2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Copyright (C) 2008, 2009 NEC Corporation
30 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
31 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
32 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
33 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
34 * This program is free software; you can redistribute it and/or modify
35 * it under the terms of the GNU General Public License as published by
36 * the Free Software Foundation, version 2.
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/errno.h>
45 #include <linux/sched.h>
46 #include <linux/audit.h>
47 #include <linux/mutex.h>
48 #include <linux/selinux.h>
49 #include <net/netlabel.h>
59 #include "conditional.h"
67 extern void selnl_notify_policyload(u32 seqno
);
68 unsigned int policydb_loaded_version
;
70 int selinux_policycap_netpeer
;
71 int selinux_policycap_openperm
;
74 * This is declared in avc.c
76 extern const struct selinux_class_perm selinux_class_perm
;
78 static DEFINE_RWLOCK(policy_rwlock
);
80 static struct sidtab sidtab
;
81 struct policydb policydb
;
85 * The largest sequence number that has been used when
86 * providing an access decision to the access vector cache.
87 * The sequence number only changes when a policy change
90 static u32 latest_granting
;
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context
*context
, char **scontext
,
96 static int context_struct_compute_av(struct context
*scontext
,
97 struct context
*tcontext
,
100 struct av_decision
*avd
);
102 * Return the boolean value of a constraint expression
103 * when it is applied to the specified source and target
106 * xcontext is a special beast... It is used by the validatetrans rules
107 * only. For these rules, scontext is the context before the transition,
108 * tcontext is the context after the transition, and xcontext is the context
109 * of the process performing the transition. All other callers of
110 * constraint_expr_eval should pass in NULL for xcontext.
112 static int constraint_expr_eval(struct context
*scontext
,
113 struct context
*tcontext
,
114 struct context
*xcontext
,
115 struct constraint_expr
*cexpr
)
119 struct role_datum
*r1
, *r2
;
120 struct mls_level
*l1
, *l2
;
121 struct constraint_expr
*e
;
122 int s
[CEXPR_MAXDEPTH
];
125 for (e
= cexpr
; e
; e
= e
->next
) {
126 switch (e
->expr_type
) {
142 if (sp
== (CEXPR_MAXDEPTH
-1))
146 val1
= scontext
->user
;
147 val2
= tcontext
->user
;
150 val1
= scontext
->type
;
151 val2
= tcontext
->type
;
154 val1
= scontext
->role
;
155 val2
= tcontext
->role
;
156 r1
= policydb
.role_val_to_struct
[val1
- 1];
157 r2
= policydb
.role_val_to_struct
[val2
- 1];
160 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
164 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
168 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
170 !ebitmap_get_bit(&r2
->dominates
,
178 l1
= &(scontext
->range
.level
[0]);
179 l2
= &(tcontext
->range
.level
[0]);
182 l1
= &(scontext
->range
.level
[0]);
183 l2
= &(tcontext
->range
.level
[1]);
186 l1
= &(scontext
->range
.level
[1]);
187 l2
= &(tcontext
->range
.level
[0]);
190 l1
= &(scontext
->range
.level
[1]);
191 l2
= &(tcontext
->range
.level
[1]);
194 l1
= &(scontext
->range
.level
[0]);
195 l2
= &(scontext
->range
.level
[1]);
198 l1
= &(tcontext
->range
.level
[0]);
199 l2
= &(tcontext
->range
.level
[1]);
204 s
[++sp
] = mls_level_eq(l1
, l2
);
207 s
[++sp
] = !mls_level_eq(l1
, l2
);
210 s
[++sp
] = mls_level_dom(l1
, l2
);
213 s
[++sp
] = mls_level_dom(l2
, l1
);
216 s
[++sp
] = mls_level_incomp(l2
, l1
);
230 s
[++sp
] = (val1
== val2
);
233 s
[++sp
] = (val1
!= val2
);
241 if (sp
== (CEXPR_MAXDEPTH
-1))
244 if (e
->attr
& CEXPR_TARGET
)
246 else if (e
->attr
& CEXPR_XTARGET
) {
253 if (e
->attr
& CEXPR_USER
)
255 else if (e
->attr
& CEXPR_ROLE
)
257 else if (e
->attr
& CEXPR_TYPE
)
266 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
269 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
287 * security_dump_masked_av - dumps masked permissions during
288 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
290 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
292 struct perm_datum
*pdatum
= d
;
293 char **permission_names
= args
;
295 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
297 permission_names
[pdatum
->value
- 1] = (char *)k
;
302 static void security_dump_masked_av(struct context
*scontext
,
303 struct context
*tcontext
,
308 struct common_datum
*common_dat
;
309 struct class_datum
*tclass_dat
;
310 struct audit_buffer
*ab
;
312 char *scontext_name
= NULL
;
313 char *tcontext_name
= NULL
;
314 char *permission_names
[32];
316 bool need_comma
= false;
321 tclass_name
= policydb
.p_class_val_to_name
[tclass
- 1];
322 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
323 common_dat
= tclass_dat
->comdatum
;
325 /* init permission_names */
327 hashtab_map(common_dat
->permissions
.table
,
328 dump_masked_av_helper
, permission_names
) < 0)
331 if (hashtab_map(tclass_dat
->permissions
.table
,
332 dump_masked_av_helper
, permission_names
) < 0)
335 /* get scontext/tcontext in text form */
336 if (context_struct_to_string(scontext
,
337 &scontext_name
, &length
) < 0)
340 if (context_struct_to_string(tcontext
,
341 &tcontext_name
, &length
) < 0)
344 /* audit a message */
345 ab
= audit_log_start(current
->audit_context
,
346 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
350 audit_log_format(ab
, "op=security_compute_av reason=%s "
351 "scontext=%s tcontext=%s tclass=%s perms=",
352 reason
, scontext_name
, tcontext_name
, tclass_name
);
354 for (index
= 0; index
< 32; index
++) {
355 u32 mask
= (1 << index
);
357 if ((mask
& permissions
) == 0)
360 audit_log_format(ab
, "%s%s",
361 need_comma
? "," : "",
362 permission_names
[index
]
363 ? permission_names
[index
] : "????");
368 /* release scontext/tcontext */
369 kfree(tcontext_name
);
370 kfree(scontext_name
);
376 * security_boundary_permission - drops violated permissions
377 * on boundary constraint.
379 static void type_attribute_bounds_av(struct context
*scontext
,
380 struct context
*tcontext
,
383 struct av_decision
*avd
)
385 struct context lo_scontext
;
386 struct context lo_tcontext
;
387 struct av_decision lo_avd
;
388 struct type_datum
*source
389 = policydb
.type_val_to_struct
[scontext
->type
- 1];
390 struct type_datum
*target
391 = policydb
.type_val_to_struct
[tcontext
->type
- 1];
394 if (source
->bounds
) {
395 memset(&lo_avd
, 0, sizeof(lo_avd
));
397 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
398 lo_scontext
.type
= source
->bounds
;
400 context_struct_compute_av(&lo_scontext
,
405 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
406 return; /* no masked permission */
407 masked
= ~lo_avd
.allowed
& avd
->allowed
;
410 if (target
->bounds
) {
411 memset(&lo_avd
, 0, sizeof(lo_avd
));
413 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
414 lo_tcontext
.type
= target
->bounds
;
416 context_struct_compute_av(scontext
,
421 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
422 return; /* no masked permission */
423 masked
= ~lo_avd
.allowed
& avd
->allowed
;
426 if (source
->bounds
&& target
->bounds
) {
427 memset(&lo_avd
, 0, sizeof(lo_avd
));
429 * lo_scontext and lo_tcontext are already
433 context_struct_compute_av(&lo_scontext
,
438 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
439 return; /* no masked permission */
440 masked
= ~lo_avd
.allowed
& avd
->allowed
;
444 /* mask violated permissions */
445 avd
->allowed
&= ~masked
;
447 /* audit masked permissions */
448 security_dump_masked_av(scontext
, tcontext
,
449 tclass
, masked
, "bounds");
454 * Compute access vectors based on a context structure pair for
455 * the permissions in a particular class.
457 static int context_struct_compute_av(struct context
*scontext
,
458 struct context
*tcontext
,
461 struct av_decision
*avd
)
463 struct constraint_node
*constraint
;
464 struct role_allow
*ra
;
465 struct avtab_key avkey
;
466 struct avtab_node
*node
;
467 struct class_datum
*tclass_datum
;
468 struct ebitmap
*sattr
, *tattr
;
469 struct ebitmap_node
*snode
, *tnode
;
470 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
474 * Remap extended Netlink classes for old policy versions.
475 * Do this here rather than socket_type_to_security_class()
476 * in case a newer policy version is loaded, allowing sockets
477 * to remain in the correct class.
479 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
480 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
481 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
482 tclass
= SECCLASS_NETLINK_SOCKET
;
485 * Initialize the access vectors to the default values.
489 avd
->auditdeny
= 0xffffffff;
490 avd
->seqno
= latest_granting
;
494 * Check for all the invalid cases.
496 * - tclass > policy and > kernel
497 * - tclass > policy but is a userspace class
498 * - tclass > policy but we do not allow unknowns
500 if (unlikely(!tclass
))
502 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
503 if (tclass
> kdefs
->cts_len
||
504 !kdefs
->class_to_string
[tclass
] ||
505 !policydb
.allow_unknown
)
509 * Kernel class and we allow unknown so pad the allow decision
510 * the pad will be all 1 for unknown classes.
512 if (tclass
<= kdefs
->cts_len
&& policydb
.allow_unknown
)
513 avd
->allowed
= policydb
.undefined_perms
[tclass
- 1];
516 * Not in policy. Since decision is completed (all 1 or all 0) return.
518 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
521 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
524 * If a specific type enforcement rule was defined for
525 * this permission check, then use it.
527 avkey
.target_class
= tclass
;
528 avkey
.specified
= AVTAB_AV
;
529 sattr
= &policydb
.type_attr_map
[scontext
->type
- 1];
530 tattr
= &policydb
.type_attr_map
[tcontext
->type
- 1];
531 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
532 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
533 avkey
.source_type
= i
+ 1;
534 avkey
.target_type
= j
+ 1;
535 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
537 node
= avtab_search_node_next(node
, avkey
.specified
)) {
538 if (node
->key
.specified
== AVTAB_ALLOWED
)
539 avd
->allowed
|= node
->datum
.data
;
540 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
541 avd
->auditallow
|= node
->datum
.data
;
542 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
543 avd
->auditdeny
&= node
->datum
.data
;
546 /* Check conditional av table for additional permissions */
547 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
553 * Remove any permissions prohibited by a constraint (this includes
556 constraint
= tclass_datum
->constraints
;
558 if ((constraint
->permissions
& (avd
->allowed
)) &&
559 !constraint_expr_eval(scontext
, tcontext
, NULL
,
561 avd
->allowed
&= ~(constraint
->permissions
);
563 constraint
= constraint
->next
;
567 * If checking process transition permission and the
568 * role is changing, then check the (current_role, new_role)
571 if (tclass
== SECCLASS_PROCESS
&&
572 (avd
->allowed
& (PROCESS__TRANSITION
| PROCESS__DYNTRANSITION
)) &&
573 scontext
->role
!= tcontext
->role
) {
574 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
575 if (scontext
->role
== ra
->role
&&
576 tcontext
->role
== ra
->new_role
)
580 avd
->allowed
&= ~(PROCESS__TRANSITION
|
581 PROCESS__DYNTRANSITION
);
585 * If the given source and target types have boundary
586 * constraint, lazy checks have to mask any violated
587 * permission and notice it to userspace via audit.
589 type_attribute_bounds_av(scontext
, tcontext
,
590 tclass
, requested
, avd
);
595 if (!tclass
|| tclass
> kdefs
->cts_len
||
596 !kdefs
->class_to_string
[tclass
]) {
597 if (printk_ratelimit())
598 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
604 * Known to the kernel, but not to the policy.
605 * Handle as a denial (allowed is 0).
610 static int security_validtrans_handle_fail(struct context
*ocontext
,
611 struct context
*ncontext
,
612 struct context
*tcontext
,
615 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
616 u32 olen
, nlen
, tlen
;
618 if (context_struct_to_string(ocontext
, &o
, &olen
) < 0)
620 if (context_struct_to_string(ncontext
, &n
, &nlen
) < 0)
622 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
624 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
625 "security_validate_transition: denied for"
626 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
627 o
, n
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
633 if (!selinux_enforcing
)
638 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
641 struct context
*ocontext
;
642 struct context
*ncontext
;
643 struct context
*tcontext
;
644 struct class_datum
*tclass_datum
;
645 struct constraint_node
*constraint
;
651 read_lock(&policy_rwlock
);
654 * Remap extended Netlink classes for old policy versions.
655 * Do this here rather than socket_type_to_security_class()
656 * in case a newer policy version is loaded, allowing sockets
657 * to remain in the correct class.
659 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
660 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
661 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
662 tclass
= SECCLASS_NETLINK_SOCKET
;
664 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
665 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
670 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
672 ocontext
= sidtab_search(&sidtab
, oldsid
);
674 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
680 ncontext
= sidtab_search(&sidtab
, newsid
);
682 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
688 tcontext
= sidtab_search(&sidtab
, tasksid
);
690 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
696 constraint
= tclass_datum
->validatetrans
;
698 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
700 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
704 constraint
= constraint
->next
;
708 read_unlock(&policy_rwlock
);
713 * security_bounded_transition - check whether the given
714 * transition is directed to bounded, or not.
715 * It returns 0, if @newsid is bounded by @oldsid.
716 * Otherwise, it returns error code.
718 * @oldsid : current security identifier
719 * @newsid : destinated security identifier
721 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
723 struct context
*old_context
, *new_context
;
724 struct type_datum
*type
;
728 read_lock(&policy_rwlock
);
730 old_context
= sidtab_search(&sidtab
, old_sid
);
732 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
737 new_context
= sidtab_search(&sidtab
, new_sid
);
739 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
744 /* type/domain unchaned */
745 if (old_context
->type
== new_context
->type
) {
750 index
= new_context
->type
;
752 type
= policydb
.type_val_to_struct
[index
- 1];
755 /* not bounded anymore */
761 /* @newsid is bounded by @oldsid */
762 if (type
->bounds
== old_context
->type
) {
766 index
= type
->bounds
;
770 char *old_name
= NULL
;
771 char *new_name
= NULL
;
774 if (!context_struct_to_string(old_context
,
775 &old_name
, &length
) &&
776 !context_struct_to_string(new_context
,
777 &new_name
, &length
)) {
778 audit_log(current
->audit_context
,
779 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
780 "op=security_bounded_transition "
782 "oldcontext=%s newcontext=%s",
789 read_unlock(&policy_rwlock
);
796 * security_compute_av - Compute access vector decisions.
797 * @ssid: source security identifier
798 * @tsid: target security identifier
799 * @tclass: target security class
800 * @requested: requested permissions
801 * @avd: access vector decisions
803 * Compute a set of access vector decisions based on the
804 * SID pair (@ssid, @tsid) for the permissions in @tclass.
805 * Return -%EINVAL if any of the parameters are invalid or %0
806 * if the access vector decisions were computed successfully.
808 int security_compute_av(u32 ssid
,
812 struct av_decision
*avd
)
814 struct context
*scontext
= NULL
, *tcontext
= NULL
;
817 if (!ss_initialized
) {
818 avd
->allowed
= 0xffffffff;
820 avd
->auditdeny
= 0xffffffff;
821 avd
->seqno
= latest_granting
;
825 read_lock(&policy_rwlock
);
827 scontext
= sidtab_search(&sidtab
, ssid
);
829 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
834 tcontext
= sidtab_search(&sidtab
, tsid
);
836 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
842 rc
= context_struct_compute_av(scontext
, tcontext
, tclass
,
845 /* permissive domain? */
846 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
847 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
849 read_unlock(&policy_rwlock
);
854 * Write the security context string representation of
855 * the context structure `context' into a dynamically
856 * allocated string of the correct size. Set `*scontext'
857 * to point to this string and set `*scontext_len' to
858 * the length of the string.
860 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
868 *scontext_len
= context
->len
;
869 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
875 /* Compute the size of the context. */
876 *scontext_len
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) + 1;
877 *scontext_len
+= strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) + 1;
878 *scontext_len
+= strlen(policydb
.p_type_val_to_name
[context
->type
- 1]) + 1;
879 *scontext_len
+= mls_compute_context_len(context
);
881 /* Allocate space for the context; caller must free this space. */
882 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
885 *scontext
= scontextp
;
888 * Copy the user name, role name and type name into the context.
890 sprintf(scontextp
, "%s:%s:%s",
891 policydb
.p_user_val_to_name
[context
->user
- 1],
892 policydb
.p_role_val_to_name
[context
->role
- 1],
893 policydb
.p_type_val_to_name
[context
->type
- 1]);
894 scontextp
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) +
895 1 + strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) +
896 1 + strlen(policydb
.p_type_val_to_name
[context
->type
- 1]);
898 mls_sid_to_context(context
, &scontextp
);
905 #include "initial_sid_to_string.h"
907 const char *security_get_initial_sid_context(u32 sid
)
909 if (unlikely(sid
> SECINITSID_NUM
))
911 return initial_sid_to_string
[sid
];
914 static int security_sid_to_context_core(u32 sid
, char **scontext
,
915 u32
*scontext_len
, int force
)
917 struct context
*context
;
923 if (!ss_initialized
) {
924 if (sid
<= SECINITSID_NUM
) {
927 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
928 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
933 strcpy(scontextp
, initial_sid_to_string
[sid
]);
934 *scontext
= scontextp
;
937 printk(KERN_ERR
"SELinux: %s: called before initial "
938 "load_policy on unknown SID %d\n", __func__
, sid
);
942 read_lock(&policy_rwlock
);
944 context
= sidtab_search_force(&sidtab
, sid
);
946 context
= sidtab_search(&sidtab
, sid
);
948 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
953 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
955 read_unlock(&policy_rwlock
);
962 * security_sid_to_context - Obtain a context for a given SID.
963 * @sid: security identifier, SID
964 * @scontext: security context
965 * @scontext_len: length in bytes
967 * Write the string representation of the context associated with @sid
968 * into a dynamically allocated string of the correct size. Set @scontext
969 * to point to this string and set @scontext_len to the length of the string.
971 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
973 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
976 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
978 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
982 * Caveat: Mutates scontext.
984 static int string_to_context_struct(struct policydb
*pol
,
985 struct sidtab
*sidtabp
,
991 struct role_datum
*role
;
992 struct type_datum
*typdatum
;
993 struct user_datum
*usrdatum
;
994 char *scontextp
, *p
, oldc
;
999 /* Parse the security context. */
1002 scontextp
= (char *) scontext
;
1004 /* Extract the user. */
1006 while (*p
&& *p
!= ':')
1014 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1018 ctx
->user
= usrdatum
->value
;
1022 while (*p
&& *p
!= ':')
1030 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1033 ctx
->role
= role
->value
;
1037 while (*p
&& *p
!= ':')
1042 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1043 if (!typdatum
|| typdatum
->attribute
)
1046 ctx
->type
= typdatum
->value
;
1048 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1052 if ((p
- scontext
) < scontext_len
) {
1057 /* Check the validity of the new context. */
1058 if (!policydb_context_isvalid(pol
, ctx
)) {
1065 context_destroy(ctx
);
1069 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1070 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1073 char *scontext2
, *str
= NULL
;
1074 struct context context
;
1077 if (!ss_initialized
) {
1080 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1081 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1086 *sid
= SECINITSID_KERNEL
;
1091 /* Copy the string so that we can modify the copy as we parse it. */
1092 scontext2
= kmalloc(scontext_len
+1, gfp_flags
);
1095 memcpy(scontext2
, scontext
, scontext_len
);
1096 scontext2
[scontext_len
] = 0;
1099 /* Save another copy for storing in uninterpreted form */
1100 str
= kstrdup(scontext2
, gfp_flags
);
1107 read_lock(&policy_rwlock
);
1108 rc
= string_to_context_struct(&policydb
, &sidtab
,
1109 scontext2
, scontext_len
,
1111 if (rc
== -EINVAL
&& force
) {
1113 context
.len
= scontext_len
;
1117 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1118 context_destroy(&context
);
1120 read_unlock(&policy_rwlock
);
1127 * security_context_to_sid - Obtain a SID for a given security context.
1128 * @scontext: security context
1129 * @scontext_len: length in bytes
1130 * @sid: security identifier, SID
1132 * Obtains a SID associated with the security context that
1133 * has the string representation specified by @scontext.
1134 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1135 * memory is available, or 0 on success.
1137 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
1139 return security_context_to_sid_core(scontext
, scontext_len
,
1140 sid
, SECSID_NULL
, GFP_KERNEL
, 0);
1144 * security_context_to_sid_default - Obtain a SID for a given security context,
1145 * falling back to specified default if needed.
1147 * @scontext: security context
1148 * @scontext_len: length in bytes
1149 * @sid: security identifier, SID
1150 * @def_sid: default SID to assign on error
1152 * Obtains a SID associated with the security context that
1153 * has the string representation specified by @scontext.
1154 * The default SID is passed to the MLS layer to be used to allow
1155 * kernel labeling of the MLS field if the MLS field is not present
1156 * (for upgrading to MLS without full relabel).
1157 * Implicitly forces adding of the context even if it cannot be mapped yet.
1158 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1159 * memory is available, or 0 on success.
1161 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1162 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1164 return security_context_to_sid_core(scontext
, scontext_len
,
1165 sid
, def_sid
, gfp_flags
, 1);
1168 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1171 return security_context_to_sid_core(scontext
, scontext_len
,
1172 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1175 static int compute_sid_handle_invalid_context(
1176 struct context
*scontext
,
1177 struct context
*tcontext
,
1179 struct context
*newcontext
)
1181 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1182 u32 slen
, tlen
, nlen
;
1184 if (context_struct_to_string(scontext
, &s
, &slen
) < 0)
1186 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
1188 if (context_struct_to_string(newcontext
, &n
, &nlen
) < 0)
1190 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1191 "security_compute_sid: invalid context %s"
1195 n
, s
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
1200 if (!selinux_enforcing
)
1205 static int security_compute_sid(u32 ssid
,
1211 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1212 struct role_trans
*roletr
= NULL
;
1213 struct avtab_key avkey
;
1214 struct avtab_datum
*avdatum
;
1215 struct avtab_node
*node
;
1218 if (!ss_initialized
) {
1220 case SECCLASS_PROCESS
:
1230 context_init(&newcontext
);
1232 read_lock(&policy_rwlock
);
1234 scontext
= sidtab_search(&sidtab
, ssid
);
1236 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1241 tcontext
= sidtab_search(&sidtab
, tsid
);
1243 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1249 /* Set the user identity. */
1250 switch (specified
) {
1251 case AVTAB_TRANSITION
:
1253 /* Use the process user identity. */
1254 newcontext
.user
= scontext
->user
;
1257 /* Use the related object owner. */
1258 newcontext
.user
= tcontext
->user
;
1262 /* Set the role and type to default values. */
1264 case SECCLASS_PROCESS
:
1265 /* Use the current role and type of process. */
1266 newcontext
.role
= scontext
->role
;
1267 newcontext
.type
= scontext
->type
;
1270 /* Use the well-defined object role. */
1271 newcontext
.role
= OBJECT_R_VAL
;
1272 /* Use the type of the related object. */
1273 newcontext
.type
= tcontext
->type
;
1276 /* Look for a type transition/member/change rule. */
1277 avkey
.source_type
= scontext
->type
;
1278 avkey
.target_type
= tcontext
->type
;
1279 avkey
.target_class
= tclass
;
1280 avkey
.specified
= specified
;
1281 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1283 /* If no permanent rule, also check for enabled conditional rules */
1285 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1286 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1287 if (node
->key
.specified
& AVTAB_ENABLED
) {
1288 avdatum
= &node
->datum
;
1295 /* Use the type from the type transition/member/change rule. */
1296 newcontext
.type
= avdatum
->data
;
1299 /* Check for class-specific changes. */
1301 case SECCLASS_PROCESS
:
1302 if (specified
& AVTAB_TRANSITION
) {
1303 /* Look for a role transition rule. */
1304 for (roletr
= policydb
.role_tr
; roletr
;
1305 roletr
= roletr
->next
) {
1306 if (roletr
->role
== scontext
->role
&&
1307 roletr
->type
== tcontext
->type
) {
1308 /* Use the role transition rule. */
1309 newcontext
.role
= roletr
->new_role
;
1319 /* Set the MLS attributes.
1320 This is done last because it may allocate memory. */
1321 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
1325 /* Check the validity of the context. */
1326 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1327 rc
= compute_sid_handle_invalid_context(scontext
,
1334 /* Obtain the sid for the context. */
1335 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1337 read_unlock(&policy_rwlock
);
1338 context_destroy(&newcontext
);
1344 * security_transition_sid - Compute the SID for a new subject/object.
1345 * @ssid: source security identifier
1346 * @tsid: target security identifier
1347 * @tclass: target security class
1348 * @out_sid: security identifier for new subject/object
1350 * Compute a SID to use for labeling a new subject or object in the
1351 * class @tclass based on a SID pair (@ssid, @tsid).
1352 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1353 * if insufficient memory is available, or %0 if the new SID was
1354 * computed successfully.
1356 int security_transition_sid(u32 ssid
,
1361 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
, out_sid
);
1365 * security_member_sid - Compute the SID for member selection.
1366 * @ssid: source security identifier
1367 * @tsid: target security identifier
1368 * @tclass: target security class
1369 * @out_sid: security identifier for selected member
1371 * Compute a SID to use when selecting a member of a polyinstantiated
1372 * object of class @tclass based on a SID pair (@ssid, @tsid).
1373 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1374 * if insufficient memory is available, or %0 if the SID was
1375 * computed successfully.
1377 int security_member_sid(u32 ssid
,
1382 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
);
1386 * security_change_sid - Compute the SID for object relabeling.
1387 * @ssid: source security identifier
1388 * @tsid: target security identifier
1389 * @tclass: target security class
1390 * @out_sid: security identifier for selected member
1392 * Compute a SID to use for relabeling an object of class @tclass
1393 * based on a SID pair (@ssid, @tsid).
1394 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1395 * if insufficient memory is available, or %0 if the SID was
1396 * computed successfully.
1398 int security_change_sid(u32 ssid
,
1403 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
);
1407 * Verify that each kernel class that is defined in the
1410 static int validate_classes(struct policydb
*p
)
1413 struct class_datum
*cladatum
;
1414 struct perm_datum
*perdatum
;
1415 u32 nprim
, tmp
, common_pts_len
, perm_val
, pol_val
;
1417 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
1418 const char *def_class
, *def_perm
, *pol_class
;
1419 struct symtab
*perms
;
1420 bool print_unknown_handle
= 0;
1422 if (p
->allow_unknown
) {
1423 u32 num_classes
= kdefs
->cts_len
;
1424 p
->undefined_perms
= kcalloc(num_classes
, sizeof(u32
), GFP_KERNEL
);
1425 if (!p
->undefined_perms
)
1429 for (i
= 1; i
< kdefs
->cts_len
; i
++) {
1430 def_class
= kdefs
->class_to_string
[i
];
1433 if (i
> p
->p_classes
.nprim
) {
1435 "SELinux: class %s not defined in policy\n",
1437 if (p
->reject_unknown
)
1439 if (p
->allow_unknown
)
1440 p
->undefined_perms
[i
-1] = ~0U;
1441 print_unknown_handle
= 1;
1444 pol_class
= p
->p_class_val_to_name
[i
-1];
1445 if (strcmp(pol_class
, def_class
)) {
1447 "SELinux: class %d is incorrect, found %s but should be %s\n",
1448 i
, pol_class
, def_class
);
1452 for (i
= 0; i
< kdefs
->av_pts_len
; i
++) {
1453 class_val
= kdefs
->av_perm_to_string
[i
].tclass
;
1454 perm_val
= kdefs
->av_perm_to_string
[i
].value
;
1455 def_perm
= kdefs
->av_perm_to_string
[i
].name
;
1456 if (class_val
> p
->p_classes
.nprim
)
1458 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1459 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1461 perms
= &cladatum
->permissions
;
1462 nprim
= 1 << (perms
->nprim
- 1);
1463 if (perm_val
> nprim
) {
1465 "SELinux: permission %s in class %s not defined in policy\n",
1466 def_perm
, pol_class
);
1467 if (p
->reject_unknown
)
1469 if (p
->allow_unknown
)
1470 p
->undefined_perms
[class_val
-1] |= perm_val
;
1471 print_unknown_handle
= 1;
1474 perdatum
= hashtab_search(perms
->table
, def_perm
);
1475 if (perdatum
== NULL
) {
1477 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1478 def_perm
, pol_class
);
1481 pol_val
= 1 << (perdatum
->value
- 1);
1482 if (pol_val
!= perm_val
) {
1484 "SELinux: permission %s in class %s has incorrect value\n",
1485 def_perm
, pol_class
);
1489 for (i
= 0; i
< kdefs
->av_inherit_len
; i
++) {
1490 class_val
= kdefs
->av_inherit
[i
].tclass
;
1491 if (class_val
> p
->p_classes
.nprim
)
1493 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1494 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1496 if (!cladatum
->comdatum
) {
1498 "SELinux: class %s should have an inherits clause but does not\n",
1502 tmp
= kdefs
->av_inherit
[i
].common_base
;
1504 while (!(tmp
& 0x01)) {
1508 perms
= &cladatum
->comdatum
->permissions
;
1509 for (j
= 0; j
< common_pts_len
; j
++) {
1510 def_perm
= kdefs
->av_inherit
[i
].common_pts
[j
];
1511 if (j
>= perms
->nprim
) {
1513 "SELinux: permission %s in class %s not defined in policy\n",
1514 def_perm
, pol_class
);
1515 if (p
->reject_unknown
)
1517 if (p
->allow_unknown
)
1518 p
->undefined_perms
[class_val
-1] |= (1 << j
);
1519 print_unknown_handle
= 1;
1522 perdatum
= hashtab_search(perms
->table
, def_perm
);
1523 if (perdatum
== NULL
) {
1525 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1526 def_perm
, pol_class
);
1529 if (perdatum
->value
!= j
+ 1) {
1531 "SELinux: permission %s in class %s has incorrect value\n",
1532 def_perm
, pol_class
);
1537 if (print_unknown_handle
)
1538 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
1539 (security_get_allow_unknown() ? "allowed" : "denied"));
1543 /* Clone the SID into the new SID table. */
1544 static int clone_sid(u32 sid
,
1545 struct context
*context
,
1548 struct sidtab
*s
= arg
;
1550 return sidtab_insert(s
, sid
, context
);
1553 static inline int convert_context_handle_invalid_context(struct context
*context
)
1557 if (selinux_enforcing
) {
1563 if (!context_struct_to_string(context
, &s
, &len
)) {
1565 "SELinux: Context %s would be invalid if enforcing\n",
1573 struct convert_context_args
{
1574 struct policydb
*oldp
;
1575 struct policydb
*newp
;
1579 * Convert the values in the security context
1580 * structure `c' from the values specified
1581 * in the policy `p->oldp' to the values specified
1582 * in the policy `p->newp'. Verify that the
1583 * context is valid under the new policy.
1585 static int convert_context(u32 key
,
1589 struct convert_context_args
*args
;
1590 struct context oldc
;
1591 struct role_datum
*role
;
1592 struct type_datum
*typdatum
;
1593 struct user_datum
*usrdatum
;
1602 s
= kstrdup(c
->str
, GFP_KERNEL
);
1607 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1608 c
->len
, &ctx
, SECSID_NULL
);
1612 "SELinux: Context %s became valid (mapped).\n",
1614 /* Replace string with mapped representation. */
1616 memcpy(c
, &ctx
, sizeof(*c
));
1618 } else if (rc
== -EINVAL
) {
1619 /* Retain string representation for later mapping. */
1623 /* Other error condition, e.g. ENOMEM. */
1625 "SELinux: Unable to map context %s, rc = %d.\n",
1631 rc
= context_cpy(&oldc
, c
);
1637 /* Convert the user. */
1638 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1639 args
->oldp
->p_user_val_to_name
[c
->user
- 1]);
1642 c
->user
= usrdatum
->value
;
1644 /* Convert the role. */
1645 role
= hashtab_search(args
->newp
->p_roles
.table
,
1646 args
->oldp
->p_role_val_to_name
[c
->role
- 1]);
1649 c
->role
= role
->value
;
1651 /* Convert the type. */
1652 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1653 args
->oldp
->p_type_val_to_name
[c
->type
- 1]);
1656 c
->type
= typdatum
->value
;
1658 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1662 /* Check the validity of the new context. */
1663 if (!policydb_context_isvalid(args
->newp
, c
)) {
1664 rc
= convert_context_handle_invalid_context(&oldc
);
1669 context_destroy(&oldc
);
1674 /* Map old representation to string and save it. */
1675 if (context_struct_to_string(&oldc
, &s
, &len
))
1677 context_destroy(&oldc
);
1682 "SELinux: Context %s became invalid (unmapped).\n",
1688 static void security_load_policycaps(void)
1690 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1691 POLICYDB_CAPABILITY_NETPEER
);
1692 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1693 POLICYDB_CAPABILITY_OPENPERM
);
1696 extern void selinux_complete_init(void);
1697 static int security_preserve_bools(struct policydb
*p
);
1700 * security_load_policy - Load a security policy configuration.
1701 * @data: binary policy data
1702 * @len: length of data in bytes
1704 * Load a new set of security policy configuration data,
1705 * validate it and convert the SID table as necessary.
1706 * This function will flush the access vector cache after
1707 * loading the new policy.
1709 int security_load_policy(void *data
, size_t len
)
1711 struct policydb oldpolicydb
, newpolicydb
;
1712 struct sidtab oldsidtab
, newsidtab
;
1713 struct convert_context_args args
;
1716 struct policy_file file
= { data
, len
}, *fp
= &file
;
1718 if (!ss_initialized
) {
1720 if (policydb_read(&policydb
, fp
)) {
1721 avtab_cache_destroy();
1724 if (policydb_load_isids(&policydb
, &sidtab
)) {
1725 policydb_destroy(&policydb
);
1726 avtab_cache_destroy();
1729 /* Verify that the kernel defined classes are correct. */
1730 if (validate_classes(&policydb
)) {
1732 "SELinux: the definition of a class is incorrect\n");
1733 sidtab_destroy(&sidtab
);
1734 policydb_destroy(&policydb
);
1735 avtab_cache_destroy();
1738 security_load_policycaps();
1739 policydb_loaded_version
= policydb
.policyvers
;
1741 seqno
= ++latest_granting
;
1742 selinux_complete_init();
1743 avc_ss_reset(seqno
);
1744 selnl_notify_policyload(seqno
);
1745 selinux_netlbl_cache_invalidate();
1746 selinux_xfrm_notify_policyload();
1751 sidtab_hash_eval(&sidtab
, "sids");
1754 if (policydb_read(&newpolicydb
, fp
))
1757 if (sidtab_init(&newsidtab
)) {
1758 policydb_destroy(&newpolicydb
);
1762 /* Verify that the kernel defined classes are correct. */
1763 if (validate_classes(&newpolicydb
)) {
1765 "SELinux: the definition of a class is incorrect\n");
1770 rc
= security_preserve_bools(&newpolicydb
);
1772 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1776 /* Clone the SID table. */
1777 sidtab_shutdown(&sidtab
);
1778 if (sidtab_map(&sidtab
, clone_sid
, &newsidtab
)) {
1784 * Convert the internal representations of contexts
1785 * in the new SID table.
1787 args
.oldp
= &policydb
;
1788 args
.newp
= &newpolicydb
;
1789 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1793 /* Save the old policydb and SID table to free later. */
1794 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1795 sidtab_set(&oldsidtab
, &sidtab
);
1797 /* Install the new policydb and SID table. */
1798 write_lock_irq(&policy_rwlock
);
1799 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1800 sidtab_set(&sidtab
, &newsidtab
);
1801 security_load_policycaps();
1802 seqno
= ++latest_granting
;
1803 policydb_loaded_version
= policydb
.policyvers
;
1804 write_unlock_irq(&policy_rwlock
);
1806 /* Free the old policydb and SID table. */
1807 policydb_destroy(&oldpolicydb
);
1808 sidtab_destroy(&oldsidtab
);
1810 avc_ss_reset(seqno
);
1811 selnl_notify_policyload(seqno
);
1812 selinux_netlbl_cache_invalidate();
1813 selinux_xfrm_notify_policyload();
1818 sidtab_destroy(&newsidtab
);
1819 policydb_destroy(&newpolicydb
);
1825 * security_port_sid - Obtain the SID for a port.
1826 * @protocol: protocol number
1827 * @port: port number
1828 * @out_sid: security identifier
1830 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
1835 read_lock(&policy_rwlock
);
1837 c
= policydb
.ocontexts
[OCON_PORT
];
1839 if (c
->u
.port
.protocol
== protocol
&&
1840 c
->u
.port
.low_port
<= port
&&
1841 c
->u
.port
.high_port
>= port
)
1848 rc
= sidtab_context_to_sid(&sidtab
,
1854 *out_sid
= c
->sid
[0];
1856 *out_sid
= SECINITSID_PORT
;
1860 read_unlock(&policy_rwlock
);
1865 * security_netif_sid - Obtain the SID for a network interface.
1866 * @name: interface name
1867 * @if_sid: interface SID
1869 int security_netif_sid(char *name
, u32
*if_sid
)
1874 read_lock(&policy_rwlock
);
1876 c
= policydb
.ocontexts
[OCON_NETIF
];
1878 if (strcmp(name
, c
->u
.name
) == 0)
1884 if (!c
->sid
[0] || !c
->sid
[1]) {
1885 rc
= sidtab_context_to_sid(&sidtab
,
1890 rc
= sidtab_context_to_sid(&sidtab
,
1896 *if_sid
= c
->sid
[0];
1898 *if_sid
= SECINITSID_NETIF
;
1901 read_unlock(&policy_rwlock
);
1905 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1909 for (i
= 0; i
< 4; i
++)
1910 if (addr
[i
] != (input
[i
] & mask
[i
])) {
1919 * security_node_sid - Obtain the SID for a node (host).
1920 * @domain: communication domain aka address family
1922 * @addrlen: address length in bytes
1923 * @out_sid: security identifier
1925 int security_node_sid(u16 domain
,
1933 read_lock(&policy_rwlock
);
1939 if (addrlen
!= sizeof(u32
)) {
1944 addr
= *((u32
*)addrp
);
1946 c
= policydb
.ocontexts
[OCON_NODE
];
1948 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
1956 if (addrlen
!= sizeof(u64
) * 2) {
1960 c
= policydb
.ocontexts
[OCON_NODE6
];
1962 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
1970 *out_sid
= SECINITSID_NODE
;
1976 rc
= sidtab_context_to_sid(&sidtab
,
1982 *out_sid
= c
->sid
[0];
1984 *out_sid
= SECINITSID_NODE
;
1988 read_unlock(&policy_rwlock
);
1995 * security_get_user_sids - Obtain reachable SIDs for a user.
1996 * @fromsid: starting SID
1997 * @username: username
1998 * @sids: array of reachable SIDs for user
1999 * @nel: number of elements in @sids
2001 * Generate the set of SIDs for legal security contexts
2002 * for a given user that can be reached by @fromsid.
2003 * Set *@sids to point to a dynamically allocated
2004 * array containing the set of SIDs. Set *@nel to the
2005 * number of elements in the array.
2008 int security_get_user_sids(u32 fromsid
,
2013 struct context
*fromcon
, usercon
;
2014 u32
*mysids
= NULL
, *mysids2
, sid
;
2015 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2016 struct user_datum
*user
;
2017 struct role_datum
*role
;
2018 struct ebitmap_node
*rnode
, *tnode
;
2024 if (!ss_initialized
)
2027 read_lock(&policy_rwlock
);
2029 context_init(&usercon
);
2031 fromcon
= sidtab_search(&sidtab
, fromsid
);
2037 user
= hashtab_search(policydb
.p_users
.table
, username
);
2042 usercon
.user
= user
->value
;
2044 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2050 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2051 role
= policydb
.role_val_to_struct
[i
];
2053 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2056 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2059 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2062 if (mynel
< maxnel
) {
2063 mysids
[mynel
++] = sid
;
2066 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2071 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2074 mysids
[mynel
++] = sid
;
2080 read_unlock(&policy_rwlock
);
2086 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2092 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2093 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2095 PROCESS__TRANSITION
, AVC_STRICT
,
2098 mysids2
[j
++] = mysids
[i
];
2110 * security_genfs_sid - Obtain a SID for a file in a filesystem
2111 * @fstype: filesystem type
2112 * @path: path from root of mount
2113 * @sclass: file security class
2114 * @sid: SID for path
2116 * Obtain a SID to use for a file in a filesystem that
2117 * cannot support xattr or use a fixed labeling behavior like
2118 * transition SIDs or task SIDs.
2120 int security_genfs_sid(const char *fstype
,
2126 struct genfs
*genfs
;
2128 int rc
= 0, cmp
= 0;
2130 while (path
[0] == '/' && path
[1] == '/')
2133 read_lock(&policy_rwlock
);
2135 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2136 cmp
= strcmp(fstype
, genfs
->fstype
);
2141 if (!genfs
|| cmp
) {
2142 *sid
= SECINITSID_UNLABELED
;
2147 for (c
= genfs
->head
; c
; c
= c
->next
) {
2148 len
= strlen(c
->u
.name
);
2149 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2150 (strncmp(c
->u
.name
, path
, len
) == 0))
2155 *sid
= SECINITSID_UNLABELED
;
2161 rc
= sidtab_context_to_sid(&sidtab
,
2170 read_unlock(&policy_rwlock
);
2175 * security_fs_use - Determine how to handle labeling for a filesystem.
2176 * @fstype: filesystem type
2177 * @behavior: labeling behavior
2178 * @sid: SID for filesystem (superblock)
2180 int security_fs_use(
2182 unsigned int *behavior
,
2188 read_lock(&policy_rwlock
);
2190 c
= policydb
.ocontexts
[OCON_FSUSE
];
2192 if (strcmp(fstype
, c
->u
.name
) == 0)
2198 *behavior
= c
->v
.behavior
;
2200 rc
= sidtab_context_to_sid(&sidtab
,
2208 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
2210 *behavior
= SECURITY_FS_USE_NONE
;
2213 *behavior
= SECURITY_FS_USE_GENFS
;
2218 read_unlock(&policy_rwlock
);
2222 int security_get_bools(int *len
, char ***names
, int **values
)
2224 int i
, rc
= -ENOMEM
;
2226 read_lock(&policy_rwlock
);
2230 *len
= policydb
.p_bools
.nprim
;
2236 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2240 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2244 for (i
= 0; i
< *len
; i
++) {
2246 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2247 name_len
= strlen(policydb
.p_bool_val_to_name
[i
]) + 1;
2248 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2251 strncpy((*names
)[i
], policydb
.p_bool_val_to_name
[i
], name_len
);
2252 (*names
)[i
][name_len
- 1] = 0;
2256 read_unlock(&policy_rwlock
);
2260 for (i
= 0; i
< *len
; i
++)
2268 int security_set_bools(int len
, int *values
)
2271 int lenp
, seqno
= 0;
2272 struct cond_node
*cur
;
2274 write_lock_irq(&policy_rwlock
);
2276 lenp
= policydb
.p_bools
.nprim
;
2282 for (i
= 0; i
< len
; i
++) {
2283 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2284 audit_log(current
->audit_context
, GFP_ATOMIC
,
2285 AUDIT_MAC_CONFIG_CHANGE
,
2286 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2287 policydb
.p_bool_val_to_name
[i
],
2289 policydb
.bool_val_to_struct
[i
]->state
,
2290 audit_get_loginuid(current
),
2291 audit_get_sessionid(current
));
2294 policydb
.bool_val_to_struct
[i
]->state
= 1;
2296 policydb
.bool_val_to_struct
[i
]->state
= 0;
2299 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2300 rc
= evaluate_cond_node(&policydb
, cur
);
2305 seqno
= ++latest_granting
;
2308 write_unlock_irq(&policy_rwlock
);
2310 avc_ss_reset(seqno
);
2311 selnl_notify_policyload(seqno
);
2312 selinux_xfrm_notify_policyload();
2317 int security_get_bool_value(int bool)
2322 read_lock(&policy_rwlock
);
2324 len
= policydb
.p_bools
.nprim
;
2330 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2332 read_unlock(&policy_rwlock
);
2336 static int security_preserve_bools(struct policydb
*p
)
2338 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2339 char **bnames
= NULL
;
2340 struct cond_bool_datum
*booldatum
;
2341 struct cond_node
*cur
;
2343 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2346 for (i
= 0; i
< nbools
; i
++) {
2347 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2349 booldatum
->state
= bvalues
[i
];
2351 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2352 rc
= evaluate_cond_node(p
, cur
);
2359 for (i
= 0; i
< nbools
; i
++)
2368 * security_sid_mls_copy() - computes a new sid based on the given
2369 * sid and the mls portion of mls_sid.
2371 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2373 struct context
*context1
;
2374 struct context
*context2
;
2375 struct context newcon
;
2380 if (!ss_initialized
|| !selinux_mls_enabled
) {
2385 context_init(&newcon
);
2387 read_lock(&policy_rwlock
);
2388 context1
= sidtab_search(&sidtab
, sid
);
2390 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2396 context2
= sidtab_search(&sidtab
, mls_sid
);
2398 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2404 newcon
.user
= context1
->user
;
2405 newcon
.role
= context1
->role
;
2406 newcon
.type
= context1
->type
;
2407 rc
= mls_context_cpy(&newcon
, context2
);
2411 /* Check the validity of the new context. */
2412 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2413 rc
= convert_context_handle_invalid_context(&newcon
);
2418 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2422 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2423 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2424 "security_sid_mls_copy: invalid context %s", s
);
2429 read_unlock(&policy_rwlock
);
2430 context_destroy(&newcon
);
2436 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2437 * @nlbl_sid: NetLabel SID
2438 * @nlbl_type: NetLabel labeling protocol type
2439 * @xfrm_sid: XFRM SID
2442 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2443 * resolved into a single SID it is returned via @peer_sid and the function
2444 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2445 * returns a negative value. A table summarizing the behavior is below:
2447 * | function return | @sid
2448 * ------------------------------+-----------------+-----------------
2449 * no peer labels | 0 | SECSID_NULL
2450 * single peer label | 0 | <peer_label>
2451 * multiple, consistent labels | 0 | <peer_label>
2452 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2455 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2460 struct context
*nlbl_ctx
;
2461 struct context
*xfrm_ctx
;
2463 /* handle the common (which also happens to be the set of easy) cases
2464 * right away, these two if statements catch everything involving a
2465 * single or absent peer SID/label */
2466 if (xfrm_sid
== SECSID_NULL
) {
2467 *peer_sid
= nlbl_sid
;
2470 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2471 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2473 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2474 *peer_sid
= xfrm_sid
;
2478 /* we don't need to check ss_initialized here since the only way both
2479 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2480 * security server was initialized and ss_initialized was true */
2481 if (!selinux_mls_enabled
) {
2482 *peer_sid
= SECSID_NULL
;
2486 read_lock(&policy_rwlock
);
2488 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2490 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2491 __func__
, nlbl_sid
);
2495 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2497 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2498 __func__
, xfrm_sid
);
2502 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2505 read_unlock(&policy_rwlock
);
2507 /* at present NetLabel SIDs/labels really only carry MLS
2508 * information so if the MLS portion of the NetLabel SID
2509 * matches the MLS portion of the labeled XFRM SID/label
2510 * then pass along the XFRM SID as it is the most
2512 *peer_sid
= xfrm_sid
;
2514 *peer_sid
= SECSID_NULL
;
2518 static int get_classes_callback(void *k
, void *d
, void *args
)
2520 struct class_datum
*datum
= d
;
2521 char *name
= k
, **classes
= args
;
2522 int value
= datum
->value
- 1;
2524 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2525 if (!classes
[value
])
2531 int security_get_classes(char ***classes
, int *nclasses
)
2535 read_lock(&policy_rwlock
);
2537 *nclasses
= policydb
.p_classes
.nprim
;
2538 *classes
= kcalloc(*nclasses
, sizeof(*classes
), GFP_ATOMIC
);
2542 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2546 for (i
= 0; i
< *nclasses
; i
++)
2547 kfree((*classes
)[i
]);
2552 read_unlock(&policy_rwlock
);
2556 static int get_permissions_callback(void *k
, void *d
, void *args
)
2558 struct perm_datum
*datum
= d
;
2559 char *name
= k
, **perms
= args
;
2560 int value
= datum
->value
- 1;
2562 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2569 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2571 int rc
= -ENOMEM
, i
;
2572 struct class_datum
*match
;
2574 read_lock(&policy_rwlock
);
2576 match
= hashtab_search(policydb
.p_classes
.table
, class);
2578 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2584 *nperms
= match
->permissions
.nprim
;
2585 *perms
= kcalloc(*nperms
, sizeof(*perms
), GFP_ATOMIC
);
2589 if (match
->comdatum
) {
2590 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2591 get_permissions_callback
, *perms
);
2596 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2602 read_unlock(&policy_rwlock
);
2606 read_unlock(&policy_rwlock
);
2607 for (i
= 0; i
< *nperms
; i
++)
2613 int security_get_reject_unknown(void)
2615 return policydb
.reject_unknown
;
2618 int security_get_allow_unknown(void)
2620 return policydb
.allow_unknown
;
2624 * security_policycap_supported - Check for a specific policy capability
2625 * @req_cap: capability
2628 * This function queries the currently loaded policy to see if it supports the
2629 * capability specified by @req_cap. Returns true (1) if the capability is
2630 * supported, false (0) if it isn't supported.
2633 int security_policycap_supported(unsigned int req_cap
)
2637 read_lock(&policy_rwlock
);
2638 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2639 read_unlock(&policy_rwlock
);
2644 struct selinux_audit_rule
{
2646 struct context au_ctxt
;
2649 void selinux_audit_rule_free(void *vrule
)
2651 struct selinux_audit_rule
*rule
= vrule
;
2654 context_destroy(&rule
->au_ctxt
);
2659 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2661 struct selinux_audit_rule
*tmprule
;
2662 struct role_datum
*roledatum
;
2663 struct type_datum
*typedatum
;
2664 struct user_datum
*userdatum
;
2665 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2670 if (!ss_initialized
)
2674 case AUDIT_SUBJ_USER
:
2675 case AUDIT_SUBJ_ROLE
:
2676 case AUDIT_SUBJ_TYPE
:
2677 case AUDIT_OBJ_USER
:
2678 case AUDIT_OBJ_ROLE
:
2679 case AUDIT_OBJ_TYPE
:
2680 /* only 'equals' and 'not equals' fit user, role, and type */
2681 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
2684 case AUDIT_SUBJ_SEN
:
2685 case AUDIT_SUBJ_CLR
:
2686 case AUDIT_OBJ_LEV_LOW
:
2687 case AUDIT_OBJ_LEV_HIGH
:
2688 /* we do not allow a range, indicated by the presense of '-' */
2689 if (strchr(rulestr
, '-'))
2693 /* only the above fields are valid */
2697 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2701 context_init(&tmprule
->au_ctxt
);
2703 read_lock(&policy_rwlock
);
2705 tmprule
->au_seqno
= latest_granting
;
2708 case AUDIT_SUBJ_USER
:
2709 case AUDIT_OBJ_USER
:
2710 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2714 tmprule
->au_ctxt
.user
= userdatum
->value
;
2716 case AUDIT_SUBJ_ROLE
:
2717 case AUDIT_OBJ_ROLE
:
2718 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2722 tmprule
->au_ctxt
.role
= roledatum
->value
;
2724 case AUDIT_SUBJ_TYPE
:
2725 case AUDIT_OBJ_TYPE
:
2726 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2730 tmprule
->au_ctxt
.type
= typedatum
->value
;
2732 case AUDIT_SUBJ_SEN
:
2733 case AUDIT_SUBJ_CLR
:
2734 case AUDIT_OBJ_LEV_LOW
:
2735 case AUDIT_OBJ_LEV_HIGH
:
2736 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2740 read_unlock(&policy_rwlock
);
2743 selinux_audit_rule_free(tmprule
);
2752 /* Check to see if the rule contains any selinux fields */
2753 int selinux_audit_rule_known(struct audit_krule
*rule
)
2757 for (i
= 0; i
< rule
->field_count
; i
++) {
2758 struct audit_field
*f
= &rule
->fields
[i
];
2760 case AUDIT_SUBJ_USER
:
2761 case AUDIT_SUBJ_ROLE
:
2762 case AUDIT_SUBJ_TYPE
:
2763 case AUDIT_SUBJ_SEN
:
2764 case AUDIT_SUBJ_CLR
:
2765 case AUDIT_OBJ_USER
:
2766 case AUDIT_OBJ_ROLE
:
2767 case AUDIT_OBJ_TYPE
:
2768 case AUDIT_OBJ_LEV_LOW
:
2769 case AUDIT_OBJ_LEV_HIGH
:
2777 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2778 struct audit_context
*actx
)
2780 struct context
*ctxt
;
2781 struct mls_level
*level
;
2782 struct selinux_audit_rule
*rule
= vrule
;
2786 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2787 "selinux_audit_rule_match: missing rule\n");
2791 read_lock(&policy_rwlock
);
2793 if (rule
->au_seqno
< latest_granting
) {
2794 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2795 "selinux_audit_rule_match: stale rule\n");
2800 ctxt
= sidtab_search(&sidtab
, sid
);
2802 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2803 "selinux_audit_rule_match: unrecognized SID %d\n",
2809 /* a field/op pair that is not caught here will simply fall through
2812 case AUDIT_SUBJ_USER
:
2813 case AUDIT_OBJ_USER
:
2816 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2818 case Audit_not_equal
:
2819 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2823 case AUDIT_SUBJ_ROLE
:
2824 case AUDIT_OBJ_ROLE
:
2827 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2829 case Audit_not_equal
:
2830 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2834 case AUDIT_SUBJ_TYPE
:
2835 case AUDIT_OBJ_TYPE
:
2838 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2840 case Audit_not_equal
:
2841 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2845 case AUDIT_SUBJ_SEN
:
2846 case AUDIT_SUBJ_CLR
:
2847 case AUDIT_OBJ_LEV_LOW
:
2848 case AUDIT_OBJ_LEV_HIGH
:
2849 level
= ((field
== AUDIT_SUBJ_SEN
||
2850 field
== AUDIT_OBJ_LEV_LOW
) ?
2851 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2854 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2857 case Audit_not_equal
:
2858 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2862 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2864 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2868 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2872 match
= (mls_level_dom(level
,
2873 &rule
->au_ctxt
.range
.level
[0]) &&
2874 !mls_level_eq(level
,
2875 &rule
->au_ctxt
.range
.level
[0]));
2878 match
= mls_level_dom(level
,
2879 &rule
->au_ctxt
.range
.level
[0]);
2885 read_unlock(&policy_rwlock
);
2889 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
2891 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2892 u16
class, u32 perms
, u32
*retained
)
2896 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2897 err
= aurule_callback();
2901 static int __init
aurule_init(void)
2905 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2906 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2908 panic("avc_add_callback() failed, error %d\n", err
);
2912 __initcall(aurule_init
);
2914 #ifdef CONFIG_NETLABEL
2916 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2917 * @secattr: the NetLabel packet security attributes
2918 * @sid: the SELinux SID
2921 * Attempt to cache the context in @ctx, which was derived from the packet in
2922 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2923 * already been initialized.
2926 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
2931 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
2932 if (sid_cache
== NULL
)
2934 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
2935 if (secattr
->cache
== NULL
) {
2941 secattr
->cache
->free
= kfree
;
2942 secattr
->cache
->data
= sid_cache
;
2943 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
2947 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2948 * @secattr: the NetLabel packet security attributes
2949 * @sid: the SELinux SID
2952 * Convert the given NetLabel security attributes in @secattr into a
2953 * SELinux SID. If the @secattr field does not contain a full SELinux
2954 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2955 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2956 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2957 * conversion for future lookups. Returns zero on success, negative values on
2961 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
2965 struct context
*ctx
;
2966 struct context ctx_new
;
2968 if (!ss_initialized
) {
2973 read_lock(&policy_rwlock
);
2975 if (secattr
->flags
& NETLBL_SECATTR_CACHE
) {
2976 *sid
= *(u32
*)secattr
->cache
->data
;
2978 } else if (secattr
->flags
& NETLBL_SECATTR_SECID
) {
2979 *sid
= secattr
->attr
.secid
;
2981 } else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
2982 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
2984 goto netlbl_secattr_to_sid_return
;
2986 context_init(&ctx_new
);
2987 ctx_new
.user
= ctx
->user
;
2988 ctx_new
.role
= ctx
->role
;
2989 ctx_new
.type
= ctx
->type
;
2990 mls_import_netlbl_lvl(&ctx_new
, secattr
);
2991 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
2992 if (ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
2993 secattr
->attr
.mls
.cat
) != 0)
2994 goto netlbl_secattr_to_sid_return
;
2995 memcpy(&ctx_new
.range
.level
[1].cat
,
2996 &ctx_new
.range
.level
[0].cat
,
2997 sizeof(ctx_new
.range
.level
[0].cat
));
2999 if (mls_context_isvalid(&policydb
, &ctx_new
) != 1)
3000 goto netlbl_secattr_to_sid_return_cleanup
;
3002 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3004 goto netlbl_secattr_to_sid_return_cleanup
;
3006 security_netlbl_cache_add(secattr
, *sid
);
3008 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3014 netlbl_secattr_to_sid_return
:
3015 read_unlock(&policy_rwlock
);
3017 netlbl_secattr_to_sid_return_cleanup
:
3018 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3019 goto netlbl_secattr_to_sid_return
;
3023 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3024 * @sid: the SELinux SID
3025 * @secattr: the NetLabel packet security attributes
3028 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3029 * Returns zero on success, negative values on failure.
3032 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3035 struct context
*ctx
;
3037 if (!ss_initialized
)
3040 read_lock(&policy_rwlock
);
3041 ctx
= sidtab_search(&sidtab
, sid
);
3044 goto netlbl_sid_to_secattr_failure
;
3046 secattr
->domain
= kstrdup(policydb
.p_type_val_to_name
[ctx
->type
- 1],
3048 if (secattr
->domain
== NULL
) {
3050 goto netlbl_sid_to_secattr_failure
;
3052 secattr
->attr
.secid
= sid
;
3053 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3054 mls_export_netlbl_lvl(ctx
, secattr
);
3055 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3057 goto netlbl_sid_to_secattr_failure
;
3058 read_unlock(&policy_rwlock
);
3062 netlbl_sid_to_secattr_failure
:
3063 read_unlock(&policy_rwlock
);
3066 #endif /* CONFIG_NETLABEL */