4 #include <linux/rcupdate.h>
17 * A struct pid is the kernel's internal notion of a process identifier.
18 * It refers to individual tasks, process groups, and sessions. While
19 * there are processes attached to it the struct pid lives in a hash
20 * table, so it and then the processes that it refers to can be found
21 * quickly from the numeric pid value. The attached processes may be
22 * quickly accessed by following pointers from struct pid.
24 * Storing pid_t values in the kernel and refering to them later has a
25 * problem. The process originally with that pid may have exited and the
26 * pid allocator wrapped, and another process could have come along
27 * and been assigned that pid.
29 * Referring to user space processes by holding a reference to struct
30 * task_struct has a problem. When the user space process exits
31 * the now useless task_struct is still kept. A task_struct plus a
32 * stack consumes around 10K of low kernel memory. More precisely
33 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
34 * a struct pid is about 64 bytes.
36 * Holding a reference to struct pid solves both of these problems.
37 * It is small so holding a reference does not consume a lot of
38 * resources, and since a new struct pid is allocated when the numeric pid
39 * value is reused (when pids wrap around) we don't mistakenly refer to new
46 /* Try to keep pid_chain in the same cacheline as nr for find_pid */
48 struct hlist_node pid_chain
;
49 /* lists of tasks that use this pid */
50 struct hlist_head tasks
[PIDTYPE_MAX
];
56 struct hlist_node node
;
60 static inline struct pid
*get_pid(struct pid
*pid
)
63 atomic_inc(&pid
->count
);
67 extern void FASTCALL(put_pid(struct pid
*pid
));
68 extern struct task_struct
*FASTCALL(pid_task(struct pid
*pid
, enum pid_type
));
69 extern struct task_struct
*FASTCALL(get_pid_task(struct pid
*pid
,
72 extern struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
);
75 * attach_pid() and detach_pid() must be called with the tasklist_lock
78 extern int FASTCALL(attach_pid(struct task_struct
*task
,
79 enum pid_type type
, int nr
));
81 extern void FASTCALL(detach_pid(struct task_struct
*task
, enum pid_type
));
82 extern void FASTCALL(transfer_pid(struct task_struct
*old
,
83 struct task_struct
*new, enum pid_type
));
86 * look up a PID in the hash table. Must be called with the tasklist_lock
87 * or rcu_read_lock() held.
89 extern struct pid
*FASTCALL(find_pid(int nr
));
92 * Lookup a PID in the hash table, and return with it's count elevated.
94 extern struct pid
*find_get_pid(int nr
);
95 extern struct pid
*find_ge_pid(int nr
);
97 extern struct pid
*alloc_pid(void);
98 extern void FASTCALL(free_pid(struct pid
*pid
));
100 static inline pid_t
pid_nr(struct pid
*pid
)
109 #define do_each_task_pid(who, type, task) \
111 struct hlist_node *pos___; \
112 struct pid *pid___ = find_pid(who); \
113 if (pid___ != NULL) \
114 hlist_for_each_entry_rcu((task), pos___, \
115 &pid___->tasks[type], pids[type].node) {
117 #define while_each_task_pid(who, type, task) \
122 #define do_each_pid_task(pid, type, task) \
124 struct hlist_node *pos___; \
126 hlist_for_each_entry_rcu((task), pos___, \
127 &pid->tasks[type], pids[type].node) {
129 #define while_each_pid_task(pid, type, task) \
133 #endif /* _LINUX_PID_H */