[S390] s390: use simple_read_from_buffer()
[linux-2.6/verdex.git] / arch / sparc64 / kernel / of_device.c
blobd569f60c24b87fd4fc23d6e749fc37d083bb22a3
1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/of.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/slab.h>
8 #include <linux/errno.h>
9 #include <linux/irq.h>
10 #include <linux/of_device.h>
11 #include <linux/of_platform.h>
13 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
15 unsigned long ret = res->start + offset;
16 struct resource *r;
18 if (res->flags & IORESOURCE_MEM)
19 r = request_mem_region(ret, size, name);
20 else
21 r = request_region(ret, size, name);
22 if (!r)
23 ret = 0;
25 return (void __iomem *) ret;
27 EXPORT_SYMBOL(of_ioremap);
29 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
31 if (res->flags & IORESOURCE_MEM)
32 release_mem_region((unsigned long) base, size);
33 else
34 release_region((unsigned long) base, size);
36 EXPORT_SYMBOL(of_iounmap);
38 static int node_match(struct device *dev, void *data)
40 struct of_device *op = to_of_device(dev);
41 struct device_node *dp = data;
43 return (op->node == dp);
46 struct of_device *of_find_device_by_node(struct device_node *dp)
48 struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
49 dp, node_match);
51 if (dev)
52 return to_of_device(dev);
54 return NULL;
56 EXPORT_SYMBOL(of_find_device_by_node);
58 #ifdef CONFIG_PCI
59 struct bus_type isa_bus_type;
60 EXPORT_SYMBOL(isa_bus_type);
62 struct bus_type ebus_bus_type;
63 EXPORT_SYMBOL(ebus_bus_type);
64 #endif
66 #ifdef CONFIG_SBUS
67 struct bus_type sbus_bus_type;
68 EXPORT_SYMBOL(sbus_bus_type);
69 #endif
71 struct bus_type of_platform_bus_type;
72 EXPORT_SYMBOL(of_platform_bus_type);
74 static inline u64 of_read_addr(const u32 *cell, int size)
76 u64 r = 0;
77 while (size--)
78 r = (r << 32) | *(cell++);
79 return r;
82 static void __init get_cells(struct device_node *dp,
83 int *addrc, int *sizec)
85 if (addrc)
86 *addrc = of_n_addr_cells(dp);
87 if (sizec)
88 *sizec = of_n_size_cells(dp);
91 /* Max address size we deal with */
92 #define OF_MAX_ADDR_CELLS 4
94 struct of_bus {
95 const char *name;
96 const char *addr_prop_name;
97 int (*match)(struct device_node *parent);
98 void (*count_cells)(struct device_node *child,
99 int *addrc, int *sizec);
100 int (*map)(u32 *addr, const u32 *range,
101 int na, int ns, int pna);
102 unsigned int (*get_flags)(const u32 *addr);
106 * Default translator (generic bus)
109 static void of_bus_default_count_cells(struct device_node *dev,
110 int *addrc, int *sizec)
112 get_cells(dev, addrc, sizec);
115 /* Make sure the least significant 64-bits are in-range. Even
116 * for 3 or 4 cell values it is a good enough approximation.
118 static int of_out_of_range(const u32 *addr, const u32 *base,
119 const u32 *size, int na, int ns)
121 u64 a = of_read_addr(addr, na);
122 u64 b = of_read_addr(base, na);
124 if (a < b)
125 return 1;
127 b += of_read_addr(size, ns);
128 if (a >= b)
129 return 1;
131 return 0;
134 static int of_bus_default_map(u32 *addr, const u32 *range,
135 int na, int ns, int pna)
137 u32 result[OF_MAX_ADDR_CELLS];
138 int i;
140 if (ns > 2) {
141 printk("of_device: Cannot handle size cells (%d) > 2.", ns);
142 return -EINVAL;
145 if (of_out_of_range(addr, range, range + na + pna, na, ns))
146 return -EINVAL;
148 /* Start with the parent range base. */
149 memcpy(result, range + na, pna * 4);
151 /* Add in the child address offset. */
152 for (i = 0; i < na; i++)
153 result[pna - 1 - i] +=
154 (addr[na - 1 - i] -
155 range[na - 1 - i]);
157 memcpy(addr, result, pna * 4);
159 return 0;
162 static unsigned int of_bus_default_get_flags(const u32 *addr)
164 return IORESOURCE_MEM;
168 * PCI bus specific translator
171 static int of_bus_pci_match(struct device_node *np)
173 if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
174 const char *model = of_get_property(np, "model", NULL);
176 if (model && !strcmp(model, "SUNW,simba"))
177 return 0;
179 /* Do not do PCI specific frobbing if the
180 * PCI bridge lacks a ranges property. We
181 * want to pass it through up to the next
182 * parent as-is, not with the PCI translate
183 * method which chops off the top address cell.
185 if (!of_find_property(np, "ranges", NULL))
186 return 0;
188 return 1;
191 return 0;
194 static int of_bus_simba_match(struct device_node *np)
196 const char *model = of_get_property(np, "model", NULL);
198 if (model && !strcmp(model, "SUNW,simba"))
199 return 1;
201 /* Treat PCI busses lacking ranges property just like
202 * simba.
204 if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
205 if (!of_find_property(np, "ranges", NULL))
206 return 1;
209 return 0;
212 static int of_bus_simba_map(u32 *addr, const u32 *range,
213 int na, int ns, int pna)
215 return 0;
218 static void of_bus_pci_count_cells(struct device_node *np,
219 int *addrc, int *sizec)
221 if (addrc)
222 *addrc = 3;
223 if (sizec)
224 *sizec = 2;
227 static int of_bus_pci_map(u32 *addr, const u32 *range,
228 int na, int ns, int pna)
230 u32 result[OF_MAX_ADDR_CELLS];
231 int i;
233 /* Check address type match */
234 if ((addr[0] ^ range[0]) & 0x03000000)
235 return -EINVAL;
237 if (of_out_of_range(addr + 1, range + 1, range + na + pna,
238 na - 1, ns))
239 return -EINVAL;
241 /* Start with the parent range base. */
242 memcpy(result, range + na, pna * 4);
244 /* Add in the child address offset, skipping high cell. */
245 for (i = 0; i < na - 1; i++)
246 result[pna - 1 - i] +=
247 (addr[na - 1 - i] -
248 range[na - 1 - i]);
250 memcpy(addr, result, pna * 4);
252 return 0;
255 static unsigned int of_bus_pci_get_flags(const u32 *addr)
257 unsigned int flags = 0;
258 u32 w = addr[0];
260 switch((w >> 24) & 0x03) {
261 case 0x01:
262 flags |= IORESOURCE_IO;
263 case 0x02: /* 32 bits */
264 case 0x03: /* 64 bits */
265 flags |= IORESOURCE_MEM;
267 if (w & 0x40000000)
268 flags |= IORESOURCE_PREFETCH;
269 return flags;
273 * SBUS bus specific translator
276 static int of_bus_sbus_match(struct device_node *np)
278 return !strcmp(np->name, "sbus") ||
279 !strcmp(np->name, "sbi");
282 static void of_bus_sbus_count_cells(struct device_node *child,
283 int *addrc, int *sizec)
285 if (addrc)
286 *addrc = 2;
287 if (sizec)
288 *sizec = 1;
292 * FHC/Central bus specific translator.
294 * This is just needed to hard-code the address and size cell
295 * counts. 'fhc' and 'central' nodes lack the #address-cells and
296 * #size-cells properties, and if you walk to the root on such
297 * Enterprise boxes all you'll get is a #size-cells of 2 which is
298 * not what we want to use.
300 static int of_bus_fhc_match(struct device_node *np)
302 return !strcmp(np->name, "fhc") ||
303 !strcmp(np->name, "central");
306 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
309 * Array of bus specific translators
312 static struct of_bus of_busses[] = {
313 /* PCI */
315 .name = "pci",
316 .addr_prop_name = "assigned-addresses",
317 .match = of_bus_pci_match,
318 .count_cells = of_bus_pci_count_cells,
319 .map = of_bus_pci_map,
320 .get_flags = of_bus_pci_get_flags,
322 /* SIMBA */
324 .name = "simba",
325 .addr_prop_name = "assigned-addresses",
326 .match = of_bus_simba_match,
327 .count_cells = of_bus_pci_count_cells,
328 .map = of_bus_simba_map,
329 .get_flags = of_bus_pci_get_flags,
331 /* SBUS */
333 .name = "sbus",
334 .addr_prop_name = "reg",
335 .match = of_bus_sbus_match,
336 .count_cells = of_bus_sbus_count_cells,
337 .map = of_bus_default_map,
338 .get_flags = of_bus_default_get_flags,
340 /* FHC */
342 .name = "fhc",
343 .addr_prop_name = "reg",
344 .match = of_bus_fhc_match,
345 .count_cells = of_bus_fhc_count_cells,
346 .map = of_bus_default_map,
347 .get_flags = of_bus_default_get_flags,
349 /* Default */
351 .name = "default",
352 .addr_prop_name = "reg",
353 .match = NULL,
354 .count_cells = of_bus_default_count_cells,
355 .map = of_bus_default_map,
356 .get_flags = of_bus_default_get_flags,
360 static struct of_bus *of_match_bus(struct device_node *np)
362 int i;
364 for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
365 if (!of_busses[i].match || of_busses[i].match(np))
366 return &of_busses[i];
367 BUG();
368 return NULL;
371 static int __init build_one_resource(struct device_node *parent,
372 struct of_bus *bus,
373 struct of_bus *pbus,
374 u32 *addr,
375 int na, int ns, int pna)
377 const u32 *ranges;
378 unsigned int rlen;
379 int rone;
381 ranges = of_get_property(parent, "ranges", &rlen);
382 if (ranges == NULL || rlen == 0) {
383 u32 result[OF_MAX_ADDR_CELLS];
384 int i;
386 memset(result, 0, pna * 4);
387 for (i = 0; i < na; i++)
388 result[pna - 1 - i] =
389 addr[na - 1 - i];
391 memcpy(addr, result, pna * 4);
392 return 0;
395 /* Now walk through the ranges */
396 rlen /= 4;
397 rone = na + pna + ns;
398 for (; rlen >= rone; rlen -= rone, ranges += rone) {
399 if (!bus->map(addr, ranges, na, ns, pna))
400 return 0;
403 /* When we miss an I/O space match on PCI, just pass it up
404 * to the next PCI bridge and/or controller.
406 if (!strcmp(bus->name, "pci") &&
407 (addr[0] & 0x03000000) == 0x01000000)
408 return 0;
410 return 1;
413 static int __init use_1to1_mapping(struct device_node *pp)
415 /* If we have a ranges property in the parent, use it. */
416 if (of_find_property(pp, "ranges", NULL) != NULL)
417 return 0;
419 /* If the parent is the dma node of an ISA bus, pass
420 * the translation up to the root.
422 if (!strcmp(pp->name, "dma"))
423 return 0;
425 /* Similarly for all PCI bridges, if we get this far
426 * it lacks a ranges property, and this will include
427 * cases like Simba.
429 if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex"))
430 return 0;
432 return 1;
435 static int of_resource_verbose;
437 static void __init build_device_resources(struct of_device *op,
438 struct device *parent)
440 struct of_device *p_op;
441 struct of_bus *bus;
442 int na, ns;
443 int index, num_reg;
444 const void *preg;
446 if (!parent)
447 return;
449 p_op = to_of_device(parent);
450 bus = of_match_bus(p_op->node);
451 bus->count_cells(op->node, &na, &ns);
453 preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
454 if (!preg || num_reg == 0)
455 return;
457 /* Convert to num-cells. */
458 num_reg /= 4;
460 /* Convert to num-entries. */
461 num_reg /= na + ns;
463 /* Prevent overrunning the op->resources[] array. */
464 if (num_reg > PROMREG_MAX) {
465 printk(KERN_WARNING "%s: Too many regs (%d), "
466 "limiting to %d.\n",
467 op->node->full_name, num_reg, PROMREG_MAX);
468 num_reg = PROMREG_MAX;
471 for (index = 0; index < num_reg; index++) {
472 struct resource *r = &op->resource[index];
473 u32 addr[OF_MAX_ADDR_CELLS];
474 const u32 *reg = (preg + (index * ((na + ns) * 4)));
475 struct device_node *dp = op->node;
476 struct device_node *pp = p_op->node;
477 struct of_bus *pbus, *dbus;
478 u64 size, result = OF_BAD_ADDR;
479 unsigned long flags;
480 int dna, dns;
481 int pna, pns;
483 size = of_read_addr(reg + na, ns);
484 flags = bus->get_flags(reg);
486 memcpy(addr, reg, na * 4);
488 if (use_1to1_mapping(pp)) {
489 result = of_read_addr(addr, na);
490 goto build_res;
493 dna = na;
494 dns = ns;
495 dbus = bus;
497 while (1) {
498 dp = pp;
499 pp = dp->parent;
500 if (!pp) {
501 result = of_read_addr(addr, dna);
502 break;
505 pbus = of_match_bus(pp);
506 pbus->count_cells(dp, &pna, &pns);
508 if (build_one_resource(dp, dbus, pbus, addr,
509 dna, dns, pna))
510 break;
512 dna = pna;
513 dns = pns;
514 dbus = pbus;
517 build_res:
518 memset(r, 0, sizeof(*r));
520 if (of_resource_verbose)
521 printk("%s reg[%d] -> %lx\n",
522 op->node->full_name, index,
523 result);
525 if (result != OF_BAD_ADDR) {
526 if (tlb_type == hypervisor)
527 result &= 0x0fffffffffffffffUL;
529 r->start = result;
530 r->end = result + size - 1;
531 r->flags = flags;
533 r->name = op->node->name;
537 static struct device_node * __init
538 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
539 const u32 *imap, int imlen, const u32 *imask,
540 unsigned int *irq_p)
542 struct device_node *cp;
543 unsigned int irq = *irq_p;
544 struct of_bus *bus;
545 phandle handle;
546 const u32 *reg;
547 int na, num_reg, i;
549 bus = of_match_bus(pp);
550 bus->count_cells(dp, &na, NULL);
552 reg = of_get_property(dp, "reg", &num_reg);
553 if (!reg || !num_reg)
554 return NULL;
556 imlen /= ((na + 3) * 4);
557 handle = 0;
558 for (i = 0; i < imlen; i++) {
559 int j;
561 for (j = 0; j < na; j++) {
562 if ((reg[j] & imask[j]) != imap[j])
563 goto next;
565 if (imap[na] == irq) {
566 handle = imap[na + 1];
567 irq = imap[na + 2];
568 break;
571 next:
572 imap += (na + 3);
574 if (i == imlen) {
575 /* Psycho and Sabre PCI controllers can have 'interrupt-map'
576 * properties that do not include the on-board device
577 * interrupts. Instead, the device's 'interrupts' property
578 * is already a fully specified INO value.
580 * Handle this by deciding that, if we didn't get a
581 * match in the parent's 'interrupt-map', and the
582 * parent is an IRQ translater, then use the parent as
583 * our IRQ controller.
585 if (pp->irq_trans)
586 return pp;
588 return NULL;
591 *irq_p = irq;
592 cp = of_find_node_by_phandle(handle);
594 return cp;
597 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
598 struct device_node *pp,
599 unsigned int irq)
601 const struct linux_prom_pci_registers *regs;
602 unsigned int bus, devfn, slot, ret;
604 if (irq < 1 || irq > 4)
605 return irq;
607 regs = of_get_property(dp, "reg", NULL);
608 if (!regs)
609 return irq;
611 bus = (regs->phys_hi >> 16) & 0xff;
612 devfn = (regs->phys_hi >> 8) & 0xff;
613 slot = (devfn >> 3) & 0x1f;
615 if (pp->irq_trans) {
616 /* Derived from Table 8-3, U2P User's Manual. This branch
617 * is handling a PCI controller that lacks a proper set of
618 * interrupt-map and interrupt-map-mask properties. The
619 * Ultra-E450 is one example.
621 * The bit layout is BSSLL, where:
622 * B: 0 on bus A, 1 on bus B
623 * D: 2-bit slot number, derived from PCI device number as
624 * (dev - 1) for bus A, or (dev - 2) for bus B
625 * L: 2-bit line number
627 if (bus & 0x80) {
628 /* PBM-A */
629 bus = 0x00;
630 slot = (slot - 1) << 2;
631 } else {
632 /* PBM-B */
633 bus = 0x10;
634 slot = (slot - 2) << 2;
636 irq -= 1;
638 ret = (bus | slot | irq);
639 } else {
640 /* Going through a PCI-PCI bridge that lacks a set of
641 * interrupt-map and interrupt-map-mask properties.
643 ret = ((irq - 1 + (slot & 3)) & 3) + 1;
646 return ret;
649 static int of_irq_verbose;
651 static unsigned int __init build_one_device_irq(struct of_device *op,
652 struct device *parent,
653 unsigned int irq)
655 struct device_node *dp = op->node;
656 struct device_node *pp, *ip;
657 unsigned int orig_irq = irq;
658 int nid;
660 if (irq == 0xffffffff)
661 return irq;
663 if (dp->irq_trans) {
664 irq = dp->irq_trans->irq_build(dp, irq,
665 dp->irq_trans->data);
667 if (of_irq_verbose)
668 printk("%s: direct translate %x --> %x\n",
669 dp->full_name, orig_irq, irq);
671 goto out;
674 /* Something more complicated. Walk up to the root, applying
675 * interrupt-map or bus specific translations, until we hit
676 * an IRQ translator.
678 * If we hit a bus type or situation we cannot handle, we
679 * stop and assume that the original IRQ number was in a
680 * format which has special meaning to it's immediate parent.
682 pp = dp->parent;
683 ip = NULL;
684 while (pp) {
685 const void *imap, *imsk;
686 int imlen;
688 imap = of_get_property(pp, "interrupt-map", &imlen);
689 imsk = of_get_property(pp, "interrupt-map-mask", NULL);
690 if (imap && imsk) {
691 struct device_node *iret;
692 int this_orig_irq = irq;
694 iret = apply_interrupt_map(dp, pp,
695 imap, imlen, imsk,
696 &irq);
698 if (of_irq_verbose)
699 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
700 op->node->full_name,
701 pp->full_name, this_orig_irq,
702 (iret ? iret->full_name : "NULL"), irq);
704 if (!iret)
705 break;
707 if (iret->irq_trans) {
708 ip = iret;
709 break;
711 } else {
712 if (!strcmp(pp->type, "pci") ||
713 !strcmp(pp->type, "pciex")) {
714 unsigned int this_orig_irq = irq;
716 irq = pci_irq_swizzle(dp, pp, irq);
717 if (of_irq_verbose)
718 printk("%s: PCI swizzle [%s] "
719 "%x --> %x\n",
720 op->node->full_name,
721 pp->full_name, this_orig_irq,
722 irq);
726 if (pp->irq_trans) {
727 ip = pp;
728 break;
731 dp = pp;
732 pp = pp->parent;
734 if (!ip)
735 return orig_irq;
737 irq = ip->irq_trans->irq_build(op->node, irq,
738 ip->irq_trans->data);
739 if (of_irq_verbose)
740 printk("%s: Apply IRQ trans [%s] %x --> %x\n",
741 op->node->full_name, ip->full_name, orig_irq, irq);
743 out:
744 nid = of_node_to_nid(dp);
745 if (nid != -1) {
746 cpumask_t numa_mask = node_to_cpumask(nid);
748 irq_set_affinity(irq, numa_mask);
751 return irq;
754 static struct of_device * __init scan_one_device(struct device_node *dp,
755 struct device *parent)
757 struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
758 const unsigned int *irq;
759 struct dev_archdata *sd;
760 int len, i;
762 if (!op)
763 return NULL;
765 sd = &op->dev.archdata;
766 sd->prom_node = dp;
767 sd->op = op;
769 op->node = dp;
771 op->clock_freq = of_getintprop_default(dp, "clock-frequency",
772 (25*1000*1000));
773 op->portid = of_getintprop_default(dp, "upa-portid", -1);
774 if (op->portid == -1)
775 op->portid = of_getintprop_default(dp, "portid", -1);
777 irq = of_get_property(dp, "interrupts", &len);
778 if (irq) {
779 memcpy(op->irqs, irq, len);
780 op->num_irqs = len / 4;
781 } else {
782 op->num_irqs = 0;
785 /* Prevent overrunning the op->irqs[] array. */
786 if (op->num_irqs > PROMINTR_MAX) {
787 printk(KERN_WARNING "%s: Too many irqs (%d), "
788 "limiting to %d.\n",
789 dp->full_name, op->num_irqs, PROMINTR_MAX);
790 op->num_irqs = PROMINTR_MAX;
793 build_device_resources(op, parent);
794 for (i = 0; i < op->num_irqs; i++)
795 op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
797 op->dev.parent = parent;
798 op->dev.bus = &of_platform_bus_type;
799 if (!parent)
800 strcpy(op->dev.bus_id, "root");
801 else
802 sprintf(op->dev.bus_id, "%08x", dp->node);
804 if (of_device_register(op)) {
805 printk("%s: Could not register of device.\n",
806 dp->full_name);
807 kfree(op);
808 op = NULL;
811 return op;
814 static void __init scan_tree(struct device_node *dp, struct device *parent)
816 while (dp) {
817 struct of_device *op = scan_one_device(dp, parent);
819 if (op)
820 scan_tree(dp->child, &op->dev);
822 dp = dp->sibling;
826 static void __init scan_of_devices(void)
828 struct device_node *root = of_find_node_by_path("/");
829 struct of_device *parent;
831 parent = scan_one_device(root, NULL);
832 if (!parent)
833 return;
835 scan_tree(root->child, &parent->dev);
838 static int __init of_bus_driver_init(void)
840 int err;
842 err = of_bus_type_init(&of_platform_bus_type, "of");
843 #ifdef CONFIG_PCI
844 if (!err)
845 err = of_bus_type_init(&isa_bus_type, "isa");
846 if (!err)
847 err = of_bus_type_init(&ebus_bus_type, "ebus");
848 #endif
849 #ifdef CONFIG_SBUS
850 if (!err)
851 err = of_bus_type_init(&sbus_bus_type, "sbus");
852 #endif
854 if (!err)
855 scan_of_devices();
857 return err;
860 postcore_initcall(of_bus_driver_init);
862 static int __init of_debug(char *str)
864 int val = 0;
866 get_option(&str, &val);
867 if (val & 1)
868 of_resource_verbose = 1;
869 if (val & 2)
870 of_irq_verbose = 1;
871 return 1;
874 __setup("of_debug=", of_debug);