4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
37 /* #define DCACHE_DEBUG 1 */
39 int sysctl_vfs_cache_pressure
= 100;
40 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
42 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
43 static seqlock_t rename_lock __cacheline_aligned_in_smp
= SEQLOCK_UNLOCKED
;
45 EXPORT_SYMBOL(dcache_lock
);
47 static kmem_cache_t
*dentry_cache
;
49 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
52 * This is the single most critical data structure when it comes
53 * to the dcache: the hashtable for lookups. Somebody should try
54 * to make this good - I've just made it work.
56 * This hash-function tries to avoid losing too many bits of hash
57 * information, yet avoid using a prime hash-size or similar.
59 #define D_HASHBITS d_hash_shift
60 #define D_HASHMASK d_hash_mask
62 static unsigned int d_hash_mask
;
63 static unsigned int d_hash_shift
;
64 static struct hlist_head
*dentry_hashtable
;
65 static LIST_HEAD(dentry_unused
);
67 /* Statistics gathering. */
68 struct dentry_stat_t dentry_stat
= {
72 static void d_callback(struct rcu_head
*head
)
74 struct dentry
* dentry
= container_of(head
, struct dentry
, d_rcu
);
76 if (dname_external(dentry
))
77 kfree(dentry
->d_name
.name
);
78 kmem_cache_free(dentry_cache
, dentry
);
82 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
85 static void d_free(struct dentry
*dentry
)
87 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
88 dentry
->d_op
->d_release(dentry
);
89 call_rcu(&dentry
->d_rcu
, d_callback
);
93 * Release the dentry's inode, using the filesystem
94 * d_iput() operation if defined.
95 * Called with dcache_lock and per dentry lock held, drops both.
97 static inline void dentry_iput(struct dentry
* dentry
)
99 struct inode
*inode
= dentry
->d_inode
;
101 dentry
->d_inode
= NULL
;
102 list_del_init(&dentry
->d_alias
);
103 spin_unlock(&dentry
->d_lock
);
104 spin_unlock(&dcache_lock
);
105 fsnotify_inoderemove(inode
);
106 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
107 dentry
->d_op
->d_iput(dentry
, inode
);
111 spin_unlock(&dentry
->d_lock
);
112 spin_unlock(&dcache_lock
);
119 * This is complicated by the fact that we do not want to put
120 * dentries that are no longer on any hash chain on the unused
121 * list: we'd much rather just get rid of them immediately.
123 * However, that implies that we have to traverse the dentry
124 * tree upwards to the parents which might _also_ now be
125 * scheduled for deletion (it may have been only waiting for
126 * its last child to go away).
128 * This tail recursion is done by hand as we don't want to depend
129 * on the compiler to always get this right (gcc generally doesn't).
130 * Real recursion would eat up our stack space.
134 * dput - release a dentry
135 * @dentry: dentry to release
137 * Release a dentry. This will drop the usage count and if appropriate
138 * call the dentry unlink method as well as removing it from the queues and
139 * releasing its resources. If the parent dentries were scheduled for release
140 * they too may now get deleted.
142 * no dcache lock, please.
145 void dput(struct dentry
*dentry
)
151 if (atomic_read(&dentry
->d_count
) == 1)
153 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
156 spin_lock(&dentry
->d_lock
);
157 if (atomic_read(&dentry
->d_count
)) {
158 spin_unlock(&dentry
->d_lock
);
159 spin_unlock(&dcache_lock
);
164 * AV: ->d_delete() is _NOT_ allowed to block now.
166 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
167 if (dentry
->d_op
->d_delete(dentry
))
170 /* Unreachable? Get rid of it */
171 if (d_unhashed(dentry
))
173 if (list_empty(&dentry
->d_lru
)) {
174 dentry
->d_flags
|= DCACHE_REFERENCED
;
175 list_add(&dentry
->d_lru
, &dentry_unused
);
176 dentry_stat
.nr_unused
++;
178 spin_unlock(&dentry
->d_lock
);
179 spin_unlock(&dcache_lock
);
186 struct dentry
*parent
;
188 /* If dentry was on d_lru list
189 * delete it from there
191 if (!list_empty(&dentry
->d_lru
)) {
192 list_del(&dentry
->d_lru
);
193 dentry_stat
.nr_unused
--;
195 list_del(&dentry
->d_child
);
196 dentry_stat
.nr_dentry
--; /* For d_free, below */
197 /*drops the locks, at that point nobody can reach this dentry */
199 parent
= dentry
->d_parent
;
201 if (dentry
== parent
)
209 * d_invalidate - invalidate a dentry
210 * @dentry: dentry to invalidate
212 * Try to invalidate the dentry if it turns out to be
213 * possible. If there are other dentries that can be
214 * reached through this one we can't delete it and we
215 * return -EBUSY. On success we return 0.
220 int d_invalidate(struct dentry
* dentry
)
223 * If it's already been dropped, return OK.
225 spin_lock(&dcache_lock
);
226 if (d_unhashed(dentry
)) {
227 spin_unlock(&dcache_lock
);
231 * Check whether to do a partial shrink_dcache
232 * to get rid of unused child entries.
234 if (!list_empty(&dentry
->d_subdirs
)) {
235 spin_unlock(&dcache_lock
);
236 shrink_dcache_parent(dentry
);
237 spin_lock(&dcache_lock
);
241 * Somebody else still using it?
243 * If it's a directory, we can't drop it
244 * for fear of somebody re-populating it
245 * with children (even though dropping it
246 * would make it unreachable from the root,
247 * we might still populate it if it was a
248 * working directory or similar).
250 spin_lock(&dentry
->d_lock
);
251 if (atomic_read(&dentry
->d_count
) > 1) {
252 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
253 spin_unlock(&dentry
->d_lock
);
254 spin_unlock(&dcache_lock
);
260 spin_unlock(&dentry
->d_lock
);
261 spin_unlock(&dcache_lock
);
265 /* This should be called _only_ with dcache_lock held */
267 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
269 atomic_inc(&dentry
->d_count
);
270 if (!list_empty(&dentry
->d_lru
)) {
271 dentry_stat
.nr_unused
--;
272 list_del_init(&dentry
->d_lru
);
277 struct dentry
* dget_locked(struct dentry
*dentry
)
279 return __dget_locked(dentry
);
283 * d_find_alias - grab a hashed alias of inode
284 * @inode: inode in question
285 * @want_discon: flag, used by d_splice_alias, to request
286 * that only a DISCONNECTED alias be returned.
288 * If inode has a hashed alias, or is a directory and has any alias,
289 * acquire the reference to alias and return it. Otherwise return NULL.
290 * Notice that if inode is a directory there can be only one alias and
291 * it can be unhashed only if it has no children, or if it is the root
294 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
295 * any other hashed alias over that one unless @want_discon is set,
296 * in which case only return a DCACHE_DISCONNECTED alias.
299 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
301 struct list_head
*head
, *next
, *tmp
;
302 struct dentry
*alias
, *discon_alias
=NULL
;
304 head
= &inode
->i_dentry
;
305 next
= inode
->i_dentry
.next
;
306 while (next
!= head
) {
310 alias
= list_entry(tmp
, struct dentry
, d_alias
);
311 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
312 if (alias
->d_flags
& DCACHE_DISCONNECTED
)
313 discon_alias
= alias
;
314 else if (!want_discon
) {
315 __dget_locked(alias
);
321 __dget_locked(discon_alias
);
325 struct dentry
* d_find_alias(struct inode
*inode
)
328 spin_lock(&dcache_lock
);
329 de
= __d_find_alias(inode
, 0);
330 spin_unlock(&dcache_lock
);
335 * Try to kill dentries associated with this inode.
336 * WARNING: you must own a reference to inode.
338 void d_prune_aliases(struct inode
*inode
)
340 struct list_head
*tmp
, *head
= &inode
->i_dentry
;
342 spin_lock(&dcache_lock
);
344 while ((tmp
= tmp
->next
) != head
) {
345 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_alias
);
346 spin_lock(&dentry
->d_lock
);
347 if (!atomic_read(&dentry
->d_count
)) {
348 __dget_locked(dentry
);
350 spin_unlock(&dentry
->d_lock
);
351 spin_unlock(&dcache_lock
);
355 spin_unlock(&dentry
->d_lock
);
357 spin_unlock(&dcache_lock
);
361 * Throw away a dentry - free the inode, dput the parent.
362 * This requires that the LRU list has already been
364 * Called with dcache_lock, drops it and then regains.
366 static inline void prune_one_dentry(struct dentry
* dentry
)
368 struct dentry
* parent
;
371 list_del(&dentry
->d_child
);
372 dentry_stat
.nr_dentry
--; /* For d_free, below */
374 parent
= dentry
->d_parent
;
376 if (parent
!= dentry
)
378 spin_lock(&dcache_lock
);
382 * prune_dcache - shrink the dcache
383 * @count: number of entries to try and free
385 * Shrink the dcache. This is done when we need
386 * more memory, or simply when we need to unmount
387 * something (at which point we need to unuse
390 * This function may fail to free any resources if
391 * all the dentries are in use.
394 static void prune_dcache(int count
)
396 spin_lock(&dcache_lock
);
397 for (; count
; count
--) {
398 struct dentry
*dentry
;
399 struct list_head
*tmp
;
401 cond_resched_lock(&dcache_lock
);
403 tmp
= dentry_unused
.prev
;
404 if (tmp
== &dentry_unused
)
407 prefetch(dentry_unused
.prev
);
408 dentry_stat
.nr_unused
--;
409 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
411 spin_lock(&dentry
->d_lock
);
413 * We found an inuse dentry which was not removed from
414 * dentry_unused because of laziness during lookup. Do not free
415 * it - just keep it off the dentry_unused list.
417 if (atomic_read(&dentry
->d_count
)) {
418 spin_unlock(&dentry
->d_lock
);
421 /* If the dentry was recently referenced, don't free it. */
422 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
423 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
424 list_add(&dentry
->d_lru
, &dentry_unused
);
425 dentry_stat
.nr_unused
++;
426 spin_unlock(&dentry
->d_lock
);
429 prune_one_dentry(dentry
);
431 spin_unlock(&dcache_lock
);
435 * Shrink the dcache for the specified super block.
436 * This allows us to unmount a device without disturbing
437 * the dcache for the other devices.
439 * This implementation makes just two traversals of the
440 * unused list. On the first pass we move the selected
441 * dentries to the most recent end, and on the second
442 * pass we free them. The second pass must restart after
443 * each dput(), but since the target dentries are all at
444 * the end, it's really just a single traversal.
448 * shrink_dcache_sb - shrink dcache for a superblock
451 * Shrink the dcache for the specified super block. This
452 * is used to free the dcache before unmounting a file
456 void shrink_dcache_sb(struct super_block
* sb
)
458 struct list_head
*tmp
, *next
;
459 struct dentry
*dentry
;
462 * Pass one ... move the dentries for the specified
463 * superblock to the most recent end of the unused list.
465 spin_lock(&dcache_lock
);
466 next
= dentry_unused
.next
;
467 while (next
!= &dentry_unused
) {
470 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
471 if (dentry
->d_sb
!= sb
)
474 list_add(tmp
, &dentry_unused
);
478 * Pass two ... free the dentries for this superblock.
481 next
= dentry_unused
.next
;
482 while (next
!= &dentry_unused
) {
485 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
486 if (dentry
->d_sb
!= sb
)
488 dentry_stat
.nr_unused
--;
490 spin_lock(&dentry
->d_lock
);
491 if (atomic_read(&dentry
->d_count
)) {
492 spin_unlock(&dentry
->d_lock
);
495 prune_one_dentry(dentry
);
498 spin_unlock(&dcache_lock
);
502 * Search for at least 1 mount point in the dentry's subdirs.
503 * We descend to the next level whenever the d_subdirs
504 * list is non-empty and continue searching.
508 * have_submounts - check for mounts over a dentry
509 * @parent: dentry to check.
511 * Return true if the parent or its subdirectories contain
515 int have_submounts(struct dentry
*parent
)
517 struct dentry
*this_parent
= parent
;
518 struct list_head
*next
;
520 spin_lock(&dcache_lock
);
521 if (d_mountpoint(parent
))
524 next
= this_parent
->d_subdirs
.next
;
526 while (next
!= &this_parent
->d_subdirs
) {
527 struct list_head
*tmp
= next
;
528 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
530 /* Have we found a mount point ? */
531 if (d_mountpoint(dentry
))
533 if (!list_empty(&dentry
->d_subdirs
)) {
534 this_parent
= dentry
;
539 * All done at this level ... ascend and resume the search.
541 if (this_parent
!= parent
) {
542 next
= this_parent
->d_child
.next
;
543 this_parent
= this_parent
->d_parent
;
546 spin_unlock(&dcache_lock
);
547 return 0; /* No mount points found in tree */
549 spin_unlock(&dcache_lock
);
554 * Search the dentry child list for the specified parent,
555 * and move any unused dentries to the end of the unused
556 * list for prune_dcache(). We descend to the next level
557 * whenever the d_subdirs list is non-empty and continue
560 * It returns zero iff there are no unused children,
561 * otherwise it returns the number of children moved to
562 * the end of the unused list. This may not be the total
563 * number of unused children, because select_parent can
564 * drop the lock and return early due to latency
567 static int select_parent(struct dentry
* parent
)
569 struct dentry
*this_parent
= parent
;
570 struct list_head
*next
;
573 spin_lock(&dcache_lock
);
575 next
= this_parent
->d_subdirs
.next
;
577 while (next
!= &this_parent
->d_subdirs
) {
578 struct list_head
*tmp
= next
;
579 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
582 if (!list_empty(&dentry
->d_lru
)) {
583 dentry_stat
.nr_unused
--;
584 list_del_init(&dentry
->d_lru
);
587 * move only zero ref count dentries to the end
588 * of the unused list for prune_dcache
590 if (!atomic_read(&dentry
->d_count
)) {
591 list_add(&dentry
->d_lru
, dentry_unused
.prev
);
592 dentry_stat
.nr_unused
++;
597 * We can return to the caller if we have found some (this
598 * ensures forward progress). We'll be coming back to find
601 if (found
&& need_resched())
605 * Descend a level if the d_subdirs list is non-empty.
607 if (!list_empty(&dentry
->d_subdirs
)) {
608 this_parent
= dentry
;
610 printk(KERN_DEBUG
"select_parent: descending to %s/%s, found=%d\n",
611 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
, found
);
617 * All done at this level ... ascend and resume the search.
619 if (this_parent
!= parent
) {
620 next
= this_parent
->d_child
.next
;
621 this_parent
= this_parent
->d_parent
;
623 printk(KERN_DEBUG
"select_parent: ascending to %s/%s, found=%d\n",
624 this_parent
->d_parent
->d_name
.name
, this_parent
->d_name
.name
, found
);
629 spin_unlock(&dcache_lock
);
634 * shrink_dcache_parent - prune dcache
635 * @parent: parent of entries to prune
637 * Prune the dcache to remove unused children of the parent dentry.
640 void shrink_dcache_parent(struct dentry
* parent
)
644 while ((found
= select_parent(parent
)) != 0)
649 * shrink_dcache_anon - further prune the cache
650 * @head: head of d_hash list of dentries to prune
652 * Prune the dentries that are anonymous
654 * parsing d_hash list does not hlist_for_each_rcu() as it
655 * done under dcache_lock.
658 void shrink_dcache_anon(struct hlist_head
*head
)
660 struct hlist_node
*lp
;
664 spin_lock(&dcache_lock
);
665 hlist_for_each(lp
, head
) {
666 struct dentry
*this = hlist_entry(lp
, struct dentry
, d_hash
);
667 if (!list_empty(&this->d_lru
)) {
668 dentry_stat
.nr_unused
--;
669 list_del_init(&this->d_lru
);
673 * move only zero ref count dentries to the end
674 * of the unused list for prune_dcache
676 if (!atomic_read(&this->d_count
)) {
677 list_add_tail(&this->d_lru
, &dentry_unused
);
678 dentry_stat
.nr_unused
++;
682 spin_unlock(&dcache_lock
);
688 * Scan `nr' dentries and return the number which remain.
690 * We need to avoid reentering the filesystem if the caller is performing a
691 * GFP_NOFS allocation attempt. One example deadlock is:
693 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
694 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
695 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
697 * In this case we return -1 to tell the caller that we baled.
699 static int shrink_dcache_memory(int nr
, unsigned int gfp_mask
)
702 if (!(gfp_mask
& __GFP_FS
))
706 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
710 * d_alloc - allocate a dcache entry
711 * @parent: parent of entry to allocate
712 * @name: qstr of the name
714 * Allocates a dentry. It returns %NULL if there is insufficient memory
715 * available. On a success the dentry is returned. The name passed in is
716 * copied and the copy passed in may be reused after this call.
719 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
721 struct dentry
*dentry
;
724 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
728 if (name
->len
> DNAME_INLINE_LEN
-1) {
729 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
731 kmem_cache_free(dentry_cache
, dentry
);
735 dname
= dentry
->d_iname
;
737 dentry
->d_name
.name
= dname
;
739 dentry
->d_name
.len
= name
->len
;
740 dentry
->d_name
.hash
= name
->hash
;
741 memcpy(dname
, name
->name
, name
->len
);
742 dname
[name
->len
] = 0;
744 atomic_set(&dentry
->d_count
, 1);
745 dentry
->d_flags
= DCACHE_UNHASHED
;
746 spin_lock_init(&dentry
->d_lock
);
747 dentry
->d_inode
= NULL
;
748 dentry
->d_parent
= NULL
;
751 dentry
->d_fsdata
= NULL
;
752 dentry
->d_mounted
= 0;
753 dentry
->d_cookie
= NULL
;
754 INIT_HLIST_NODE(&dentry
->d_hash
);
755 INIT_LIST_HEAD(&dentry
->d_lru
);
756 INIT_LIST_HEAD(&dentry
->d_subdirs
);
757 INIT_LIST_HEAD(&dentry
->d_alias
);
760 dentry
->d_parent
= dget(parent
);
761 dentry
->d_sb
= parent
->d_sb
;
763 INIT_LIST_HEAD(&dentry
->d_child
);
766 spin_lock(&dcache_lock
);
768 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
769 dentry_stat
.nr_dentry
++;
770 spin_unlock(&dcache_lock
);
775 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
780 q
.len
= strlen(name
);
781 q
.hash
= full_name_hash(q
.name
, q
.len
);
782 return d_alloc(parent
, &q
);
786 * d_instantiate - fill in inode information for a dentry
787 * @entry: dentry to complete
788 * @inode: inode to attach to this dentry
790 * Fill in inode information in the entry.
792 * This turns negative dentries into productive full members
795 * NOTE! This assumes that the inode count has been incremented
796 * (or otherwise set) by the caller to indicate that it is now
797 * in use by the dcache.
800 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
802 if (!list_empty(&entry
->d_alias
)) BUG();
803 spin_lock(&dcache_lock
);
805 list_add(&entry
->d_alias
, &inode
->i_dentry
);
806 entry
->d_inode
= inode
;
807 spin_unlock(&dcache_lock
);
808 security_d_instantiate(entry
, inode
);
812 * d_instantiate_unique - instantiate a non-aliased dentry
813 * @entry: dentry to instantiate
814 * @inode: inode to attach to this dentry
816 * Fill in inode information in the entry. On success, it returns NULL.
817 * If an unhashed alias of "entry" already exists, then we return the
818 * aliased dentry instead.
820 * Note that in order to avoid conflicts with rename() etc, the caller
821 * had better be holding the parent directory semaphore.
823 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
825 struct dentry
*alias
;
826 int len
= entry
->d_name
.len
;
827 const char *name
= entry
->d_name
.name
;
828 unsigned int hash
= entry
->d_name
.hash
;
830 BUG_ON(!list_empty(&entry
->d_alias
));
831 spin_lock(&dcache_lock
);
834 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
835 struct qstr
*qstr
= &alias
->d_name
;
837 if (qstr
->hash
!= hash
)
839 if (alias
->d_parent
!= entry
->d_parent
)
841 if (qstr
->len
!= len
)
843 if (memcmp(qstr
->name
, name
, len
))
846 spin_unlock(&dcache_lock
);
847 BUG_ON(!d_unhashed(alias
));
850 list_add(&entry
->d_alias
, &inode
->i_dentry
);
852 entry
->d_inode
= inode
;
853 spin_unlock(&dcache_lock
);
854 security_d_instantiate(entry
, inode
);
857 EXPORT_SYMBOL(d_instantiate_unique
);
860 * d_alloc_root - allocate root dentry
861 * @root_inode: inode to allocate the root for
863 * Allocate a root ("/") dentry for the inode given. The inode is
864 * instantiated and returned. %NULL is returned if there is insufficient
865 * memory or the inode passed is %NULL.
868 struct dentry
* d_alloc_root(struct inode
* root_inode
)
870 struct dentry
*res
= NULL
;
873 static const struct qstr name
= { .name
= "/", .len
= 1 };
875 res
= d_alloc(NULL
, &name
);
877 res
->d_sb
= root_inode
->i_sb
;
879 d_instantiate(res
, root_inode
);
885 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
888 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
889 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
890 return dentry_hashtable
+ (hash
& D_HASHMASK
);
894 * d_alloc_anon - allocate an anonymous dentry
895 * @inode: inode to allocate the dentry for
897 * This is similar to d_alloc_root. It is used by filesystems when
898 * creating a dentry for a given inode, often in the process of
899 * mapping a filehandle to a dentry. The returned dentry may be
900 * anonymous, or may have a full name (if the inode was already
901 * in the cache). The file system may need to make further
902 * efforts to connect this dentry into the dcache properly.
904 * When called on a directory inode, we must ensure that
905 * the inode only ever has one dentry. If a dentry is
906 * found, that is returned instead of allocating a new one.
908 * On successful return, the reference to the inode has been transferred
909 * to the dentry. If %NULL is returned (indicating kmalloc failure),
910 * the reference on the inode has not been released.
913 struct dentry
* d_alloc_anon(struct inode
*inode
)
915 static const struct qstr anonstring
= { .name
= "" };
919 if ((res
= d_find_alias(inode
))) {
924 tmp
= d_alloc(NULL
, &anonstring
);
928 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
930 spin_lock(&dcache_lock
);
931 res
= __d_find_alias(inode
, 0);
933 /* attach a disconnected dentry */
936 spin_lock(&res
->d_lock
);
937 res
->d_sb
= inode
->i_sb
;
939 res
->d_inode
= inode
;
940 res
->d_flags
|= DCACHE_DISCONNECTED
;
941 res
->d_flags
&= ~DCACHE_UNHASHED
;
942 list_add(&res
->d_alias
, &inode
->i_dentry
);
943 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
944 spin_unlock(&res
->d_lock
);
946 inode
= NULL
; /* don't drop reference */
948 spin_unlock(&dcache_lock
);
959 * d_splice_alias - splice a disconnected dentry into the tree if one exists
960 * @inode: the inode which may have a disconnected dentry
961 * @dentry: a negative dentry which we want to point to the inode.
963 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
964 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
965 * and return it, else simply d_add the inode to the dentry and return NULL.
967 * This is needed in the lookup routine of any filesystem that is exportable
968 * (via knfsd) so that we can build dcache paths to directories effectively.
970 * If a dentry was found and moved, then it is returned. Otherwise NULL
971 * is returned. This matches the expected return value of ->lookup.
974 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
976 struct dentry
*new = NULL
;
979 spin_lock(&dcache_lock
);
980 new = __d_find_alias(inode
, 1);
982 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
983 spin_unlock(&dcache_lock
);
984 security_d_instantiate(new, inode
);
989 /* d_instantiate takes dcache_lock, so we do it by hand */
990 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
991 dentry
->d_inode
= inode
;
992 spin_unlock(&dcache_lock
);
993 security_d_instantiate(dentry
, inode
);
997 d_add(dentry
, inode
);
1003 * d_lookup - search for a dentry
1004 * @parent: parent dentry
1005 * @name: qstr of name we wish to find
1007 * Searches the children of the parent dentry for the name in question. If
1008 * the dentry is found its reference count is incremented and the dentry
1009 * is returned. The caller must use d_put to free the entry when it has
1010 * finished using it. %NULL is returned on failure.
1012 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1013 * Memory barriers are used while updating and doing lockless traversal.
1014 * To avoid races with d_move while rename is happening, d_lock is used.
1016 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1017 * and name pointer in one structure pointed by d_qstr.
1019 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1020 * lookup is going on.
1022 * dentry_unused list is not updated even if lookup finds the required dentry
1023 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1024 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1027 * d_lookup() is protected against the concurrent renames in some unrelated
1028 * directory using the seqlockt_t rename_lock.
1031 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1033 struct dentry
* dentry
= NULL
;
1037 seq
= read_seqbegin(&rename_lock
);
1038 dentry
= __d_lookup(parent
, name
);
1041 } while (read_seqretry(&rename_lock
, seq
));
1045 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1047 unsigned int len
= name
->len
;
1048 unsigned int hash
= name
->hash
;
1049 const unsigned char *str
= name
->name
;
1050 struct hlist_head
*head
= d_hash(parent
,hash
);
1051 struct dentry
*found
= NULL
;
1052 struct hlist_node
*node
;
1056 hlist_for_each_rcu(node
, head
) {
1057 struct dentry
*dentry
;
1060 dentry
= hlist_entry(node
, struct dentry
, d_hash
);
1062 if (dentry
->d_name
.hash
!= hash
)
1064 if (dentry
->d_parent
!= parent
)
1067 spin_lock(&dentry
->d_lock
);
1070 * Recheck the dentry after taking the lock - d_move may have
1071 * changed things. Don't bother checking the hash because we're
1072 * about to compare the whole name anyway.
1074 if (dentry
->d_parent
!= parent
)
1078 * It is safe to compare names since d_move() cannot
1079 * change the qstr (protected by d_lock).
1081 qstr
= &dentry
->d_name
;
1082 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1083 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1086 if (qstr
->len
!= len
)
1088 if (memcmp(qstr
->name
, str
, len
))
1092 if (!d_unhashed(dentry
)) {
1093 atomic_inc(&dentry
->d_count
);
1096 spin_unlock(&dentry
->d_lock
);
1099 spin_unlock(&dentry
->d_lock
);
1107 * d_validate - verify dentry provided from insecure source
1108 * @dentry: The dentry alleged to be valid child of @dparent
1109 * @dparent: The parent dentry (known to be valid)
1110 * @hash: Hash of the dentry
1111 * @len: Length of the name
1113 * An insecure source has sent us a dentry, here we verify it and dget() it.
1114 * This is used by ncpfs in its readdir implementation.
1115 * Zero is returned in the dentry is invalid.
1118 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1120 struct hlist_head
*base
;
1121 struct hlist_node
*lhp
;
1123 /* Check whether the ptr might be valid at all.. */
1124 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1127 if (dentry
->d_parent
!= dparent
)
1130 spin_lock(&dcache_lock
);
1131 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1132 hlist_for_each(lhp
,base
) {
1133 /* hlist_for_each_rcu() not required for d_hash list
1134 * as it is parsed under dcache_lock
1136 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1137 __dget_locked(dentry
);
1138 spin_unlock(&dcache_lock
);
1142 spin_unlock(&dcache_lock
);
1148 * When a file is deleted, we have two options:
1149 * - turn this dentry into a negative dentry
1150 * - unhash this dentry and free it.
1152 * Usually, we want to just turn this into
1153 * a negative dentry, but if anybody else is
1154 * currently using the dentry or the inode
1155 * we can't do that and we fall back on removing
1156 * it from the hash queues and waiting for
1157 * it to be deleted later when it has no users
1161 * d_delete - delete a dentry
1162 * @dentry: The dentry to delete
1164 * Turn the dentry into a negative dentry if possible, otherwise
1165 * remove it from the hash queues so it can be deleted later
1168 void d_delete(struct dentry
* dentry
)
1172 * Are we the only user?
1174 spin_lock(&dcache_lock
);
1175 spin_lock(&dentry
->d_lock
);
1176 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1177 if (atomic_read(&dentry
->d_count
) == 1) {
1178 dentry_iput(dentry
);
1179 fsnotify_nameremove(dentry
, isdir
);
1183 if (!d_unhashed(dentry
))
1186 spin_unlock(&dentry
->d_lock
);
1187 spin_unlock(&dcache_lock
);
1189 fsnotify_nameremove(dentry
, isdir
);
1192 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1195 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1196 hlist_add_head_rcu(&entry
->d_hash
, list
);
1200 * d_rehash - add an entry back to the hash
1201 * @entry: dentry to add to the hash
1203 * Adds a dentry to the hash according to its name.
1206 void d_rehash(struct dentry
* entry
)
1208 struct hlist_head
*list
= d_hash(entry
->d_parent
, entry
->d_name
.hash
);
1210 spin_lock(&dcache_lock
);
1211 spin_lock(&entry
->d_lock
);
1212 __d_rehash(entry
, list
);
1213 spin_unlock(&entry
->d_lock
);
1214 spin_unlock(&dcache_lock
);
1217 #define do_switch(x,y) do { \
1218 __typeof__ (x) __tmp = x; \
1219 x = y; y = __tmp; } while (0)
1222 * When switching names, the actual string doesn't strictly have to
1223 * be preserved in the target - because we're dropping the target
1224 * anyway. As such, we can just do a simple memcpy() to copy over
1225 * the new name before we switch.
1227 * Note that we have to be a lot more careful about getting the hash
1228 * switched - we have to switch the hash value properly even if it
1229 * then no longer matches the actual (corrupted) string of the target.
1230 * The hash value has to match the hash queue that the dentry is on..
1232 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1234 if (dname_external(target
)) {
1235 if (dname_external(dentry
)) {
1237 * Both external: swap the pointers
1239 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1242 * dentry:internal, target:external. Steal target's
1243 * storage and make target internal.
1245 dentry
->d_name
.name
= target
->d_name
.name
;
1246 target
->d_name
.name
= target
->d_iname
;
1249 if (dname_external(dentry
)) {
1251 * dentry:external, target:internal. Give dentry's
1252 * storage to target and make dentry internal
1254 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1255 target
->d_name
.len
+ 1);
1256 target
->d_name
.name
= dentry
->d_name
.name
;
1257 dentry
->d_name
.name
= dentry
->d_iname
;
1260 * Both are internal. Just copy target to dentry
1262 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1263 target
->d_name
.len
+ 1);
1269 * We cannibalize "target" when moving dentry on top of it,
1270 * because it's going to be thrown away anyway. We could be more
1271 * polite about it, though.
1273 * This forceful removal will result in ugly /proc output if
1274 * somebody holds a file open that got deleted due to a rename.
1275 * We could be nicer about the deleted file, and let it show
1276 * up under the name it got deleted rather than the name that
1281 * d_move - move a dentry
1282 * @dentry: entry to move
1283 * @target: new dentry
1285 * Update the dcache to reflect the move of a file name. Negative
1286 * dcache entries should not be moved in this way.
1289 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1291 struct hlist_head
*list
;
1293 if (!dentry
->d_inode
)
1294 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1296 spin_lock(&dcache_lock
);
1297 write_seqlock(&rename_lock
);
1299 * XXXX: do we really need to take target->d_lock?
1301 if (target
< dentry
) {
1302 spin_lock(&target
->d_lock
);
1303 spin_lock(&dentry
->d_lock
);
1305 spin_lock(&dentry
->d_lock
);
1306 spin_lock(&target
->d_lock
);
1309 /* Move the dentry to the target hash queue, if on different bucket */
1310 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1311 goto already_unhashed
;
1313 hlist_del_rcu(&dentry
->d_hash
);
1316 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1317 __d_rehash(dentry
, list
);
1319 /* Unhash the target: dput() will then get rid of it */
1322 list_del(&dentry
->d_child
);
1323 list_del(&target
->d_child
);
1325 /* Switch the names.. */
1326 switch_names(dentry
, target
);
1327 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1328 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1330 /* ... and switch the parents */
1331 if (IS_ROOT(dentry
)) {
1332 dentry
->d_parent
= target
->d_parent
;
1333 target
->d_parent
= target
;
1334 INIT_LIST_HEAD(&target
->d_child
);
1336 do_switch(dentry
->d_parent
, target
->d_parent
);
1338 /* And add them back to the (new) parent lists */
1339 list_add(&target
->d_child
, &target
->d_parent
->d_subdirs
);
1342 list_add(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
1343 spin_unlock(&target
->d_lock
);
1344 spin_unlock(&dentry
->d_lock
);
1345 write_sequnlock(&rename_lock
);
1346 spin_unlock(&dcache_lock
);
1350 * d_path - return the path of a dentry
1351 * @dentry: dentry to report
1352 * @vfsmnt: vfsmnt to which the dentry belongs
1353 * @root: root dentry
1354 * @rootmnt: vfsmnt to which the root dentry belongs
1355 * @buffer: buffer to return value in
1356 * @buflen: buffer length
1358 * Convert a dentry into an ASCII path name. If the entry has been deleted
1359 * the string " (deleted)" is appended. Note that this is ambiguous.
1361 * Returns the buffer or an error code if the path was too long.
1363 * "buflen" should be positive. Caller holds the dcache_lock.
1365 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1366 struct dentry
*root
, struct vfsmount
*rootmnt
,
1367 char *buffer
, int buflen
)
1369 char * end
= buffer
+buflen
;
1375 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1380 memcpy(end
, " (deleted)", 10);
1390 struct dentry
* parent
;
1392 if (dentry
== root
&& vfsmnt
== rootmnt
)
1394 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1396 spin_lock(&vfsmount_lock
);
1397 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1398 spin_unlock(&vfsmount_lock
);
1401 dentry
= vfsmnt
->mnt_mountpoint
;
1402 vfsmnt
= vfsmnt
->mnt_parent
;
1403 spin_unlock(&vfsmount_lock
);
1406 parent
= dentry
->d_parent
;
1408 namelen
= dentry
->d_name
.len
;
1409 buflen
-= namelen
+ 1;
1413 memcpy(end
, dentry
->d_name
.name
, namelen
);
1422 namelen
= dentry
->d_name
.len
;
1426 retval
-= namelen
-1; /* hit the slash */
1427 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1430 return ERR_PTR(-ENAMETOOLONG
);
1433 /* write full pathname into buffer and return start of pathname */
1434 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1435 char *buf
, int buflen
)
1438 struct vfsmount
*rootmnt
;
1439 struct dentry
*root
;
1441 read_lock(¤t
->fs
->lock
);
1442 rootmnt
= mntget(current
->fs
->rootmnt
);
1443 root
= dget(current
->fs
->root
);
1444 read_unlock(¤t
->fs
->lock
);
1445 spin_lock(&dcache_lock
);
1446 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1447 spin_unlock(&dcache_lock
);
1454 * NOTE! The user-level library version returns a
1455 * character pointer. The kernel system call just
1456 * returns the length of the buffer filled (which
1457 * includes the ending '\0' character), or a negative
1458 * error value. So libc would do something like
1460 * char *getcwd(char * buf, size_t size)
1464 * retval = sys_getcwd(buf, size);
1471 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1474 struct vfsmount
*pwdmnt
, *rootmnt
;
1475 struct dentry
*pwd
, *root
;
1476 char *page
= (char *) __get_free_page(GFP_USER
);
1481 read_lock(¤t
->fs
->lock
);
1482 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1483 pwd
= dget(current
->fs
->pwd
);
1484 rootmnt
= mntget(current
->fs
->rootmnt
);
1485 root
= dget(current
->fs
->root
);
1486 read_unlock(¤t
->fs
->lock
);
1489 /* Has the current directory has been unlinked? */
1490 spin_lock(&dcache_lock
);
1491 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1495 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1496 spin_unlock(&dcache_lock
);
1498 error
= PTR_ERR(cwd
);
1503 len
= PAGE_SIZE
+ page
- cwd
;
1506 if (copy_to_user(buf
, cwd
, len
))
1510 spin_unlock(&dcache_lock
);
1517 free_page((unsigned long) page
);
1522 * Test whether new_dentry is a subdirectory of old_dentry.
1524 * Trivially implemented using the dcache structure
1528 * is_subdir - is new dentry a subdirectory of old_dentry
1529 * @new_dentry: new dentry
1530 * @old_dentry: old dentry
1532 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1533 * Returns 0 otherwise.
1534 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1537 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1540 struct dentry
* saved
= new_dentry
;
1543 /* need rcu_readlock to protect against the d_parent trashing due to
1548 /* for restarting inner loop in case of seq retry */
1551 seq
= read_seqbegin(&rename_lock
);
1553 if (new_dentry
!= old_dentry
) {
1554 struct dentry
* parent
= new_dentry
->d_parent
;
1555 if (parent
== new_dentry
)
1557 new_dentry
= parent
;
1563 } while (read_seqretry(&rename_lock
, seq
));
1569 void d_genocide(struct dentry
*root
)
1571 struct dentry
*this_parent
= root
;
1572 struct list_head
*next
;
1574 spin_lock(&dcache_lock
);
1576 next
= this_parent
->d_subdirs
.next
;
1578 while (next
!= &this_parent
->d_subdirs
) {
1579 struct list_head
*tmp
= next
;
1580 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1582 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1584 if (!list_empty(&dentry
->d_subdirs
)) {
1585 this_parent
= dentry
;
1588 atomic_dec(&dentry
->d_count
);
1590 if (this_parent
!= root
) {
1591 next
= this_parent
->d_child
.next
;
1592 atomic_dec(&this_parent
->d_count
);
1593 this_parent
= this_parent
->d_parent
;
1596 spin_unlock(&dcache_lock
);
1600 * find_inode_number - check for dentry with name
1601 * @dir: directory to check
1602 * @name: Name to find.
1604 * Check whether a dentry already exists for the given name,
1605 * and return the inode number if it has an inode. Otherwise
1608 * This routine is used to post-process directory listings for
1609 * filesystems using synthetic inode numbers, and is necessary
1610 * to keep getcwd() working.
1613 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
1615 struct dentry
* dentry
;
1619 * Check for a fs-specific hash function. Note that we must
1620 * calculate the standard hash first, as the d_op->d_hash()
1621 * routine may choose to leave the hash value unchanged.
1623 name
->hash
= full_name_hash(name
->name
, name
->len
);
1624 if (dir
->d_op
&& dir
->d_op
->d_hash
)
1626 if (dir
->d_op
->d_hash(dir
, name
) != 0)
1630 dentry
= d_lookup(dir
, name
);
1633 if (dentry
->d_inode
)
1634 ino
= dentry
->d_inode
->i_ino
;
1641 static __initdata
unsigned long dhash_entries
;
1642 static int __init
set_dhash_entries(char *str
)
1646 dhash_entries
= simple_strtoul(str
, &str
, 0);
1649 __setup("dhash_entries=", set_dhash_entries
);
1651 static void __init
dcache_init_early(void)
1655 /* If hashes are distributed across NUMA nodes, defer
1656 * hash allocation until vmalloc space is available.
1662 alloc_large_system_hash("Dentry cache",
1663 sizeof(struct hlist_head
),
1671 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1672 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1675 static void __init
dcache_init(unsigned long mempages
)
1680 * A constructor could be added for stable state like the lists,
1681 * but it is probably not worth it because of the cache nature
1684 dentry_cache
= kmem_cache_create("dentry_cache",
1685 sizeof(struct dentry
),
1687 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
,
1690 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
1692 /* Hash may have been set up in dcache_init_early */
1697 alloc_large_system_hash("Dentry cache",
1698 sizeof(struct hlist_head
),
1706 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1707 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1710 /* SLAB cache for __getname() consumers */
1711 kmem_cache_t
*names_cachep
;
1713 /* SLAB cache for file structures */
1714 kmem_cache_t
*filp_cachep
;
1716 EXPORT_SYMBOL(d_genocide
);
1718 extern void bdev_cache_init(void);
1719 extern void chrdev_init(void);
1721 void __init
vfs_caches_init_early(void)
1723 dcache_init_early();
1727 void __init
vfs_caches_init(unsigned long mempages
)
1729 unsigned long reserve
;
1731 /* Base hash sizes on available memory, with a reserve equal to
1732 150% of current kernel size */
1734 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
1735 mempages
-= reserve
;
1737 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
1738 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1740 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
1741 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, filp_ctor
, filp_dtor
);
1743 dcache_init(mempages
);
1744 inode_init(mempages
);
1745 files_init(mempages
);
1751 EXPORT_SYMBOL(d_alloc
);
1752 EXPORT_SYMBOL(d_alloc_anon
);
1753 EXPORT_SYMBOL(d_alloc_root
);
1754 EXPORT_SYMBOL(d_delete
);
1755 EXPORT_SYMBOL(d_find_alias
);
1756 EXPORT_SYMBOL(d_instantiate
);
1757 EXPORT_SYMBOL(d_invalidate
);
1758 EXPORT_SYMBOL(d_lookup
);
1759 EXPORT_SYMBOL(d_move
);
1760 EXPORT_SYMBOL(d_path
);
1761 EXPORT_SYMBOL(d_prune_aliases
);
1762 EXPORT_SYMBOL(d_rehash
);
1763 EXPORT_SYMBOL(d_splice_alias
);
1764 EXPORT_SYMBOL(d_validate
);
1765 EXPORT_SYMBOL(dget_locked
);
1766 EXPORT_SYMBOL(dput
);
1767 EXPORT_SYMBOL(find_inode_number
);
1768 EXPORT_SYMBOL(have_submounts
);
1769 EXPORT_SYMBOL(names_cachep
);
1770 EXPORT_SYMBOL(shrink_dcache_parent
);
1771 EXPORT_SYMBOL(shrink_dcache_sb
);