2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
31 #include <linux/proc_fs.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #define RT6_TRACE(x...) do { ; } while (0)
49 struct rt6_statistics rt6_stats
;
51 static kmem_cache_t
* fib6_node_kmem __read_mostly
;
55 #ifdef CONFIG_IPV6_SUBTREES
66 struct fib6_walker_t w
;
67 int (*func
)(struct rt6_info
*, void *arg
);
71 DEFINE_RWLOCK(fib6_walker_lock
);
74 #ifdef CONFIG_IPV6_SUBTREES
75 #define FWS_INIT FWS_S
76 #define SUBTREE(fn) ((fn)->subtree)
78 #define FWS_INIT FWS_L
79 #define SUBTREE(fn) NULL
82 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
);
83 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
);
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
92 static __u32 rt_sernum
;
94 static DEFINE_TIMER(ip6_fib_timer
, fib6_run_gc
, 0, 0);
96 struct fib6_walker_t fib6_walker_list
= {
97 .prev
= &fib6_walker_list
,
98 .next
= &fib6_walker_list
,
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
103 static __inline__ u32
fib6_new_sernum(void)
112 * Auxiliary address test functions for the radix tree.
114 * These assume a 32bit processor (although it will work on
122 static __inline__
int addr_bit_set(void *token
, int fn_bit
)
126 return htonl(1 << ((~fn_bit
)&0x1F)) & addr
[fn_bit
>>5];
129 static __inline__
struct fib6_node
* node_alloc(void)
131 struct fib6_node
*fn
;
133 if ((fn
= kmem_cache_alloc(fib6_node_kmem
, SLAB_ATOMIC
)) != NULL
)
134 memset(fn
, 0, sizeof(struct fib6_node
));
139 static __inline__
void node_free(struct fib6_node
* fn
)
141 kmem_cache_free(fib6_node_kmem
, fn
);
144 static __inline__
void rt6_release(struct rt6_info
*rt
)
146 if (atomic_dec_and_test(&rt
->rt6i_ref
))
147 dst_free(&rt
->u
.dst
);
154 * return the appropriate node for a routing tree "add" operation
155 * by either creating and inserting or by returning an existing
159 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
160 int addrlen
, int plen
,
163 struct fib6_node
*fn
, *in
, *ln
;
164 struct fib6_node
*pn
= NULL
;
168 __u32 sernum
= fib6_new_sernum();
170 RT6_TRACE("fib6_add_1\n");
172 /* insert node in tree */
177 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
182 if (plen
< fn
->fn_bit
||
183 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
190 if (plen
== fn
->fn_bit
) {
191 /* clean up an intermediate node */
192 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
193 rt6_release(fn
->leaf
);
197 fn
->fn_sernum
= sernum
;
203 * We have more bits to go
206 /* Try to walk down on tree. */
207 fn
->fn_sernum
= sernum
;
208 dir
= addr_bit_set(addr
, fn
->fn_bit
);
210 fn
= dir
? fn
->right
: fn
->left
;
214 * We walked to the bottom of tree.
215 * Create new leaf node without children.
225 ln
->fn_sernum
= sernum
;
237 * split since we don't have a common prefix anymore or
238 * we have a less significant route.
239 * we've to insert an intermediate node on the list
240 * this new node will point to the one we need to create
246 /* find 1st bit in difference between the 2 addrs.
248 See comment in __ipv6_addr_diff: bit may be an invalid value,
249 but if it is >= plen, the value is ignored in any case.
252 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
257 * (new leaf node)[ln] (old node)[fn]
263 if (in
== NULL
|| ln
== NULL
) {
272 * new intermediate node.
274 * be off since that an address that chooses one of
275 * the branches would not match less specific routes
276 * in the other branch
283 atomic_inc(&in
->leaf
->rt6i_ref
);
285 in
->fn_sernum
= sernum
;
287 /* update parent pointer */
298 ln
->fn_sernum
= sernum
;
300 if (addr_bit_set(addr
, bit
)) {
307 } else { /* plen <= bit */
310 * (new leaf node)[ln]
312 * (old node)[fn] NULL
324 ln
->fn_sernum
= sernum
;
331 if (addr_bit_set(&key
->addr
, plen
))
342 * Insert routing information in a node.
345 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
346 struct nlmsghdr
*nlh
, struct netlink_skb_parms
*req
)
348 struct rt6_info
*iter
= NULL
;
349 struct rt6_info
**ins
;
353 if (fn
->fn_flags
&RTN_TL_ROOT
&&
354 fn
->leaf
== &ip6_null_entry
&&
355 !(rt
->rt6i_flags
& (RTF_DEFAULT
| RTF_ADDRCONF
)) ){
361 for (iter
= fn
->leaf
; iter
; iter
=iter
->u
.next
) {
363 * Search for duplicates
366 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
368 * Same priority level
371 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
372 iter
->rt6i_idev
== rt
->rt6i_idev
&&
373 ipv6_addr_equal(&iter
->rt6i_gateway
,
374 &rt
->rt6i_gateway
)) {
375 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
377 iter
->rt6i_expires
= rt
->rt6i_expires
;
378 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
379 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
380 iter
->rt6i_expires
= 0;
386 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
400 atomic_inc(&rt
->rt6i_ref
);
401 inet6_rt_notify(RTM_NEWROUTE
, rt
, nlh
, req
);
402 rt6_stats
.fib_rt_entries
++;
404 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
405 rt6_stats
.fib_route_nodes
++;
406 fn
->fn_flags
|= RTN_RTINFO
;
412 static __inline__
void fib6_start_gc(struct rt6_info
*rt
)
414 if (ip6_fib_timer
.expires
== 0 &&
415 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
416 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
419 void fib6_force_start_gc(void)
421 if (ip6_fib_timer
.expires
== 0)
422 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
426 * Add routing information to the routing tree.
427 * <destination addr>/<source addr>
428 * with source addr info in sub-trees
431 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
,
432 struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
434 struct fib6_node
*fn
;
437 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
438 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
443 #ifdef CONFIG_IPV6_SUBTREES
444 if (rt
->rt6i_src
.plen
) {
445 struct fib6_node
*sn
;
447 if (fn
->subtree
== NULL
) {
448 struct fib6_node
*sfn
;
460 /* Create subtree root node */
465 sfn
->leaf
= &ip6_null_entry
;
466 atomic_inc(&ip6_null_entry
.rt6i_ref
);
467 sfn
->fn_flags
= RTN_ROOT
;
468 sfn
->fn_sernum
= fib6_new_sernum();
470 /* Now add the first leaf node to new subtree */
472 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
473 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
474 offsetof(struct rt6_info
, rt6i_src
));
477 /* If it is failed, discard just allocated
478 root, and then (in st_failure) stale node
485 /* Now link new subtree to main tree */
488 if (fn
->leaf
== NULL
) {
490 atomic_inc(&rt
->rt6i_ref
);
493 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
494 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
495 offsetof(struct rt6_info
, rt6i_src
));
505 err
= fib6_add_rt2node(fn
, rt
, nlh
, req
);
509 if (!(rt
->rt6i_flags
&RTF_CACHE
))
510 fib6_prune_clones(fn
, rt
);
515 dst_free(&rt
->u
.dst
);
518 #ifdef CONFIG_IPV6_SUBTREES
519 /* Subtree creation failed, probably main tree node
520 is orphan. If it is, shoot it.
523 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
524 fib6_repair_tree(fn
);
525 dst_free(&rt
->u
.dst
);
531 * Routing tree lookup
536 int offset
; /* key offset on rt6_info */
537 struct in6_addr
*addr
; /* search key */
540 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
541 struct lookup_args
*args
)
543 struct fib6_node
*fn
;
553 struct fib6_node
*next
;
555 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
557 next
= dir
? fn
->right
: fn
->left
;
567 while ((fn
->fn_flags
& RTN_ROOT
) == 0) {
568 #ifdef CONFIG_IPV6_SUBTREES
570 struct fib6_node
*st
;
571 struct lookup_args
*narg
;
576 st
= fib6_lookup_1(fn
->subtree
, narg
);
578 if (st
&& !(st
->fn_flags
& RTN_ROOT
))
584 if (fn
->fn_flags
& RTN_RTINFO
) {
587 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
590 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
))
600 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
601 struct in6_addr
*saddr
)
603 struct lookup_args args
[2];
604 struct fib6_node
*fn
;
606 args
[0].offset
= offsetof(struct rt6_info
, rt6i_dst
);
607 args
[0].addr
= daddr
;
609 #ifdef CONFIG_IPV6_SUBTREES
610 args
[1].offset
= offsetof(struct rt6_info
, rt6i_src
);
611 args
[1].addr
= saddr
;
614 fn
= fib6_lookup_1(root
, args
);
616 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
623 * Get node with specified destination prefix (and source prefix,
624 * if subtrees are used)
628 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
629 struct in6_addr
*addr
,
630 int plen
, int offset
)
632 struct fib6_node
*fn
;
634 for (fn
= root
; fn
; ) {
635 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
640 if (plen
< fn
->fn_bit
||
641 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
644 if (plen
== fn
->fn_bit
)
648 * We have more bits to go
650 if (addr_bit_set(addr
, fn
->fn_bit
))
658 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
659 struct in6_addr
*daddr
, int dst_len
,
660 struct in6_addr
*saddr
, int src_len
)
662 struct fib6_node
*fn
;
664 fn
= fib6_locate_1(root
, daddr
, dst_len
,
665 offsetof(struct rt6_info
, rt6i_dst
));
667 #ifdef CONFIG_IPV6_SUBTREES
669 BUG_TRAP(saddr
!=NULL
);
673 fn
= fib6_locate_1(fn
, saddr
, src_len
,
674 offsetof(struct rt6_info
, rt6i_src
));
678 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
690 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
)
692 if (fn
->fn_flags
&RTN_ROOT
)
693 return &ip6_null_entry
;
697 return fn
->left
->leaf
;
700 return fn
->right
->leaf
;
708 * Called to trim the tree of intermediate nodes when possible. "fn"
709 * is the node we want to try and remove.
712 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
)
716 struct fib6_node
*child
, *pn
;
717 struct fib6_walker_t
*w
;
721 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
724 BUG_TRAP(!(fn
->fn_flags
&RTN_RTINFO
));
725 BUG_TRAP(!(fn
->fn_flags
&RTN_TL_ROOT
));
726 BUG_TRAP(fn
->leaf
==NULL
);
730 if (fn
->right
) child
= fn
->right
, children
|= 1;
731 if (fn
->left
) child
= fn
->left
, children
|= 2;
733 if (children
== 3 || SUBTREE(fn
)
734 #ifdef CONFIG_IPV6_SUBTREES
735 /* Subtree root (i.e. fn) may have one child */
736 || (children
&& fn
->fn_flags
&RTN_ROOT
)
739 fn
->leaf
= fib6_find_prefix(fn
);
741 if (fn
->leaf
==NULL
) {
743 fn
->leaf
= &ip6_null_entry
;
746 atomic_inc(&fn
->leaf
->rt6i_ref
);
751 #ifdef CONFIG_IPV6_SUBTREES
752 if (SUBTREE(pn
) == fn
) {
753 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
757 BUG_TRAP(!(fn
->fn_flags
&RTN_ROOT
));
759 if (pn
->right
== fn
) pn
->right
= child
;
760 else if (pn
->left
== fn
) pn
->left
= child
;
767 #ifdef CONFIG_IPV6_SUBTREES
771 read_lock(&fib6_walker_lock
);
775 w
->root
= w
->node
= NULL
;
776 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
777 } else if (w
->node
== fn
) {
778 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
785 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
790 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
791 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
793 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
794 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
799 read_unlock(&fib6_walker_lock
);
802 if (pn
->fn_flags
&RTN_RTINFO
|| SUBTREE(pn
))
805 rt6_release(pn
->leaf
);
811 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
812 struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
814 struct fib6_walker_t
*w
;
815 struct rt6_info
*rt
= *rtp
;
817 RT6_TRACE("fib6_del_route\n");
821 rt
->rt6i_node
= NULL
;
822 rt6_stats
.fib_rt_entries
--;
823 rt6_stats
.fib_discarded_routes
++;
826 read_lock(&fib6_walker_lock
);
828 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
829 RT6_TRACE("walker %p adjusted by delroute\n", w
);
830 w
->leaf
= rt
->u
.next
;
835 read_unlock(&fib6_walker_lock
);
839 if (fn
->leaf
== NULL
&& fn
->fn_flags
&RTN_TL_ROOT
)
840 fn
->leaf
= &ip6_null_entry
;
842 /* If it was last route, expunge its radix tree node */
843 if (fn
->leaf
== NULL
) {
844 fn
->fn_flags
&= ~RTN_RTINFO
;
845 rt6_stats
.fib_route_nodes
--;
846 fn
= fib6_repair_tree(fn
);
849 if (atomic_read(&rt
->rt6i_ref
) != 1) {
850 /* This route is used as dummy address holder in some split
851 * nodes. It is not leaked, but it still holds other resources,
852 * which must be released in time. So, scan ascendant nodes
853 * and replace dummy references to this route with references
854 * to still alive ones.
857 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
858 fn
->leaf
= fib6_find_prefix(fn
);
859 atomic_inc(&fn
->leaf
->rt6i_ref
);
864 /* No more references are possible at this point. */
865 if (atomic_read(&rt
->rt6i_ref
) != 1) BUG();
868 inet6_rt_notify(RTM_DELROUTE
, rt
, nlh
, req
);
872 int fib6_del(struct rt6_info
*rt
, struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
874 struct fib6_node
*fn
= rt
->rt6i_node
;
875 struct rt6_info
**rtp
;
878 if (rt
->u
.dst
.obsolete
>0) {
883 if (fn
== NULL
|| rt
== &ip6_null_entry
)
886 BUG_TRAP(fn
->fn_flags
&RTN_RTINFO
);
888 if (!(rt
->rt6i_flags
&RTF_CACHE
))
889 fib6_prune_clones(fn
, rt
);
892 * Walk the leaf entries looking for ourself
895 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->u
.next
) {
897 fib6_del_route(fn
, rtp
, nlh
, _rtattr
, req
);
905 * Tree traversal function.
907 * Certainly, it is not interrupt safe.
908 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
909 * It means, that we can modify tree during walking
910 * and use this function for garbage collection, clone pruning,
911 * cleaning tree when a device goes down etc. etc.
913 * It guarantees that every node will be traversed,
914 * and that it will be traversed only once.
916 * Callback function w->func may return:
917 * 0 -> continue walking.
918 * positive value -> walking is suspended (used by tree dumps,
919 * and probably by gc, if it will be split to several slices)
920 * negative value -> terminate walking.
922 * The function itself returns:
923 * 0 -> walk is complete.
924 * >0 -> walk is incomplete (i.e. suspended)
925 * <0 -> walk is terminated by an error.
928 int fib6_walk_continue(struct fib6_walker_t
*w
)
930 struct fib6_node
*fn
, *pn
;
937 if (w
->prune
&& fn
!= w
->root
&&
938 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
943 #ifdef CONFIG_IPV6_SUBTREES
946 w
->node
= SUBTREE(fn
);
967 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
968 int err
= w
->func(w
);
979 #ifdef CONFIG_IPV6_SUBTREES
980 if (SUBTREE(pn
) == fn
) {
981 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
986 if (pn
->left
== fn
) {
990 if (pn
->right
== fn
) {
992 w
->leaf
= w
->node
->leaf
;
1002 int fib6_walk(struct fib6_walker_t
*w
)
1006 w
->state
= FWS_INIT
;
1009 fib6_walker_link(w
);
1010 res
= fib6_walk_continue(w
);
1012 fib6_walker_unlink(w
);
1016 static int fib6_clean_node(struct fib6_walker_t
*w
)
1019 struct rt6_info
*rt
;
1020 struct fib6_cleaner_t
*c
= (struct fib6_cleaner_t
*)w
;
1022 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.next
) {
1023 res
= c
->func(rt
, c
->arg
);
1026 res
= fib6_del(rt
, NULL
, NULL
, NULL
);
1029 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1042 * Convenient frontend to tree walker.
1044 * func is called on each route.
1045 * It may return -1 -> delete this route.
1046 * 0 -> continue walking
1048 * prune==1 -> only immediate children of node (certainly,
1049 * ignoring pure split nodes) will be scanned.
1052 void fib6_clean_tree(struct fib6_node
*root
,
1053 int (*func
)(struct rt6_info
*, void *arg
),
1054 int prune
, void *arg
)
1056 struct fib6_cleaner_t c
;
1059 c
.w
.func
= fib6_clean_node
;
1067 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1069 if (rt
->rt6i_flags
& RTF_CACHE
) {
1070 RT6_TRACE("pruning clone %p\n", rt
);
1077 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
)
1079 fib6_clean_tree(fn
, fib6_prune_clone
, 1, rt
);
1083 * Garbage collection
1086 static struct fib6_gc_args
1092 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1094 unsigned long now
= jiffies
;
1097 * check addrconf expiration here.
1098 * Routes are expired even if they are in use.
1100 * Also age clones. Note, that clones are aged out
1101 * only if they are not in use now.
1104 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1105 if (time_after(now
, rt
->rt6i_expires
)) {
1106 RT6_TRACE("expiring %p\n", rt
);
1110 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1111 if (atomic_read(&rt
->u
.dst
.__refcnt
) == 0 &&
1112 time_after_eq(now
, rt
->u
.dst
.lastuse
+ gc_args
.timeout
)) {
1113 RT6_TRACE("aging clone %p\n", rt
);
1115 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1116 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1117 RT6_TRACE("purging route %p via non-router but gateway\n",
1127 static DEFINE_SPINLOCK(fib6_gc_lock
);
1129 void fib6_run_gc(unsigned long dummy
)
1131 if (dummy
!= ~0UL) {
1132 spin_lock_bh(&fib6_gc_lock
);
1133 gc_args
.timeout
= dummy
? (int)dummy
: ip6_rt_gc_interval
;
1136 if (!spin_trylock(&fib6_gc_lock
)) {
1137 mod_timer(&ip6_fib_timer
, jiffies
+ HZ
);
1141 gc_args
.timeout
= ip6_rt_gc_interval
;
1146 write_lock_bh(&rt6_lock
);
1147 ndisc_dst_gc(&gc_args
.more
);
1148 fib6_clean_tree(&ip6_routing_table
, fib6_age
, 0, NULL
);
1149 write_unlock_bh(&rt6_lock
);
1152 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
1154 del_timer(&ip6_fib_timer
);
1155 ip6_fib_timer
.expires
= 0;
1157 spin_unlock_bh(&fib6_gc_lock
);
1160 void __init
fib6_init(void)
1162 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1163 sizeof(struct fib6_node
),
1164 0, SLAB_HWCACHE_ALIGN
,
1166 if (!fib6_node_kmem
)
1167 panic("cannot create fib6_nodes cache");
1170 void fib6_gc_cleanup(void)
1172 del_timer(&ip6_fib_timer
);
1173 kmem_cache_destroy(fib6_node_kmem
);