4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
20 #include <asm/uaccess.h>
21 #include <asm/ioctls.h>
24 * We use a start+len construction, which provides full use of the
26 * -- Florian Coosmann (FGC)
28 * Reads with count = 0 should always return 0.
29 * -- Julian Bradfield 1999-06-07.
31 * FIFOs and Pipes now generate SIGIO for both readers and writers.
32 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
34 * pipe_read & write cleanup
35 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
38 /* Drop the inode semaphore and wait for a pipe event, atomically */
39 void pipe_wait(struct pipe_inode_info
*pipe
)
44 * Pipes are system-local resources, so sleeping on them
45 * is considered a noninteractive wait:
47 prepare_to_wait(&pipe
->wait
, &wait
,
48 TASK_INTERRUPTIBLE
| TASK_NONINTERACTIVE
);
50 mutex_unlock(&pipe
->inode
->i_mutex
);
52 finish_wait(&pipe
->wait
, &wait
);
54 mutex_lock(&pipe
->inode
->i_mutex
);
58 pipe_iov_copy_from_user(void *to
, struct iovec
*iov
, unsigned long len
,
66 copy
= min_t(unsigned long, len
, iov
->iov_len
);
69 if (__copy_from_user_inatomic(to
, iov
->iov_base
, copy
))
72 if (copy_from_user(to
, iov
->iov_base
, copy
))
77 iov
->iov_base
+= copy
;
84 pipe_iov_copy_to_user(struct iovec
*iov
, const void *from
, unsigned long len
,
92 copy
= min_t(unsigned long, len
, iov
->iov_len
);
95 if (__copy_to_user_inatomic(iov
->iov_base
, from
, copy
))
98 if (copy_to_user(iov
->iov_base
, from
, copy
))
103 iov
->iov_base
+= copy
;
104 iov
->iov_len
-= copy
;
110 * Attempt to pre-fault in the user memory, so we can use atomic copies.
111 * Returns the number of bytes not faulted in.
113 static int iov_fault_in_pages_write(struct iovec
*iov
, unsigned long len
)
115 while (!iov
->iov_len
)
119 unsigned long this_len
;
121 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
122 if (fault_in_pages_writeable(iov
->iov_base
, this_len
))
133 * Pre-fault in the user memory, so we can use atomic copies.
135 static void iov_fault_in_pages_read(struct iovec
*iov
, unsigned long len
)
137 while (!iov
->iov_len
)
141 unsigned long this_len
;
143 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
144 fault_in_pages_readable(iov
->iov_base
, this_len
);
150 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
151 struct pipe_buffer
*buf
)
153 struct page
*page
= buf
->page
;
156 * If nobody else uses this page, and we don't already have a
157 * temporary page, let's keep track of it as a one-deep
158 * allocation cache. (Otherwise just release our reference to it)
160 if (page_count(page
) == 1 && !pipe
->tmp_page
)
161 pipe
->tmp_page
= page
;
163 page_cache_release(page
);
166 void *generic_pipe_buf_map(struct pipe_inode_info
*pipe
,
167 struct pipe_buffer
*buf
, int atomic
)
170 buf
->flags
|= PIPE_BUF_FLAG_ATOMIC
;
171 return kmap_atomic(buf
->page
, KM_USER0
);
174 return kmap(buf
->page
);
177 void generic_pipe_buf_unmap(struct pipe_inode_info
*pipe
,
178 struct pipe_buffer
*buf
, void *map_data
)
180 if (buf
->flags
& PIPE_BUF_FLAG_ATOMIC
) {
181 buf
->flags
&= ~PIPE_BUF_FLAG_ATOMIC
;
182 kunmap_atomic(map_data
, KM_USER0
);
187 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
188 struct pipe_buffer
*buf
)
190 struct page
*page
= buf
->page
;
192 if (page_count(page
) == 1) {
200 void generic_pipe_buf_get(struct pipe_inode_info
*info
, struct pipe_buffer
*buf
)
202 page_cache_get(buf
->page
);
205 int generic_pipe_buf_pin(struct pipe_inode_info
*info
, struct pipe_buffer
*buf
)
210 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
212 .map
= generic_pipe_buf_map
,
213 .unmap
= generic_pipe_buf_unmap
,
214 .pin
= generic_pipe_buf_pin
,
215 .release
= anon_pipe_buf_release
,
216 .steal
= generic_pipe_buf_steal
,
217 .get
= generic_pipe_buf_get
,
221 pipe_read(struct kiocb
*iocb
, const struct iovec
*_iov
,
222 unsigned long nr_segs
, loff_t pos
)
224 struct file
*filp
= iocb
->ki_filp
;
225 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
226 struct pipe_inode_info
*pipe
;
229 struct iovec
*iov
= (struct iovec
*)_iov
;
232 total_len
= iov_length(iov
, nr_segs
);
233 /* Null read succeeds. */
234 if (unlikely(total_len
== 0))
239 mutex_lock(&inode
->i_mutex
);
240 pipe
= inode
->i_pipe
;
242 int bufs
= pipe
->nrbufs
;
244 int curbuf
= pipe
->curbuf
;
245 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
246 const struct pipe_buf_operations
*ops
= buf
->ops
;
248 size_t chars
= buf
->len
;
251 if (chars
> total_len
)
254 error
= ops
->pin(pipe
, buf
);
261 atomic
= !iov_fault_in_pages_write(iov
, chars
);
263 addr
= ops
->map(pipe
, buf
, atomic
);
264 error
= pipe_iov_copy_to_user(iov
, addr
+ buf
->offset
, chars
, atomic
);
265 ops
->unmap(pipe
, buf
, addr
);
266 if (unlikely(error
)) {
268 * Just retry with the slow path if we failed.
279 buf
->offset
+= chars
;
283 ops
->release(pipe
, buf
);
284 curbuf
= (curbuf
+ 1) & (PIPE_BUFFERS
-1);
285 pipe
->curbuf
= curbuf
;
286 pipe
->nrbufs
= --bufs
;
291 break; /* common path: read succeeded */
293 if (bufs
) /* More to do? */
297 if (!pipe
->waiting_writers
) {
298 /* syscall merging: Usually we must not sleep
299 * if O_NONBLOCK is set, or if we got some data.
300 * But if a writer sleeps in kernel space, then
301 * we can wait for that data without violating POSIX.
305 if (filp
->f_flags
& O_NONBLOCK
) {
310 if (signal_pending(current
)) {
316 wake_up_interruptible_sync(&pipe
->wait
);
317 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
321 mutex_unlock(&inode
->i_mutex
);
323 /* Signal writers asynchronously that there is more room. */
325 wake_up_interruptible(&pipe
->wait
);
326 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
334 pipe_write(struct kiocb
*iocb
, const struct iovec
*_iov
,
335 unsigned long nr_segs
, loff_t ppos
)
337 struct file
*filp
= iocb
->ki_filp
;
338 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
339 struct pipe_inode_info
*pipe
;
342 struct iovec
*iov
= (struct iovec
*)_iov
;
346 total_len
= iov_length(iov
, nr_segs
);
347 /* Null write succeeds. */
348 if (unlikely(total_len
== 0))
353 mutex_lock(&inode
->i_mutex
);
354 pipe
= inode
->i_pipe
;
356 if (!pipe
->readers
) {
357 send_sig(SIGPIPE
, current
, 0);
362 /* We try to merge small writes */
363 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
364 if (pipe
->nrbufs
&& chars
!= 0) {
365 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
367 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
368 const struct pipe_buf_operations
*ops
= buf
->ops
;
369 int offset
= buf
->offset
+ buf
->len
;
371 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
372 int error
, atomic
= 1;
375 error
= ops
->pin(pipe
, buf
);
379 iov_fault_in_pages_read(iov
, chars
);
381 addr
= ops
->map(pipe
, buf
, atomic
);
382 error
= pipe_iov_copy_from_user(offset
+ addr
, iov
,
384 ops
->unmap(pipe
, buf
, addr
);
405 if (!pipe
->readers
) {
406 send_sig(SIGPIPE
, current
, 0);
412 if (bufs
< PIPE_BUFFERS
) {
413 int newbuf
= (pipe
->curbuf
+ bufs
) & (PIPE_BUFFERS
-1);
414 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
415 struct page
*page
= pipe
->tmp_page
;
417 int error
, atomic
= 1;
420 page
= alloc_page(GFP_HIGHUSER
);
421 if (unlikely(!page
)) {
422 ret
= ret
? : -ENOMEM
;
425 pipe
->tmp_page
= page
;
427 /* Always wake up, even if the copy fails. Otherwise
428 * we lock up (O_NONBLOCK-)readers that sleep due to
430 * FIXME! Is this really true?
434 if (chars
> total_len
)
437 iov_fault_in_pages_read(iov
, chars
);
440 src
= kmap_atomic(page
, KM_USER0
);
444 error
= pipe_iov_copy_from_user(src
, iov
, chars
,
447 kunmap_atomic(src
, KM_USER0
);
451 if (unlikely(error
)) {
462 /* Insert it into the buffer array */
464 buf
->ops
= &anon_pipe_buf_ops
;
467 pipe
->nrbufs
= ++bufs
;
468 pipe
->tmp_page
= NULL
;
474 if (bufs
< PIPE_BUFFERS
)
476 if (filp
->f_flags
& O_NONBLOCK
) {
481 if (signal_pending(current
)) {
487 wake_up_interruptible_sync(&pipe
->wait
);
488 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
491 pipe
->waiting_writers
++;
493 pipe
->waiting_writers
--;
496 mutex_unlock(&inode
->i_mutex
);
498 wake_up_interruptible(&pipe
->wait
);
499 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
502 file_update_time(filp
);
507 bad_pipe_r(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
513 bad_pipe_w(struct file
*filp
, const char __user
*buf
, size_t count
,
520 pipe_ioctl(struct inode
*pino
, struct file
*filp
,
521 unsigned int cmd
, unsigned long arg
)
523 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
524 struct pipe_inode_info
*pipe
;
525 int count
, buf
, nrbufs
;
529 mutex_lock(&inode
->i_mutex
);
530 pipe
= inode
->i_pipe
;
533 nrbufs
= pipe
->nrbufs
;
534 while (--nrbufs
>= 0) {
535 count
+= pipe
->bufs
[buf
].len
;
536 buf
= (buf
+1) & (PIPE_BUFFERS
-1);
538 mutex_unlock(&inode
->i_mutex
);
540 return put_user(count
, (int __user
*)arg
);
546 /* No kernel lock held - fine */
548 pipe_poll(struct file
*filp
, poll_table
*wait
)
551 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
552 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
555 poll_wait(filp
, &pipe
->wait
, wait
);
557 /* Reading only -- no need for acquiring the semaphore. */
558 nrbufs
= pipe
->nrbufs
;
560 if (filp
->f_mode
& FMODE_READ
) {
561 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
562 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
566 if (filp
->f_mode
& FMODE_WRITE
) {
567 mask
|= (nrbufs
< PIPE_BUFFERS
) ? POLLOUT
| POLLWRNORM
: 0;
569 * Most Unices do not set POLLERR for FIFOs but on Linux they
570 * behave exactly like pipes for poll().
580 pipe_release(struct inode
*inode
, int decr
, int decw
)
582 struct pipe_inode_info
*pipe
;
584 mutex_lock(&inode
->i_mutex
);
585 pipe
= inode
->i_pipe
;
586 pipe
->readers
-= decr
;
587 pipe
->writers
-= decw
;
589 if (!pipe
->readers
&& !pipe
->writers
) {
590 free_pipe_info(inode
);
592 wake_up_interruptible(&pipe
->wait
);
593 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
594 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
596 mutex_unlock(&inode
->i_mutex
);
602 pipe_read_fasync(int fd
, struct file
*filp
, int on
)
604 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
607 mutex_lock(&inode
->i_mutex
);
608 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_readers
);
609 mutex_unlock(&inode
->i_mutex
);
619 pipe_write_fasync(int fd
, struct file
*filp
, int on
)
621 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
624 mutex_lock(&inode
->i_mutex
);
625 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_writers
);
626 mutex_unlock(&inode
->i_mutex
);
636 pipe_rdwr_fasync(int fd
, struct file
*filp
, int on
)
638 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
639 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
642 mutex_lock(&inode
->i_mutex
);
644 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
647 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
649 mutex_unlock(&inode
->i_mutex
);
659 pipe_read_release(struct inode
*inode
, struct file
*filp
)
661 pipe_read_fasync(-1, filp
, 0);
662 return pipe_release(inode
, 1, 0);
666 pipe_write_release(struct inode
*inode
, struct file
*filp
)
668 pipe_write_fasync(-1, filp
, 0);
669 return pipe_release(inode
, 0, 1);
673 pipe_rdwr_release(struct inode
*inode
, struct file
*filp
)
677 pipe_rdwr_fasync(-1, filp
, 0);
678 decr
= (filp
->f_mode
& FMODE_READ
) != 0;
679 decw
= (filp
->f_mode
& FMODE_WRITE
) != 0;
680 return pipe_release(inode
, decr
, decw
);
684 pipe_read_open(struct inode
*inode
, struct file
*filp
)
686 /* We could have perhaps used atomic_t, but this and friends
687 below are the only places. So it doesn't seem worthwhile. */
688 mutex_lock(&inode
->i_mutex
);
689 inode
->i_pipe
->readers
++;
690 mutex_unlock(&inode
->i_mutex
);
696 pipe_write_open(struct inode
*inode
, struct file
*filp
)
698 mutex_lock(&inode
->i_mutex
);
699 inode
->i_pipe
->writers
++;
700 mutex_unlock(&inode
->i_mutex
);
706 pipe_rdwr_open(struct inode
*inode
, struct file
*filp
)
708 mutex_lock(&inode
->i_mutex
);
709 if (filp
->f_mode
& FMODE_READ
)
710 inode
->i_pipe
->readers
++;
711 if (filp
->f_mode
& FMODE_WRITE
)
712 inode
->i_pipe
->writers
++;
713 mutex_unlock(&inode
->i_mutex
);
719 * The file_operations structs are not static because they
720 * are also used in linux/fs/fifo.c to do operations on FIFOs.
722 const struct file_operations read_fifo_fops
= {
724 .read
= do_sync_read
,
725 .aio_read
= pipe_read
,
729 .open
= pipe_read_open
,
730 .release
= pipe_read_release
,
731 .fasync
= pipe_read_fasync
,
734 const struct file_operations write_fifo_fops
= {
737 .write
= do_sync_write
,
738 .aio_write
= pipe_write
,
741 .open
= pipe_write_open
,
742 .release
= pipe_write_release
,
743 .fasync
= pipe_write_fasync
,
746 const struct file_operations rdwr_fifo_fops
= {
748 .read
= do_sync_read
,
749 .aio_read
= pipe_read
,
750 .write
= do_sync_write
,
751 .aio_write
= pipe_write
,
754 .open
= pipe_rdwr_open
,
755 .release
= pipe_rdwr_release
,
756 .fasync
= pipe_rdwr_fasync
,
759 static const struct file_operations read_pipe_fops
= {
761 .read
= do_sync_read
,
762 .aio_read
= pipe_read
,
766 .open
= pipe_read_open
,
767 .release
= pipe_read_release
,
768 .fasync
= pipe_read_fasync
,
771 static const struct file_operations write_pipe_fops
= {
774 .write
= do_sync_write
,
775 .aio_write
= pipe_write
,
778 .open
= pipe_write_open
,
779 .release
= pipe_write_release
,
780 .fasync
= pipe_write_fasync
,
783 static const struct file_operations rdwr_pipe_fops
= {
785 .read
= do_sync_read
,
786 .aio_read
= pipe_read
,
787 .write
= do_sync_write
,
788 .aio_write
= pipe_write
,
791 .open
= pipe_rdwr_open
,
792 .release
= pipe_rdwr_release
,
793 .fasync
= pipe_rdwr_fasync
,
796 struct pipe_inode_info
* alloc_pipe_info(struct inode
*inode
)
798 struct pipe_inode_info
*pipe
;
800 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
802 init_waitqueue_head(&pipe
->wait
);
803 pipe
->r_counter
= pipe
->w_counter
= 1;
810 void __free_pipe_info(struct pipe_inode_info
*pipe
)
814 for (i
= 0; i
< PIPE_BUFFERS
; i
++) {
815 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
817 buf
->ops
->release(pipe
, buf
);
820 __free_page(pipe
->tmp_page
);
824 void free_pipe_info(struct inode
*inode
)
826 __free_pipe_info(inode
->i_pipe
);
827 inode
->i_pipe
= NULL
;
830 static struct vfsmount
*pipe_mnt __read_mostly
;
831 static int pipefs_delete_dentry(struct dentry
*dentry
)
834 * At creation time, we pretended this dentry was hashed
835 * (by clearing DCACHE_UNHASHED bit in d_flags)
836 * At delete time, we restore the truth : not hashed.
837 * (so that dput() can proceed correctly)
839 dentry
->d_flags
|= DCACHE_UNHASHED
;
843 static struct dentry_operations pipefs_dentry_operations
= {
844 .d_delete
= pipefs_delete_dentry
,
847 static struct inode
* get_pipe_inode(void)
849 struct inode
*inode
= new_inode(pipe_mnt
->mnt_sb
);
850 struct pipe_inode_info
*pipe
;
855 pipe
= alloc_pipe_info(inode
);
858 inode
->i_pipe
= pipe
;
860 pipe
->readers
= pipe
->writers
= 1;
861 inode
->i_fop
= &rdwr_pipe_fops
;
864 * Mark the inode dirty from the very beginning,
865 * that way it will never be moved to the dirty
866 * list because "mark_inode_dirty()" will think
867 * that it already _is_ on the dirty list.
869 inode
->i_state
= I_DIRTY
;
870 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
871 inode
->i_uid
= current
->fsuid
;
872 inode
->i_gid
= current
->fsgid
;
873 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
884 struct file
*create_write_pipe(void)
889 struct dentry
*dentry
;
893 f
= get_empty_filp();
895 return ERR_PTR(-ENFILE
);
897 inode
= get_pipe_inode();
901 this.len
= sprintf(name
, "[%lu]", inode
->i_ino
);
905 dentry
= d_alloc(pipe_mnt
->mnt_sb
->s_root
, &this);
909 dentry
->d_op
= &pipefs_dentry_operations
;
911 * We dont want to publish this dentry into global dentry hash table.
912 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
913 * This permits a working /proc/$pid/fd/XXX on pipes
915 dentry
->d_flags
&= ~DCACHE_UNHASHED
;
916 d_instantiate(dentry
, inode
);
917 f
->f_path
.mnt
= mntget(pipe_mnt
);
918 f
->f_path
.dentry
= dentry
;
919 f
->f_mapping
= inode
->i_mapping
;
921 f
->f_flags
= O_WRONLY
;
922 f
->f_op
= &write_pipe_fops
;
923 f
->f_mode
= FMODE_WRITE
;
929 free_pipe_info(inode
);
936 void free_write_pipe(struct file
*f
)
938 mntput(f
->f_path
.mnt
);
939 dput(f
->f_path
.dentry
);
943 struct file
*create_read_pipe(struct file
*wrf
)
945 struct file
*f
= get_empty_filp();
947 return ERR_PTR(-ENFILE
);
949 /* Grab pipe from the writer */
950 f
->f_path
.mnt
= mntget(wrf
->f_path
.mnt
);
951 f
->f_path
.dentry
= dget(wrf
->f_path
.dentry
);
952 f
->f_mapping
= wrf
->f_path
.dentry
->d_inode
->i_mapping
;
955 f
->f_flags
= O_RDONLY
;
956 f
->f_op
= &read_pipe_fops
;
957 f
->f_mode
= FMODE_READ
;
965 struct file
*fw
, *fr
;
969 fw
= create_write_pipe();
972 fr
= create_read_pipe(fw
);
977 error
= get_unused_fd();
982 error
= get_unused_fd();
1004 * pipefs should _never_ be mounted by userland - too much of security hassle,
1005 * no real gain from having the whole whorehouse mounted. So we don't need
1006 * any operations on the root directory. However, we need a non-trivial
1007 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1009 static int pipefs_get_sb(struct file_system_type
*fs_type
,
1010 int flags
, const char *dev_name
, void *data
,
1011 struct vfsmount
*mnt
)
1013 return get_sb_pseudo(fs_type
, "pipe:", NULL
, PIPEFS_MAGIC
, mnt
);
1016 static struct file_system_type pipe_fs_type
= {
1018 .get_sb
= pipefs_get_sb
,
1019 .kill_sb
= kill_anon_super
,
1022 static int __init
init_pipe_fs(void)
1024 int err
= register_filesystem(&pipe_fs_type
);
1027 pipe_mnt
= kern_mount(&pipe_fs_type
);
1028 if (IS_ERR(pipe_mnt
)) {
1029 err
= PTR_ERR(pipe_mnt
);
1030 unregister_filesystem(&pipe_fs_type
);
1036 static void __exit
exit_pipe_fs(void)
1038 unregister_filesystem(&pipe_fs_type
);
1042 fs_initcall(init_pipe_fs
);
1043 module_exit(exit_pipe_fs
);