1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
37 #include "heartbeat.h"
39 #include "nodemanager.h"
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls. This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
51 static DECLARE_RWSEM(o2hb_callback_sem
);
54 * multiple hb threads are watching multiple regions. A node is live
55 * whenever any of the threads sees activity from the node in its region.
57 static DEFINE_SPINLOCK(o2hb_live_lock
);
58 static struct list_head o2hb_live_slots
[O2NM_MAX_NODES
];
59 static unsigned long o2hb_live_node_bitmap
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
60 static LIST_HEAD(o2hb_node_events
);
61 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue
);
63 static LIST_HEAD(o2hb_all_regions
);
65 static struct o2hb_callback
{
66 struct list_head list
;
67 } o2hb_callbacks
[O2HB_NUM_CB
];
69 static struct o2hb_callback
*hbcall_from_type(enum o2hb_callback_type type
);
71 #define O2HB_DEFAULT_BLOCK_BITS 9
73 unsigned int o2hb_dead_threshold
= O2HB_DEFAULT_DEAD_THRESHOLD
;
75 /* Only sets a new threshold if there are no active regions.
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80 static void o2hb_dead_threshold_set(unsigned int threshold
)
82 if (threshold
> O2HB_MIN_DEAD_THRESHOLD
) {
83 spin_lock(&o2hb_live_lock
);
84 if (list_empty(&o2hb_all_regions
))
85 o2hb_dead_threshold
= threshold
;
86 spin_unlock(&o2hb_live_lock
);
90 struct o2hb_node_event
{
91 struct list_head hn_item
;
92 enum o2hb_callback_type hn_event_type
;
93 struct o2nm_node
*hn_node
;
97 struct o2hb_disk_slot
{
98 struct o2hb_disk_heartbeat_block
*ds_raw_block
;
101 u64 ds_last_generation
;
102 u16 ds_equal_samples
;
103 u16 ds_changed_samples
;
104 struct list_head ds_live_item
;
107 /* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
110 struct config_item hr_item
;
112 struct list_head hr_all_item
;
113 unsigned hr_unclean_stop
:1;
115 /* protected by the hr_callback_sem */
116 struct task_struct
*hr_task
;
118 unsigned int hr_blocks
;
119 unsigned long long hr_start_block
;
121 unsigned int hr_block_bits
;
122 unsigned int hr_block_bytes
;
124 unsigned int hr_slots_per_page
;
125 unsigned int hr_num_pages
;
127 struct page
**hr_slot_data
;
128 struct block_device
*hr_bdev
;
129 struct o2hb_disk_slot
*hr_slots
;
131 /* let the person setting up hb wait for it to return until it
132 * has reached a 'steady' state. This will be fixed when we have
133 * a more complete api that doesn't lead to this sort of fragility. */
134 atomic_t hr_steady_iterations
;
136 char hr_dev_name
[BDEVNAME_SIZE
];
138 unsigned int hr_timeout_ms
;
140 /* randomized as the region goes up and down so that a node
141 * recognizes a node going up and down in one iteration */
144 struct delayed_work hr_write_timeout_work
;
145 unsigned long hr_last_timeout_start
;
147 /* Used during o2hb_check_slot to hold a copy of the block
148 * being checked because we temporarily have to zero out the
150 struct o2hb_disk_heartbeat_block
*hr_tmp_block
;
153 struct o2hb_bio_wait_ctxt
{
154 atomic_t wc_num_reqs
;
155 struct completion wc_io_complete
;
159 static void o2hb_write_timeout(struct work_struct
*work
)
161 struct o2hb_region
*reg
=
162 container_of(work
, struct o2hb_region
,
163 hr_write_timeout_work
.work
);
165 mlog(ML_ERROR
, "Heartbeat write timeout to device %s after %u "
166 "milliseconds\n", reg
->hr_dev_name
,
167 jiffies_to_msecs(jiffies
- reg
->hr_last_timeout_start
));
168 o2quo_disk_timeout();
171 static void o2hb_arm_write_timeout(struct o2hb_region
*reg
)
173 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS
);
175 cancel_delayed_work(®
->hr_write_timeout_work
);
176 reg
->hr_last_timeout_start
= jiffies
;
177 schedule_delayed_work(®
->hr_write_timeout_work
,
178 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS
));
181 static void o2hb_disarm_write_timeout(struct o2hb_region
*reg
)
183 cancel_delayed_work(®
->hr_write_timeout_work
);
184 flush_scheduled_work();
187 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt
*wc
,
188 unsigned int num_ios
)
190 atomic_set(&wc
->wc_num_reqs
, num_ios
);
191 init_completion(&wc
->wc_io_complete
);
195 /* Used in error paths too */
196 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt
*wc
,
199 /* sadly atomic_sub_and_test() isn't available on all platforms. The
200 * good news is that the fast path only completes one at a time */
202 if (atomic_dec_and_test(&wc
->wc_num_reqs
)) {
204 complete(&wc
->wc_io_complete
);
209 static void o2hb_wait_on_io(struct o2hb_region
*reg
,
210 struct o2hb_bio_wait_ctxt
*wc
)
212 struct address_space
*mapping
= reg
->hr_bdev
->bd_inode
->i_mapping
;
214 blk_run_address_space(mapping
);
216 wait_for_completion(&wc
->wc_io_complete
);
219 static int o2hb_bio_end_io(struct bio
*bio
,
220 unsigned int bytes_done
,
223 struct o2hb_bio_wait_ctxt
*wc
= bio
->bi_private
;
226 mlog(ML_ERROR
, "IO Error %d\n", error
);
227 wc
->wc_error
= error
;
233 o2hb_bio_wait_dec(wc
, 1);
237 /* Setup a Bio to cover I/O against num_slots slots starting at
239 static struct bio
*o2hb_setup_one_bio(struct o2hb_region
*reg
,
240 struct o2hb_bio_wait_ctxt
*wc
,
241 unsigned int start_slot
,
242 unsigned int num_slots
)
244 int i
, nr_vecs
, len
, first_page
, last_page
;
245 unsigned int vec_len
, vec_start
;
246 unsigned int bits
= reg
->hr_block_bits
;
247 unsigned int spp
= reg
->hr_slots_per_page
;
251 nr_vecs
= (num_slots
+ spp
- 1) / spp
;
253 /* Testing has shown this allocation to take long enough under
254 * GFP_KERNEL that the local node can get fenced. It would be
255 * nicest if we could pre-allocate these bios and avoid this
257 bio
= bio_alloc(GFP_ATOMIC
, nr_vecs
);
259 mlog(ML_ERROR
, "Could not alloc slots BIO!\n");
260 bio
= ERR_PTR(-ENOMEM
);
264 /* Must put everything in 512 byte sectors for the bio... */
265 bio
->bi_sector
= (reg
->hr_start_block
+ start_slot
) << (bits
- 9);
266 bio
->bi_bdev
= reg
->hr_bdev
;
267 bio
->bi_private
= wc
;
268 bio
->bi_end_io
= o2hb_bio_end_io
;
270 first_page
= start_slot
/ spp
;
271 last_page
= first_page
+ nr_vecs
;
272 vec_start
= (start_slot
<< bits
) % PAGE_CACHE_SIZE
;
273 for(i
= first_page
; i
< last_page
; i
++) {
274 page
= reg
->hr_slot_data
[i
];
276 vec_len
= PAGE_CACHE_SIZE
;
277 /* last page might be short */
278 if (((i
+ 1) * spp
) > (start_slot
+ num_slots
))
279 vec_len
= ((num_slots
+ start_slot
) % spp
) << bits
;
280 vec_len
-= vec_start
;
282 mlog(ML_HB_BIO
, "page %d, vec_len = %u, vec_start = %u\n",
283 i
, vec_len
, vec_start
);
285 len
= bio_add_page(bio
, page
, vec_len
, vec_start
);
286 if (len
!= vec_len
) {
290 mlog(ML_ERROR
, "Error adding page to bio i = %d, "
291 "vec_len = %u, len = %d\n, start = %u\n",
292 i
, vec_len
, len
, vec_start
);
304 * Compute the maximum number of sectors the bdev can handle in one bio,
307 * Stolen from oracleasm, thanks Joel!
309 static int compute_max_sectors(struct block_device
*bdev
)
311 int max_pages
, max_sectors
, pow_two_sectors
;
313 struct request_queue
*q
;
315 q
= bdev_get_queue(bdev
);
316 max_pages
= q
->max_sectors
>> (PAGE_SHIFT
- 9);
317 if (max_pages
> BIO_MAX_PAGES
)
318 max_pages
= BIO_MAX_PAGES
;
319 if (max_pages
> q
->max_phys_segments
)
320 max_pages
= q
->max_phys_segments
;
321 if (max_pages
> q
->max_hw_segments
)
322 max_pages
= q
->max_hw_segments
;
323 max_pages
--; /* Handle I/Os that straddle a page */
326 max_sectors
= max_pages
<< (PAGE_SHIFT
- 9);
328 /* If BIO contains 1 or less than 1 page. */
329 max_sectors
= q
->max_sectors
;
331 /* Why is fls() 1-based???? */
332 pow_two_sectors
= 1 << (fls(max_sectors
) - 1);
334 return pow_two_sectors
;
337 static inline void o2hb_compute_request_limits(struct o2hb_region
*reg
,
338 unsigned int num_slots
,
339 unsigned int *num_bios
,
340 unsigned int *slots_per_bio
)
342 unsigned int max_sectors
, io_sectors
;
344 max_sectors
= compute_max_sectors(reg
->hr_bdev
);
346 io_sectors
= num_slots
<< (reg
->hr_block_bits
- 9);
348 *num_bios
= (io_sectors
+ max_sectors
- 1) / max_sectors
;
349 *slots_per_bio
= max_sectors
>> (reg
->hr_block_bits
- 9);
351 mlog(ML_HB_BIO
, "My io size is %u sectors for %u slots. This "
352 "device can handle %u sectors of I/O\n", io_sectors
, num_slots
,
354 mlog(ML_HB_BIO
, "Will need %u bios holding %u slots each\n",
355 *num_bios
, *slots_per_bio
);
358 static int o2hb_read_slots(struct o2hb_region
*reg
,
359 unsigned int max_slots
)
361 unsigned int num_bios
, slots_per_bio
, start_slot
, num_slots
;
363 struct o2hb_bio_wait_ctxt wc
;
367 o2hb_compute_request_limits(reg
, max_slots
, &num_bios
, &slots_per_bio
);
369 bios
= kcalloc(num_bios
, sizeof(struct bio
*), GFP_KERNEL
);
376 o2hb_bio_wait_init(&wc
, num_bios
);
378 num_slots
= slots_per_bio
;
379 for(i
= 0; i
< num_bios
; i
++) {
380 start_slot
= i
* slots_per_bio
;
382 /* adjust num_slots at last bio */
383 if (max_slots
< (start_slot
+ num_slots
))
384 num_slots
= max_slots
- start_slot
;
386 bio
= o2hb_setup_one_bio(reg
, &wc
, start_slot
, num_slots
);
388 o2hb_bio_wait_dec(&wc
, num_bios
- i
);
390 status
= PTR_ERR(bio
);
396 submit_bio(READ
, bio
);
402 o2hb_wait_on_io(reg
, &wc
);
403 if (wc
.wc_error
&& !status
)
404 status
= wc
.wc_error
;
407 for(i
= 0; i
< num_bios
; i
++)
416 static int o2hb_issue_node_write(struct o2hb_region
*reg
,
417 struct bio
**write_bio
,
418 struct o2hb_bio_wait_ctxt
*write_wc
)
424 o2hb_bio_wait_init(write_wc
, 1);
426 slot
= o2nm_this_node();
428 bio
= o2hb_setup_one_bio(reg
, write_wc
, slot
, 1);
430 status
= PTR_ERR(bio
);
435 submit_bio(WRITE
, bio
);
443 static u32
o2hb_compute_block_crc_le(struct o2hb_region
*reg
,
444 struct o2hb_disk_heartbeat_block
*hb_block
)
449 /* We want to compute the block crc with a 0 value in the
450 * hb_cksum field. Save it off here and replace after the
452 old_cksum
= hb_block
->hb_cksum
;
453 hb_block
->hb_cksum
= 0;
455 ret
= crc32_le(0, (unsigned char *) hb_block
, reg
->hr_block_bytes
);
457 hb_block
->hb_cksum
= old_cksum
;
462 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block
*hb_block
)
464 mlog(ML_ERROR
, "Dump slot information: seq = 0x%llx, node = %u, "
465 "cksum = 0x%x, generation 0x%llx\n",
466 (long long)le64_to_cpu(hb_block
->hb_seq
),
467 hb_block
->hb_node
, le32_to_cpu(hb_block
->hb_cksum
),
468 (long long)le64_to_cpu(hb_block
->hb_generation
));
471 static int o2hb_verify_crc(struct o2hb_region
*reg
,
472 struct o2hb_disk_heartbeat_block
*hb_block
)
476 read
= le32_to_cpu(hb_block
->hb_cksum
);
477 computed
= o2hb_compute_block_crc_le(reg
, hb_block
);
479 return read
== computed
;
482 /* We want to make sure that nobody is heartbeating on top of us --
483 * this will help detect an invalid configuration. */
484 static int o2hb_check_last_timestamp(struct o2hb_region
*reg
)
487 struct o2hb_disk_slot
*slot
;
488 struct o2hb_disk_heartbeat_block
*hb_block
;
490 node_num
= o2nm_this_node();
493 slot
= ®
->hr_slots
[node_num
];
494 /* Don't check on our 1st timestamp */
495 if (slot
->ds_last_time
) {
496 hb_block
= slot
->ds_raw_block
;
498 if (le64_to_cpu(hb_block
->hb_seq
) != slot
->ds_last_time
)
505 static inline void o2hb_prepare_block(struct o2hb_region
*reg
,
510 struct o2hb_disk_slot
*slot
;
511 struct o2hb_disk_heartbeat_block
*hb_block
;
513 node_num
= o2nm_this_node();
514 slot
= ®
->hr_slots
[node_num
];
516 hb_block
= (struct o2hb_disk_heartbeat_block
*)slot
->ds_raw_block
;
517 memset(hb_block
, 0, reg
->hr_block_bytes
);
518 /* TODO: time stuff */
519 cputime
= CURRENT_TIME
.tv_sec
;
523 hb_block
->hb_seq
= cpu_to_le64(cputime
);
524 hb_block
->hb_node
= node_num
;
525 hb_block
->hb_generation
= cpu_to_le64(generation
);
526 hb_block
->hb_dead_ms
= cpu_to_le32(o2hb_dead_threshold
* O2HB_REGION_TIMEOUT_MS
);
528 /* This step must always happen last! */
529 hb_block
->hb_cksum
= cpu_to_le32(o2hb_compute_block_crc_le(reg
,
532 mlog(ML_HB_BIO
, "our node generation = 0x%llx, cksum = 0x%x\n",
533 (long long)cpu_to_le64(generation
),
534 le32_to_cpu(hb_block
->hb_cksum
));
537 static void o2hb_fire_callbacks(struct o2hb_callback
*hbcall
,
538 struct o2nm_node
*node
,
541 struct list_head
*iter
;
542 struct o2hb_callback_func
*f
;
544 list_for_each(iter
, &hbcall
->list
) {
545 f
= list_entry(iter
, struct o2hb_callback_func
, hc_item
);
546 mlog(ML_HEARTBEAT
, "calling funcs %p\n", f
);
547 (f
->hc_func
)(node
, idx
, f
->hc_data
);
551 /* Will run the list in order until we process the passed event */
552 static void o2hb_run_event_list(struct o2hb_node_event
*queued_event
)
555 struct o2hb_callback
*hbcall
;
556 struct o2hb_node_event
*event
;
558 spin_lock(&o2hb_live_lock
);
559 empty
= list_empty(&queued_event
->hn_item
);
560 spin_unlock(&o2hb_live_lock
);
564 /* Holding callback sem assures we don't alter the callback
565 * lists when doing this, and serializes ourselves with other
566 * processes wanting callbacks. */
567 down_write(&o2hb_callback_sem
);
569 spin_lock(&o2hb_live_lock
);
570 while (!list_empty(&o2hb_node_events
)
571 && !list_empty(&queued_event
->hn_item
)) {
572 event
= list_entry(o2hb_node_events
.next
,
573 struct o2hb_node_event
,
575 list_del_init(&event
->hn_item
);
576 spin_unlock(&o2hb_live_lock
);
578 mlog(ML_HEARTBEAT
, "Node %s event for %d\n",
579 event
->hn_event_type
== O2HB_NODE_UP_CB
? "UP" : "DOWN",
582 hbcall
= hbcall_from_type(event
->hn_event_type
);
584 /* We should *never* have gotten on to the list with a
585 * bad type... This isn't something that we should try
586 * to recover from. */
587 BUG_ON(IS_ERR(hbcall
));
589 o2hb_fire_callbacks(hbcall
, event
->hn_node
, event
->hn_node_num
);
591 spin_lock(&o2hb_live_lock
);
593 spin_unlock(&o2hb_live_lock
);
595 up_write(&o2hb_callback_sem
);
598 static void o2hb_queue_node_event(struct o2hb_node_event
*event
,
599 enum o2hb_callback_type type
,
600 struct o2nm_node
*node
,
603 assert_spin_locked(&o2hb_live_lock
);
605 event
->hn_event_type
= type
;
606 event
->hn_node
= node
;
607 event
->hn_node_num
= node_num
;
609 mlog(ML_HEARTBEAT
, "Queue node %s event for node %d\n",
610 type
== O2HB_NODE_UP_CB
? "UP" : "DOWN", node_num
);
612 list_add_tail(&event
->hn_item
, &o2hb_node_events
);
615 static void o2hb_shutdown_slot(struct o2hb_disk_slot
*slot
)
617 struct o2hb_node_event event
=
618 { .hn_item
= LIST_HEAD_INIT(event
.hn_item
), };
619 struct o2nm_node
*node
;
621 node
= o2nm_get_node_by_num(slot
->ds_node_num
);
625 spin_lock(&o2hb_live_lock
);
626 if (!list_empty(&slot
->ds_live_item
)) {
627 mlog(ML_HEARTBEAT
, "Shutdown, node %d leaves region\n",
630 list_del_init(&slot
->ds_live_item
);
632 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
633 clear_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
635 o2hb_queue_node_event(&event
, O2HB_NODE_DOWN_CB
, node
,
639 spin_unlock(&o2hb_live_lock
);
641 o2hb_run_event_list(&event
);
646 static int o2hb_check_slot(struct o2hb_region
*reg
,
647 struct o2hb_disk_slot
*slot
)
649 int changed
= 0, gen_changed
= 0;
650 struct o2hb_node_event event
=
651 { .hn_item
= LIST_HEAD_INIT(event
.hn_item
), };
652 struct o2nm_node
*node
;
653 struct o2hb_disk_heartbeat_block
*hb_block
= reg
->hr_tmp_block
;
655 unsigned int dead_ms
= o2hb_dead_threshold
* O2HB_REGION_TIMEOUT_MS
;
656 unsigned int slot_dead_ms
;
658 memcpy(hb_block
, slot
->ds_raw_block
, reg
->hr_block_bytes
);
660 /* Is this correct? Do we assume that the node doesn't exist
661 * if we're not configured for him? */
662 node
= o2nm_get_node_by_num(slot
->ds_node_num
);
666 if (!o2hb_verify_crc(reg
, hb_block
)) {
667 /* all paths from here will drop o2hb_live_lock for
669 spin_lock(&o2hb_live_lock
);
671 /* Don't print an error on the console in this case -
672 * a freshly formatted heartbeat area will not have a
674 if (list_empty(&slot
->ds_live_item
))
677 /* The node is live but pushed out a bad crc. We
678 * consider it a transient miss but don't populate any
679 * other values as they may be junk. */
680 mlog(ML_ERROR
, "Node %d has written a bad crc to %s\n",
681 slot
->ds_node_num
, reg
->hr_dev_name
);
682 o2hb_dump_slot(hb_block
);
684 slot
->ds_equal_samples
++;
688 /* we don't care if these wrap.. the state transitions below
689 * clear at the right places */
690 cputime
= le64_to_cpu(hb_block
->hb_seq
);
691 if (slot
->ds_last_time
!= cputime
)
692 slot
->ds_changed_samples
++;
694 slot
->ds_equal_samples
++;
695 slot
->ds_last_time
= cputime
;
697 /* The node changed heartbeat generations. We assume this to
698 * mean it dropped off but came back before we timed out. We
699 * want to consider it down for the time being but don't want
700 * to lose any changed_samples state we might build up to
701 * considering it live again. */
702 if (slot
->ds_last_generation
!= le64_to_cpu(hb_block
->hb_generation
)) {
704 slot
->ds_equal_samples
= 0;
705 mlog(ML_HEARTBEAT
, "Node %d changed generation (0x%llx "
706 "to 0x%llx)\n", slot
->ds_node_num
,
707 (long long)slot
->ds_last_generation
,
708 (long long)le64_to_cpu(hb_block
->hb_generation
));
711 slot
->ds_last_generation
= le64_to_cpu(hb_block
->hb_generation
);
713 mlog(ML_HEARTBEAT
, "Slot %d gen 0x%llx cksum 0x%x "
714 "seq %llu last %llu changed %u equal %u\n",
715 slot
->ds_node_num
, (long long)slot
->ds_last_generation
,
716 le32_to_cpu(hb_block
->hb_cksum
),
717 (unsigned long long)le64_to_cpu(hb_block
->hb_seq
),
718 (unsigned long long)slot
->ds_last_time
, slot
->ds_changed_samples
,
719 slot
->ds_equal_samples
);
721 spin_lock(&o2hb_live_lock
);
724 /* dead nodes only come to life after some number of
725 * changes at any time during their dead time */
726 if (list_empty(&slot
->ds_live_item
) &&
727 slot
->ds_changed_samples
>= O2HB_LIVE_THRESHOLD
) {
728 mlog(ML_HEARTBEAT
, "Node %d (id 0x%llx) joined my region\n",
729 slot
->ds_node_num
, (long long)slot
->ds_last_generation
);
731 /* first on the list generates a callback */
732 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
733 set_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
735 o2hb_queue_node_event(&event
, O2HB_NODE_UP_CB
, node
,
741 list_add_tail(&slot
->ds_live_item
,
742 &o2hb_live_slots
[slot
->ds_node_num
]);
744 slot
->ds_equal_samples
= 0;
746 /* We want to be sure that all nodes agree on the
747 * number of milliseconds before a node will be
748 * considered dead. The self-fencing timeout is
749 * computed from this value, and a discrepancy might
750 * result in heartbeat calling a node dead when it
751 * hasn't self-fenced yet. */
752 slot_dead_ms
= le32_to_cpu(hb_block
->hb_dead_ms
);
753 if (slot_dead_ms
&& slot_dead_ms
!= dead_ms
) {
754 /* TODO: Perhaps we can fail the region here. */
755 mlog(ML_ERROR
, "Node %d on device %s has a dead count "
756 "of %u ms, but our count is %u ms.\n"
757 "Please double check your configuration values "
758 "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
759 slot
->ds_node_num
, reg
->hr_dev_name
, slot_dead_ms
,
765 /* if the list is dead, we're done.. */
766 if (list_empty(&slot
->ds_live_item
))
769 /* live nodes only go dead after enough consequtive missed
770 * samples.. reset the missed counter whenever we see
772 if (slot
->ds_equal_samples
>= o2hb_dead_threshold
|| gen_changed
) {
773 mlog(ML_HEARTBEAT
, "Node %d left my region\n",
776 /* last off the live_slot generates a callback */
777 list_del_init(&slot
->ds_live_item
);
778 if (list_empty(&o2hb_live_slots
[slot
->ds_node_num
])) {
779 clear_bit(slot
->ds_node_num
, o2hb_live_node_bitmap
);
781 o2hb_queue_node_event(&event
, O2HB_NODE_DOWN_CB
, node
,
787 /* We don't clear this because the node is still
788 * actually writing new blocks. */
790 slot
->ds_changed_samples
= 0;
793 if (slot
->ds_changed_samples
) {
794 slot
->ds_changed_samples
= 0;
795 slot
->ds_equal_samples
= 0;
798 spin_unlock(&o2hb_live_lock
);
800 o2hb_run_event_list(&event
);
806 /* This could be faster if we just implmented a find_last_bit, but I
807 * don't think the circumstances warrant it. */
808 static int o2hb_highest_node(unsigned long *nodes
,
815 while ((node
= find_next_bit(nodes
, numbits
, node
+ 1)) != -1) {
825 static int o2hb_do_disk_heartbeat(struct o2hb_region
*reg
)
827 int i
, ret
, highest_node
, change
= 0;
828 unsigned long configured_nodes
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
829 struct bio
*write_bio
;
830 struct o2hb_bio_wait_ctxt write_wc
;
832 ret
= o2nm_configured_node_map(configured_nodes
,
833 sizeof(configured_nodes
));
839 highest_node
= o2hb_highest_node(configured_nodes
, O2NM_MAX_NODES
);
840 if (highest_node
>= O2NM_MAX_NODES
) {
841 mlog(ML_NOTICE
, "ocfs2_heartbeat: no configured nodes found!\n");
845 /* No sense in reading the slots of nodes that don't exist
846 * yet. Of course, if the node definitions have holes in them
847 * then we're reading an empty slot anyway... Consider this
849 ret
= o2hb_read_slots(reg
, highest_node
+ 1);
855 /* With an up to date view of the slots, we can check that no
856 * other node has been improperly configured to heartbeat in
858 if (!o2hb_check_last_timestamp(reg
))
859 mlog(ML_ERROR
, "Device \"%s\": another node is heartbeating "
860 "in our slot!\n", reg
->hr_dev_name
);
862 /* fill in the proper info for our next heartbeat */
863 o2hb_prepare_block(reg
, reg
->hr_generation
);
865 /* And fire off the write. Note that we don't wait on this I/O
867 ret
= o2hb_issue_node_write(reg
, &write_bio
, &write_wc
);
874 while((i
= find_next_bit(configured_nodes
, O2NM_MAX_NODES
, i
+ 1)) < O2NM_MAX_NODES
) {
876 change
|= o2hb_check_slot(reg
, ®
->hr_slots
[i
]);
880 * We have to be sure we've advertised ourselves on disk
881 * before we can go to steady state. This ensures that
882 * people we find in our steady state have seen us.
884 o2hb_wait_on_io(reg
, &write_wc
);
886 if (write_wc
.wc_error
) {
887 /* Do not re-arm the write timeout on I/O error - we
888 * can't be sure that the new block ever made it to
890 mlog(ML_ERROR
, "Write error %d on device \"%s\"\n",
891 write_wc
.wc_error
, reg
->hr_dev_name
);
892 return write_wc
.wc_error
;
895 o2hb_arm_write_timeout(reg
);
897 /* let the person who launched us know when things are steady */
898 if (!change
&& (atomic_read(®
->hr_steady_iterations
) != 0)) {
899 if (atomic_dec_and_test(®
->hr_steady_iterations
))
900 wake_up(&o2hb_steady_queue
);
906 /* Subtract b from a, storing the result in a. a *must* have a larger
908 static void o2hb_tv_subtract(struct timeval
*a
,
911 /* just return 0 when a is after b */
912 if (a
->tv_sec
< b
->tv_sec
||
913 (a
->tv_sec
== b
->tv_sec
&& a
->tv_usec
< b
->tv_usec
)) {
919 a
->tv_sec
-= b
->tv_sec
;
920 a
->tv_usec
-= b
->tv_usec
;
921 while ( a
->tv_usec
< 0 ) {
923 a
->tv_usec
+= 1000000;
927 static unsigned int o2hb_elapsed_msecs(struct timeval
*start
,
930 struct timeval res
= *end
;
932 o2hb_tv_subtract(&res
, start
);
934 return res
.tv_sec
* 1000 + res
.tv_usec
/ 1000;
938 * we ride the region ref that the region dir holds. before the region
939 * dir is removed and drops it ref it will wait to tear down this
942 static int o2hb_thread(void *data
)
945 struct o2hb_region
*reg
= data
;
946 struct bio
*write_bio
;
947 struct o2hb_bio_wait_ctxt write_wc
;
948 struct timeval before_hb
, after_hb
;
949 unsigned int elapsed_msec
;
951 mlog(ML_HEARTBEAT
|ML_KTHREAD
, "hb thread running\n");
953 set_user_nice(current
, -20);
955 while (!kthread_should_stop() && !reg
->hr_unclean_stop
) {
956 /* We track the time spent inside
957 * o2hb_do_disk_heartbeat so that we avoid more then
958 * hr_timeout_ms between disk writes. On busy systems
959 * this should result in a heartbeat which is less
960 * likely to time itself out. */
961 do_gettimeofday(&before_hb
);
965 ret
= o2hb_do_disk_heartbeat(reg
);
966 } while (ret
&& ++i
< 2);
968 do_gettimeofday(&after_hb
);
969 elapsed_msec
= o2hb_elapsed_msecs(&before_hb
, &after_hb
);
971 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
972 before_hb
.tv_sec
, (unsigned long) before_hb
.tv_usec
,
973 after_hb
.tv_sec
, (unsigned long) after_hb
.tv_usec
,
976 if (elapsed_msec
< reg
->hr_timeout_ms
) {
977 /* the kthread api has blocked signals for us so no
978 * need to record the return value. */
979 msleep_interruptible(reg
->hr_timeout_ms
- elapsed_msec
);
983 o2hb_disarm_write_timeout(reg
);
985 /* unclean stop is only used in very bad situation */
986 for(i
= 0; !reg
->hr_unclean_stop
&& i
< reg
->hr_blocks
; i
++)
987 o2hb_shutdown_slot(®
->hr_slots
[i
]);
989 /* Explicit down notification - avoid forcing the other nodes
990 * to timeout on this region when we could just as easily
991 * write a clear generation - thus indicating to them that
992 * this node has left this region.
994 * XXX: Should we skip this on unclean_stop? */
995 o2hb_prepare_block(reg
, 0);
996 ret
= o2hb_issue_node_write(reg
, &write_bio
, &write_wc
);
998 o2hb_wait_on_io(reg
, &write_wc
);
1004 mlog(ML_HEARTBEAT
|ML_KTHREAD
, "hb thread exiting\n");
1009 void o2hb_init(void)
1013 for (i
= 0; i
< ARRAY_SIZE(o2hb_callbacks
); i
++)
1014 INIT_LIST_HEAD(&o2hb_callbacks
[i
].list
);
1016 for (i
= 0; i
< ARRAY_SIZE(o2hb_live_slots
); i
++)
1017 INIT_LIST_HEAD(&o2hb_live_slots
[i
]);
1019 INIT_LIST_HEAD(&o2hb_node_events
);
1021 memset(o2hb_live_node_bitmap
, 0, sizeof(o2hb_live_node_bitmap
));
1024 /* if we're already in a callback then we're already serialized by the sem */
1025 static void o2hb_fill_node_map_from_callback(unsigned long *map
,
1028 BUG_ON(bytes
< (BITS_TO_LONGS(O2NM_MAX_NODES
) * sizeof(unsigned long)));
1030 memcpy(map
, &o2hb_live_node_bitmap
, bytes
);
1034 * get a map of all nodes that are heartbeating in any regions
1036 void o2hb_fill_node_map(unsigned long *map
, unsigned bytes
)
1038 /* callers want to serialize this map and callbacks so that they
1039 * can trust that they don't miss nodes coming to the party */
1040 down_read(&o2hb_callback_sem
);
1041 spin_lock(&o2hb_live_lock
);
1042 o2hb_fill_node_map_from_callback(map
, bytes
);
1043 spin_unlock(&o2hb_live_lock
);
1044 up_read(&o2hb_callback_sem
);
1046 EXPORT_SYMBOL_GPL(o2hb_fill_node_map
);
1049 * heartbeat configfs bits. The heartbeat set is a default set under
1050 * the cluster set in nodemanager.c.
1053 static struct o2hb_region
*to_o2hb_region(struct config_item
*item
)
1055 return item
? container_of(item
, struct o2hb_region
, hr_item
) : NULL
;
1058 /* drop_item only drops its ref after killing the thread, nothing should
1059 * be using the region anymore. this has to clean up any state that
1060 * attributes might have built up. */
1061 static void o2hb_region_release(struct config_item
*item
)
1065 struct o2hb_region
*reg
= to_o2hb_region(item
);
1067 if (reg
->hr_tmp_block
)
1068 kfree(reg
->hr_tmp_block
);
1070 if (reg
->hr_slot_data
) {
1071 for (i
= 0; i
< reg
->hr_num_pages
; i
++) {
1072 page
= reg
->hr_slot_data
[i
];
1076 kfree(reg
->hr_slot_data
);
1080 blkdev_put(reg
->hr_bdev
);
1083 kfree(reg
->hr_slots
);
1085 spin_lock(&o2hb_live_lock
);
1086 list_del(®
->hr_all_item
);
1087 spin_unlock(&o2hb_live_lock
);
1092 static int o2hb_read_block_input(struct o2hb_region
*reg
,
1095 unsigned long *ret_bytes
,
1096 unsigned int *ret_bits
)
1098 unsigned long bytes
;
1099 char *p
= (char *)page
;
1101 bytes
= simple_strtoul(p
, &p
, 0);
1102 if (!p
|| (*p
&& (*p
!= '\n')))
1105 /* Heartbeat and fs min / max block sizes are the same. */
1106 if (bytes
> 4096 || bytes
< 512)
1108 if (hweight16(bytes
) != 1)
1114 *ret_bits
= ffs(bytes
) - 1;
1119 static ssize_t
o2hb_region_block_bytes_read(struct o2hb_region
*reg
,
1122 return sprintf(page
, "%u\n", reg
->hr_block_bytes
);
1125 static ssize_t
o2hb_region_block_bytes_write(struct o2hb_region
*reg
,
1130 unsigned long block_bytes
;
1131 unsigned int block_bits
;
1136 status
= o2hb_read_block_input(reg
, page
, count
,
1137 &block_bytes
, &block_bits
);
1141 reg
->hr_block_bytes
= (unsigned int)block_bytes
;
1142 reg
->hr_block_bits
= block_bits
;
1147 static ssize_t
o2hb_region_start_block_read(struct o2hb_region
*reg
,
1150 return sprintf(page
, "%llu\n", reg
->hr_start_block
);
1153 static ssize_t
o2hb_region_start_block_write(struct o2hb_region
*reg
,
1157 unsigned long long tmp
;
1158 char *p
= (char *)page
;
1163 tmp
= simple_strtoull(p
, &p
, 0);
1164 if (!p
|| (*p
&& (*p
!= '\n')))
1167 reg
->hr_start_block
= tmp
;
1172 static ssize_t
o2hb_region_blocks_read(struct o2hb_region
*reg
,
1175 return sprintf(page
, "%d\n", reg
->hr_blocks
);
1178 static ssize_t
o2hb_region_blocks_write(struct o2hb_region
*reg
,
1183 char *p
= (char *)page
;
1188 tmp
= simple_strtoul(p
, &p
, 0);
1189 if (!p
|| (*p
&& (*p
!= '\n')))
1192 if (tmp
> O2NM_MAX_NODES
|| tmp
== 0)
1195 reg
->hr_blocks
= (unsigned int)tmp
;
1200 static ssize_t
o2hb_region_dev_read(struct o2hb_region
*reg
,
1203 unsigned int ret
= 0;
1206 ret
= sprintf(page
, "%s\n", reg
->hr_dev_name
);
1211 static void o2hb_init_region_params(struct o2hb_region
*reg
)
1213 reg
->hr_slots_per_page
= PAGE_CACHE_SIZE
>> reg
->hr_block_bits
;
1214 reg
->hr_timeout_ms
= O2HB_REGION_TIMEOUT_MS
;
1216 mlog(ML_HEARTBEAT
, "hr_start_block = %llu, hr_blocks = %u\n",
1217 reg
->hr_start_block
, reg
->hr_blocks
);
1218 mlog(ML_HEARTBEAT
, "hr_block_bytes = %u, hr_block_bits = %u\n",
1219 reg
->hr_block_bytes
, reg
->hr_block_bits
);
1220 mlog(ML_HEARTBEAT
, "hr_timeout_ms = %u\n", reg
->hr_timeout_ms
);
1221 mlog(ML_HEARTBEAT
, "dead threshold = %u\n", o2hb_dead_threshold
);
1224 static int o2hb_map_slot_data(struct o2hb_region
*reg
)
1227 unsigned int last_slot
;
1228 unsigned int spp
= reg
->hr_slots_per_page
;
1231 struct o2hb_disk_slot
*slot
;
1233 reg
->hr_tmp_block
= kmalloc(reg
->hr_block_bytes
, GFP_KERNEL
);
1234 if (reg
->hr_tmp_block
== NULL
) {
1235 mlog_errno(-ENOMEM
);
1239 reg
->hr_slots
= kcalloc(reg
->hr_blocks
,
1240 sizeof(struct o2hb_disk_slot
), GFP_KERNEL
);
1241 if (reg
->hr_slots
== NULL
) {
1242 mlog_errno(-ENOMEM
);
1246 for(i
= 0; i
< reg
->hr_blocks
; i
++) {
1247 slot
= ®
->hr_slots
[i
];
1248 slot
->ds_node_num
= i
;
1249 INIT_LIST_HEAD(&slot
->ds_live_item
);
1250 slot
->ds_raw_block
= NULL
;
1253 reg
->hr_num_pages
= (reg
->hr_blocks
+ spp
- 1) / spp
;
1254 mlog(ML_HEARTBEAT
, "Going to require %u pages to cover %u blocks "
1255 "at %u blocks per page\n",
1256 reg
->hr_num_pages
, reg
->hr_blocks
, spp
);
1258 reg
->hr_slot_data
= kcalloc(reg
->hr_num_pages
, sizeof(struct page
*),
1260 if (!reg
->hr_slot_data
) {
1261 mlog_errno(-ENOMEM
);
1265 for(i
= 0; i
< reg
->hr_num_pages
; i
++) {
1266 page
= alloc_page(GFP_KERNEL
);
1268 mlog_errno(-ENOMEM
);
1272 reg
->hr_slot_data
[i
] = page
;
1274 last_slot
= i
* spp
;
1275 raw
= page_address(page
);
1277 (j
< spp
) && ((j
+ last_slot
) < reg
->hr_blocks
);
1279 BUG_ON((j
+ last_slot
) >= reg
->hr_blocks
);
1281 slot
= ®
->hr_slots
[j
+ last_slot
];
1282 slot
->ds_raw_block
=
1283 (struct o2hb_disk_heartbeat_block
*) raw
;
1285 raw
+= reg
->hr_block_bytes
;
1292 /* Read in all the slots available and populate the tracking
1293 * structures so that we can start with a baseline idea of what's
1295 static int o2hb_populate_slot_data(struct o2hb_region
*reg
)
1298 struct o2hb_disk_slot
*slot
;
1299 struct o2hb_disk_heartbeat_block
*hb_block
;
1303 ret
= o2hb_read_slots(reg
, reg
->hr_blocks
);
1309 /* We only want to get an idea of the values initially in each
1310 * slot, so we do no verification - o2hb_check_slot will
1311 * actually determine if each configured slot is valid and
1312 * whether any values have changed. */
1313 for(i
= 0; i
< reg
->hr_blocks
; i
++) {
1314 slot
= ®
->hr_slots
[i
];
1315 hb_block
= (struct o2hb_disk_heartbeat_block
*) slot
->ds_raw_block
;
1317 /* Only fill the values that o2hb_check_slot uses to
1318 * determine changing slots */
1319 slot
->ds_last_time
= le64_to_cpu(hb_block
->hb_seq
);
1320 slot
->ds_last_generation
= le64_to_cpu(hb_block
->hb_generation
);
1328 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1329 static ssize_t
o2hb_region_dev_write(struct o2hb_region
*reg
,
1335 char *p
= (char *)page
;
1336 struct file
*filp
= NULL
;
1337 struct inode
*inode
= NULL
;
1338 ssize_t ret
= -EINVAL
;
1343 /* We can't heartbeat without having had our node number
1344 * configured yet. */
1345 if (o2nm_this_node() == O2NM_MAX_NODES
)
1348 fd
= simple_strtol(p
, &p
, 0);
1349 if (!p
|| (*p
&& (*p
!= '\n')))
1352 if (fd
< 0 || fd
>= INT_MAX
)
1359 if (reg
->hr_blocks
== 0 || reg
->hr_start_block
== 0 ||
1360 reg
->hr_block_bytes
== 0)
1363 inode
= igrab(filp
->f_mapping
->host
);
1367 if (!S_ISBLK(inode
->i_mode
))
1370 reg
->hr_bdev
= I_BDEV(filp
->f_mapping
->host
);
1371 ret
= blkdev_get(reg
->hr_bdev
, FMODE_WRITE
| FMODE_READ
, 0);
1373 reg
->hr_bdev
= NULL
;
1378 bdevname(reg
->hr_bdev
, reg
->hr_dev_name
);
1380 sectsize
= bdev_hardsect_size(reg
->hr_bdev
);
1381 if (sectsize
!= reg
->hr_block_bytes
) {
1383 "blocksize %u incorrect for device, expected %d",
1384 reg
->hr_block_bytes
, sectsize
);
1389 o2hb_init_region_params(reg
);
1391 /* Generation of zero is invalid */
1393 get_random_bytes(®
->hr_generation
,
1394 sizeof(reg
->hr_generation
));
1395 } while (reg
->hr_generation
== 0);
1397 ret
= o2hb_map_slot_data(reg
);
1403 ret
= o2hb_populate_slot_data(reg
);
1409 INIT_DELAYED_WORK(®
->hr_write_timeout_work
, o2hb_write_timeout
);
1412 * A node is considered live after it has beat LIVE_THRESHOLD
1413 * times. We're not steady until we've given them a chance
1414 * _after_ our first read.
1416 atomic_set(®
->hr_steady_iterations
, O2HB_LIVE_THRESHOLD
+ 1);
1418 reg
->hr_task
= kthread_run(o2hb_thread
, reg
, "o2hb-%s",
1419 reg
->hr_item
.ci_name
);
1420 if (IS_ERR(reg
->hr_task
)) {
1421 ret
= PTR_ERR(reg
->hr_task
);
1423 reg
->hr_task
= NULL
;
1427 ret
= wait_event_interruptible(o2hb_steady_queue
,
1428 atomic_read(®
->hr_steady_iterations
) == 0);
1430 kthread_stop(reg
->hr_task
);
1431 reg
->hr_task
= NULL
;
1443 blkdev_put(reg
->hr_bdev
);
1444 reg
->hr_bdev
= NULL
;
1450 struct o2hb_region_attribute
{
1451 struct configfs_attribute attr
;
1452 ssize_t (*show
)(struct o2hb_region
*, char *);
1453 ssize_t (*store
)(struct o2hb_region
*, const char *, size_t);
1456 static struct o2hb_region_attribute o2hb_region_attr_block_bytes
= {
1457 .attr
= { .ca_owner
= THIS_MODULE
,
1458 .ca_name
= "block_bytes",
1459 .ca_mode
= S_IRUGO
| S_IWUSR
},
1460 .show
= o2hb_region_block_bytes_read
,
1461 .store
= o2hb_region_block_bytes_write
,
1464 static struct o2hb_region_attribute o2hb_region_attr_start_block
= {
1465 .attr
= { .ca_owner
= THIS_MODULE
,
1466 .ca_name
= "start_block",
1467 .ca_mode
= S_IRUGO
| S_IWUSR
},
1468 .show
= o2hb_region_start_block_read
,
1469 .store
= o2hb_region_start_block_write
,
1472 static struct o2hb_region_attribute o2hb_region_attr_blocks
= {
1473 .attr
= { .ca_owner
= THIS_MODULE
,
1474 .ca_name
= "blocks",
1475 .ca_mode
= S_IRUGO
| S_IWUSR
},
1476 .show
= o2hb_region_blocks_read
,
1477 .store
= o2hb_region_blocks_write
,
1480 static struct o2hb_region_attribute o2hb_region_attr_dev
= {
1481 .attr
= { .ca_owner
= THIS_MODULE
,
1483 .ca_mode
= S_IRUGO
| S_IWUSR
},
1484 .show
= o2hb_region_dev_read
,
1485 .store
= o2hb_region_dev_write
,
1488 static struct configfs_attribute
*o2hb_region_attrs
[] = {
1489 &o2hb_region_attr_block_bytes
.attr
,
1490 &o2hb_region_attr_start_block
.attr
,
1491 &o2hb_region_attr_blocks
.attr
,
1492 &o2hb_region_attr_dev
.attr
,
1496 static ssize_t
o2hb_region_show(struct config_item
*item
,
1497 struct configfs_attribute
*attr
,
1500 struct o2hb_region
*reg
= to_o2hb_region(item
);
1501 struct o2hb_region_attribute
*o2hb_region_attr
=
1502 container_of(attr
, struct o2hb_region_attribute
, attr
);
1505 if (o2hb_region_attr
->show
)
1506 ret
= o2hb_region_attr
->show(reg
, page
);
1510 static ssize_t
o2hb_region_store(struct config_item
*item
,
1511 struct configfs_attribute
*attr
,
1512 const char *page
, size_t count
)
1514 struct o2hb_region
*reg
= to_o2hb_region(item
);
1515 struct o2hb_region_attribute
*o2hb_region_attr
=
1516 container_of(attr
, struct o2hb_region_attribute
, attr
);
1517 ssize_t ret
= -EINVAL
;
1519 if (o2hb_region_attr
->store
)
1520 ret
= o2hb_region_attr
->store(reg
, page
, count
);
1524 static struct configfs_item_operations o2hb_region_item_ops
= {
1525 .release
= o2hb_region_release
,
1526 .show_attribute
= o2hb_region_show
,
1527 .store_attribute
= o2hb_region_store
,
1530 static struct config_item_type o2hb_region_type
= {
1531 .ct_item_ops
= &o2hb_region_item_ops
,
1532 .ct_attrs
= o2hb_region_attrs
,
1533 .ct_owner
= THIS_MODULE
,
1538 struct o2hb_heartbeat_group
{
1539 struct config_group hs_group
;
1543 static struct o2hb_heartbeat_group
*to_o2hb_heartbeat_group(struct config_group
*group
)
1546 container_of(group
, struct o2hb_heartbeat_group
, hs_group
)
1550 static struct config_item
*o2hb_heartbeat_group_make_item(struct config_group
*group
,
1553 struct o2hb_region
*reg
= NULL
;
1554 struct config_item
*ret
= NULL
;
1556 reg
= kzalloc(sizeof(struct o2hb_region
), GFP_KERNEL
);
1558 goto out
; /* ENOMEM */
1560 config_item_init_type_name(®
->hr_item
, name
, &o2hb_region_type
);
1562 ret
= ®
->hr_item
;
1564 spin_lock(&o2hb_live_lock
);
1565 list_add_tail(®
->hr_all_item
, &o2hb_all_regions
);
1566 spin_unlock(&o2hb_live_lock
);
1574 static void o2hb_heartbeat_group_drop_item(struct config_group
*group
,
1575 struct config_item
*item
)
1577 struct o2hb_region
*reg
= to_o2hb_region(item
);
1579 /* stop the thread when the user removes the region dir */
1581 kthread_stop(reg
->hr_task
);
1582 reg
->hr_task
= NULL
;
1585 config_item_put(item
);
1588 struct o2hb_heartbeat_group_attribute
{
1589 struct configfs_attribute attr
;
1590 ssize_t (*show
)(struct o2hb_heartbeat_group
*, char *);
1591 ssize_t (*store
)(struct o2hb_heartbeat_group
*, const char *, size_t);
1594 static ssize_t
o2hb_heartbeat_group_show(struct config_item
*item
,
1595 struct configfs_attribute
*attr
,
1598 struct o2hb_heartbeat_group
*reg
= to_o2hb_heartbeat_group(to_config_group(item
));
1599 struct o2hb_heartbeat_group_attribute
*o2hb_heartbeat_group_attr
=
1600 container_of(attr
, struct o2hb_heartbeat_group_attribute
, attr
);
1603 if (o2hb_heartbeat_group_attr
->show
)
1604 ret
= o2hb_heartbeat_group_attr
->show(reg
, page
);
1608 static ssize_t
o2hb_heartbeat_group_store(struct config_item
*item
,
1609 struct configfs_attribute
*attr
,
1610 const char *page
, size_t count
)
1612 struct o2hb_heartbeat_group
*reg
= to_o2hb_heartbeat_group(to_config_group(item
));
1613 struct o2hb_heartbeat_group_attribute
*o2hb_heartbeat_group_attr
=
1614 container_of(attr
, struct o2hb_heartbeat_group_attribute
, attr
);
1615 ssize_t ret
= -EINVAL
;
1617 if (o2hb_heartbeat_group_attr
->store
)
1618 ret
= o2hb_heartbeat_group_attr
->store(reg
, page
, count
);
1622 static ssize_t
o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group
*group
,
1625 return sprintf(page
, "%u\n", o2hb_dead_threshold
);
1628 static ssize_t
o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group
*group
,
1633 char *p
= (char *)page
;
1635 tmp
= simple_strtoul(p
, &p
, 10);
1636 if (!p
|| (*p
&& (*p
!= '\n')))
1639 /* this will validate ranges for us. */
1640 o2hb_dead_threshold_set((unsigned int) tmp
);
1645 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold
= {
1646 .attr
= { .ca_owner
= THIS_MODULE
,
1647 .ca_name
= "dead_threshold",
1648 .ca_mode
= S_IRUGO
| S_IWUSR
},
1649 .show
= o2hb_heartbeat_group_threshold_show
,
1650 .store
= o2hb_heartbeat_group_threshold_store
,
1653 static struct configfs_attribute
*o2hb_heartbeat_group_attrs
[] = {
1654 &o2hb_heartbeat_group_attr_threshold
.attr
,
1658 static struct configfs_item_operations o2hb_hearbeat_group_item_ops
= {
1659 .show_attribute
= o2hb_heartbeat_group_show
,
1660 .store_attribute
= o2hb_heartbeat_group_store
,
1663 static struct configfs_group_operations o2hb_heartbeat_group_group_ops
= {
1664 .make_item
= o2hb_heartbeat_group_make_item
,
1665 .drop_item
= o2hb_heartbeat_group_drop_item
,
1668 static struct config_item_type o2hb_heartbeat_group_type
= {
1669 .ct_group_ops
= &o2hb_heartbeat_group_group_ops
,
1670 .ct_item_ops
= &o2hb_hearbeat_group_item_ops
,
1671 .ct_attrs
= o2hb_heartbeat_group_attrs
,
1672 .ct_owner
= THIS_MODULE
,
1675 /* this is just here to avoid touching group in heartbeat.h which the
1676 * entire damn world #includes */
1677 struct config_group
*o2hb_alloc_hb_set(void)
1679 struct o2hb_heartbeat_group
*hs
= NULL
;
1680 struct config_group
*ret
= NULL
;
1682 hs
= kzalloc(sizeof(struct o2hb_heartbeat_group
), GFP_KERNEL
);
1686 config_group_init_type_name(&hs
->hs_group
, "heartbeat",
1687 &o2hb_heartbeat_group_type
);
1689 ret
= &hs
->hs_group
;
1696 void o2hb_free_hb_set(struct config_group
*group
)
1698 struct o2hb_heartbeat_group
*hs
= to_o2hb_heartbeat_group(group
);
1702 /* hb callback registration and issueing */
1704 static struct o2hb_callback
*hbcall_from_type(enum o2hb_callback_type type
)
1706 if (type
== O2HB_NUM_CB
)
1707 return ERR_PTR(-EINVAL
);
1709 return &o2hb_callbacks
[type
];
1712 void o2hb_setup_callback(struct o2hb_callback_func
*hc
,
1713 enum o2hb_callback_type type
,
1718 INIT_LIST_HEAD(&hc
->hc_item
);
1721 hc
->hc_priority
= priority
;
1723 hc
->hc_magic
= O2HB_CB_MAGIC
;
1725 EXPORT_SYMBOL_GPL(o2hb_setup_callback
);
1727 int o2hb_register_callback(struct o2hb_callback_func
*hc
)
1729 struct o2hb_callback_func
*tmp
;
1730 struct list_head
*iter
;
1731 struct o2hb_callback
*hbcall
;
1734 BUG_ON(hc
->hc_magic
!= O2HB_CB_MAGIC
);
1735 BUG_ON(!list_empty(&hc
->hc_item
));
1737 hbcall
= hbcall_from_type(hc
->hc_type
);
1738 if (IS_ERR(hbcall
)) {
1739 ret
= PTR_ERR(hbcall
);
1743 down_write(&o2hb_callback_sem
);
1745 list_for_each(iter
, &hbcall
->list
) {
1746 tmp
= list_entry(iter
, struct o2hb_callback_func
, hc_item
);
1747 if (hc
->hc_priority
< tmp
->hc_priority
) {
1748 list_add_tail(&hc
->hc_item
, iter
);
1752 if (list_empty(&hc
->hc_item
))
1753 list_add_tail(&hc
->hc_item
, &hbcall
->list
);
1755 up_write(&o2hb_callback_sem
);
1758 mlog(ML_HEARTBEAT
, "returning %d on behalf of %p for funcs %p\n",
1759 ret
, __builtin_return_address(0), hc
);
1762 EXPORT_SYMBOL_GPL(o2hb_register_callback
);
1764 int o2hb_unregister_callback(struct o2hb_callback_func
*hc
)
1766 BUG_ON(hc
->hc_magic
!= O2HB_CB_MAGIC
);
1768 mlog(ML_HEARTBEAT
, "on behalf of %p for funcs %p\n",
1769 __builtin_return_address(0), hc
);
1771 if (list_empty(&hc
->hc_item
))
1774 down_write(&o2hb_callback_sem
);
1776 list_del_init(&hc
->hc_item
);
1778 up_write(&o2hb_callback_sem
);
1782 EXPORT_SYMBOL_GPL(o2hb_unregister_callback
);
1784 int o2hb_check_node_heartbeating(u8 node_num
)
1786 unsigned long testing_map
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
1788 o2hb_fill_node_map(testing_map
, sizeof(testing_map
));
1789 if (!test_bit(node_num
, testing_map
)) {
1791 "node (%u) does not have heartbeating enabled.\n",
1798 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating
);
1800 int o2hb_check_node_heartbeating_from_callback(u8 node_num
)
1802 unsigned long testing_map
[BITS_TO_LONGS(O2NM_MAX_NODES
)];
1804 o2hb_fill_node_map_from_callback(testing_map
, sizeof(testing_map
));
1805 if (!test_bit(node_num
, testing_map
)) {
1807 "node (%u) does not have heartbeating enabled.\n",
1814 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback
);
1816 /* Makes sure our local node is configured with a node number, and is
1818 int o2hb_check_local_node_heartbeating(void)
1822 /* if this node was set then we have networking */
1823 node_num
= o2nm_this_node();
1824 if (node_num
== O2NM_MAX_NODES
) {
1825 mlog(ML_HEARTBEAT
, "this node has not been configured.\n");
1829 return o2hb_check_node_heartbeating(node_num
);
1831 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating
);
1834 * this is just a hack until we get the plumbing which flips file systems
1835 * read only and drops the hb ref instead of killing the node dead.
1837 void o2hb_stop_all_regions(void)
1839 struct o2hb_region
*reg
;
1841 mlog(ML_ERROR
, "stopping heartbeat on all active regions.\n");
1843 spin_lock(&o2hb_live_lock
);
1845 list_for_each_entry(reg
, &o2hb_all_regions
, hr_all_item
)
1846 reg
->hr_unclean_stop
= 1;
1848 spin_unlock(&o2hb_live_lock
);
1850 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions
);