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1912 tmp
= readl(&dev
->regs
->ctl
);
1913 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1914 | AMD_BIT(UDC_DEVCTL_RDE
)
1915 | AMD_BIT(UDC_DEVCTL_TDE
);
1916 if (use_dma_bufferfill_mode
) {
1917 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1918 } else if (use_dma_ppb_du
) {
1919 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1921 writel(tmp
, &dev
->regs
->ctl
);
1924 /* clear NAK by writing CNAK for EP0IN */
1925 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1926 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1927 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1928 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1929 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1931 /* clear NAK by writing CNAK for EP0OUT */
1932 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1933 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1934 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1935 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1936 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1939 /* Make endpoint 0 ready for control traffic */
1940 static int setup_ep0(struct udc
*dev
)
1942 activate_control_endpoints(dev
);
1943 /* enable ep0 interrupts */
1944 udc_enable_ep0_interrupts(dev
);
1945 /* enable device setup interrupts */
1946 udc_enable_dev_setup_interrupts(dev
);
1951 /* Called by gadget driver to register itself */
1952 int usb_gadget_register_driver(struct usb_gadget_driver
*driver
)
1954 struct udc
*dev
= udc
;
1958 if (!driver
|| !driver
->bind
|| !driver
->setup
1959 || driver
->speed
!= USB_SPEED_HIGH
)
1966 driver
->driver
.bus
= NULL
;
1967 dev
->driver
= driver
;
1968 dev
->gadget
.dev
.driver
= &driver
->driver
;
1970 retval
= driver
->bind(&dev
->gadget
);
1972 /* Some gadget drivers use both ep0 directions.
1973 * NOTE: to gadget driver, ep0 is just one endpoint...
1975 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
1976 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
1979 DBG(dev
, "binding to %s returning %d\n",
1980 driver
->driver
.name
, retval
);
1982 dev
->gadget
.dev
.driver
= NULL
;
1986 /* get ready for ep0 traffic */
1990 tmp
= readl(&dev
->regs
->ctl
);
1991 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
1992 writel(tmp
, &dev
->regs
->ctl
);
1998 EXPORT_SYMBOL(usb_gadget_register_driver
);
2000 /* shutdown requests and disconnect from gadget */
2002 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
2003 __releases(dev
->lock
)
2004 __acquires(dev
->lock
)
2008 /* empty queues and init hardware */
2009 udc_basic_init(dev
);
2010 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
2011 empty_req_queue(&dev
->ep
[tmp
]);
2014 if (dev
->gadget
.speed
!= USB_SPEED_UNKNOWN
) {
2015 spin_unlock(&dev
->lock
);
2016 driver
->disconnect(&dev
->gadget
);
2017 spin_lock(&dev
->lock
);
2020 udc_setup_endpoints(dev
);
2023 /* Called by gadget driver to unregister itself */
2024 int usb_gadget_unregister_driver(struct usb_gadget_driver
*driver
)
2026 struct udc
*dev
= udc
;
2027 unsigned long flags
;
2032 if (!driver
|| driver
!= dev
->driver
|| !driver
->unbind
)
2035 spin_lock_irqsave(&dev
->lock
, flags
);
2036 udc_mask_unused_interrupts(dev
);
2037 shutdown(dev
, driver
);
2038 spin_unlock_irqrestore(&dev
->lock
, flags
);
2040 driver
->unbind(&dev
->gadget
);
2041 dev
->gadget
.dev
.driver
= NULL
;
2045 tmp
= readl(&dev
->regs
->ctl
);
2046 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2047 writel(tmp
, &dev
->regs
->ctl
);
2050 DBG(dev
, "%s: unregistered\n", driver
->driver
.name
);
2054 EXPORT_SYMBOL(usb_gadget_unregister_driver
);
2057 /* Clear pending NAK bits */
2058 static void udc_process_cnak_queue(struct udc
*dev
)
2064 DBG(dev
, "CNAK pending queue processing\n");
2065 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2066 if (cnak_pending
& (1 << tmp
)) {
2067 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2068 /* clear NAK by writing CNAK */
2069 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2070 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2071 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2072 dev
->ep
[tmp
].naking
= 0;
2073 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2076 /* ... and ep0out */
2077 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2078 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2079 /* clear NAK by writing CNAK */
2080 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2081 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2082 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2083 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2084 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2085 dev
->ep
[UDC_EP0OUT_IX
].num
);
2089 /* Enabling RX DMA after setup packet */
2090 static void udc_ep0_set_rde(struct udc
*dev
)
2094 * only enable RXDMA when no data endpoint enabled
2097 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2101 * setup timer for enabling RDE (to not enable
2102 * RXFIFO DMA for data endpoints to early)
2104 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2106 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2109 add_timer(&udc_timer
);
2117 /* Interrupt handler for data OUT traffic */
2118 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2120 irqreturn_t ret_val
= IRQ_NONE
;
2123 struct udc_request
*req
;
2125 struct udc_data_dma
*td
= NULL
;
2128 VDBG(dev
, "ep%d irq\n", ep_ix
);
2129 ep
= &dev
->ep
[ep_ix
];
2131 tmp
= readl(&ep
->regs
->sts
);
2134 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2135 DBG(dev
, "BNA ep%dout occured - DESPTR = %x \n",
2136 ep
->num
, readl(&ep
->regs
->desptr
));
2138 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2139 if (!ep
->cancel_transfer
)
2140 ep
->bna_occurred
= 1;
2142 ep
->cancel_transfer
= 0;
2143 ret_val
= IRQ_HANDLED
;
2148 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2149 dev_err(&dev
->pdev
->dev
, "HE ep%dout occured\n", ep
->num
);
2152 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2153 ret_val
= IRQ_HANDLED
;
2157 if (!list_empty(&ep
->queue
)) {
2160 req
= list_entry(ep
->queue
.next
,
2161 struct udc_request
, queue
);
2164 udc_rxfifo_pending
= 1;
2166 VDBG(dev
, "req = %p\n", req
);
2171 if (req
&& udc_rxfifo_read(ep
, req
)) {
2172 ret_val
= IRQ_HANDLED
;
2175 complete_req(ep
, req
, 0);
2177 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2178 req
= list_entry(ep
->queue
.next
,
2179 struct udc_request
, queue
);
2185 } else if (!ep
->cancel_transfer
&& req
!= NULL
) {
2186 ret_val
= IRQ_HANDLED
;
2188 /* check for DMA done */
2190 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2191 UDC_DMA_OUT_STS_BS
);
2192 /* packet per buffer mode - rx bytes */
2195 * if BNA occurred then recover desc. from
2198 if (ep
->bna_occurred
) {
2199 VDBG(dev
, "Recover desc. from BNA dummy\n");
2200 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2201 sizeof(struct udc_data_dma
));
2202 ep
->bna_occurred
= 0;
2203 udc_init_bna_dummy(ep
->req
);
2205 td
= udc_get_last_dma_desc(req
);
2206 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2208 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2209 /* buffer fill mode - rx bytes */
2211 /* received number bytes */
2212 count
= AMD_GETBITS(req
->td_data
->status
,
2213 UDC_DMA_OUT_STS_RXBYTES
);
2214 VDBG(dev
, "rx bytes=%u\n", count
);
2215 /* packet per buffer mode - rx bytes */
2217 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2218 VDBG(dev
, "last desc = %p\n", td
);
2219 /* received number bytes */
2220 if (use_dma_ppb_du
) {
2221 /* every desc. counts bytes */
2222 count
= udc_get_ppbdu_rxbytes(req
);
2224 /* last desc. counts bytes */
2225 count
= AMD_GETBITS(td
->status
,
2226 UDC_DMA_OUT_STS_RXBYTES
);
2227 if (!count
&& req
->req
.length
2228 == UDC_DMA_MAXPACKET
) {
2230 * on 64k packets the RXBYTES
2233 count
= UDC_DMA_MAXPACKET
;
2236 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2239 tmp
= req
->req
.length
- req
->req
.actual
;
2241 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2242 DBG(dev
, "%s: rx %db, space=%db\n",
2243 ep
->ep
.name
, count
, tmp
);
2244 req
->req
.status
= -EOVERFLOW
;
2248 req
->req
.actual
+= count
;
2250 /* complete request */
2251 complete_req(ep
, req
, 0);
2254 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2255 req
= list_entry(ep
->queue
.next
,
2259 * DMA may be already started by udc_queue()
2260 * called by gadget drivers completion
2261 * routine. This happens when queue
2262 * holds one request only.
2264 if (req
->dma_going
== 0) {
2266 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2268 /* write desc pointer */
2269 writel(req
->td_phys
,
2277 * implant BNA dummy descriptor to allow
2278 * RXFIFO opening by RDE
2280 if (ep
->bna_dummy_req
) {
2281 /* write desc pointer */
2282 writel(ep
->bna_dummy_req
->td_phys
,
2284 ep
->bna_occurred
= 0;
2288 * schedule timer for setting RDE if queue
2289 * remains empty to allow ep0 packets pass
2293 && !timer_pending(&udc_timer
)) {
2296 + HZ
*UDC_RDE_TIMER_SECONDS
;
2299 add_timer(&udc_timer
);
2302 if (ep
->num
!= UDC_EP0OUT_IX
)
2303 dev
->data_ep_queued
= 0;
2308 * RX DMA must be reenabled for each desc in PPBDU mode
2309 * and must be enabled for PPBNDU mode in case of BNA
2314 } else if (ep
->cancel_transfer
) {
2315 ret_val
= IRQ_HANDLED
;
2316 ep
->cancel_transfer
= 0;
2319 /* check pending CNAKS */
2321 /* CNAk processing when rxfifo empty only */
2322 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2323 udc_process_cnak_queue(dev
);
2327 /* clear OUT bits in ep status */
2328 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2333 /* Interrupt handler for data IN traffic */
2334 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2336 irqreturn_t ret_val
= IRQ_NONE
;
2340 struct udc_request
*req
;
2341 struct udc_data_dma
*td
;
2345 ep
= &dev
->ep
[ep_ix
];
2347 epsts
= readl(&ep
->regs
->sts
);
2350 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2351 dev_err(&dev
->pdev
->dev
,
2352 "BNA ep%din occured - DESPTR = %08lx \n",
2354 (unsigned long) readl(&ep
->regs
->desptr
));
2357 writel(epsts
, &ep
->regs
->sts
);
2358 ret_val
= IRQ_HANDLED
;
2363 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2364 dev_err(&dev
->pdev
->dev
,
2365 "HE ep%dn occured - DESPTR = %08lx \n",
2366 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2369 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2370 ret_val
= IRQ_HANDLED
;
2374 /* DMA completion */
2375 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2376 VDBG(dev
, "TDC set- completion\n");
2377 ret_val
= IRQ_HANDLED
;
2378 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2379 req
= list_entry(ep
->queue
.next
,
2380 struct udc_request
, queue
);
2382 * length bytes transfered
2383 * check dma done of last desc. in PPBDU mode
2385 if (use_dma_ppb_du
) {
2386 td
= udc_get_last_dma_desc(req
);
2389 AMD_GETBITS(td
->status
,
2391 /* don't care DMA done */
2392 req
->req
.actual
= req
->req
.length
;
2395 /* assume all bytes transferred */
2396 req
->req
.actual
= req
->req
.length
;
2399 if (req
->req
.actual
== req
->req
.length
) {
2401 complete_req(ep
, req
, 0);
2403 /* further request available ? */
2404 if (list_empty(&ep
->queue
)) {
2405 /* disable interrupt */
2406 tmp
= readl(&dev
->regs
->ep_irqmsk
);
2407 tmp
|= AMD_BIT(ep
->num
);
2408 writel(tmp
, &dev
->regs
->ep_irqmsk
);
2412 ep
->cancel_transfer
= 0;
2416 * status reg has IN bit set and TDC not set (if TDC was handled,
2417 * IN must not be handled (UDC defect) ?
2419 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2420 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2421 ret_val
= IRQ_HANDLED
;
2422 if (!list_empty(&ep
->queue
)) {
2424 req
= list_entry(ep
->queue
.next
,
2425 struct udc_request
, queue
);
2429 udc_txfifo_write(ep
, &req
->req
);
2430 len
= req
->req
.length
- req
->req
.actual
;
2431 if (len
> ep
->ep
.maxpacket
)
2432 len
= ep
->ep
.maxpacket
;
2433 req
->req
.actual
+= len
;
2434 if (req
->req
.actual
== req
->req
.length
2435 || (len
!= ep
->ep
.maxpacket
)) {
2437 complete_req(ep
, req
, 0);
2440 } else if (req
&& !req
->dma_going
) {
2441 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2448 * unset L bit of first desc.
2451 if (use_dma_ppb
&& req
->req
.length
>
2453 req
->td_data
->status
&=
2458 /* write desc pointer */
2459 writel(req
->td_phys
, &ep
->regs
->desptr
);
2461 /* set HOST READY */
2462 req
->td_data
->status
=
2464 req
->td_data
->status
,
2465 UDC_DMA_IN_STS_BS_HOST_READY
,
2468 /* set poll demand bit */
2469 tmp
= readl(&ep
->regs
->ctl
);
2470 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2471 writel(tmp
, &ep
->regs
->ctl
);
2477 /* clear status bits */
2478 writel(epsts
, &ep
->regs
->sts
);
2485 /* Interrupt handler for Control OUT traffic */
2486 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2487 __releases(dev
->lock
)
2488 __acquires(dev
->lock
)
2490 irqreturn_t ret_val
= IRQ_NONE
;
2492 int setup_supported
;
2496 struct udc_ep
*ep_tmp
;
2498 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2501 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2503 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2504 /* check BNA and clear if set */
2505 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2506 VDBG(dev
, "ep0: BNA set\n");
2507 writel(AMD_BIT(UDC_EPSTS_BNA
),
2508 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2509 ep
->bna_occurred
= 1;
2510 ret_val
= IRQ_HANDLED
;
2514 /* type of data: SETUP or DATA 0 bytes */
2515 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2516 VDBG(dev
, "data_typ = %x\n", tmp
);
2519 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2520 ret_val
= IRQ_HANDLED
;
2522 ep
->dev
->stall_ep0in
= 0;
2523 dev
->waiting_zlp_ack_ep0in
= 0;
2525 /* set NAK for EP0_IN */
2526 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2527 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2528 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2529 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2530 /* get setup data */
2533 /* clear OUT bits in ep status */
2534 writel(UDC_EPSTS_OUT_CLEAR
,
2535 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2537 setup_data
.data
[0] =
2538 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2539 setup_data
.data
[1] =
2540 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2541 /* set HOST READY */
2542 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2543 UDC_DMA_STP_STS_BS_HOST_READY
;
2546 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2549 /* determine direction of control data */
2550 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2551 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2553 udc_ep0_set_rde(dev
);
2556 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2558 * implant BNA dummy descriptor to allow RXFIFO opening
2561 if (ep
->bna_dummy_req
) {
2562 /* write desc pointer */
2563 writel(ep
->bna_dummy_req
->td_phys
,
2564 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2565 ep
->bna_occurred
= 0;
2569 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2571 * setup timer for enabling RDE (to not enable
2572 * RXFIFO DMA for data to early)
2575 if (!timer_pending(&udc_timer
)) {
2576 udc_timer
.expires
= jiffies
+
2577 HZ
/UDC_RDE_TIMER_DIV
;
2579 add_timer(&udc_timer
);
2585 * mass storage reset must be processed here because
2586 * next packet may be a CLEAR_FEATURE HALT which would not
2587 * clear the stall bit when no STALL handshake was received
2588 * before (autostall can cause this)
2590 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2591 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2592 DBG(dev
, "MSC Reset\n");
2595 * only one IN and OUT endpoints are handled
2597 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2598 udc_set_halt(&ep_tmp
->ep
, 0);
2599 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2600 udc_set_halt(&ep_tmp
->ep
, 0);
2603 /* call gadget with setup data received */
2604 spin_unlock(&dev
->lock
);
2605 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2606 &setup_data
.request
);
2607 spin_lock(&dev
->lock
);
2609 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2610 /* ep0 in returns data (not zlp) on IN phase */
2611 if (setup_supported
>= 0 && setup_supported
<
2612 UDC_EP0IN_MAXPACKET
) {
2613 /* clear NAK by writing CNAK in EP0_IN */
2614 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2615 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2616 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2617 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2619 /* if unsupported request then stall */
2620 } else if (setup_supported
< 0) {
2621 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2622 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2624 dev
->waiting_zlp_ack_ep0in
= 1;
2627 /* clear NAK by writing CNAK in EP0_OUT */
2629 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2630 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2631 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2632 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2633 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2637 /* clear OUT bits in ep status */
2638 writel(UDC_EPSTS_OUT_CLEAR
,
2639 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2642 /* data packet 0 bytes */
2643 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2644 /* clear OUT bits in ep status */
2645 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2647 /* get setup data: only 0 packet */
2649 /* no req if 0 packet, just reactivate */
2650 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2653 /* set HOST READY */
2654 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2656 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2657 UDC_DMA_OUT_STS_BS_HOST_READY
,
2658 UDC_DMA_OUT_STS_BS
);
2660 udc_ep0_set_rde(dev
);
2661 ret_val
= IRQ_HANDLED
;
2665 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2666 /* re-program desc. pointer for possible ZLPs */
2667 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2668 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2670 udc_ep0_set_rde(dev
);
2674 /* received number bytes */
2675 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2676 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2677 /* out data for fifo mode not working */
2680 /* 0 packet or real data ? */
2682 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2684 /* dummy read confirm */
2685 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2686 ret_val
= IRQ_HANDLED
;
2691 /* check pending CNAKS */
2693 /* CNAk processing when rxfifo empty only */
2694 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2695 udc_process_cnak_queue(dev
);
2703 /* Interrupt handler for Control IN traffic */
2704 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2706 irqreturn_t ret_val
= IRQ_NONE
;
2709 struct udc_request
*req
;
2712 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2715 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2717 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2718 /* DMA completion */
2719 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2720 VDBG(dev
, "isr: TDC clear \n");
2721 ret_val
= IRQ_HANDLED
;
2724 writel(AMD_BIT(UDC_EPSTS_TDC
),
2725 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2727 /* status reg has IN bit set ? */
2728 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2729 ret_val
= IRQ_HANDLED
;
2733 writel(AMD_BIT(UDC_EPSTS_IN
),
2734 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2736 if (dev
->stall_ep0in
) {
2737 DBG(dev
, "stall ep0in\n");
2739 tmp
= readl(&ep
->regs
->ctl
);
2740 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2741 writel(tmp
, &ep
->regs
->ctl
);
2743 if (!list_empty(&ep
->queue
)) {
2745 req
= list_entry(ep
->queue
.next
,
2746 struct udc_request
, queue
);
2749 /* write desc pointer */
2750 writel(req
->td_phys
, &ep
->regs
->desptr
);
2751 /* set HOST READY */
2752 req
->td_data
->status
=
2754 req
->td_data
->status
,
2755 UDC_DMA_STP_STS_BS_HOST_READY
,
2756 UDC_DMA_STP_STS_BS
);
2758 /* set poll demand bit */
2760 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2761 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2763 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2765 /* all bytes will be transferred */
2766 req
->req
.actual
= req
->req
.length
;
2769 complete_req(ep
, req
, 0);
2773 udc_txfifo_write(ep
, &req
->req
);
2775 /* lengh bytes transfered */
2776 len
= req
->req
.length
- req
->req
.actual
;
2777 if (len
> ep
->ep
.maxpacket
)
2778 len
= ep
->ep
.maxpacket
;
2780 req
->req
.actual
+= len
;
2781 if (req
->req
.actual
== req
->req
.length
2782 || (len
!= ep
->ep
.maxpacket
)) {
2784 complete_req(ep
, req
, 0);
2791 dev
->stall_ep0in
= 0;
2794 writel(AMD_BIT(UDC_EPSTS_IN
),
2795 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2803 /* Interrupt handler for global device events */
2804 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2805 __releases(dev
->lock
)
2806 __acquires(dev
->lock
)
2808 irqreturn_t ret_val
= IRQ_NONE
;
2815 /* SET_CONFIG irq ? */
2816 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2817 ret_val
= IRQ_HANDLED
;
2819 /* read config value */
2820 tmp
= readl(&dev
->regs
->sts
);
2821 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2822 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2823 dev
->cur_config
= cfg
;
2824 dev
->set_cfg_not_acked
= 1;
2826 /* make usb request for gadget driver */
2827 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2828 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2829 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2831 /* programm the NE registers */
2832 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2836 /* ep ix in UDC CSR register space */
2837 udc_csr_epix
= ep
->num
;
2842 /* ep ix in UDC CSR register space */
2843 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2846 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2848 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2851 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2853 /* clear stall bits */
2855 tmp
= readl(&ep
->regs
->ctl
);
2856 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2857 writel(tmp
, &ep
->regs
->ctl
);
2859 /* call gadget zero with setup data received */
2860 spin_unlock(&dev
->lock
);
2861 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2862 spin_lock(&dev
->lock
);
2864 } /* SET_INTERFACE ? */
2865 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2866 ret_val
= IRQ_HANDLED
;
2868 dev
->set_cfg_not_acked
= 1;
2869 /* read interface and alt setting values */
2870 tmp
= readl(&dev
->regs
->sts
);
2871 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2872 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2874 /* make usb request for gadget driver */
2875 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2876 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2877 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2878 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2879 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2881 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2882 dev
->cur_alt
, dev
->cur_intf
);
2884 /* programm the NE registers */
2885 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2889 /* ep ix in UDC CSR register space */
2890 udc_csr_epix
= ep
->num
;
2895 /* ep ix in UDC CSR register space */
2896 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2901 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2903 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2905 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2907 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2910 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2912 /* clear stall bits */
2914 tmp
= readl(&ep
->regs
->ctl
);
2915 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2916 writel(tmp
, &ep
->regs
->ctl
);
2919 /* call gadget zero with setup data received */
2920 spin_unlock(&dev
->lock
);
2921 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2922 spin_lock(&dev
->lock
);
2925 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2926 DBG(dev
, "USB Reset interrupt\n");
2927 ret_val
= IRQ_HANDLED
;
2929 /* allow soft reset when suspend occurs */
2930 soft_reset_occured
= 0;
2932 dev
->waiting_zlp_ack_ep0in
= 0;
2933 dev
->set_cfg_not_acked
= 0;
2935 /* mask not needed interrupts */
2936 udc_mask_unused_interrupts(dev
);
2938 /* call gadget to resume and reset configs etc. */
2939 spin_unlock(&dev
->lock
);
2940 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2941 dev
->driver
->resume(&dev
->gadget
);
2942 dev
->sys_suspended
= 0;
2944 dev
->driver
->disconnect(&dev
->gadget
);
2945 spin_lock(&dev
->lock
);
2947 /* disable ep0 to empty req queue */
2948 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2949 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2951 /* soft reset when rxfifo not empty */
2952 tmp
= readl(&dev
->regs
->sts
);
2953 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2954 && !soft_reset_after_usbreset_occured
) {
2955 udc_soft_reset(dev
);
2956 soft_reset_after_usbreset_occured
++;
2960 * DMA reset to kill potential old DMA hw hang,
2961 * POLL bit is already reset by ep_init() through
2964 DBG(dev
, "DMA machine reset\n");
2965 tmp
= readl(&dev
->regs
->cfg
);
2966 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2967 writel(tmp
, &dev
->regs
->cfg
);
2969 /* put into initial config */
2970 udc_basic_init(dev
);
2972 /* enable device setup interrupts */
2973 udc_enable_dev_setup_interrupts(dev
);
2975 /* enable suspend interrupt */
2976 tmp
= readl(&dev
->regs
->irqmsk
);
2977 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2978 writel(tmp
, &dev
->regs
->irqmsk
);
2981 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2982 DBG(dev
, "USB Suspend interrupt\n");
2983 ret_val
= IRQ_HANDLED
;
2984 if (dev
->driver
->suspend
) {
2985 spin_unlock(&dev
->lock
);
2986 dev
->sys_suspended
= 1;
2987 dev
->driver
->suspend(&dev
->gadget
);
2988 spin_lock(&dev
->lock
);
2991 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
2992 DBG(dev
, "ENUM interrupt\n");
2993 ret_val
= IRQ_HANDLED
;
2994 soft_reset_after_usbreset_occured
= 0;
2996 /* disable ep0 to empty req queue */
2997 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2998 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
3000 /* link up all endpoints */
3001 udc_setup_endpoints(dev
);
3002 if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
3003 dev_info(&dev
->pdev
->dev
, "Connect: speed = %s\n",
3005 } else if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
3006 dev_info(&dev
->pdev
->dev
, "Connect: speed = %s\n",
3011 activate_control_endpoints(dev
);
3013 /* enable ep0 interrupts */
3014 udc_enable_ep0_interrupts(dev
);
3016 /* session valid change interrupt */
3017 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
3018 DBG(dev
, "USB SVC interrupt\n");
3019 ret_val
= IRQ_HANDLED
;
3021 /* check that session is not valid to detect disconnect */
3022 tmp
= readl(&dev
->regs
->sts
);
3023 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
3024 /* disable suspend interrupt */
3025 tmp
= readl(&dev
->regs
->irqmsk
);
3026 tmp
|= AMD_BIT(UDC_DEVINT_US
);
3027 writel(tmp
, &dev
->regs
->irqmsk
);
3028 DBG(dev
, "USB Disconnect (session valid low)\n");
3029 /* cleanup on disconnect */
3030 usb_disconnect(udc
);
3038 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3039 static irqreturn_t
udc_irq(int irq
, void *pdev
)
3041 struct udc
*dev
= pdev
;
3045 irqreturn_t ret_val
= IRQ_NONE
;
3047 spin_lock(&dev
->lock
);
3049 /* check for ep irq */
3050 reg
= readl(&dev
->regs
->ep_irqsts
);
3052 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3053 ret_val
|= udc_control_out_isr(dev
);
3054 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3055 ret_val
|= udc_control_in_isr(dev
);
3061 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3063 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3066 /* clear irq status */
3067 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3069 /* irq for out ep ? */
3070 if (i
> UDC_EPIN_NUM
)
3071 ret_val
|= udc_data_out_isr(dev
, i
);
3073 ret_val
|= udc_data_in_isr(dev
, i
);
3079 /* check for dev irq */
3080 reg
= readl(&dev
->regs
->irqsts
);
3083 writel(reg
, &dev
->regs
->irqsts
);
3084 ret_val
|= udc_dev_isr(dev
, reg
);
3088 spin_unlock(&dev
->lock
);
3092 /* Tears down device */
3093 static void gadget_release(struct device
*pdev
)
3095 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3099 /* Cleanup on device remove */
3100 static void udc_remove(struct udc
*dev
)
3104 if (timer_pending(&udc_timer
))
3105 wait_for_completion(&on_exit
);
3107 del_timer_sync(&udc_timer
);
3108 /* remove pollstall timer */
3109 stop_pollstall_timer
++;
3110 if (timer_pending(&udc_pollstall_timer
))
3111 wait_for_completion(&on_pollstall_exit
);
3112 if (udc_pollstall_timer
.data
)
3113 del_timer_sync(&udc_pollstall_timer
);
3117 /* Reset all pci context */
3118 static void udc_pci_remove(struct pci_dev
*pdev
)
3122 dev
= pci_get_drvdata(pdev
);
3124 /* gadget driver must not be registered */
3125 BUG_ON(dev
->driver
!= NULL
);
3127 /* dma pool cleanup */
3128 if (dev
->data_requests
)
3129 pci_pool_destroy(dev
->data_requests
);
3131 if (dev
->stp_requests
) {
3132 /* cleanup DMA desc's for ep0in */
3133 pci_pool_free(dev
->stp_requests
,
3134 dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3135 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3136 pci_pool_free(dev
->stp_requests
,
3137 dev
->ep
[UDC_EP0OUT_IX
].td
,
3138 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3140 pci_pool_destroy(dev
->stp_requests
);
3143 /* reset controller */
3144 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
3145 if (dev
->irq_registered
)
3146 free_irq(pdev
->irq
, dev
);
3149 if (dev
->mem_region
)
3150 release_mem_region(pci_resource_start(pdev
, 0),
3151 pci_resource_len(pdev
, 0));
3153 pci_disable_device(pdev
);
3155 device_unregister(&dev
->gadget
.dev
);
3156 pci_set_drvdata(pdev
, NULL
);
3161 /* create dma pools on init */
3162 static int init_dma_pools(struct udc
*dev
)
3164 struct udc_stp_dma
*td_stp
;
3165 struct udc_data_dma
*td_data
;
3168 /* consistent DMA mode setting ? */
3170 use_dma_bufferfill_mode
= 0;
3173 use_dma_bufferfill_mode
= 1;
3177 dev
->data_requests
= dma_pool_create("data_requests", NULL
,
3178 sizeof(struct udc_data_dma
), 0, 0);
3179 if (!dev
->data_requests
) {
3180 DBG(dev
, "can't get request data pool\n");
3185 /* EP0 in dma regs = dev control regs */
3186 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3188 /* dma desc for setup data */
3189 dev
->stp_requests
= dma_pool_create("setup requests", NULL
,
3190 sizeof(struct udc_stp_dma
), 0, 0);
3191 if (!dev
->stp_requests
) {
3192 DBG(dev
, "can't get stp request pool\n");
3197 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3198 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3199 if (td_stp
== NULL
) {
3203 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3205 /* data: 0 packets !? */
3206 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3207 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3208 if (td_data
== NULL
) {
3212 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3219 /* Called by pci bus driver to init pci context */
3220 static int udc_pci_probe(
3221 struct pci_dev
*pdev
,
3222 const struct pci_device_id
*id
3226 unsigned long resource
;
3232 dev_dbg(&pdev
->dev
, "already probed\n");
3237 dev
= kzalloc(sizeof(struct udc
), GFP_KERNEL
);
3244 if (pci_enable_device(pdev
) < 0) {
3252 /* PCI resource allocation */
3253 resource
= pci_resource_start(pdev
, 0);
3254 len
= pci_resource_len(pdev
, 0);
3256 if (!request_mem_region(resource
, len
, name
)) {
3257 dev_dbg(&pdev
->dev
, "pci device used already\n");
3263 dev
->mem_region
= 1;
3265 dev
->virt_addr
= ioremap_nocache(resource
, len
);
3266 if (dev
->virt_addr
== NULL
) {
3267 dev_dbg(&pdev
->dev
, "start address cannot be mapped\n");
3275 dev_err(&dev
->pdev
->dev
, "irq not set\n");
3282 if (request_irq(pdev
->irq
, udc_irq
, IRQF_SHARED
, name
, dev
) != 0) {
3283 dev_dbg(&dev
->pdev
->dev
, "request_irq(%d) fail\n", pdev
->irq
);
3289 dev
->irq_registered
= 1;
3291 pci_set_drvdata(pdev
, dev
);
3293 /* chip revision for Hs AMD5536 */
3294 dev
->chiprev
= pdev
->revision
;
3296 pci_set_master(pdev
);
3297 pci_try_set_mwi(pdev
);
3299 /* init dma pools */
3301 retval
= init_dma_pools(dev
);
3306 dev
->phys_addr
= resource
;
3307 dev
->irq
= pdev
->irq
;
3309 dev
->gadget
.dev
.parent
= &pdev
->dev
;
3310 dev
->gadget
.dev
.dma_mask
= pdev
->dev
.dma_mask
;
3312 /* general probing */
3313 if (udc_probe(dev
) == 0)
3318 udc_pci_remove(pdev
);
3323 static int udc_probe(struct udc
*dev
)
3329 /* mark timer as not initialized */
3331 udc_pollstall_timer
.data
= 0;
3333 /* device struct setup */
3334 spin_lock_init(&dev
->lock
);
3335 dev
->gadget
.ops
= &udc_ops
;
3337 dev_set_name(&dev
->gadget
.dev
, "gadget");
3338 dev
->gadget
.dev
.release
= gadget_release
;
3339 dev
->gadget
.name
= name
;
3340 dev
->gadget
.name
= name
;
3341 dev
->gadget
.is_dualspeed
= 1;
3343 /* udc csr registers base */
3344 dev
->csr
= dev
->virt_addr
+ UDC_CSR_ADDR
;
3345 /* dev registers base */
3346 dev
->regs
= dev
->virt_addr
+ UDC_DEVCFG_ADDR
;
3347 /* ep registers base */
3348 dev
->ep_regs
= dev
->virt_addr
+ UDC_EPREGS_ADDR
;
3350 dev
->rxfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_RXFIFO_ADDR
);
3351 dev
->txfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_TXFIFO_ADDR
);
3353 /* init registers, interrupts, ... */
3354 startup_registers(dev
);
3356 dev_info(&dev
->pdev
->dev
, "%s\n", mod_desc
);
3358 snprintf(tmp
, sizeof tmp
, "%d", dev
->irq
);
3359 dev_info(&dev
->pdev
->dev
,
3360 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3361 tmp
, dev
->phys_addr
, dev
->chiprev
,
3362 (dev
->chiprev
== UDC_HSA0_REV
) ? "A0" : "B1");
3363 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3364 if (dev
->chiprev
== UDC_HSA0_REV
) {
3365 dev_err(&dev
->pdev
->dev
, "chip revision is A0; too old\n");
3369 dev_info(&dev
->pdev
->dev
,
3370 "driver version: %s(for Geode5536 B1)\n", tmp
);
3373 retval
= device_register(&dev
->gadget
.dev
);
3378 init_timer(&udc_timer
);
3379 udc_timer
.function
= udc_timer_function
;
3381 /* timer pollstall init */
3382 init_timer(&udc_pollstall_timer
);
3383 udc_pollstall_timer
.function
= udc_pollstall_timer_function
;
3384 udc_pollstall_timer
.data
= 1;
3387 reg
= readl(&dev
->regs
->ctl
);
3388 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3389 writel(reg
, &dev
->regs
->ctl
);
3391 /* print dev register info */
3400 /* Initiates a remote wakeup */
3401 static int udc_remote_wakeup(struct udc
*dev
)
3403 unsigned long flags
;
3406 DBG(dev
, "UDC initiates remote wakeup\n");
3408 spin_lock_irqsave(&dev
->lock
, flags
);
3410 tmp
= readl(&dev
->regs
->ctl
);
3411 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
3412 writel(tmp
, &dev
->regs
->ctl
);
3413 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
3414 writel(tmp
, &dev
->regs
->ctl
);
3416 spin_unlock_irqrestore(&dev
->lock
, flags
);
3420 /* PCI device parameters */
3421 static const struct pci_device_id pci_id
[] = {
3423 PCI_DEVICE(PCI_VENDOR_ID_AMD
, 0x2096),
3424 .class = (PCI_CLASS_SERIAL_USB
<< 8) | 0xfe,
3425 .class_mask
= 0xffffffff,
3429 MODULE_DEVICE_TABLE(pci
, pci_id
);
3432 static struct pci_driver udc_pci_driver
= {
3433 .name
= (char *) name
,
3435 .probe
= udc_pci_probe
,
3436 .remove
= udc_pci_remove
,
3440 static int __init
init(void)
3442 return pci_register_driver(&udc_pci_driver
);
3447 static void __exit
cleanup(void)
3449 pci_unregister_driver(&udc_pci_driver
);
3451 module_exit(cleanup
);
3453 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3454 MODULE_AUTHOR("Thomas Dahlmann");
3455 MODULE_LICENSE("GPL");