[CONNECTOR]: Replace delayed work with usual work queue.
[linux-2.6/verdex.git] / fs / ocfs2 / cluster / heartbeat.c
bloba25ef5a5038678115bce74843dd11ec2fe2675de
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
37 #include "heartbeat.h"
38 #include "tcp.h"
39 #include "nodemanager.h"
40 #include "quorum.h"
42 #include "masklog.h"
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls. This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
51 static DECLARE_RWSEM(o2hb_callback_sem);
54 * multiple hb threads are watching multiple regions. A node is live
55 * whenever any of the threads sees activity from the node in its region.
57 static DEFINE_SPINLOCK(o2hb_live_lock);
58 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
59 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
60 static LIST_HEAD(o2hb_node_events);
61 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
63 static LIST_HEAD(o2hb_all_regions);
65 static struct o2hb_callback {
66 struct list_head list;
67 } o2hb_callbacks[O2HB_NUM_CB];
69 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
71 #define O2HB_DEFAULT_BLOCK_BITS 9
73 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
75 /* Only sets a new threshold if there are no active regions.
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80 static void o2hb_dead_threshold_set(unsigned int threshold)
82 if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
83 spin_lock(&o2hb_live_lock);
84 if (list_empty(&o2hb_all_regions))
85 o2hb_dead_threshold = threshold;
86 spin_unlock(&o2hb_live_lock);
90 struct o2hb_node_event {
91 struct list_head hn_item;
92 enum o2hb_callback_type hn_event_type;
93 struct o2nm_node *hn_node;
94 int hn_node_num;
97 struct o2hb_disk_slot {
98 struct o2hb_disk_heartbeat_block *ds_raw_block;
99 u8 ds_node_num;
100 u64 ds_last_time;
101 u64 ds_last_generation;
102 u16 ds_equal_samples;
103 u16 ds_changed_samples;
104 struct list_head ds_live_item;
107 /* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
109 struct o2hb_region {
110 struct config_item hr_item;
112 struct list_head hr_all_item;
113 unsigned hr_unclean_stop:1;
115 /* protected by the hr_callback_sem */
116 struct task_struct *hr_task;
118 unsigned int hr_blocks;
119 unsigned long long hr_start_block;
121 unsigned int hr_block_bits;
122 unsigned int hr_block_bytes;
124 unsigned int hr_slots_per_page;
125 unsigned int hr_num_pages;
127 struct page **hr_slot_data;
128 struct block_device *hr_bdev;
129 struct o2hb_disk_slot *hr_slots;
131 /* let the person setting up hb wait for it to return until it
132 * has reached a 'steady' state. This will be fixed when we have
133 * a more complete api that doesn't lead to this sort of fragility. */
134 atomic_t hr_steady_iterations;
136 char hr_dev_name[BDEVNAME_SIZE];
138 unsigned int hr_timeout_ms;
140 /* randomized as the region goes up and down so that a node
141 * recognizes a node going up and down in one iteration */
142 u64 hr_generation;
144 struct delayed_work hr_write_timeout_work;
145 unsigned long hr_last_timeout_start;
147 /* Used during o2hb_check_slot to hold a copy of the block
148 * being checked because we temporarily have to zero out the
149 * crc field. */
150 struct o2hb_disk_heartbeat_block *hr_tmp_block;
153 struct o2hb_bio_wait_ctxt {
154 atomic_t wc_num_reqs;
155 struct completion wc_io_complete;
156 int wc_error;
159 static void o2hb_write_timeout(struct work_struct *work)
161 struct o2hb_region *reg =
162 container_of(work, struct o2hb_region,
163 hr_write_timeout_work.work);
165 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
166 "milliseconds\n", reg->hr_dev_name,
167 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
168 o2quo_disk_timeout();
171 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
173 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS);
175 cancel_delayed_work(&reg->hr_write_timeout_work);
176 reg->hr_last_timeout_start = jiffies;
177 schedule_delayed_work(&reg->hr_write_timeout_work,
178 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
181 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
183 cancel_delayed_work(&reg->hr_write_timeout_work);
184 flush_scheduled_work();
187 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc,
188 unsigned int num_ios)
190 atomic_set(&wc->wc_num_reqs, num_ios);
191 init_completion(&wc->wc_io_complete);
192 wc->wc_error = 0;
195 /* Used in error paths too */
196 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
197 unsigned int num)
199 /* sadly atomic_sub_and_test() isn't available on all platforms. The
200 * good news is that the fast path only completes one at a time */
201 while(num--) {
202 if (atomic_dec_and_test(&wc->wc_num_reqs)) {
203 BUG_ON(num > 0);
204 complete(&wc->wc_io_complete);
209 static void o2hb_wait_on_io(struct o2hb_region *reg,
210 struct o2hb_bio_wait_ctxt *wc)
212 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
214 blk_run_address_space(mapping);
216 wait_for_completion(&wc->wc_io_complete);
219 static int o2hb_bio_end_io(struct bio *bio,
220 unsigned int bytes_done,
221 int error)
223 struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
225 if (error) {
226 mlog(ML_ERROR, "IO Error %d\n", error);
227 wc->wc_error = error;
230 if (bio->bi_size)
231 return 1;
233 o2hb_bio_wait_dec(wc, 1);
234 return 0;
237 /* Setup a Bio to cover I/O against num_slots slots starting at
238 * start_slot. */
239 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
240 struct o2hb_bio_wait_ctxt *wc,
241 unsigned int start_slot,
242 unsigned int num_slots)
244 int i, nr_vecs, len, first_page, last_page;
245 unsigned int vec_len, vec_start;
246 unsigned int bits = reg->hr_block_bits;
247 unsigned int spp = reg->hr_slots_per_page;
248 struct bio *bio;
249 struct page *page;
251 nr_vecs = (num_slots + spp - 1) / spp;
253 /* Testing has shown this allocation to take long enough under
254 * GFP_KERNEL that the local node can get fenced. It would be
255 * nicest if we could pre-allocate these bios and avoid this
256 * all together. */
257 bio = bio_alloc(GFP_ATOMIC, nr_vecs);
258 if (!bio) {
259 mlog(ML_ERROR, "Could not alloc slots BIO!\n");
260 bio = ERR_PTR(-ENOMEM);
261 goto bail;
264 /* Must put everything in 512 byte sectors for the bio... */
265 bio->bi_sector = (reg->hr_start_block + start_slot) << (bits - 9);
266 bio->bi_bdev = reg->hr_bdev;
267 bio->bi_private = wc;
268 bio->bi_end_io = o2hb_bio_end_io;
270 first_page = start_slot / spp;
271 last_page = first_page + nr_vecs;
272 vec_start = (start_slot << bits) % PAGE_CACHE_SIZE;
273 for(i = first_page; i < last_page; i++) {
274 page = reg->hr_slot_data[i];
276 vec_len = PAGE_CACHE_SIZE;
277 /* last page might be short */
278 if (((i + 1) * spp) > (start_slot + num_slots))
279 vec_len = ((num_slots + start_slot) % spp) << bits;
280 vec_len -= vec_start;
282 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
283 i, vec_len, vec_start);
285 len = bio_add_page(bio, page, vec_len, vec_start);
286 if (len != vec_len) {
287 bio_put(bio);
288 bio = ERR_PTR(-EIO);
290 mlog(ML_ERROR, "Error adding page to bio i = %d, "
291 "vec_len = %u, len = %d\n, start = %u\n",
292 i, vec_len, len, vec_start);
293 goto bail;
296 vec_start = 0;
299 bail:
300 return bio;
304 * Compute the maximum number of sectors the bdev can handle in one bio,
305 * as a power of two.
307 * Stolen from oracleasm, thanks Joel!
309 static int compute_max_sectors(struct block_device *bdev)
311 int max_pages, max_sectors, pow_two_sectors;
313 struct request_queue *q;
315 q = bdev_get_queue(bdev);
316 max_pages = q->max_sectors >> (PAGE_SHIFT - 9);
317 if (max_pages > BIO_MAX_PAGES)
318 max_pages = BIO_MAX_PAGES;
319 if (max_pages > q->max_phys_segments)
320 max_pages = q->max_phys_segments;
321 if (max_pages > q->max_hw_segments)
322 max_pages = q->max_hw_segments;
323 max_pages--; /* Handle I/Os that straddle a page */
325 if (max_pages) {
326 max_sectors = max_pages << (PAGE_SHIFT - 9);
327 } else {
328 /* If BIO contains 1 or less than 1 page. */
329 max_sectors = q->max_sectors;
331 /* Why is fls() 1-based???? */
332 pow_two_sectors = 1 << (fls(max_sectors) - 1);
334 return pow_two_sectors;
337 static inline void o2hb_compute_request_limits(struct o2hb_region *reg,
338 unsigned int num_slots,
339 unsigned int *num_bios,
340 unsigned int *slots_per_bio)
342 unsigned int max_sectors, io_sectors;
344 max_sectors = compute_max_sectors(reg->hr_bdev);
346 io_sectors = num_slots << (reg->hr_block_bits - 9);
348 *num_bios = (io_sectors + max_sectors - 1) / max_sectors;
349 *slots_per_bio = max_sectors >> (reg->hr_block_bits - 9);
351 mlog(ML_HB_BIO, "My io size is %u sectors for %u slots. This "
352 "device can handle %u sectors of I/O\n", io_sectors, num_slots,
353 max_sectors);
354 mlog(ML_HB_BIO, "Will need %u bios holding %u slots each\n",
355 *num_bios, *slots_per_bio);
358 static int o2hb_read_slots(struct o2hb_region *reg,
359 unsigned int max_slots)
361 unsigned int num_bios, slots_per_bio, start_slot, num_slots;
362 int i, status;
363 struct o2hb_bio_wait_ctxt wc;
364 struct bio **bios;
365 struct bio *bio;
367 o2hb_compute_request_limits(reg, max_slots, &num_bios, &slots_per_bio);
369 bios = kcalloc(num_bios, sizeof(struct bio *), GFP_KERNEL);
370 if (!bios) {
371 status = -ENOMEM;
372 mlog_errno(status);
373 return status;
376 o2hb_bio_wait_init(&wc, num_bios);
378 num_slots = slots_per_bio;
379 for(i = 0; i < num_bios; i++) {
380 start_slot = i * slots_per_bio;
382 /* adjust num_slots at last bio */
383 if (max_slots < (start_slot + num_slots))
384 num_slots = max_slots - start_slot;
386 bio = o2hb_setup_one_bio(reg, &wc, start_slot, num_slots);
387 if (IS_ERR(bio)) {
388 o2hb_bio_wait_dec(&wc, num_bios - i);
390 status = PTR_ERR(bio);
391 mlog_errno(status);
392 goto bail_and_wait;
394 bios[i] = bio;
396 submit_bio(READ, bio);
399 status = 0;
401 bail_and_wait:
402 o2hb_wait_on_io(reg, &wc);
403 if (wc.wc_error && !status)
404 status = wc.wc_error;
406 if (bios) {
407 for(i = 0; i < num_bios; i++)
408 if (bios[i])
409 bio_put(bios[i]);
410 kfree(bios);
413 return status;
416 static int o2hb_issue_node_write(struct o2hb_region *reg,
417 struct bio **write_bio,
418 struct o2hb_bio_wait_ctxt *write_wc)
420 int status;
421 unsigned int slot;
422 struct bio *bio;
424 o2hb_bio_wait_init(write_wc, 1);
426 slot = o2nm_this_node();
428 bio = o2hb_setup_one_bio(reg, write_wc, slot, 1);
429 if (IS_ERR(bio)) {
430 status = PTR_ERR(bio);
431 mlog_errno(status);
432 goto bail;
435 submit_bio(WRITE, bio);
437 *write_bio = bio;
438 status = 0;
439 bail:
440 return status;
443 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
444 struct o2hb_disk_heartbeat_block *hb_block)
446 __le32 old_cksum;
447 u32 ret;
449 /* We want to compute the block crc with a 0 value in the
450 * hb_cksum field. Save it off here and replace after the
451 * crc. */
452 old_cksum = hb_block->hb_cksum;
453 hb_block->hb_cksum = 0;
455 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
457 hb_block->hb_cksum = old_cksum;
459 return ret;
462 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
464 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
465 "cksum = 0x%x, generation 0x%llx\n",
466 (long long)le64_to_cpu(hb_block->hb_seq),
467 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
468 (long long)le64_to_cpu(hb_block->hb_generation));
471 static int o2hb_verify_crc(struct o2hb_region *reg,
472 struct o2hb_disk_heartbeat_block *hb_block)
474 u32 read, computed;
476 read = le32_to_cpu(hb_block->hb_cksum);
477 computed = o2hb_compute_block_crc_le(reg, hb_block);
479 return read == computed;
482 /* We want to make sure that nobody is heartbeating on top of us --
483 * this will help detect an invalid configuration. */
484 static int o2hb_check_last_timestamp(struct o2hb_region *reg)
486 int node_num, ret;
487 struct o2hb_disk_slot *slot;
488 struct o2hb_disk_heartbeat_block *hb_block;
490 node_num = o2nm_this_node();
492 ret = 1;
493 slot = &reg->hr_slots[node_num];
494 /* Don't check on our 1st timestamp */
495 if (slot->ds_last_time) {
496 hb_block = slot->ds_raw_block;
498 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
499 ret = 0;
502 return ret;
505 static inline void o2hb_prepare_block(struct o2hb_region *reg,
506 u64 generation)
508 int node_num;
509 u64 cputime;
510 struct o2hb_disk_slot *slot;
511 struct o2hb_disk_heartbeat_block *hb_block;
513 node_num = o2nm_this_node();
514 slot = &reg->hr_slots[node_num];
516 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
517 memset(hb_block, 0, reg->hr_block_bytes);
518 /* TODO: time stuff */
519 cputime = CURRENT_TIME.tv_sec;
520 if (!cputime)
521 cputime = 1;
523 hb_block->hb_seq = cpu_to_le64(cputime);
524 hb_block->hb_node = node_num;
525 hb_block->hb_generation = cpu_to_le64(generation);
526 hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
528 /* This step must always happen last! */
529 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
530 hb_block));
532 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
533 (long long)cpu_to_le64(generation),
534 le32_to_cpu(hb_block->hb_cksum));
537 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
538 struct o2nm_node *node,
539 int idx)
541 struct list_head *iter;
542 struct o2hb_callback_func *f;
544 list_for_each(iter, &hbcall->list) {
545 f = list_entry(iter, struct o2hb_callback_func, hc_item);
546 mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
547 (f->hc_func)(node, idx, f->hc_data);
551 /* Will run the list in order until we process the passed event */
552 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
554 int empty;
555 struct o2hb_callback *hbcall;
556 struct o2hb_node_event *event;
558 spin_lock(&o2hb_live_lock);
559 empty = list_empty(&queued_event->hn_item);
560 spin_unlock(&o2hb_live_lock);
561 if (empty)
562 return;
564 /* Holding callback sem assures we don't alter the callback
565 * lists when doing this, and serializes ourselves with other
566 * processes wanting callbacks. */
567 down_write(&o2hb_callback_sem);
569 spin_lock(&o2hb_live_lock);
570 while (!list_empty(&o2hb_node_events)
571 && !list_empty(&queued_event->hn_item)) {
572 event = list_entry(o2hb_node_events.next,
573 struct o2hb_node_event,
574 hn_item);
575 list_del_init(&event->hn_item);
576 spin_unlock(&o2hb_live_lock);
578 mlog(ML_HEARTBEAT, "Node %s event for %d\n",
579 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
580 event->hn_node_num);
582 hbcall = hbcall_from_type(event->hn_event_type);
584 /* We should *never* have gotten on to the list with a
585 * bad type... This isn't something that we should try
586 * to recover from. */
587 BUG_ON(IS_ERR(hbcall));
589 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
591 spin_lock(&o2hb_live_lock);
593 spin_unlock(&o2hb_live_lock);
595 up_write(&o2hb_callback_sem);
598 static void o2hb_queue_node_event(struct o2hb_node_event *event,
599 enum o2hb_callback_type type,
600 struct o2nm_node *node,
601 int node_num)
603 assert_spin_locked(&o2hb_live_lock);
605 event->hn_event_type = type;
606 event->hn_node = node;
607 event->hn_node_num = node_num;
609 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
610 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
612 list_add_tail(&event->hn_item, &o2hb_node_events);
615 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
617 struct o2hb_node_event event =
618 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
619 struct o2nm_node *node;
621 node = o2nm_get_node_by_num(slot->ds_node_num);
622 if (!node)
623 return;
625 spin_lock(&o2hb_live_lock);
626 if (!list_empty(&slot->ds_live_item)) {
627 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
628 slot->ds_node_num);
630 list_del_init(&slot->ds_live_item);
632 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
633 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
635 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
636 slot->ds_node_num);
639 spin_unlock(&o2hb_live_lock);
641 o2hb_run_event_list(&event);
643 o2nm_node_put(node);
646 static int o2hb_check_slot(struct o2hb_region *reg,
647 struct o2hb_disk_slot *slot)
649 int changed = 0, gen_changed = 0;
650 struct o2hb_node_event event =
651 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
652 struct o2nm_node *node;
653 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
654 u64 cputime;
655 unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
656 unsigned int slot_dead_ms;
658 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
660 /* Is this correct? Do we assume that the node doesn't exist
661 * if we're not configured for him? */
662 node = o2nm_get_node_by_num(slot->ds_node_num);
663 if (!node)
664 return 0;
666 if (!o2hb_verify_crc(reg, hb_block)) {
667 /* all paths from here will drop o2hb_live_lock for
668 * us. */
669 spin_lock(&o2hb_live_lock);
671 /* Don't print an error on the console in this case -
672 * a freshly formatted heartbeat area will not have a
673 * crc set on it. */
674 if (list_empty(&slot->ds_live_item))
675 goto out;
677 /* The node is live but pushed out a bad crc. We
678 * consider it a transient miss but don't populate any
679 * other values as they may be junk. */
680 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
681 slot->ds_node_num, reg->hr_dev_name);
682 o2hb_dump_slot(hb_block);
684 slot->ds_equal_samples++;
685 goto fire_callbacks;
688 /* we don't care if these wrap.. the state transitions below
689 * clear at the right places */
690 cputime = le64_to_cpu(hb_block->hb_seq);
691 if (slot->ds_last_time != cputime)
692 slot->ds_changed_samples++;
693 else
694 slot->ds_equal_samples++;
695 slot->ds_last_time = cputime;
697 /* The node changed heartbeat generations. We assume this to
698 * mean it dropped off but came back before we timed out. We
699 * want to consider it down for the time being but don't want
700 * to lose any changed_samples state we might build up to
701 * considering it live again. */
702 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
703 gen_changed = 1;
704 slot->ds_equal_samples = 0;
705 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
706 "to 0x%llx)\n", slot->ds_node_num,
707 (long long)slot->ds_last_generation,
708 (long long)le64_to_cpu(hb_block->hb_generation));
711 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
713 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
714 "seq %llu last %llu changed %u equal %u\n",
715 slot->ds_node_num, (long long)slot->ds_last_generation,
716 le32_to_cpu(hb_block->hb_cksum),
717 (unsigned long long)le64_to_cpu(hb_block->hb_seq),
718 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
719 slot->ds_equal_samples);
721 spin_lock(&o2hb_live_lock);
723 fire_callbacks:
724 /* dead nodes only come to life after some number of
725 * changes at any time during their dead time */
726 if (list_empty(&slot->ds_live_item) &&
727 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
728 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
729 slot->ds_node_num, (long long)slot->ds_last_generation);
731 /* first on the list generates a callback */
732 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
733 set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
735 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
736 slot->ds_node_num);
738 changed = 1;
741 list_add_tail(&slot->ds_live_item,
742 &o2hb_live_slots[slot->ds_node_num]);
744 slot->ds_equal_samples = 0;
746 /* We want to be sure that all nodes agree on the
747 * number of milliseconds before a node will be
748 * considered dead. The self-fencing timeout is
749 * computed from this value, and a discrepancy might
750 * result in heartbeat calling a node dead when it
751 * hasn't self-fenced yet. */
752 slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
753 if (slot_dead_ms && slot_dead_ms != dead_ms) {
754 /* TODO: Perhaps we can fail the region here. */
755 mlog(ML_ERROR, "Node %d on device %s has a dead count "
756 "of %u ms, but our count is %u ms.\n"
757 "Please double check your configuration values "
758 "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
759 slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
760 dead_ms);
762 goto out;
765 /* if the list is dead, we're done.. */
766 if (list_empty(&slot->ds_live_item))
767 goto out;
769 /* live nodes only go dead after enough consequtive missed
770 * samples.. reset the missed counter whenever we see
771 * activity */
772 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
773 mlog(ML_HEARTBEAT, "Node %d left my region\n",
774 slot->ds_node_num);
776 /* last off the live_slot generates a callback */
777 list_del_init(&slot->ds_live_item);
778 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
779 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
781 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
782 slot->ds_node_num);
784 changed = 1;
787 /* We don't clear this because the node is still
788 * actually writing new blocks. */
789 if (!gen_changed)
790 slot->ds_changed_samples = 0;
791 goto out;
793 if (slot->ds_changed_samples) {
794 slot->ds_changed_samples = 0;
795 slot->ds_equal_samples = 0;
797 out:
798 spin_unlock(&o2hb_live_lock);
800 o2hb_run_event_list(&event);
802 o2nm_node_put(node);
803 return changed;
806 /* This could be faster if we just implmented a find_last_bit, but I
807 * don't think the circumstances warrant it. */
808 static int o2hb_highest_node(unsigned long *nodes,
809 int numbits)
811 int highest, node;
813 highest = numbits;
814 node = -1;
815 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
816 if (node >= numbits)
817 break;
819 highest = node;
822 return highest;
825 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
827 int i, ret, highest_node, change = 0;
828 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
829 struct bio *write_bio;
830 struct o2hb_bio_wait_ctxt write_wc;
832 ret = o2nm_configured_node_map(configured_nodes,
833 sizeof(configured_nodes));
834 if (ret) {
835 mlog_errno(ret);
836 return ret;
839 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
840 if (highest_node >= O2NM_MAX_NODES) {
841 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
842 return -EINVAL;
845 /* No sense in reading the slots of nodes that don't exist
846 * yet. Of course, if the node definitions have holes in them
847 * then we're reading an empty slot anyway... Consider this
848 * best-effort. */
849 ret = o2hb_read_slots(reg, highest_node + 1);
850 if (ret < 0) {
851 mlog_errno(ret);
852 return ret;
855 /* With an up to date view of the slots, we can check that no
856 * other node has been improperly configured to heartbeat in
857 * our slot. */
858 if (!o2hb_check_last_timestamp(reg))
859 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
860 "in our slot!\n", reg->hr_dev_name);
862 /* fill in the proper info for our next heartbeat */
863 o2hb_prepare_block(reg, reg->hr_generation);
865 /* And fire off the write. Note that we don't wait on this I/O
866 * until later. */
867 ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
868 if (ret < 0) {
869 mlog_errno(ret);
870 return ret;
873 i = -1;
874 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
876 change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
880 * We have to be sure we've advertised ourselves on disk
881 * before we can go to steady state. This ensures that
882 * people we find in our steady state have seen us.
884 o2hb_wait_on_io(reg, &write_wc);
885 bio_put(write_bio);
886 if (write_wc.wc_error) {
887 /* Do not re-arm the write timeout on I/O error - we
888 * can't be sure that the new block ever made it to
889 * disk */
890 mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
891 write_wc.wc_error, reg->hr_dev_name);
892 return write_wc.wc_error;
895 o2hb_arm_write_timeout(reg);
897 /* let the person who launched us know when things are steady */
898 if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
899 if (atomic_dec_and_test(&reg->hr_steady_iterations))
900 wake_up(&o2hb_steady_queue);
903 return 0;
906 /* Subtract b from a, storing the result in a. a *must* have a larger
907 * value than b. */
908 static void o2hb_tv_subtract(struct timeval *a,
909 struct timeval *b)
911 /* just return 0 when a is after b */
912 if (a->tv_sec < b->tv_sec ||
913 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
914 a->tv_sec = 0;
915 a->tv_usec = 0;
916 return;
919 a->tv_sec -= b->tv_sec;
920 a->tv_usec -= b->tv_usec;
921 while ( a->tv_usec < 0 ) {
922 a->tv_sec--;
923 a->tv_usec += 1000000;
927 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
928 struct timeval *end)
930 struct timeval res = *end;
932 o2hb_tv_subtract(&res, start);
934 return res.tv_sec * 1000 + res.tv_usec / 1000;
938 * we ride the region ref that the region dir holds. before the region
939 * dir is removed and drops it ref it will wait to tear down this
940 * thread.
942 static int o2hb_thread(void *data)
944 int i, ret;
945 struct o2hb_region *reg = data;
946 struct bio *write_bio;
947 struct o2hb_bio_wait_ctxt write_wc;
948 struct timeval before_hb, after_hb;
949 unsigned int elapsed_msec;
951 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
953 set_user_nice(current, -20);
955 while (!kthread_should_stop() && !reg->hr_unclean_stop) {
956 /* We track the time spent inside
957 * o2hb_do_disk_heartbeat so that we avoid more then
958 * hr_timeout_ms between disk writes. On busy systems
959 * this should result in a heartbeat which is less
960 * likely to time itself out. */
961 do_gettimeofday(&before_hb);
963 i = 0;
964 do {
965 ret = o2hb_do_disk_heartbeat(reg);
966 } while (ret && ++i < 2);
968 do_gettimeofday(&after_hb);
969 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
971 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
972 before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
973 after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
974 elapsed_msec);
976 if (elapsed_msec < reg->hr_timeout_ms) {
977 /* the kthread api has blocked signals for us so no
978 * need to record the return value. */
979 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
983 o2hb_disarm_write_timeout(reg);
985 /* unclean stop is only used in very bad situation */
986 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
987 o2hb_shutdown_slot(&reg->hr_slots[i]);
989 /* Explicit down notification - avoid forcing the other nodes
990 * to timeout on this region when we could just as easily
991 * write a clear generation - thus indicating to them that
992 * this node has left this region.
994 * XXX: Should we skip this on unclean_stop? */
995 o2hb_prepare_block(reg, 0);
996 ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
997 if (ret == 0) {
998 o2hb_wait_on_io(reg, &write_wc);
999 bio_put(write_bio);
1000 } else {
1001 mlog_errno(ret);
1004 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
1006 return 0;
1009 void o2hb_init(void)
1011 int i;
1013 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
1014 INIT_LIST_HEAD(&o2hb_callbacks[i].list);
1016 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
1017 INIT_LIST_HEAD(&o2hb_live_slots[i]);
1019 INIT_LIST_HEAD(&o2hb_node_events);
1021 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
1024 /* if we're already in a callback then we're already serialized by the sem */
1025 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1026 unsigned bytes)
1028 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1030 memcpy(map, &o2hb_live_node_bitmap, bytes);
1034 * get a map of all nodes that are heartbeating in any regions
1036 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1038 /* callers want to serialize this map and callbacks so that they
1039 * can trust that they don't miss nodes coming to the party */
1040 down_read(&o2hb_callback_sem);
1041 spin_lock(&o2hb_live_lock);
1042 o2hb_fill_node_map_from_callback(map, bytes);
1043 spin_unlock(&o2hb_live_lock);
1044 up_read(&o2hb_callback_sem);
1046 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
1049 * heartbeat configfs bits. The heartbeat set is a default set under
1050 * the cluster set in nodemanager.c.
1053 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1055 return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1058 /* drop_item only drops its ref after killing the thread, nothing should
1059 * be using the region anymore. this has to clean up any state that
1060 * attributes might have built up. */
1061 static void o2hb_region_release(struct config_item *item)
1063 int i;
1064 struct page *page;
1065 struct o2hb_region *reg = to_o2hb_region(item);
1067 if (reg->hr_tmp_block)
1068 kfree(reg->hr_tmp_block);
1070 if (reg->hr_slot_data) {
1071 for (i = 0; i < reg->hr_num_pages; i++) {
1072 page = reg->hr_slot_data[i];
1073 if (page)
1074 __free_page(page);
1076 kfree(reg->hr_slot_data);
1079 if (reg->hr_bdev)
1080 blkdev_put(reg->hr_bdev);
1082 if (reg->hr_slots)
1083 kfree(reg->hr_slots);
1085 spin_lock(&o2hb_live_lock);
1086 list_del(&reg->hr_all_item);
1087 spin_unlock(&o2hb_live_lock);
1089 kfree(reg);
1092 static int o2hb_read_block_input(struct o2hb_region *reg,
1093 const char *page,
1094 size_t count,
1095 unsigned long *ret_bytes,
1096 unsigned int *ret_bits)
1098 unsigned long bytes;
1099 char *p = (char *)page;
1101 bytes = simple_strtoul(p, &p, 0);
1102 if (!p || (*p && (*p != '\n')))
1103 return -EINVAL;
1105 /* Heartbeat and fs min / max block sizes are the same. */
1106 if (bytes > 4096 || bytes < 512)
1107 return -ERANGE;
1108 if (hweight16(bytes) != 1)
1109 return -EINVAL;
1111 if (ret_bytes)
1112 *ret_bytes = bytes;
1113 if (ret_bits)
1114 *ret_bits = ffs(bytes) - 1;
1116 return 0;
1119 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1120 char *page)
1122 return sprintf(page, "%u\n", reg->hr_block_bytes);
1125 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1126 const char *page,
1127 size_t count)
1129 int status;
1130 unsigned long block_bytes;
1131 unsigned int block_bits;
1133 if (reg->hr_bdev)
1134 return -EINVAL;
1136 status = o2hb_read_block_input(reg, page, count,
1137 &block_bytes, &block_bits);
1138 if (status)
1139 return status;
1141 reg->hr_block_bytes = (unsigned int)block_bytes;
1142 reg->hr_block_bits = block_bits;
1144 return count;
1147 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1148 char *page)
1150 return sprintf(page, "%llu\n", reg->hr_start_block);
1153 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1154 const char *page,
1155 size_t count)
1157 unsigned long long tmp;
1158 char *p = (char *)page;
1160 if (reg->hr_bdev)
1161 return -EINVAL;
1163 tmp = simple_strtoull(p, &p, 0);
1164 if (!p || (*p && (*p != '\n')))
1165 return -EINVAL;
1167 reg->hr_start_block = tmp;
1169 return count;
1172 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1173 char *page)
1175 return sprintf(page, "%d\n", reg->hr_blocks);
1178 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1179 const char *page,
1180 size_t count)
1182 unsigned long tmp;
1183 char *p = (char *)page;
1185 if (reg->hr_bdev)
1186 return -EINVAL;
1188 tmp = simple_strtoul(p, &p, 0);
1189 if (!p || (*p && (*p != '\n')))
1190 return -EINVAL;
1192 if (tmp > O2NM_MAX_NODES || tmp == 0)
1193 return -ERANGE;
1195 reg->hr_blocks = (unsigned int)tmp;
1197 return count;
1200 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1201 char *page)
1203 unsigned int ret = 0;
1205 if (reg->hr_bdev)
1206 ret = sprintf(page, "%s\n", reg->hr_dev_name);
1208 return ret;
1211 static void o2hb_init_region_params(struct o2hb_region *reg)
1213 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1214 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1216 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1217 reg->hr_start_block, reg->hr_blocks);
1218 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1219 reg->hr_block_bytes, reg->hr_block_bits);
1220 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1221 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1224 static int o2hb_map_slot_data(struct o2hb_region *reg)
1226 int i, j;
1227 unsigned int last_slot;
1228 unsigned int spp = reg->hr_slots_per_page;
1229 struct page *page;
1230 char *raw;
1231 struct o2hb_disk_slot *slot;
1233 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1234 if (reg->hr_tmp_block == NULL) {
1235 mlog_errno(-ENOMEM);
1236 return -ENOMEM;
1239 reg->hr_slots = kcalloc(reg->hr_blocks,
1240 sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1241 if (reg->hr_slots == NULL) {
1242 mlog_errno(-ENOMEM);
1243 return -ENOMEM;
1246 for(i = 0; i < reg->hr_blocks; i++) {
1247 slot = &reg->hr_slots[i];
1248 slot->ds_node_num = i;
1249 INIT_LIST_HEAD(&slot->ds_live_item);
1250 slot->ds_raw_block = NULL;
1253 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1254 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1255 "at %u blocks per page\n",
1256 reg->hr_num_pages, reg->hr_blocks, spp);
1258 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1259 GFP_KERNEL);
1260 if (!reg->hr_slot_data) {
1261 mlog_errno(-ENOMEM);
1262 return -ENOMEM;
1265 for(i = 0; i < reg->hr_num_pages; i++) {
1266 page = alloc_page(GFP_KERNEL);
1267 if (!page) {
1268 mlog_errno(-ENOMEM);
1269 return -ENOMEM;
1272 reg->hr_slot_data[i] = page;
1274 last_slot = i * spp;
1275 raw = page_address(page);
1276 for (j = 0;
1277 (j < spp) && ((j + last_slot) < reg->hr_blocks);
1278 j++) {
1279 BUG_ON((j + last_slot) >= reg->hr_blocks);
1281 slot = &reg->hr_slots[j + last_slot];
1282 slot->ds_raw_block =
1283 (struct o2hb_disk_heartbeat_block *) raw;
1285 raw += reg->hr_block_bytes;
1289 return 0;
1292 /* Read in all the slots available and populate the tracking
1293 * structures so that we can start with a baseline idea of what's
1294 * there. */
1295 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1297 int ret, i;
1298 struct o2hb_disk_slot *slot;
1299 struct o2hb_disk_heartbeat_block *hb_block;
1301 mlog_entry_void();
1303 ret = o2hb_read_slots(reg, reg->hr_blocks);
1304 if (ret) {
1305 mlog_errno(ret);
1306 goto out;
1309 /* We only want to get an idea of the values initially in each
1310 * slot, so we do no verification - o2hb_check_slot will
1311 * actually determine if each configured slot is valid and
1312 * whether any values have changed. */
1313 for(i = 0; i < reg->hr_blocks; i++) {
1314 slot = &reg->hr_slots[i];
1315 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1317 /* Only fill the values that o2hb_check_slot uses to
1318 * determine changing slots */
1319 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1320 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1323 out:
1324 mlog_exit(ret);
1325 return ret;
1328 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1329 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1330 const char *page,
1331 size_t count)
1333 long fd;
1334 int sectsize;
1335 char *p = (char *)page;
1336 struct file *filp = NULL;
1337 struct inode *inode = NULL;
1338 ssize_t ret = -EINVAL;
1340 if (reg->hr_bdev)
1341 goto out;
1343 /* We can't heartbeat without having had our node number
1344 * configured yet. */
1345 if (o2nm_this_node() == O2NM_MAX_NODES)
1346 goto out;
1348 fd = simple_strtol(p, &p, 0);
1349 if (!p || (*p && (*p != '\n')))
1350 goto out;
1352 if (fd < 0 || fd >= INT_MAX)
1353 goto out;
1355 filp = fget(fd);
1356 if (filp == NULL)
1357 goto out;
1359 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1360 reg->hr_block_bytes == 0)
1361 goto out;
1363 inode = igrab(filp->f_mapping->host);
1364 if (inode == NULL)
1365 goto out;
1367 if (!S_ISBLK(inode->i_mode))
1368 goto out;
1370 reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1371 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0);
1372 if (ret) {
1373 reg->hr_bdev = NULL;
1374 goto out;
1376 inode = NULL;
1378 bdevname(reg->hr_bdev, reg->hr_dev_name);
1380 sectsize = bdev_hardsect_size(reg->hr_bdev);
1381 if (sectsize != reg->hr_block_bytes) {
1382 mlog(ML_ERROR,
1383 "blocksize %u incorrect for device, expected %d",
1384 reg->hr_block_bytes, sectsize);
1385 ret = -EINVAL;
1386 goto out;
1389 o2hb_init_region_params(reg);
1391 /* Generation of zero is invalid */
1392 do {
1393 get_random_bytes(&reg->hr_generation,
1394 sizeof(reg->hr_generation));
1395 } while (reg->hr_generation == 0);
1397 ret = o2hb_map_slot_data(reg);
1398 if (ret) {
1399 mlog_errno(ret);
1400 goto out;
1403 ret = o2hb_populate_slot_data(reg);
1404 if (ret) {
1405 mlog_errno(ret);
1406 goto out;
1409 INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1412 * A node is considered live after it has beat LIVE_THRESHOLD
1413 * times. We're not steady until we've given them a chance
1414 * _after_ our first read.
1416 atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1418 reg->hr_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1419 reg->hr_item.ci_name);
1420 if (IS_ERR(reg->hr_task)) {
1421 ret = PTR_ERR(reg->hr_task);
1422 mlog_errno(ret);
1423 reg->hr_task = NULL;
1424 goto out;
1427 ret = wait_event_interruptible(o2hb_steady_queue,
1428 atomic_read(&reg->hr_steady_iterations) == 0);
1429 if (ret) {
1430 kthread_stop(reg->hr_task);
1431 reg->hr_task = NULL;
1432 goto out;
1435 ret = count;
1436 out:
1437 if (filp)
1438 fput(filp);
1439 if (inode)
1440 iput(inode);
1441 if (ret < 0) {
1442 if (reg->hr_bdev) {
1443 blkdev_put(reg->hr_bdev);
1444 reg->hr_bdev = NULL;
1447 return ret;
1450 struct o2hb_region_attribute {
1451 struct configfs_attribute attr;
1452 ssize_t (*show)(struct o2hb_region *, char *);
1453 ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1456 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1457 .attr = { .ca_owner = THIS_MODULE,
1458 .ca_name = "block_bytes",
1459 .ca_mode = S_IRUGO | S_IWUSR },
1460 .show = o2hb_region_block_bytes_read,
1461 .store = o2hb_region_block_bytes_write,
1464 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1465 .attr = { .ca_owner = THIS_MODULE,
1466 .ca_name = "start_block",
1467 .ca_mode = S_IRUGO | S_IWUSR },
1468 .show = o2hb_region_start_block_read,
1469 .store = o2hb_region_start_block_write,
1472 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1473 .attr = { .ca_owner = THIS_MODULE,
1474 .ca_name = "blocks",
1475 .ca_mode = S_IRUGO | S_IWUSR },
1476 .show = o2hb_region_blocks_read,
1477 .store = o2hb_region_blocks_write,
1480 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1481 .attr = { .ca_owner = THIS_MODULE,
1482 .ca_name = "dev",
1483 .ca_mode = S_IRUGO | S_IWUSR },
1484 .show = o2hb_region_dev_read,
1485 .store = o2hb_region_dev_write,
1488 static struct configfs_attribute *o2hb_region_attrs[] = {
1489 &o2hb_region_attr_block_bytes.attr,
1490 &o2hb_region_attr_start_block.attr,
1491 &o2hb_region_attr_blocks.attr,
1492 &o2hb_region_attr_dev.attr,
1493 NULL,
1496 static ssize_t o2hb_region_show(struct config_item *item,
1497 struct configfs_attribute *attr,
1498 char *page)
1500 struct o2hb_region *reg = to_o2hb_region(item);
1501 struct o2hb_region_attribute *o2hb_region_attr =
1502 container_of(attr, struct o2hb_region_attribute, attr);
1503 ssize_t ret = 0;
1505 if (o2hb_region_attr->show)
1506 ret = o2hb_region_attr->show(reg, page);
1507 return ret;
1510 static ssize_t o2hb_region_store(struct config_item *item,
1511 struct configfs_attribute *attr,
1512 const char *page, size_t count)
1514 struct o2hb_region *reg = to_o2hb_region(item);
1515 struct o2hb_region_attribute *o2hb_region_attr =
1516 container_of(attr, struct o2hb_region_attribute, attr);
1517 ssize_t ret = -EINVAL;
1519 if (o2hb_region_attr->store)
1520 ret = o2hb_region_attr->store(reg, page, count);
1521 return ret;
1524 static struct configfs_item_operations o2hb_region_item_ops = {
1525 .release = o2hb_region_release,
1526 .show_attribute = o2hb_region_show,
1527 .store_attribute = o2hb_region_store,
1530 static struct config_item_type o2hb_region_type = {
1531 .ct_item_ops = &o2hb_region_item_ops,
1532 .ct_attrs = o2hb_region_attrs,
1533 .ct_owner = THIS_MODULE,
1536 /* heartbeat set */
1538 struct o2hb_heartbeat_group {
1539 struct config_group hs_group;
1540 /* some stuff? */
1543 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1545 return group ?
1546 container_of(group, struct o2hb_heartbeat_group, hs_group)
1547 : NULL;
1550 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1551 const char *name)
1553 struct o2hb_region *reg = NULL;
1554 struct config_item *ret = NULL;
1556 reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
1557 if (reg == NULL)
1558 goto out; /* ENOMEM */
1560 config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1562 ret = &reg->hr_item;
1564 spin_lock(&o2hb_live_lock);
1565 list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1566 spin_unlock(&o2hb_live_lock);
1567 out:
1568 if (ret == NULL)
1569 kfree(reg);
1571 return ret;
1574 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1575 struct config_item *item)
1577 struct o2hb_region *reg = to_o2hb_region(item);
1579 /* stop the thread when the user removes the region dir */
1580 if (reg->hr_task) {
1581 kthread_stop(reg->hr_task);
1582 reg->hr_task = NULL;
1585 config_item_put(item);
1588 struct o2hb_heartbeat_group_attribute {
1589 struct configfs_attribute attr;
1590 ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1591 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1594 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1595 struct configfs_attribute *attr,
1596 char *page)
1598 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1599 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1600 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1601 ssize_t ret = 0;
1603 if (o2hb_heartbeat_group_attr->show)
1604 ret = o2hb_heartbeat_group_attr->show(reg, page);
1605 return ret;
1608 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1609 struct configfs_attribute *attr,
1610 const char *page, size_t count)
1612 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1613 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1614 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1615 ssize_t ret = -EINVAL;
1617 if (o2hb_heartbeat_group_attr->store)
1618 ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1619 return ret;
1622 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1623 char *page)
1625 return sprintf(page, "%u\n", o2hb_dead_threshold);
1628 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1629 const char *page,
1630 size_t count)
1632 unsigned long tmp;
1633 char *p = (char *)page;
1635 tmp = simple_strtoul(p, &p, 10);
1636 if (!p || (*p && (*p != '\n')))
1637 return -EINVAL;
1639 /* this will validate ranges for us. */
1640 o2hb_dead_threshold_set((unsigned int) tmp);
1642 return count;
1645 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1646 .attr = { .ca_owner = THIS_MODULE,
1647 .ca_name = "dead_threshold",
1648 .ca_mode = S_IRUGO | S_IWUSR },
1649 .show = o2hb_heartbeat_group_threshold_show,
1650 .store = o2hb_heartbeat_group_threshold_store,
1653 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1654 &o2hb_heartbeat_group_attr_threshold.attr,
1655 NULL,
1658 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1659 .show_attribute = o2hb_heartbeat_group_show,
1660 .store_attribute = o2hb_heartbeat_group_store,
1663 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1664 .make_item = o2hb_heartbeat_group_make_item,
1665 .drop_item = o2hb_heartbeat_group_drop_item,
1668 static struct config_item_type o2hb_heartbeat_group_type = {
1669 .ct_group_ops = &o2hb_heartbeat_group_group_ops,
1670 .ct_item_ops = &o2hb_hearbeat_group_item_ops,
1671 .ct_attrs = o2hb_heartbeat_group_attrs,
1672 .ct_owner = THIS_MODULE,
1675 /* this is just here to avoid touching group in heartbeat.h which the
1676 * entire damn world #includes */
1677 struct config_group *o2hb_alloc_hb_set(void)
1679 struct o2hb_heartbeat_group *hs = NULL;
1680 struct config_group *ret = NULL;
1682 hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1683 if (hs == NULL)
1684 goto out;
1686 config_group_init_type_name(&hs->hs_group, "heartbeat",
1687 &o2hb_heartbeat_group_type);
1689 ret = &hs->hs_group;
1690 out:
1691 if (ret == NULL)
1692 kfree(hs);
1693 return ret;
1696 void o2hb_free_hb_set(struct config_group *group)
1698 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1699 kfree(hs);
1702 /* hb callback registration and issueing */
1704 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1706 if (type == O2HB_NUM_CB)
1707 return ERR_PTR(-EINVAL);
1709 return &o2hb_callbacks[type];
1712 void o2hb_setup_callback(struct o2hb_callback_func *hc,
1713 enum o2hb_callback_type type,
1714 o2hb_cb_func *func,
1715 void *data,
1716 int priority)
1718 INIT_LIST_HEAD(&hc->hc_item);
1719 hc->hc_func = func;
1720 hc->hc_data = data;
1721 hc->hc_priority = priority;
1722 hc->hc_type = type;
1723 hc->hc_magic = O2HB_CB_MAGIC;
1725 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1727 int o2hb_register_callback(struct o2hb_callback_func *hc)
1729 struct o2hb_callback_func *tmp;
1730 struct list_head *iter;
1731 struct o2hb_callback *hbcall;
1732 int ret;
1734 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1735 BUG_ON(!list_empty(&hc->hc_item));
1737 hbcall = hbcall_from_type(hc->hc_type);
1738 if (IS_ERR(hbcall)) {
1739 ret = PTR_ERR(hbcall);
1740 goto out;
1743 down_write(&o2hb_callback_sem);
1745 list_for_each(iter, &hbcall->list) {
1746 tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1747 if (hc->hc_priority < tmp->hc_priority) {
1748 list_add_tail(&hc->hc_item, iter);
1749 break;
1752 if (list_empty(&hc->hc_item))
1753 list_add_tail(&hc->hc_item, &hbcall->list);
1755 up_write(&o2hb_callback_sem);
1756 ret = 0;
1757 out:
1758 mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1759 ret, __builtin_return_address(0), hc);
1760 return ret;
1762 EXPORT_SYMBOL_GPL(o2hb_register_callback);
1764 int o2hb_unregister_callback(struct o2hb_callback_func *hc)
1766 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1768 mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1769 __builtin_return_address(0), hc);
1771 if (list_empty(&hc->hc_item))
1772 return 0;
1774 down_write(&o2hb_callback_sem);
1776 list_del_init(&hc->hc_item);
1778 up_write(&o2hb_callback_sem);
1780 return 0;
1782 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1784 int o2hb_check_node_heartbeating(u8 node_num)
1786 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1788 o2hb_fill_node_map(testing_map, sizeof(testing_map));
1789 if (!test_bit(node_num, testing_map)) {
1790 mlog(ML_HEARTBEAT,
1791 "node (%u) does not have heartbeating enabled.\n",
1792 node_num);
1793 return 0;
1796 return 1;
1798 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1800 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1802 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1804 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1805 if (!test_bit(node_num, testing_map)) {
1806 mlog(ML_HEARTBEAT,
1807 "node (%u) does not have heartbeating enabled.\n",
1808 node_num);
1809 return 0;
1812 return 1;
1814 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1816 /* Makes sure our local node is configured with a node number, and is
1817 * heartbeating. */
1818 int o2hb_check_local_node_heartbeating(void)
1820 u8 node_num;
1822 /* if this node was set then we have networking */
1823 node_num = o2nm_this_node();
1824 if (node_num == O2NM_MAX_NODES) {
1825 mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1826 return 0;
1829 return o2hb_check_node_heartbeating(node_num);
1831 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1834 * this is just a hack until we get the plumbing which flips file systems
1835 * read only and drops the hb ref instead of killing the node dead.
1837 void o2hb_stop_all_regions(void)
1839 struct o2hb_region *reg;
1841 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1843 spin_lock(&o2hb_live_lock);
1845 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1846 reg->hr_unclean_stop = 1;
1848 spin_unlock(&o2hb_live_lock);
1850 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);