[PATCH] w1: Added DS2433 driver - family id update.
[linux-2.6/verdex.git] / kernel / sched.c
blob18b95520a2e29bdfa181aecb913f0ea50995f609
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
200 struct runqueue {
201 spinlock_t lock;
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long cpu_load[3];
210 #endif
211 unsigned long long nr_switches;
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
219 unsigned long nr_uninterruptible;
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
229 #ifdef CONFIG_SMP
230 struct sched_domain *sd;
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
236 task_t *migration_thread;
237 struct list_head migration_queue;
238 #endif
240 #ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258 #endif
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
283 #endif
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
288 return rq->curr == p;
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 spin_unlock_irq(&rq->lock);
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
303 #ifdef CONFIG_SMP
304 return p->oncpu;
305 #else
306 return rq->curr == p;
307 #endif
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
312 #ifdef CONFIG_SMP
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
316 * here.
318 next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
322 #else
323 spin_unlock(&rq->lock);
324 #endif
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
329 #ifdef CONFIG_SMP
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
333 * finished.
335 smp_wmb();
336 prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 local_irq_enable();
340 #endif
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350 __acquires(rq->lock)
352 struct runqueue *rq;
354 repeat_lock_task:
355 local_irq_save(*flags);
356 rq = task_rq(p);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
362 return rq;
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366 __releases(rq->lock)
368 spin_unlock_irqrestore(&rq->lock, *flags);
371 #ifdef CONFIG_SCHEDSTATS
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
376 #define SCHEDSTAT_VERSION 12
378 static int show_schedstat(struct seq_file *seq, void *v)
380 int cpu;
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387 struct sched_domain *sd;
388 int dcnt = 0;
389 #endif
391 /* runqueue-specific stats */
392 seq_printf(seq,
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
401 seq_printf(seq, "\n");
403 #ifdef CONFIG_SMP
404 /* domain-specific stats */
405 preempt_disable();
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413 itype++) {
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415 sd->lb_cnt[itype],
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
430 preempt_enable();
431 #endif
433 return 0;
436 static int schedstat_open(struct inode *inode, struct file *file)
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
440 struct seq_file *m;
441 int res;
443 if (!buf)
444 return -ENOMEM;
445 res = single_open(file, show_schedstat, NULL);
446 if (!res) {
447 m = file->private_data;
448 m->buf = buf;
449 m->size = size;
450 } else
451 kfree(buf);
452 return res;
455 struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
467 #endif
470 * rq_lock - lock a given runqueue and disable interrupts.
472 static inline runqueue_t *this_rq_lock(void)
473 __acquires(rq->lock)
475 runqueue_t *rq;
477 local_irq_disable();
478 rq = this_rq();
479 spin_lock(&rq->lock);
481 return rq;
484 #ifdef CONFIG_SCHEDSTATS
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
498 * finally hit a cpu.
500 static inline void sched_info_dequeued(task_t *t)
502 t->sched_info.last_queued = 0;
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
510 static inline void sched_info_arrive(task_t *t)
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
522 if (!rq)
523 return;
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538 * to runqueue.
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
544 static inline void sched_info_queued(task_t *t)
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
554 static inline void sched_info_depart(task_t *t)
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
559 t->sched_info.cpu_time += diff;
561 if (rq)
562 rq->rq_sched_info.cpu_time += diff;
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
570 static inline void sched_info_switch(task_t *prev, task_t *next)
572 struct runqueue *rq = task_rq(prev);
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
577 * process, however.
579 if (prev != rq->idle)
580 sched_info_depart(prev);
582 if (next != rq->idle)
583 sched_info_arrive(next);
585 #else
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
591 * Adding/removing a task to/from a priority array:
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
595 array->nr_active--;
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
606 array->nr_active++;
607 p->array = array;
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
616 list_move_tail(&p->run_list, array->queue + p->prio);
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
623 array->nr_active++;
624 p->array = array;
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
634 * We use 25% of the full 0...39 priority range so that:
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
639 * Both properties are important to certain workloads.
641 static int effective_prio(task_t *p)
643 int bonus, prio;
645 if (rt_task(p))
646 return p->prio;
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
652 prio = MAX_RT_PRIO;
653 if (prio > MAX_PRIO-1)
654 prio = MAX_PRIO-1;
655 return prio;
659 * __activate_task - move a task to the runqueue.
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
663 enqueue_task(p, rq->active);
664 rq->nr_running++;
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
672 enqueue_task_head(p, rq->active);
673 rq->nr_running++;
676 static int recalc_task_prio(task_t *p, unsigned long long now)
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
684 else
685 sleep_time = (unsigned long)__sleep_time;
687 if (likely(sleep_time > 0)) {
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
692 * other processes.
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697 DEF_TIMESLICE);
698 } else {
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712 sleep_time = 0;
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
716 sleep_time = 0;
721 * This code gives a bonus to interactive tasks.
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
728 p->sleep_avg += sleep_time;
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
735 return effective_prio(p);
739 * activate_task - move a task to the runqueue and do priority recalculation
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
746 unsigned long long now;
748 now = sched_clock();
749 #ifdef CONFIG_SMP
750 if (!local) {
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
756 #endif
758 p->prio = recalc_task_prio(p, now);
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
764 if (!p->activated) {
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
772 if (in_interrupt())
773 p->activated = 2;
774 else {
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
779 p->activated = 1;
782 p->timestamp = now;
784 __activate_task(p, rq);
788 * deactivate_task - remove a task from the runqueue.
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
792 rq->nr_running--;
793 dequeue_task(p, p->array);
794 p->array = NULL;
798 * resched_task - mark a task 'to be rescheduled now'.
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
807 int need_resched, nrpolling;
809 assert_spin_locked(&task_rq(p)->lock);
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
819 #else
820 static inline void resched_task(task_t *p)
822 set_tsk_need_resched(p);
824 #endif
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
830 inline int task_curr(const task_t *p)
832 return cpu_curr(task_cpu(p)) == p;
835 #ifdef CONFIG_SMP
836 typedef struct {
837 struct list_head list;
839 task_t *task;
840 int dest_cpu;
842 struct completion done;
843 } migration_req_t;
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
851 runqueue_t *rq = task_rq(p);
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
859 return 0;
862 init_completion(&req->done);
863 req->task = p;
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
866 return 1;
870 * wait_task_inactive - wait for a thread to unschedule.
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
878 void wait_task_inactive(task_t * p)
880 unsigned long flags;
881 runqueue_t *rq;
882 int preempted;
884 repeat:
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
891 cpu_relax();
892 if (preempted)
893 yield();
894 goto repeat;
896 task_rq_unlock(rq, &flags);
899 /***
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
910 * achieved as well.
912 void kick_process(task_t *p)
914 int cpu;
916 preempt_disable();
917 cpu = task_cpu(p);
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
920 preempt_enable();
924 * Return a low guess at the load of a migration-source cpu.
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
929 static inline unsigned long source_load(int cpu, int type)
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933 if (type == 0)
934 return load_now;
936 return min(rq->cpu_load[type-1], load_now);
940 * Return a high guess at the load of a migration-target cpu
942 static inline unsigned long target_load(int cpu, int type)
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946 if (type == 0)
947 return load_now;
949 return max(rq->cpu_load[type-1], load_now);
953 * find_idlest_group finds and returns the least busy CPU group within the
954 * domain.
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
964 do {
965 unsigned long load, avg_load;
966 int local_group;
967 int i;
969 local_group = cpu_isset(this_cpu, group->cpumask);
970 /* XXX: put a cpus allowed check */
972 /* Tally up the load of all CPUs in the group */
973 avg_load = 0;
975 for_each_cpu_mask(i, group->cpumask) {
976 /* Bias balancing toward cpus of our domain */
977 if (local_group)
978 load = source_load(i, load_idx);
979 else
980 load = target_load(i, load_idx);
982 avg_load += load;
985 /* Adjust by relative CPU power of the group */
986 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
988 if (local_group) {
989 this_load = avg_load;
990 this = group;
991 } else if (avg_load < min_load) {
992 min_load = avg_load;
993 idlest = group;
995 group = group->next;
996 } while (group != sd->groups);
998 if (!idlest || 100*this_load < imbalance*min_load)
999 return NULL;
1000 return idlest;
1004 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1006 static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1008 unsigned long load, min_load = ULONG_MAX;
1009 int idlest = -1;
1010 int i;
1012 for_each_cpu_mask(i, group->cpumask) {
1013 load = source_load(i, 0);
1015 if (load < min_load || (load == min_load && i == this_cpu)) {
1016 min_load = load;
1017 idlest = i;
1021 return idlest;
1025 * sched_balance_self: balance the current task (running on cpu) in domains
1026 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1027 * SD_BALANCE_EXEC.
1029 * Balance, ie. select the least loaded group.
1031 * Returns the target CPU number, or the same CPU if no balancing is needed.
1033 * preempt must be disabled.
1035 static int sched_balance_self(int cpu, int flag)
1037 struct task_struct *t = current;
1038 struct sched_domain *tmp, *sd = NULL;
1040 for_each_domain(cpu, tmp)
1041 if (tmp->flags & flag)
1042 sd = tmp;
1044 while (sd) {
1045 cpumask_t span;
1046 struct sched_group *group;
1047 int new_cpu;
1048 int weight;
1050 span = sd->span;
1051 group = find_idlest_group(sd, t, cpu);
1052 if (!group)
1053 goto nextlevel;
1055 new_cpu = find_idlest_cpu(group, cpu);
1056 if (new_cpu == -1 || new_cpu == cpu)
1057 goto nextlevel;
1059 /* Now try balancing at a lower domain level */
1060 cpu = new_cpu;
1061 nextlevel:
1062 sd = NULL;
1063 weight = cpus_weight(span);
1064 for_each_domain(cpu, tmp) {
1065 if (weight <= cpus_weight(tmp->span))
1066 break;
1067 if (tmp->flags & flag)
1068 sd = tmp;
1070 /* while loop will break here if sd == NULL */
1073 return cpu;
1076 #endif /* CONFIG_SMP */
1079 * wake_idle() will wake a task on an idle cpu if task->cpu is
1080 * not idle and an idle cpu is available. The span of cpus to
1081 * search starts with cpus closest then further out as needed,
1082 * so we always favor a closer, idle cpu.
1084 * Returns the CPU we should wake onto.
1086 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1087 static int wake_idle(int cpu, task_t *p)
1089 cpumask_t tmp;
1090 struct sched_domain *sd;
1091 int i;
1093 if (idle_cpu(cpu))
1094 return cpu;
1096 for_each_domain(cpu, sd) {
1097 if (sd->flags & SD_WAKE_IDLE) {
1098 cpus_and(tmp, sd->span, p->cpus_allowed);
1099 for_each_cpu_mask(i, tmp) {
1100 if (idle_cpu(i))
1101 return i;
1104 else
1105 break;
1107 return cpu;
1109 #else
1110 static inline int wake_idle(int cpu, task_t *p)
1112 return cpu;
1114 #endif
1116 /***
1117 * try_to_wake_up - wake up a thread
1118 * @p: the to-be-woken-up thread
1119 * @state: the mask of task states that can be woken
1120 * @sync: do a synchronous wakeup?
1122 * Put it on the run-queue if it's not already there. The "current"
1123 * thread is always on the run-queue (except when the actual
1124 * re-schedule is in progress), and as such you're allowed to do
1125 * the simpler "current->state = TASK_RUNNING" to mark yourself
1126 * runnable without the overhead of this.
1128 * returns failure only if the task is already active.
1130 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1132 int cpu, this_cpu, success = 0;
1133 unsigned long flags;
1134 long old_state;
1135 runqueue_t *rq;
1136 #ifdef CONFIG_SMP
1137 unsigned long load, this_load;
1138 struct sched_domain *sd, *this_sd = NULL;
1139 int new_cpu;
1140 #endif
1142 rq = task_rq_lock(p, &flags);
1143 old_state = p->state;
1144 if (!(old_state & state))
1145 goto out;
1147 if (p->array)
1148 goto out_running;
1150 cpu = task_cpu(p);
1151 this_cpu = smp_processor_id();
1153 #ifdef CONFIG_SMP
1154 if (unlikely(task_running(rq, p)))
1155 goto out_activate;
1157 new_cpu = cpu;
1159 schedstat_inc(rq, ttwu_cnt);
1160 if (cpu == this_cpu) {
1161 schedstat_inc(rq, ttwu_local);
1162 goto out_set_cpu;
1165 for_each_domain(this_cpu, sd) {
1166 if (cpu_isset(cpu, sd->span)) {
1167 schedstat_inc(sd, ttwu_wake_remote);
1168 this_sd = sd;
1169 break;
1173 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1174 goto out_set_cpu;
1177 * Check for affine wakeup and passive balancing possibilities.
1179 if (this_sd) {
1180 int idx = this_sd->wake_idx;
1181 unsigned int imbalance;
1183 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1185 load = source_load(cpu, idx);
1186 this_load = target_load(this_cpu, idx);
1188 new_cpu = this_cpu; /* Wake to this CPU if we can */
1190 if (this_sd->flags & SD_WAKE_AFFINE) {
1191 unsigned long tl = this_load;
1193 * If sync wakeup then subtract the (maximum possible)
1194 * effect of the currently running task from the load
1195 * of the current CPU:
1197 if (sync)
1198 tl -= SCHED_LOAD_SCALE;
1200 if ((tl <= load &&
1201 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1202 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1204 * This domain has SD_WAKE_AFFINE and
1205 * p is cache cold in this domain, and
1206 * there is no bad imbalance.
1208 schedstat_inc(this_sd, ttwu_move_affine);
1209 goto out_set_cpu;
1214 * Start passive balancing when half the imbalance_pct
1215 * limit is reached.
1217 if (this_sd->flags & SD_WAKE_BALANCE) {
1218 if (imbalance*this_load <= 100*load) {
1219 schedstat_inc(this_sd, ttwu_move_balance);
1220 goto out_set_cpu;
1225 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1226 out_set_cpu:
1227 new_cpu = wake_idle(new_cpu, p);
1228 if (new_cpu != cpu) {
1229 set_task_cpu(p, new_cpu);
1230 task_rq_unlock(rq, &flags);
1231 /* might preempt at this point */
1232 rq = task_rq_lock(p, &flags);
1233 old_state = p->state;
1234 if (!(old_state & state))
1235 goto out;
1236 if (p->array)
1237 goto out_running;
1239 this_cpu = smp_processor_id();
1240 cpu = task_cpu(p);
1243 out_activate:
1244 #endif /* CONFIG_SMP */
1245 if (old_state == TASK_UNINTERRUPTIBLE) {
1246 rq->nr_uninterruptible--;
1248 * Tasks on involuntary sleep don't earn
1249 * sleep_avg beyond just interactive state.
1251 p->activated = -1;
1255 * Sync wakeups (i.e. those types of wakeups where the waker
1256 * has indicated that it will leave the CPU in short order)
1257 * don't trigger a preemption, if the woken up task will run on
1258 * this cpu. (in this case the 'I will reschedule' promise of
1259 * the waker guarantees that the freshly woken up task is going
1260 * to be considered on this CPU.)
1262 activate_task(p, rq, cpu == this_cpu);
1263 if (!sync || cpu != this_cpu) {
1264 if (TASK_PREEMPTS_CURR(p, rq))
1265 resched_task(rq->curr);
1267 success = 1;
1269 out_running:
1270 p->state = TASK_RUNNING;
1271 out:
1272 task_rq_unlock(rq, &flags);
1274 return success;
1277 int fastcall wake_up_process(task_t * p)
1279 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1280 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1283 EXPORT_SYMBOL(wake_up_process);
1285 int fastcall wake_up_state(task_t *p, unsigned int state)
1287 return try_to_wake_up(p, state, 0);
1291 * Perform scheduler related setup for a newly forked process p.
1292 * p is forked by current.
1294 void fastcall sched_fork(task_t *p, int clone_flags)
1296 int cpu = get_cpu();
1298 #ifdef CONFIG_SMP
1299 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1300 #endif
1301 set_task_cpu(p, cpu);
1304 * We mark the process as running here, but have not actually
1305 * inserted it onto the runqueue yet. This guarantees that
1306 * nobody will actually run it, and a signal or other external
1307 * event cannot wake it up and insert it on the runqueue either.
1309 p->state = TASK_RUNNING;
1310 INIT_LIST_HEAD(&p->run_list);
1311 p->array = NULL;
1312 #ifdef CONFIG_SCHEDSTATS
1313 memset(&p->sched_info, 0, sizeof(p->sched_info));
1314 #endif
1315 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1316 p->oncpu = 0;
1317 #endif
1318 #ifdef CONFIG_PREEMPT
1319 /* Want to start with kernel preemption disabled. */
1320 p->thread_info->preempt_count = 1;
1321 #endif
1323 * Share the timeslice between parent and child, thus the
1324 * total amount of pending timeslices in the system doesn't change,
1325 * resulting in more scheduling fairness.
1327 local_irq_disable();
1328 p->time_slice = (current->time_slice + 1) >> 1;
1330 * The remainder of the first timeslice might be recovered by
1331 * the parent if the child exits early enough.
1333 p->first_time_slice = 1;
1334 current->time_slice >>= 1;
1335 p->timestamp = sched_clock();
1336 if (unlikely(!current->time_slice)) {
1338 * This case is rare, it happens when the parent has only
1339 * a single jiffy left from its timeslice. Taking the
1340 * runqueue lock is not a problem.
1342 current->time_slice = 1;
1343 scheduler_tick();
1345 local_irq_enable();
1346 put_cpu();
1350 * wake_up_new_task - wake up a newly created task for the first time.
1352 * This function will do some initial scheduler statistics housekeeping
1353 * that must be done for every newly created context, then puts the task
1354 * on the runqueue and wakes it.
1356 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1358 unsigned long flags;
1359 int this_cpu, cpu;
1360 runqueue_t *rq, *this_rq;
1362 rq = task_rq_lock(p, &flags);
1363 BUG_ON(p->state != TASK_RUNNING);
1364 this_cpu = smp_processor_id();
1365 cpu = task_cpu(p);
1368 * We decrease the sleep average of forking parents
1369 * and children as well, to keep max-interactive tasks
1370 * from forking tasks that are max-interactive. The parent
1371 * (current) is done further down, under its lock.
1373 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1374 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1376 p->prio = effective_prio(p);
1378 if (likely(cpu == this_cpu)) {
1379 if (!(clone_flags & CLONE_VM)) {
1381 * The VM isn't cloned, so we're in a good position to
1382 * do child-runs-first in anticipation of an exec. This
1383 * usually avoids a lot of COW overhead.
1385 if (unlikely(!current->array))
1386 __activate_task(p, rq);
1387 else {
1388 p->prio = current->prio;
1389 list_add_tail(&p->run_list, &current->run_list);
1390 p->array = current->array;
1391 p->array->nr_active++;
1392 rq->nr_running++;
1394 set_need_resched();
1395 } else
1396 /* Run child last */
1397 __activate_task(p, rq);
1399 * We skip the following code due to cpu == this_cpu
1401 * task_rq_unlock(rq, &flags);
1402 * this_rq = task_rq_lock(current, &flags);
1404 this_rq = rq;
1405 } else {
1406 this_rq = cpu_rq(this_cpu);
1409 * Not the local CPU - must adjust timestamp. This should
1410 * get optimised away in the !CONFIG_SMP case.
1412 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1413 + rq->timestamp_last_tick;
1414 __activate_task(p, rq);
1415 if (TASK_PREEMPTS_CURR(p, rq))
1416 resched_task(rq->curr);
1419 * Parent and child are on different CPUs, now get the
1420 * parent runqueue to update the parent's ->sleep_avg:
1422 task_rq_unlock(rq, &flags);
1423 this_rq = task_rq_lock(current, &flags);
1425 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1426 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1427 task_rq_unlock(this_rq, &flags);
1431 * Potentially available exiting-child timeslices are
1432 * retrieved here - this way the parent does not get
1433 * penalized for creating too many threads.
1435 * (this cannot be used to 'generate' timeslices
1436 * artificially, because any timeslice recovered here
1437 * was given away by the parent in the first place.)
1439 void fastcall sched_exit(task_t * p)
1441 unsigned long flags;
1442 runqueue_t *rq;
1445 * If the child was a (relative-) CPU hog then decrease
1446 * the sleep_avg of the parent as well.
1448 rq = task_rq_lock(p->parent, &flags);
1449 if (p->first_time_slice) {
1450 p->parent->time_slice += p->time_slice;
1451 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1452 p->parent->time_slice = task_timeslice(p);
1454 if (p->sleep_avg < p->parent->sleep_avg)
1455 p->parent->sleep_avg = p->parent->sleep_avg /
1456 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1457 (EXIT_WEIGHT + 1);
1458 task_rq_unlock(rq, &flags);
1462 * prepare_task_switch - prepare to switch tasks
1463 * @rq: the runqueue preparing to switch
1464 * @next: the task we are going to switch to.
1466 * This is called with the rq lock held and interrupts off. It must
1467 * be paired with a subsequent finish_task_switch after the context
1468 * switch.
1470 * prepare_task_switch sets up locking and calls architecture specific
1471 * hooks.
1473 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1475 prepare_lock_switch(rq, next);
1476 prepare_arch_switch(next);
1480 * finish_task_switch - clean up after a task-switch
1481 * @rq: runqueue associated with task-switch
1482 * @prev: the thread we just switched away from.
1484 * finish_task_switch must be called after the context switch, paired
1485 * with a prepare_task_switch call before the context switch.
1486 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1487 * and do any other architecture-specific cleanup actions.
1489 * Note that we may have delayed dropping an mm in context_switch(). If
1490 * so, we finish that here outside of the runqueue lock. (Doing it
1491 * with the lock held can cause deadlocks; see schedule() for
1492 * details.)
1494 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1495 __releases(rq->lock)
1497 struct mm_struct *mm = rq->prev_mm;
1498 unsigned long prev_task_flags;
1500 rq->prev_mm = NULL;
1503 * A task struct has one reference for the use as "current".
1504 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1505 * calls schedule one last time. The schedule call will never return,
1506 * and the scheduled task must drop that reference.
1507 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1508 * still held, otherwise prev could be scheduled on another cpu, die
1509 * there before we look at prev->state, and then the reference would
1510 * be dropped twice.
1511 * Manfred Spraul <manfred@colorfullife.com>
1513 prev_task_flags = prev->flags;
1514 finish_arch_switch(prev);
1515 finish_lock_switch(rq, prev);
1516 if (mm)
1517 mmdrop(mm);
1518 if (unlikely(prev_task_flags & PF_DEAD))
1519 put_task_struct(prev);
1523 * schedule_tail - first thing a freshly forked thread must call.
1524 * @prev: the thread we just switched away from.
1526 asmlinkage void schedule_tail(task_t *prev)
1527 __releases(rq->lock)
1529 runqueue_t *rq = this_rq();
1530 finish_task_switch(rq, prev);
1531 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1532 /* In this case, finish_task_switch does not reenable preemption */
1533 preempt_enable();
1534 #endif
1535 if (current->set_child_tid)
1536 put_user(current->pid, current->set_child_tid);
1540 * context_switch - switch to the new MM and the new
1541 * thread's register state.
1543 static inline
1544 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1546 struct mm_struct *mm = next->mm;
1547 struct mm_struct *oldmm = prev->active_mm;
1549 if (unlikely(!mm)) {
1550 next->active_mm = oldmm;
1551 atomic_inc(&oldmm->mm_count);
1552 enter_lazy_tlb(oldmm, next);
1553 } else
1554 switch_mm(oldmm, mm, next);
1556 if (unlikely(!prev->mm)) {
1557 prev->active_mm = NULL;
1558 WARN_ON(rq->prev_mm);
1559 rq->prev_mm = oldmm;
1562 /* Here we just switch the register state and the stack. */
1563 switch_to(prev, next, prev);
1565 return prev;
1569 * nr_running, nr_uninterruptible and nr_context_switches:
1571 * externally visible scheduler statistics: current number of runnable
1572 * threads, current number of uninterruptible-sleeping threads, total
1573 * number of context switches performed since bootup.
1575 unsigned long nr_running(void)
1577 unsigned long i, sum = 0;
1579 for_each_online_cpu(i)
1580 sum += cpu_rq(i)->nr_running;
1582 return sum;
1585 unsigned long nr_uninterruptible(void)
1587 unsigned long i, sum = 0;
1589 for_each_cpu(i)
1590 sum += cpu_rq(i)->nr_uninterruptible;
1593 * Since we read the counters lockless, it might be slightly
1594 * inaccurate. Do not allow it to go below zero though:
1596 if (unlikely((long)sum < 0))
1597 sum = 0;
1599 return sum;
1602 unsigned long long nr_context_switches(void)
1604 unsigned long long i, sum = 0;
1606 for_each_cpu(i)
1607 sum += cpu_rq(i)->nr_switches;
1609 return sum;
1612 unsigned long nr_iowait(void)
1614 unsigned long i, sum = 0;
1616 for_each_cpu(i)
1617 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1619 return sum;
1622 #ifdef CONFIG_SMP
1625 * double_rq_lock - safely lock two runqueues
1627 * Note this does not disable interrupts like task_rq_lock,
1628 * you need to do so manually before calling.
1630 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1631 __acquires(rq1->lock)
1632 __acquires(rq2->lock)
1634 if (rq1 == rq2) {
1635 spin_lock(&rq1->lock);
1636 __acquire(rq2->lock); /* Fake it out ;) */
1637 } else {
1638 if (rq1 < rq2) {
1639 spin_lock(&rq1->lock);
1640 spin_lock(&rq2->lock);
1641 } else {
1642 spin_lock(&rq2->lock);
1643 spin_lock(&rq1->lock);
1649 * double_rq_unlock - safely unlock two runqueues
1651 * Note this does not restore interrupts like task_rq_unlock,
1652 * you need to do so manually after calling.
1654 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1655 __releases(rq1->lock)
1656 __releases(rq2->lock)
1658 spin_unlock(&rq1->lock);
1659 if (rq1 != rq2)
1660 spin_unlock(&rq2->lock);
1661 else
1662 __release(rq2->lock);
1666 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1668 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1669 __releases(this_rq->lock)
1670 __acquires(busiest->lock)
1671 __acquires(this_rq->lock)
1673 if (unlikely(!spin_trylock(&busiest->lock))) {
1674 if (busiest < this_rq) {
1675 spin_unlock(&this_rq->lock);
1676 spin_lock(&busiest->lock);
1677 spin_lock(&this_rq->lock);
1678 } else
1679 spin_lock(&busiest->lock);
1684 * If dest_cpu is allowed for this process, migrate the task to it.
1685 * This is accomplished by forcing the cpu_allowed mask to only
1686 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1687 * the cpu_allowed mask is restored.
1689 static void sched_migrate_task(task_t *p, int dest_cpu)
1691 migration_req_t req;
1692 runqueue_t *rq;
1693 unsigned long flags;
1695 rq = task_rq_lock(p, &flags);
1696 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1697 || unlikely(cpu_is_offline(dest_cpu)))
1698 goto out;
1700 /* force the process onto the specified CPU */
1701 if (migrate_task(p, dest_cpu, &req)) {
1702 /* Need to wait for migration thread (might exit: take ref). */
1703 struct task_struct *mt = rq->migration_thread;
1704 get_task_struct(mt);
1705 task_rq_unlock(rq, &flags);
1706 wake_up_process(mt);
1707 put_task_struct(mt);
1708 wait_for_completion(&req.done);
1709 return;
1711 out:
1712 task_rq_unlock(rq, &flags);
1716 * sched_exec - execve() is a valuable balancing opportunity, because at
1717 * this point the task has the smallest effective memory and cache footprint.
1719 void sched_exec(void)
1721 int new_cpu, this_cpu = get_cpu();
1722 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1723 put_cpu();
1724 if (new_cpu != this_cpu)
1725 sched_migrate_task(current, new_cpu);
1729 * pull_task - move a task from a remote runqueue to the local runqueue.
1730 * Both runqueues must be locked.
1732 static inline
1733 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1734 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1736 dequeue_task(p, src_array);
1737 src_rq->nr_running--;
1738 set_task_cpu(p, this_cpu);
1739 this_rq->nr_running++;
1740 enqueue_task(p, this_array);
1741 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1742 + this_rq->timestamp_last_tick;
1744 * Note that idle threads have a prio of MAX_PRIO, for this test
1745 * to be always true for them.
1747 if (TASK_PREEMPTS_CURR(p, this_rq))
1748 resched_task(this_rq->curr);
1752 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1754 static inline
1755 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1756 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1759 * We do not migrate tasks that are:
1760 * 1) running (obviously), or
1761 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1762 * 3) are cache-hot on their current CPU.
1764 if (!cpu_isset(this_cpu, p->cpus_allowed))
1765 return 0;
1766 *all_pinned = 0;
1768 if (task_running(rq, p))
1769 return 0;
1772 * Aggressive migration if:
1773 * 1) task is cache cold, or
1774 * 2) too many balance attempts have failed.
1777 if (sd->nr_balance_failed > sd->cache_nice_tries)
1778 return 1;
1780 if (task_hot(p, rq->timestamp_last_tick, sd))
1781 return 0;
1782 return 1;
1786 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1787 * as part of a balancing operation within "domain". Returns the number of
1788 * tasks moved.
1790 * Called with both runqueues locked.
1792 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1793 unsigned long max_nr_move, struct sched_domain *sd,
1794 enum idle_type idle, int *all_pinned)
1796 prio_array_t *array, *dst_array;
1797 struct list_head *head, *curr;
1798 int idx, pulled = 0, pinned = 0;
1799 task_t *tmp;
1801 if (max_nr_move == 0)
1802 goto out;
1804 pinned = 1;
1807 * We first consider expired tasks. Those will likely not be
1808 * executed in the near future, and they are most likely to
1809 * be cache-cold, thus switching CPUs has the least effect
1810 * on them.
1812 if (busiest->expired->nr_active) {
1813 array = busiest->expired;
1814 dst_array = this_rq->expired;
1815 } else {
1816 array = busiest->active;
1817 dst_array = this_rq->active;
1820 new_array:
1821 /* Start searching at priority 0: */
1822 idx = 0;
1823 skip_bitmap:
1824 if (!idx)
1825 idx = sched_find_first_bit(array->bitmap);
1826 else
1827 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1828 if (idx >= MAX_PRIO) {
1829 if (array == busiest->expired && busiest->active->nr_active) {
1830 array = busiest->active;
1831 dst_array = this_rq->active;
1832 goto new_array;
1834 goto out;
1837 head = array->queue + idx;
1838 curr = head->prev;
1839 skip_queue:
1840 tmp = list_entry(curr, task_t, run_list);
1842 curr = curr->prev;
1844 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1845 if (curr != head)
1846 goto skip_queue;
1847 idx++;
1848 goto skip_bitmap;
1851 #ifdef CONFIG_SCHEDSTATS
1852 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1853 schedstat_inc(sd, lb_hot_gained[idle]);
1854 #endif
1856 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1857 pulled++;
1859 /* We only want to steal up to the prescribed number of tasks. */
1860 if (pulled < max_nr_move) {
1861 if (curr != head)
1862 goto skip_queue;
1863 idx++;
1864 goto skip_bitmap;
1866 out:
1868 * Right now, this is the only place pull_task() is called,
1869 * so we can safely collect pull_task() stats here rather than
1870 * inside pull_task().
1872 schedstat_add(sd, lb_gained[idle], pulled);
1874 if (all_pinned)
1875 *all_pinned = pinned;
1876 return pulled;
1880 * find_busiest_group finds and returns the busiest CPU group within the
1881 * domain. It calculates and returns the number of tasks which should be
1882 * moved to restore balance via the imbalance parameter.
1884 static struct sched_group *
1885 find_busiest_group(struct sched_domain *sd, int this_cpu,
1886 unsigned long *imbalance, enum idle_type idle)
1888 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1889 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1890 int load_idx;
1892 max_load = this_load = total_load = total_pwr = 0;
1893 if (idle == NOT_IDLE)
1894 load_idx = sd->busy_idx;
1895 else if (idle == NEWLY_IDLE)
1896 load_idx = sd->newidle_idx;
1897 else
1898 load_idx = sd->idle_idx;
1900 do {
1901 unsigned long load;
1902 int local_group;
1903 int i;
1905 local_group = cpu_isset(this_cpu, group->cpumask);
1907 /* Tally up the load of all CPUs in the group */
1908 avg_load = 0;
1910 for_each_cpu_mask(i, group->cpumask) {
1911 /* Bias balancing toward cpus of our domain */
1912 if (local_group)
1913 load = target_load(i, load_idx);
1914 else
1915 load = source_load(i, load_idx);
1917 avg_load += load;
1920 total_load += avg_load;
1921 total_pwr += group->cpu_power;
1923 /* Adjust by relative CPU power of the group */
1924 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1926 if (local_group) {
1927 this_load = avg_load;
1928 this = group;
1929 } else if (avg_load > max_load) {
1930 max_load = avg_load;
1931 busiest = group;
1933 group = group->next;
1934 } while (group != sd->groups);
1936 if (!busiest || this_load >= max_load)
1937 goto out_balanced;
1939 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1941 if (this_load >= avg_load ||
1942 100*max_load <= sd->imbalance_pct*this_load)
1943 goto out_balanced;
1946 * We're trying to get all the cpus to the average_load, so we don't
1947 * want to push ourselves above the average load, nor do we wish to
1948 * reduce the max loaded cpu below the average load, as either of these
1949 * actions would just result in more rebalancing later, and ping-pong
1950 * tasks around. Thus we look for the minimum possible imbalance.
1951 * Negative imbalances (*we* are more loaded than anyone else) will
1952 * be counted as no imbalance for these purposes -- we can't fix that
1953 * by pulling tasks to us. Be careful of negative numbers as they'll
1954 * appear as very large values with unsigned longs.
1956 /* How much load to actually move to equalise the imbalance */
1957 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1958 (avg_load - this_load) * this->cpu_power)
1959 / SCHED_LOAD_SCALE;
1961 if (*imbalance < SCHED_LOAD_SCALE) {
1962 unsigned long pwr_now = 0, pwr_move = 0;
1963 unsigned long tmp;
1965 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1966 *imbalance = 1;
1967 return busiest;
1971 * OK, we don't have enough imbalance to justify moving tasks,
1972 * however we may be able to increase total CPU power used by
1973 * moving them.
1976 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1977 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1978 pwr_now /= SCHED_LOAD_SCALE;
1980 /* Amount of load we'd subtract */
1981 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1982 if (max_load > tmp)
1983 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1984 max_load - tmp);
1986 /* Amount of load we'd add */
1987 if (max_load*busiest->cpu_power <
1988 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1989 tmp = max_load*busiest->cpu_power/this->cpu_power;
1990 else
1991 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1992 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1993 pwr_move /= SCHED_LOAD_SCALE;
1995 /* Move if we gain throughput */
1996 if (pwr_move <= pwr_now)
1997 goto out_balanced;
1999 *imbalance = 1;
2000 return busiest;
2003 /* Get rid of the scaling factor, rounding down as we divide */
2004 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2005 return busiest;
2007 out_balanced:
2009 *imbalance = 0;
2010 return NULL;
2014 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2016 static runqueue_t *find_busiest_queue(struct sched_group *group)
2018 unsigned long load, max_load = 0;
2019 runqueue_t *busiest = NULL;
2020 int i;
2022 for_each_cpu_mask(i, group->cpumask) {
2023 load = source_load(i, 0);
2025 if (load > max_load) {
2026 max_load = load;
2027 busiest = cpu_rq(i);
2031 return busiest;
2035 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2036 * so long as it is large enough.
2038 #define MAX_PINNED_INTERVAL 512
2041 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2042 * tasks if there is an imbalance.
2044 * Called with this_rq unlocked.
2046 static int load_balance(int this_cpu, runqueue_t *this_rq,
2047 struct sched_domain *sd, enum idle_type idle)
2049 struct sched_group *group;
2050 runqueue_t *busiest;
2051 unsigned long imbalance;
2052 int nr_moved, all_pinned = 0;
2053 int active_balance = 0;
2055 spin_lock(&this_rq->lock);
2056 schedstat_inc(sd, lb_cnt[idle]);
2058 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2059 if (!group) {
2060 schedstat_inc(sd, lb_nobusyg[idle]);
2061 goto out_balanced;
2064 busiest = find_busiest_queue(group);
2065 if (!busiest) {
2066 schedstat_inc(sd, lb_nobusyq[idle]);
2067 goto out_balanced;
2070 BUG_ON(busiest == this_rq);
2072 schedstat_add(sd, lb_imbalance[idle], imbalance);
2074 nr_moved = 0;
2075 if (busiest->nr_running > 1) {
2077 * Attempt to move tasks. If find_busiest_group has found
2078 * an imbalance but busiest->nr_running <= 1, the group is
2079 * still unbalanced. nr_moved simply stays zero, so it is
2080 * correctly treated as an imbalance.
2082 double_lock_balance(this_rq, busiest);
2083 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2084 imbalance, sd, idle,
2085 &all_pinned);
2086 spin_unlock(&busiest->lock);
2088 /* All tasks on this runqueue were pinned by CPU affinity */
2089 if (unlikely(all_pinned))
2090 goto out_balanced;
2093 spin_unlock(&this_rq->lock);
2095 if (!nr_moved) {
2096 schedstat_inc(sd, lb_failed[idle]);
2097 sd->nr_balance_failed++;
2099 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2101 spin_lock(&busiest->lock);
2102 if (!busiest->active_balance) {
2103 busiest->active_balance = 1;
2104 busiest->push_cpu = this_cpu;
2105 active_balance = 1;
2107 spin_unlock(&busiest->lock);
2108 if (active_balance)
2109 wake_up_process(busiest->migration_thread);
2112 * We've kicked active balancing, reset the failure
2113 * counter.
2115 sd->nr_balance_failed = sd->cache_nice_tries+1;
2117 } else
2118 sd->nr_balance_failed = 0;
2120 if (likely(!active_balance)) {
2121 /* We were unbalanced, so reset the balancing interval */
2122 sd->balance_interval = sd->min_interval;
2123 } else {
2125 * If we've begun active balancing, start to back off. This
2126 * case may not be covered by the all_pinned logic if there
2127 * is only 1 task on the busy runqueue (because we don't call
2128 * move_tasks).
2130 if (sd->balance_interval < sd->max_interval)
2131 sd->balance_interval *= 2;
2134 return nr_moved;
2136 out_balanced:
2137 spin_unlock(&this_rq->lock);
2139 schedstat_inc(sd, lb_balanced[idle]);
2141 sd->nr_balance_failed = 0;
2142 /* tune up the balancing interval */
2143 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2144 (sd->balance_interval < sd->max_interval))
2145 sd->balance_interval *= 2;
2147 return 0;
2151 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2152 * tasks if there is an imbalance.
2154 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2155 * this_rq is locked.
2157 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2158 struct sched_domain *sd)
2160 struct sched_group *group;
2161 runqueue_t *busiest = NULL;
2162 unsigned long imbalance;
2163 int nr_moved = 0;
2165 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2166 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2167 if (!group) {
2168 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2169 goto out_balanced;
2172 busiest = find_busiest_queue(group);
2173 if (!busiest) {
2174 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2175 goto out_balanced;
2178 BUG_ON(busiest == this_rq);
2180 /* Attempt to move tasks */
2181 double_lock_balance(this_rq, busiest);
2183 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2184 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2185 imbalance, sd, NEWLY_IDLE, NULL);
2186 if (!nr_moved)
2187 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2188 else
2189 sd->nr_balance_failed = 0;
2191 spin_unlock(&busiest->lock);
2192 return nr_moved;
2194 out_balanced:
2195 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2196 sd->nr_balance_failed = 0;
2197 return 0;
2201 * idle_balance is called by schedule() if this_cpu is about to become
2202 * idle. Attempts to pull tasks from other CPUs.
2204 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2206 struct sched_domain *sd;
2208 for_each_domain(this_cpu, sd) {
2209 if (sd->flags & SD_BALANCE_NEWIDLE) {
2210 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2211 /* We've pulled tasks over so stop searching */
2212 break;
2219 * active_load_balance is run by migration threads. It pushes running tasks
2220 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2221 * running on each physical CPU where possible, and avoids physical /
2222 * logical imbalances.
2224 * Called with busiest_rq locked.
2226 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2228 struct sched_domain *sd;
2229 runqueue_t *target_rq;
2230 int target_cpu = busiest_rq->push_cpu;
2232 if (busiest_rq->nr_running <= 1)
2233 /* no task to move */
2234 return;
2236 target_rq = cpu_rq(target_cpu);
2239 * This condition is "impossible", if it occurs
2240 * we need to fix it. Originally reported by
2241 * Bjorn Helgaas on a 128-cpu setup.
2243 BUG_ON(busiest_rq == target_rq);
2245 /* move a task from busiest_rq to target_rq */
2246 double_lock_balance(busiest_rq, target_rq);
2248 /* Search for an sd spanning us and the target CPU. */
2249 for_each_domain(target_cpu, sd)
2250 if ((sd->flags & SD_LOAD_BALANCE) &&
2251 cpu_isset(busiest_cpu, sd->span))
2252 break;
2254 if (unlikely(sd == NULL))
2255 goto out;
2257 schedstat_inc(sd, alb_cnt);
2259 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2260 schedstat_inc(sd, alb_pushed);
2261 else
2262 schedstat_inc(sd, alb_failed);
2263 out:
2264 spin_unlock(&target_rq->lock);
2268 * rebalance_tick will get called every timer tick, on every CPU.
2270 * It checks each scheduling domain to see if it is due to be balanced,
2271 * and initiates a balancing operation if so.
2273 * Balancing parameters are set up in arch_init_sched_domains.
2276 /* Don't have all balancing operations going off at once */
2277 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2279 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2280 enum idle_type idle)
2282 unsigned long old_load, this_load;
2283 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2284 struct sched_domain *sd;
2285 int i;
2287 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2288 /* Update our load */
2289 for (i = 0; i < 3; i++) {
2290 unsigned long new_load = this_load;
2291 int scale = 1 << i;
2292 old_load = this_rq->cpu_load[i];
2294 * Round up the averaging division if load is increasing. This
2295 * prevents us from getting stuck on 9 if the load is 10, for
2296 * example.
2298 if (new_load > old_load)
2299 new_load += scale-1;
2300 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2303 for_each_domain(this_cpu, sd) {
2304 unsigned long interval;
2306 if (!(sd->flags & SD_LOAD_BALANCE))
2307 continue;
2309 interval = sd->balance_interval;
2310 if (idle != SCHED_IDLE)
2311 interval *= sd->busy_factor;
2313 /* scale ms to jiffies */
2314 interval = msecs_to_jiffies(interval);
2315 if (unlikely(!interval))
2316 interval = 1;
2318 if (j - sd->last_balance >= interval) {
2319 if (load_balance(this_cpu, this_rq, sd, idle)) {
2320 /* We've pulled tasks over so no longer idle */
2321 idle = NOT_IDLE;
2323 sd->last_balance += interval;
2327 #else
2329 * on UP we do not need to balance between CPUs:
2331 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2334 static inline void idle_balance(int cpu, runqueue_t *rq)
2337 #endif
2339 static inline int wake_priority_sleeper(runqueue_t *rq)
2341 int ret = 0;
2342 #ifdef CONFIG_SCHED_SMT
2343 spin_lock(&rq->lock);
2345 * If an SMT sibling task has been put to sleep for priority
2346 * reasons reschedule the idle task to see if it can now run.
2348 if (rq->nr_running) {
2349 resched_task(rq->idle);
2350 ret = 1;
2352 spin_unlock(&rq->lock);
2353 #endif
2354 return ret;
2357 DEFINE_PER_CPU(struct kernel_stat, kstat);
2359 EXPORT_PER_CPU_SYMBOL(kstat);
2362 * This is called on clock ticks and on context switches.
2363 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2365 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2366 unsigned long long now)
2368 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2369 p->sched_time += now - last;
2373 * Return current->sched_time plus any more ns on the sched_clock
2374 * that have not yet been banked.
2376 unsigned long long current_sched_time(const task_t *tsk)
2378 unsigned long long ns;
2379 unsigned long flags;
2380 local_irq_save(flags);
2381 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2382 ns = tsk->sched_time + (sched_clock() - ns);
2383 local_irq_restore(flags);
2384 return ns;
2388 * We place interactive tasks back into the active array, if possible.
2390 * To guarantee that this does not starve expired tasks we ignore the
2391 * interactivity of a task if the first expired task had to wait more
2392 * than a 'reasonable' amount of time. This deadline timeout is
2393 * load-dependent, as the frequency of array switched decreases with
2394 * increasing number of running tasks. We also ignore the interactivity
2395 * if a better static_prio task has expired:
2397 #define EXPIRED_STARVING(rq) \
2398 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2399 (jiffies - (rq)->expired_timestamp >= \
2400 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2401 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2404 * Account user cpu time to a process.
2405 * @p: the process that the cpu time gets accounted to
2406 * @hardirq_offset: the offset to subtract from hardirq_count()
2407 * @cputime: the cpu time spent in user space since the last update
2409 void account_user_time(struct task_struct *p, cputime_t cputime)
2411 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2412 cputime64_t tmp;
2414 p->utime = cputime_add(p->utime, cputime);
2416 /* Add user time to cpustat. */
2417 tmp = cputime_to_cputime64(cputime);
2418 if (TASK_NICE(p) > 0)
2419 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2420 else
2421 cpustat->user = cputime64_add(cpustat->user, tmp);
2425 * Account system cpu time to a process.
2426 * @p: the process that the cpu time gets accounted to
2427 * @hardirq_offset: the offset to subtract from hardirq_count()
2428 * @cputime: the cpu time spent in kernel space since the last update
2430 void account_system_time(struct task_struct *p, int hardirq_offset,
2431 cputime_t cputime)
2433 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2434 runqueue_t *rq = this_rq();
2435 cputime64_t tmp;
2437 p->stime = cputime_add(p->stime, cputime);
2439 /* Add system time to cpustat. */
2440 tmp = cputime_to_cputime64(cputime);
2441 if (hardirq_count() - hardirq_offset)
2442 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2443 else if (softirq_count())
2444 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2445 else if (p != rq->idle)
2446 cpustat->system = cputime64_add(cpustat->system, tmp);
2447 else if (atomic_read(&rq->nr_iowait) > 0)
2448 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2449 else
2450 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2451 /* Account for system time used */
2452 acct_update_integrals(p);
2453 /* Update rss highwater mark */
2454 update_mem_hiwater(p);
2458 * Account for involuntary wait time.
2459 * @p: the process from which the cpu time has been stolen
2460 * @steal: the cpu time spent in involuntary wait
2462 void account_steal_time(struct task_struct *p, cputime_t steal)
2464 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2465 cputime64_t tmp = cputime_to_cputime64(steal);
2466 runqueue_t *rq = this_rq();
2468 if (p == rq->idle) {
2469 p->stime = cputime_add(p->stime, steal);
2470 if (atomic_read(&rq->nr_iowait) > 0)
2471 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2472 else
2473 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2474 } else
2475 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2479 * This function gets called by the timer code, with HZ frequency.
2480 * We call it with interrupts disabled.
2482 * It also gets called by the fork code, when changing the parent's
2483 * timeslices.
2485 void scheduler_tick(void)
2487 int cpu = smp_processor_id();
2488 runqueue_t *rq = this_rq();
2489 task_t *p = current;
2490 unsigned long long now = sched_clock();
2492 update_cpu_clock(p, rq, now);
2494 rq->timestamp_last_tick = now;
2496 if (p == rq->idle) {
2497 if (wake_priority_sleeper(rq))
2498 goto out;
2499 rebalance_tick(cpu, rq, SCHED_IDLE);
2500 return;
2503 /* Task might have expired already, but not scheduled off yet */
2504 if (p->array != rq->active) {
2505 set_tsk_need_resched(p);
2506 goto out;
2508 spin_lock(&rq->lock);
2510 * The task was running during this tick - update the
2511 * time slice counter. Note: we do not update a thread's
2512 * priority until it either goes to sleep or uses up its
2513 * timeslice. This makes it possible for interactive tasks
2514 * to use up their timeslices at their highest priority levels.
2516 if (rt_task(p)) {
2518 * RR tasks need a special form of timeslice management.
2519 * FIFO tasks have no timeslices.
2521 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2522 p->time_slice = task_timeslice(p);
2523 p->first_time_slice = 0;
2524 set_tsk_need_resched(p);
2526 /* put it at the end of the queue: */
2527 requeue_task(p, rq->active);
2529 goto out_unlock;
2531 if (!--p->time_slice) {
2532 dequeue_task(p, rq->active);
2533 set_tsk_need_resched(p);
2534 p->prio = effective_prio(p);
2535 p->time_slice = task_timeslice(p);
2536 p->first_time_slice = 0;
2538 if (!rq->expired_timestamp)
2539 rq->expired_timestamp = jiffies;
2540 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2541 enqueue_task(p, rq->expired);
2542 if (p->static_prio < rq->best_expired_prio)
2543 rq->best_expired_prio = p->static_prio;
2544 } else
2545 enqueue_task(p, rq->active);
2546 } else {
2548 * Prevent a too long timeslice allowing a task to monopolize
2549 * the CPU. We do this by splitting up the timeslice into
2550 * smaller pieces.
2552 * Note: this does not mean the task's timeslices expire or
2553 * get lost in any way, they just might be preempted by
2554 * another task of equal priority. (one with higher
2555 * priority would have preempted this task already.) We
2556 * requeue this task to the end of the list on this priority
2557 * level, which is in essence a round-robin of tasks with
2558 * equal priority.
2560 * This only applies to tasks in the interactive
2561 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2563 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2564 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2565 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2566 (p->array == rq->active)) {
2568 requeue_task(p, rq->active);
2569 set_tsk_need_resched(p);
2572 out_unlock:
2573 spin_unlock(&rq->lock);
2574 out:
2575 rebalance_tick(cpu, rq, NOT_IDLE);
2578 #ifdef CONFIG_SCHED_SMT
2579 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2581 struct sched_domain *tmp, *sd = NULL;
2582 cpumask_t sibling_map;
2583 int i;
2585 for_each_domain(this_cpu, tmp)
2586 if (tmp->flags & SD_SHARE_CPUPOWER)
2587 sd = tmp;
2589 if (!sd)
2590 return;
2593 * Unlock the current runqueue because we have to lock in
2594 * CPU order to avoid deadlocks. Caller knows that we might
2595 * unlock. We keep IRQs disabled.
2597 spin_unlock(&this_rq->lock);
2599 sibling_map = sd->span;
2601 for_each_cpu_mask(i, sibling_map)
2602 spin_lock(&cpu_rq(i)->lock);
2604 * We clear this CPU from the mask. This both simplifies the
2605 * inner loop and keps this_rq locked when we exit:
2607 cpu_clear(this_cpu, sibling_map);
2609 for_each_cpu_mask(i, sibling_map) {
2610 runqueue_t *smt_rq = cpu_rq(i);
2613 * If an SMT sibling task is sleeping due to priority
2614 * reasons wake it up now.
2616 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2617 resched_task(smt_rq->idle);
2620 for_each_cpu_mask(i, sibling_map)
2621 spin_unlock(&cpu_rq(i)->lock);
2623 * We exit with this_cpu's rq still held and IRQs
2624 * still disabled:
2628 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2630 struct sched_domain *tmp, *sd = NULL;
2631 cpumask_t sibling_map;
2632 prio_array_t *array;
2633 int ret = 0, i;
2634 task_t *p;
2636 for_each_domain(this_cpu, tmp)
2637 if (tmp->flags & SD_SHARE_CPUPOWER)
2638 sd = tmp;
2640 if (!sd)
2641 return 0;
2644 * The same locking rules and details apply as for
2645 * wake_sleeping_dependent():
2647 spin_unlock(&this_rq->lock);
2648 sibling_map = sd->span;
2649 for_each_cpu_mask(i, sibling_map)
2650 spin_lock(&cpu_rq(i)->lock);
2651 cpu_clear(this_cpu, sibling_map);
2654 * Establish next task to be run - it might have gone away because
2655 * we released the runqueue lock above:
2657 if (!this_rq->nr_running)
2658 goto out_unlock;
2659 array = this_rq->active;
2660 if (!array->nr_active)
2661 array = this_rq->expired;
2662 BUG_ON(!array->nr_active);
2664 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2665 task_t, run_list);
2667 for_each_cpu_mask(i, sibling_map) {
2668 runqueue_t *smt_rq = cpu_rq(i);
2669 task_t *smt_curr = smt_rq->curr;
2672 * If a user task with lower static priority than the
2673 * running task on the SMT sibling is trying to schedule,
2674 * delay it till there is proportionately less timeslice
2675 * left of the sibling task to prevent a lower priority
2676 * task from using an unfair proportion of the
2677 * physical cpu's resources. -ck
2679 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2680 task_timeslice(p) || rt_task(smt_curr)) &&
2681 p->mm && smt_curr->mm && !rt_task(p))
2682 ret = 1;
2685 * Reschedule a lower priority task on the SMT sibling,
2686 * or wake it up if it has been put to sleep for priority
2687 * reasons.
2689 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2690 task_timeslice(smt_curr) || rt_task(p)) &&
2691 smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2692 (smt_curr == smt_rq->idle && smt_rq->nr_running))
2693 resched_task(smt_curr);
2695 out_unlock:
2696 for_each_cpu_mask(i, sibling_map)
2697 spin_unlock(&cpu_rq(i)->lock);
2698 return ret;
2700 #else
2701 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2705 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2707 return 0;
2709 #endif
2711 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2713 void fastcall add_preempt_count(int val)
2716 * Underflow?
2718 BUG_ON((preempt_count() < 0));
2719 preempt_count() += val;
2721 * Spinlock count overflowing soon?
2723 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2725 EXPORT_SYMBOL(add_preempt_count);
2727 void fastcall sub_preempt_count(int val)
2730 * Underflow?
2732 BUG_ON(val > preempt_count());
2734 * Is the spinlock portion underflowing?
2736 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2737 preempt_count() -= val;
2739 EXPORT_SYMBOL(sub_preempt_count);
2741 #endif
2744 * schedule() is the main scheduler function.
2746 asmlinkage void __sched schedule(void)
2748 long *switch_count;
2749 task_t *prev, *next;
2750 runqueue_t *rq;
2751 prio_array_t *array;
2752 struct list_head *queue;
2753 unsigned long long now;
2754 unsigned long run_time;
2755 int cpu, idx, new_prio;
2758 * Test if we are atomic. Since do_exit() needs to call into
2759 * schedule() atomically, we ignore that path for now.
2760 * Otherwise, whine if we are scheduling when we should not be.
2762 if (likely(!current->exit_state)) {
2763 if (unlikely(in_atomic())) {
2764 printk(KERN_ERR "scheduling while atomic: "
2765 "%s/0x%08x/%d\n",
2766 current->comm, preempt_count(), current->pid);
2767 dump_stack();
2770 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2772 need_resched:
2773 preempt_disable();
2774 prev = current;
2775 release_kernel_lock(prev);
2776 need_resched_nonpreemptible:
2777 rq = this_rq();
2780 * The idle thread is not allowed to schedule!
2781 * Remove this check after it has been exercised a bit.
2783 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2784 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2785 dump_stack();
2788 schedstat_inc(rq, sched_cnt);
2789 now = sched_clock();
2790 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2791 run_time = now - prev->timestamp;
2792 if (unlikely((long long)(now - prev->timestamp) < 0))
2793 run_time = 0;
2794 } else
2795 run_time = NS_MAX_SLEEP_AVG;
2798 * Tasks charged proportionately less run_time at high sleep_avg to
2799 * delay them losing their interactive status
2801 run_time /= (CURRENT_BONUS(prev) ? : 1);
2803 spin_lock_irq(&rq->lock);
2805 if (unlikely(prev->flags & PF_DEAD))
2806 prev->state = EXIT_DEAD;
2808 switch_count = &prev->nivcsw;
2809 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2810 switch_count = &prev->nvcsw;
2811 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2812 unlikely(signal_pending(prev))))
2813 prev->state = TASK_RUNNING;
2814 else {
2815 if (prev->state == TASK_UNINTERRUPTIBLE)
2816 rq->nr_uninterruptible++;
2817 deactivate_task(prev, rq);
2821 cpu = smp_processor_id();
2822 if (unlikely(!rq->nr_running)) {
2823 go_idle:
2824 idle_balance(cpu, rq);
2825 if (!rq->nr_running) {
2826 next = rq->idle;
2827 rq->expired_timestamp = 0;
2828 wake_sleeping_dependent(cpu, rq);
2830 * wake_sleeping_dependent() might have released
2831 * the runqueue, so break out if we got new
2832 * tasks meanwhile:
2834 if (!rq->nr_running)
2835 goto switch_tasks;
2837 } else {
2838 if (dependent_sleeper(cpu, rq)) {
2839 next = rq->idle;
2840 goto switch_tasks;
2843 * dependent_sleeper() releases and reacquires the runqueue
2844 * lock, hence go into the idle loop if the rq went
2845 * empty meanwhile:
2847 if (unlikely(!rq->nr_running))
2848 goto go_idle;
2851 array = rq->active;
2852 if (unlikely(!array->nr_active)) {
2854 * Switch the active and expired arrays.
2856 schedstat_inc(rq, sched_switch);
2857 rq->active = rq->expired;
2858 rq->expired = array;
2859 array = rq->active;
2860 rq->expired_timestamp = 0;
2861 rq->best_expired_prio = MAX_PRIO;
2864 idx = sched_find_first_bit(array->bitmap);
2865 queue = array->queue + idx;
2866 next = list_entry(queue->next, task_t, run_list);
2868 if (!rt_task(next) && next->activated > 0) {
2869 unsigned long long delta = now - next->timestamp;
2870 if (unlikely((long long)(now - next->timestamp) < 0))
2871 delta = 0;
2873 if (next->activated == 1)
2874 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2876 array = next->array;
2877 new_prio = recalc_task_prio(next, next->timestamp + delta);
2879 if (unlikely(next->prio != new_prio)) {
2880 dequeue_task(next, array);
2881 next->prio = new_prio;
2882 enqueue_task(next, array);
2883 } else
2884 requeue_task(next, array);
2886 next->activated = 0;
2887 switch_tasks:
2888 if (next == rq->idle)
2889 schedstat_inc(rq, sched_goidle);
2890 prefetch(next);
2891 clear_tsk_need_resched(prev);
2892 rcu_qsctr_inc(task_cpu(prev));
2894 update_cpu_clock(prev, rq, now);
2896 prev->sleep_avg -= run_time;
2897 if ((long)prev->sleep_avg <= 0)
2898 prev->sleep_avg = 0;
2899 prev->timestamp = prev->last_ran = now;
2901 sched_info_switch(prev, next);
2902 if (likely(prev != next)) {
2903 next->timestamp = now;
2904 rq->nr_switches++;
2905 rq->curr = next;
2906 ++*switch_count;
2908 prepare_task_switch(rq, next);
2909 prev = context_switch(rq, prev, next);
2910 barrier();
2912 * this_rq must be evaluated again because prev may have moved
2913 * CPUs since it called schedule(), thus the 'rq' on its stack
2914 * frame will be invalid.
2916 finish_task_switch(this_rq(), prev);
2917 } else
2918 spin_unlock_irq(&rq->lock);
2920 prev = current;
2921 if (unlikely(reacquire_kernel_lock(prev) < 0))
2922 goto need_resched_nonpreemptible;
2923 preempt_enable_no_resched();
2924 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2925 goto need_resched;
2928 EXPORT_SYMBOL(schedule);
2930 #ifdef CONFIG_PREEMPT
2932 * this is is the entry point to schedule() from in-kernel preemption
2933 * off of preempt_enable. Kernel preemptions off return from interrupt
2934 * occur there and call schedule directly.
2936 asmlinkage void __sched preempt_schedule(void)
2938 struct thread_info *ti = current_thread_info();
2939 #ifdef CONFIG_PREEMPT_BKL
2940 struct task_struct *task = current;
2941 int saved_lock_depth;
2942 #endif
2944 * If there is a non-zero preempt_count or interrupts are disabled,
2945 * we do not want to preempt the current task. Just return..
2947 if (unlikely(ti->preempt_count || irqs_disabled()))
2948 return;
2950 need_resched:
2951 add_preempt_count(PREEMPT_ACTIVE);
2953 * We keep the big kernel semaphore locked, but we
2954 * clear ->lock_depth so that schedule() doesnt
2955 * auto-release the semaphore:
2957 #ifdef CONFIG_PREEMPT_BKL
2958 saved_lock_depth = task->lock_depth;
2959 task->lock_depth = -1;
2960 #endif
2961 schedule();
2962 #ifdef CONFIG_PREEMPT_BKL
2963 task->lock_depth = saved_lock_depth;
2964 #endif
2965 sub_preempt_count(PREEMPT_ACTIVE);
2967 /* we could miss a preemption opportunity between schedule and now */
2968 barrier();
2969 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2970 goto need_resched;
2973 EXPORT_SYMBOL(preempt_schedule);
2976 * this is is the entry point to schedule() from kernel preemption
2977 * off of irq context.
2978 * Note, that this is called and return with irqs disabled. This will
2979 * protect us against recursive calling from irq.
2981 asmlinkage void __sched preempt_schedule_irq(void)
2983 struct thread_info *ti = current_thread_info();
2984 #ifdef CONFIG_PREEMPT_BKL
2985 struct task_struct *task = current;
2986 int saved_lock_depth;
2987 #endif
2988 /* Catch callers which need to be fixed*/
2989 BUG_ON(ti->preempt_count || !irqs_disabled());
2991 need_resched:
2992 add_preempt_count(PREEMPT_ACTIVE);
2994 * We keep the big kernel semaphore locked, but we
2995 * clear ->lock_depth so that schedule() doesnt
2996 * auto-release the semaphore:
2998 #ifdef CONFIG_PREEMPT_BKL
2999 saved_lock_depth = task->lock_depth;
3000 task->lock_depth = -1;
3001 #endif
3002 local_irq_enable();
3003 schedule();
3004 local_irq_disable();
3005 #ifdef CONFIG_PREEMPT_BKL
3006 task->lock_depth = saved_lock_depth;
3007 #endif
3008 sub_preempt_count(PREEMPT_ACTIVE);
3010 /* we could miss a preemption opportunity between schedule and now */
3011 barrier();
3012 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3013 goto need_resched;
3016 #endif /* CONFIG_PREEMPT */
3018 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3020 task_t *p = curr->private;
3021 return try_to_wake_up(p, mode, sync);
3024 EXPORT_SYMBOL(default_wake_function);
3027 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3028 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3029 * number) then we wake all the non-exclusive tasks and one exclusive task.
3031 * There are circumstances in which we can try to wake a task which has already
3032 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3033 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3035 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3036 int nr_exclusive, int sync, void *key)
3038 struct list_head *tmp, *next;
3040 list_for_each_safe(tmp, next, &q->task_list) {
3041 wait_queue_t *curr;
3042 unsigned flags;
3043 curr = list_entry(tmp, wait_queue_t, task_list);
3044 flags = curr->flags;
3045 if (curr->func(curr, mode, sync, key) &&
3046 (flags & WQ_FLAG_EXCLUSIVE) &&
3047 !--nr_exclusive)
3048 break;
3053 * __wake_up - wake up threads blocked on a waitqueue.
3054 * @q: the waitqueue
3055 * @mode: which threads
3056 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3057 * @key: is directly passed to the wakeup function
3059 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3060 int nr_exclusive, void *key)
3062 unsigned long flags;
3064 spin_lock_irqsave(&q->lock, flags);
3065 __wake_up_common(q, mode, nr_exclusive, 0, key);
3066 spin_unlock_irqrestore(&q->lock, flags);
3069 EXPORT_SYMBOL(__wake_up);
3072 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3074 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3076 __wake_up_common(q, mode, 1, 0, NULL);
3080 * __wake_up_sync - wake up threads blocked on a waitqueue.
3081 * @q: the waitqueue
3082 * @mode: which threads
3083 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3085 * The sync wakeup differs that the waker knows that it will schedule
3086 * away soon, so while the target thread will be woken up, it will not
3087 * be migrated to another CPU - ie. the two threads are 'synchronized'
3088 * with each other. This can prevent needless bouncing between CPUs.
3090 * On UP it can prevent extra preemption.
3092 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3094 unsigned long flags;
3095 int sync = 1;
3097 if (unlikely(!q))
3098 return;
3100 if (unlikely(!nr_exclusive))
3101 sync = 0;
3103 spin_lock_irqsave(&q->lock, flags);
3104 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3105 spin_unlock_irqrestore(&q->lock, flags);
3107 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3109 void fastcall complete(struct completion *x)
3111 unsigned long flags;
3113 spin_lock_irqsave(&x->wait.lock, flags);
3114 x->done++;
3115 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3116 1, 0, NULL);
3117 spin_unlock_irqrestore(&x->wait.lock, flags);
3119 EXPORT_SYMBOL(complete);
3121 void fastcall complete_all(struct completion *x)
3123 unsigned long flags;
3125 spin_lock_irqsave(&x->wait.lock, flags);
3126 x->done += UINT_MAX/2;
3127 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3128 0, 0, NULL);
3129 spin_unlock_irqrestore(&x->wait.lock, flags);
3131 EXPORT_SYMBOL(complete_all);
3133 void fastcall __sched wait_for_completion(struct completion *x)
3135 might_sleep();
3136 spin_lock_irq(&x->wait.lock);
3137 if (!x->done) {
3138 DECLARE_WAITQUEUE(wait, current);
3140 wait.flags |= WQ_FLAG_EXCLUSIVE;
3141 __add_wait_queue_tail(&x->wait, &wait);
3142 do {
3143 __set_current_state(TASK_UNINTERRUPTIBLE);
3144 spin_unlock_irq(&x->wait.lock);
3145 schedule();
3146 spin_lock_irq(&x->wait.lock);
3147 } while (!x->done);
3148 __remove_wait_queue(&x->wait, &wait);
3150 x->done--;
3151 spin_unlock_irq(&x->wait.lock);
3153 EXPORT_SYMBOL(wait_for_completion);
3155 unsigned long fastcall __sched
3156 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3158 might_sleep();
3160 spin_lock_irq(&x->wait.lock);
3161 if (!x->done) {
3162 DECLARE_WAITQUEUE(wait, current);
3164 wait.flags |= WQ_FLAG_EXCLUSIVE;
3165 __add_wait_queue_tail(&x->wait, &wait);
3166 do {
3167 __set_current_state(TASK_UNINTERRUPTIBLE);
3168 spin_unlock_irq(&x->wait.lock);
3169 timeout = schedule_timeout(timeout);
3170 spin_lock_irq(&x->wait.lock);
3171 if (!timeout) {
3172 __remove_wait_queue(&x->wait, &wait);
3173 goto out;
3175 } while (!x->done);
3176 __remove_wait_queue(&x->wait, &wait);
3178 x->done--;
3179 out:
3180 spin_unlock_irq(&x->wait.lock);
3181 return timeout;
3183 EXPORT_SYMBOL(wait_for_completion_timeout);
3185 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3187 int ret = 0;
3189 might_sleep();
3191 spin_lock_irq(&x->wait.lock);
3192 if (!x->done) {
3193 DECLARE_WAITQUEUE(wait, current);
3195 wait.flags |= WQ_FLAG_EXCLUSIVE;
3196 __add_wait_queue_tail(&x->wait, &wait);
3197 do {
3198 if (signal_pending(current)) {
3199 ret = -ERESTARTSYS;
3200 __remove_wait_queue(&x->wait, &wait);
3201 goto out;
3203 __set_current_state(TASK_INTERRUPTIBLE);
3204 spin_unlock_irq(&x->wait.lock);
3205 schedule();
3206 spin_lock_irq(&x->wait.lock);
3207 } while (!x->done);
3208 __remove_wait_queue(&x->wait, &wait);
3210 x->done--;
3211 out:
3212 spin_unlock_irq(&x->wait.lock);
3214 return ret;
3216 EXPORT_SYMBOL(wait_for_completion_interruptible);
3218 unsigned long fastcall __sched
3219 wait_for_completion_interruptible_timeout(struct completion *x,
3220 unsigned long timeout)
3222 might_sleep();
3224 spin_lock_irq(&x->wait.lock);
3225 if (!x->done) {
3226 DECLARE_WAITQUEUE(wait, current);
3228 wait.flags |= WQ_FLAG_EXCLUSIVE;
3229 __add_wait_queue_tail(&x->wait, &wait);
3230 do {
3231 if (signal_pending(current)) {
3232 timeout = -ERESTARTSYS;
3233 __remove_wait_queue(&x->wait, &wait);
3234 goto out;
3236 __set_current_state(TASK_INTERRUPTIBLE);
3237 spin_unlock_irq(&x->wait.lock);
3238 timeout = schedule_timeout(timeout);
3239 spin_lock_irq(&x->wait.lock);
3240 if (!timeout) {
3241 __remove_wait_queue(&x->wait, &wait);
3242 goto out;
3244 } while (!x->done);
3245 __remove_wait_queue(&x->wait, &wait);
3247 x->done--;
3248 out:
3249 spin_unlock_irq(&x->wait.lock);
3250 return timeout;
3252 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3255 #define SLEEP_ON_VAR \
3256 unsigned long flags; \
3257 wait_queue_t wait; \
3258 init_waitqueue_entry(&wait, current);
3260 #define SLEEP_ON_HEAD \
3261 spin_lock_irqsave(&q->lock,flags); \
3262 __add_wait_queue(q, &wait); \
3263 spin_unlock(&q->lock);
3265 #define SLEEP_ON_TAIL \
3266 spin_lock_irq(&q->lock); \
3267 __remove_wait_queue(q, &wait); \
3268 spin_unlock_irqrestore(&q->lock, flags);
3270 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3272 SLEEP_ON_VAR
3274 current->state = TASK_INTERRUPTIBLE;
3276 SLEEP_ON_HEAD
3277 schedule();
3278 SLEEP_ON_TAIL
3281 EXPORT_SYMBOL(interruptible_sleep_on);
3283 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3285 SLEEP_ON_VAR
3287 current->state = TASK_INTERRUPTIBLE;
3289 SLEEP_ON_HEAD
3290 timeout = schedule_timeout(timeout);
3291 SLEEP_ON_TAIL
3293 return timeout;
3296 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3298 void fastcall __sched sleep_on(wait_queue_head_t *q)
3300 SLEEP_ON_VAR
3302 current->state = TASK_UNINTERRUPTIBLE;
3304 SLEEP_ON_HEAD
3305 schedule();
3306 SLEEP_ON_TAIL
3309 EXPORT_SYMBOL(sleep_on);
3311 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3313 SLEEP_ON_VAR
3315 current->state = TASK_UNINTERRUPTIBLE;
3317 SLEEP_ON_HEAD
3318 timeout = schedule_timeout(timeout);
3319 SLEEP_ON_TAIL
3321 return timeout;
3324 EXPORT_SYMBOL(sleep_on_timeout);
3326 void set_user_nice(task_t *p, long nice)
3328 unsigned long flags;
3329 prio_array_t *array;
3330 runqueue_t *rq;
3331 int old_prio, new_prio, delta;
3333 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3334 return;
3336 * We have to be careful, if called from sys_setpriority(),
3337 * the task might be in the middle of scheduling on another CPU.
3339 rq = task_rq_lock(p, &flags);
3341 * The RT priorities are set via sched_setscheduler(), but we still
3342 * allow the 'normal' nice value to be set - but as expected
3343 * it wont have any effect on scheduling until the task is
3344 * not SCHED_NORMAL:
3346 if (rt_task(p)) {
3347 p->static_prio = NICE_TO_PRIO(nice);
3348 goto out_unlock;
3350 array = p->array;
3351 if (array)
3352 dequeue_task(p, array);
3354 old_prio = p->prio;
3355 new_prio = NICE_TO_PRIO(nice);
3356 delta = new_prio - old_prio;
3357 p->static_prio = NICE_TO_PRIO(nice);
3358 p->prio += delta;
3360 if (array) {
3361 enqueue_task(p, array);
3363 * If the task increased its priority or is running and
3364 * lowered its priority, then reschedule its CPU:
3366 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3367 resched_task(rq->curr);
3369 out_unlock:
3370 task_rq_unlock(rq, &flags);
3373 EXPORT_SYMBOL(set_user_nice);
3376 * can_nice - check if a task can reduce its nice value
3377 * @p: task
3378 * @nice: nice value
3380 int can_nice(const task_t *p, const int nice)
3382 /* convert nice value [19,-20] to rlimit style value [1,40] */
3383 int nice_rlim = 20 - nice;
3384 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3385 capable(CAP_SYS_NICE));
3388 #ifdef __ARCH_WANT_SYS_NICE
3391 * sys_nice - change the priority of the current process.
3392 * @increment: priority increment
3394 * sys_setpriority is a more generic, but much slower function that
3395 * does similar things.
3397 asmlinkage long sys_nice(int increment)
3399 int retval;
3400 long nice;
3403 * Setpriority might change our priority at the same moment.
3404 * We don't have to worry. Conceptually one call occurs first
3405 * and we have a single winner.
3407 if (increment < -40)
3408 increment = -40;
3409 if (increment > 40)
3410 increment = 40;
3412 nice = PRIO_TO_NICE(current->static_prio) + increment;
3413 if (nice < -20)
3414 nice = -20;
3415 if (nice > 19)
3416 nice = 19;
3418 if (increment < 0 && !can_nice(current, nice))
3419 return -EPERM;
3421 retval = security_task_setnice(current, nice);
3422 if (retval)
3423 return retval;
3425 set_user_nice(current, nice);
3426 return 0;
3429 #endif
3432 * task_prio - return the priority value of a given task.
3433 * @p: the task in question.
3435 * This is the priority value as seen by users in /proc.
3436 * RT tasks are offset by -200. Normal tasks are centered
3437 * around 0, value goes from -16 to +15.
3439 int task_prio(const task_t *p)
3441 return p->prio - MAX_RT_PRIO;
3445 * task_nice - return the nice value of a given task.
3446 * @p: the task in question.
3448 int task_nice(const task_t *p)
3450 return TASK_NICE(p);
3452 EXPORT_SYMBOL_GPL(task_nice);
3455 * idle_cpu - is a given cpu idle currently?
3456 * @cpu: the processor in question.
3458 int idle_cpu(int cpu)
3460 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3463 EXPORT_SYMBOL_GPL(idle_cpu);
3466 * idle_task - return the idle task for a given cpu.
3467 * @cpu: the processor in question.
3469 task_t *idle_task(int cpu)
3471 return cpu_rq(cpu)->idle;
3475 * find_process_by_pid - find a process with a matching PID value.
3476 * @pid: the pid in question.
3478 static inline task_t *find_process_by_pid(pid_t pid)
3480 return pid ? find_task_by_pid(pid) : current;
3483 /* Actually do priority change: must hold rq lock. */
3484 static void __setscheduler(struct task_struct *p, int policy, int prio)
3486 BUG_ON(p->array);
3487 p->policy = policy;
3488 p->rt_priority = prio;
3489 if (policy != SCHED_NORMAL)
3490 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3491 else
3492 p->prio = p->static_prio;
3496 * sched_setscheduler - change the scheduling policy and/or RT priority of
3497 * a thread.
3498 * @p: the task in question.
3499 * @policy: new policy.
3500 * @param: structure containing the new RT priority.
3502 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3504 int retval;
3505 int oldprio, oldpolicy = -1;
3506 prio_array_t *array;
3507 unsigned long flags;
3508 runqueue_t *rq;
3510 recheck:
3511 /* double check policy once rq lock held */
3512 if (policy < 0)
3513 policy = oldpolicy = p->policy;
3514 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3515 policy != SCHED_NORMAL)
3516 return -EINVAL;
3518 * Valid priorities for SCHED_FIFO and SCHED_RR are
3519 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3521 if (param->sched_priority < 0 ||
3522 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3523 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3524 return -EINVAL;
3525 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3526 return -EINVAL;
3529 * Allow unprivileged RT tasks to decrease priority:
3531 if (!capable(CAP_SYS_NICE)) {
3532 /* can't change policy */
3533 if (policy != p->policy &&
3534 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3535 return -EPERM;
3536 /* can't increase priority */
3537 if (policy != SCHED_NORMAL &&
3538 param->sched_priority > p->rt_priority &&
3539 param->sched_priority >
3540 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3541 return -EPERM;
3542 /* can't change other user's priorities */
3543 if ((current->euid != p->euid) &&
3544 (current->euid != p->uid))
3545 return -EPERM;
3548 retval = security_task_setscheduler(p, policy, param);
3549 if (retval)
3550 return retval;
3552 * To be able to change p->policy safely, the apropriate
3553 * runqueue lock must be held.
3555 rq = task_rq_lock(p, &flags);
3556 /* recheck policy now with rq lock held */
3557 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3558 policy = oldpolicy = -1;
3559 task_rq_unlock(rq, &flags);
3560 goto recheck;
3562 array = p->array;
3563 if (array)
3564 deactivate_task(p, rq);
3565 oldprio = p->prio;
3566 __setscheduler(p, policy, param->sched_priority);
3567 if (array) {
3568 __activate_task(p, rq);
3570 * Reschedule if we are currently running on this runqueue and
3571 * our priority decreased, or if we are not currently running on
3572 * this runqueue and our priority is higher than the current's
3574 if (task_running(rq, p)) {
3575 if (p->prio > oldprio)
3576 resched_task(rq->curr);
3577 } else if (TASK_PREEMPTS_CURR(p, rq))
3578 resched_task(rq->curr);
3580 task_rq_unlock(rq, &flags);
3581 return 0;
3583 EXPORT_SYMBOL_GPL(sched_setscheduler);
3585 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3587 int retval;
3588 struct sched_param lparam;
3589 struct task_struct *p;
3591 if (!param || pid < 0)
3592 return -EINVAL;
3593 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3594 return -EFAULT;
3595 read_lock_irq(&tasklist_lock);
3596 p = find_process_by_pid(pid);
3597 if (!p) {
3598 read_unlock_irq(&tasklist_lock);
3599 return -ESRCH;
3601 retval = sched_setscheduler(p, policy, &lparam);
3602 read_unlock_irq(&tasklist_lock);
3603 return retval;
3607 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3608 * @pid: the pid in question.
3609 * @policy: new policy.
3610 * @param: structure containing the new RT priority.
3612 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3613 struct sched_param __user *param)
3615 return do_sched_setscheduler(pid, policy, param);
3619 * sys_sched_setparam - set/change the RT priority of a thread
3620 * @pid: the pid in question.
3621 * @param: structure containing the new RT priority.
3623 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3625 return do_sched_setscheduler(pid, -1, param);
3629 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3630 * @pid: the pid in question.
3632 asmlinkage long sys_sched_getscheduler(pid_t pid)
3634 int retval = -EINVAL;
3635 task_t *p;
3637 if (pid < 0)
3638 goto out_nounlock;
3640 retval = -ESRCH;
3641 read_lock(&tasklist_lock);
3642 p = find_process_by_pid(pid);
3643 if (p) {
3644 retval = security_task_getscheduler(p);
3645 if (!retval)
3646 retval = p->policy;
3648 read_unlock(&tasklist_lock);
3650 out_nounlock:
3651 return retval;
3655 * sys_sched_getscheduler - get the RT priority of a thread
3656 * @pid: the pid in question.
3657 * @param: structure containing the RT priority.
3659 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3661 struct sched_param lp;
3662 int retval = -EINVAL;
3663 task_t *p;
3665 if (!param || pid < 0)
3666 goto out_nounlock;
3668 read_lock(&tasklist_lock);
3669 p = find_process_by_pid(pid);
3670 retval = -ESRCH;
3671 if (!p)
3672 goto out_unlock;
3674 retval = security_task_getscheduler(p);
3675 if (retval)
3676 goto out_unlock;
3678 lp.sched_priority = p->rt_priority;
3679 read_unlock(&tasklist_lock);
3682 * This one might sleep, we cannot do it with a spinlock held ...
3684 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3686 out_nounlock:
3687 return retval;
3689 out_unlock:
3690 read_unlock(&tasklist_lock);
3691 return retval;
3694 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3696 task_t *p;
3697 int retval;
3698 cpumask_t cpus_allowed;
3700 lock_cpu_hotplug();
3701 read_lock(&tasklist_lock);
3703 p = find_process_by_pid(pid);
3704 if (!p) {
3705 read_unlock(&tasklist_lock);
3706 unlock_cpu_hotplug();
3707 return -ESRCH;
3711 * It is not safe to call set_cpus_allowed with the
3712 * tasklist_lock held. We will bump the task_struct's
3713 * usage count and then drop tasklist_lock.
3715 get_task_struct(p);
3716 read_unlock(&tasklist_lock);
3718 retval = -EPERM;
3719 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3720 !capable(CAP_SYS_NICE))
3721 goto out_unlock;
3723 cpus_allowed = cpuset_cpus_allowed(p);
3724 cpus_and(new_mask, new_mask, cpus_allowed);
3725 retval = set_cpus_allowed(p, new_mask);
3727 out_unlock:
3728 put_task_struct(p);
3729 unlock_cpu_hotplug();
3730 return retval;
3733 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3734 cpumask_t *new_mask)
3736 if (len < sizeof(cpumask_t)) {
3737 memset(new_mask, 0, sizeof(cpumask_t));
3738 } else if (len > sizeof(cpumask_t)) {
3739 len = sizeof(cpumask_t);
3741 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3745 * sys_sched_setaffinity - set the cpu affinity of a process
3746 * @pid: pid of the process
3747 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3748 * @user_mask_ptr: user-space pointer to the new cpu mask
3750 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3751 unsigned long __user *user_mask_ptr)
3753 cpumask_t new_mask;
3754 int retval;
3756 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3757 if (retval)
3758 return retval;
3760 return sched_setaffinity(pid, new_mask);
3764 * Represents all cpu's present in the system
3765 * In systems capable of hotplug, this map could dynamically grow
3766 * as new cpu's are detected in the system via any platform specific
3767 * method, such as ACPI for e.g.
3770 cpumask_t cpu_present_map;
3771 EXPORT_SYMBOL(cpu_present_map);
3773 #ifndef CONFIG_SMP
3774 cpumask_t cpu_online_map = CPU_MASK_ALL;
3775 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3776 #endif
3778 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3780 int retval;
3781 task_t *p;
3783 lock_cpu_hotplug();
3784 read_lock(&tasklist_lock);
3786 retval = -ESRCH;
3787 p = find_process_by_pid(pid);
3788 if (!p)
3789 goto out_unlock;
3791 retval = 0;
3792 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3794 out_unlock:
3795 read_unlock(&tasklist_lock);
3796 unlock_cpu_hotplug();
3797 if (retval)
3798 return retval;
3800 return 0;
3804 * sys_sched_getaffinity - get the cpu affinity of a process
3805 * @pid: pid of the process
3806 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3807 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3809 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3810 unsigned long __user *user_mask_ptr)
3812 int ret;
3813 cpumask_t mask;
3815 if (len < sizeof(cpumask_t))
3816 return -EINVAL;
3818 ret = sched_getaffinity(pid, &mask);
3819 if (ret < 0)
3820 return ret;
3822 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3823 return -EFAULT;
3825 return sizeof(cpumask_t);
3829 * sys_sched_yield - yield the current processor to other threads.
3831 * this function yields the current CPU by moving the calling thread
3832 * to the expired array. If there are no other threads running on this
3833 * CPU then this function will return.
3835 asmlinkage long sys_sched_yield(void)
3837 runqueue_t *rq = this_rq_lock();
3838 prio_array_t *array = current->array;
3839 prio_array_t *target = rq->expired;
3841 schedstat_inc(rq, yld_cnt);
3843 * We implement yielding by moving the task into the expired
3844 * queue.
3846 * (special rule: RT tasks will just roundrobin in the active
3847 * array.)
3849 if (rt_task(current))
3850 target = rq->active;
3852 if (current->array->nr_active == 1) {
3853 schedstat_inc(rq, yld_act_empty);
3854 if (!rq->expired->nr_active)
3855 schedstat_inc(rq, yld_both_empty);
3856 } else if (!rq->expired->nr_active)
3857 schedstat_inc(rq, yld_exp_empty);
3859 if (array != target) {
3860 dequeue_task(current, array);
3861 enqueue_task(current, target);
3862 } else
3864 * requeue_task is cheaper so perform that if possible.
3866 requeue_task(current, array);
3869 * Since we are going to call schedule() anyway, there's
3870 * no need to preempt or enable interrupts:
3872 __release(rq->lock);
3873 _raw_spin_unlock(&rq->lock);
3874 preempt_enable_no_resched();
3876 schedule();
3878 return 0;
3881 static inline void __cond_resched(void)
3884 * The BKS might be reacquired before we have dropped
3885 * PREEMPT_ACTIVE, which could trigger a second
3886 * cond_resched() call.
3888 if (unlikely(preempt_count()))
3889 return;
3890 do {
3891 add_preempt_count(PREEMPT_ACTIVE);
3892 schedule();
3893 sub_preempt_count(PREEMPT_ACTIVE);
3894 } while (need_resched());
3897 int __sched cond_resched(void)
3899 if (need_resched()) {
3900 __cond_resched();
3901 return 1;
3903 return 0;
3906 EXPORT_SYMBOL(cond_resched);
3909 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3910 * call schedule, and on return reacquire the lock.
3912 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3913 * operations here to prevent schedule() from being called twice (once via
3914 * spin_unlock(), once by hand).
3916 int cond_resched_lock(spinlock_t * lock)
3918 int ret = 0;
3920 if (need_lockbreak(lock)) {
3921 spin_unlock(lock);
3922 cpu_relax();
3923 ret = 1;
3924 spin_lock(lock);
3926 if (need_resched()) {
3927 _raw_spin_unlock(lock);
3928 preempt_enable_no_resched();
3929 __cond_resched();
3930 ret = 1;
3931 spin_lock(lock);
3933 return ret;
3936 EXPORT_SYMBOL(cond_resched_lock);
3938 int __sched cond_resched_softirq(void)
3940 BUG_ON(!in_softirq());
3942 if (need_resched()) {
3943 __local_bh_enable();
3944 __cond_resched();
3945 local_bh_disable();
3946 return 1;
3948 return 0;
3951 EXPORT_SYMBOL(cond_resched_softirq);
3955 * yield - yield the current processor to other threads.
3957 * this is a shortcut for kernel-space yielding - it marks the
3958 * thread runnable and calls sys_sched_yield().
3960 void __sched yield(void)
3962 set_current_state(TASK_RUNNING);
3963 sys_sched_yield();
3966 EXPORT_SYMBOL(yield);
3969 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3970 * that process accounting knows that this is a task in IO wait state.
3972 * But don't do that if it is a deliberate, throttling IO wait (this task
3973 * has set its backing_dev_info: the queue against which it should throttle)
3975 void __sched io_schedule(void)
3977 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3979 atomic_inc(&rq->nr_iowait);
3980 schedule();
3981 atomic_dec(&rq->nr_iowait);
3984 EXPORT_SYMBOL(io_schedule);
3986 long __sched io_schedule_timeout(long timeout)
3988 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3989 long ret;
3991 atomic_inc(&rq->nr_iowait);
3992 ret = schedule_timeout(timeout);
3993 atomic_dec(&rq->nr_iowait);
3994 return ret;
3998 * sys_sched_get_priority_max - return maximum RT priority.
3999 * @policy: scheduling class.
4001 * this syscall returns the maximum rt_priority that can be used
4002 * by a given scheduling class.
4004 asmlinkage long sys_sched_get_priority_max(int policy)
4006 int ret = -EINVAL;
4008 switch (policy) {
4009 case SCHED_FIFO:
4010 case SCHED_RR:
4011 ret = MAX_USER_RT_PRIO-1;
4012 break;
4013 case SCHED_NORMAL:
4014 ret = 0;
4015 break;
4017 return ret;
4021 * sys_sched_get_priority_min - return minimum RT priority.
4022 * @policy: scheduling class.
4024 * this syscall returns the minimum rt_priority that can be used
4025 * by a given scheduling class.
4027 asmlinkage long sys_sched_get_priority_min(int policy)
4029 int ret = -EINVAL;
4031 switch (policy) {
4032 case SCHED_FIFO:
4033 case SCHED_RR:
4034 ret = 1;
4035 break;
4036 case SCHED_NORMAL:
4037 ret = 0;
4039 return ret;
4043 * sys_sched_rr_get_interval - return the default timeslice of a process.
4044 * @pid: pid of the process.
4045 * @interval: userspace pointer to the timeslice value.
4047 * this syscall writes the default timeslice value of a given process
4048 * into the user-space timespec buffer. A value of '0' means infinity.
4050 asmlinkage
4051 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4053 int retval = -EINVAL;
4054 struct timespec t;
4055 task_t *p;
4057 if (pid < 0)
4058 goto out_nounlock;
4060 retval = -ESRCH;
4061 read_lock(&tasklist_lock);
4062 p = find_process_by_pid(pid);
4063 if (!p)
4064 goto out_unlock;
4066 retval = security_task_getscheduler(p);
4067 if (retval)
4068 goto out_unlock;
4070 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4071 0 : task_timeslice(p), &t);
4072 read_unlock(&tasklist_lock);
4073 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4074 out_nounlock:
4075 return retval;
4076 out_unlock:
4077 read_unlock(&tasklist_lock);
4078 return retval;
4081 static inline struct task_struct *eldest_child(struct task_struct *p)
4083 if (list_empty(&p->children)) return NULL;
4084 return list_entry(p->children.next,struct task_struct,sibling);
4087 static inline struct task_struct *older_sibling(struct task_struct *p)
4089 if (p->sibling.prev==&p->parent->children) return NULL;
4090 return list_entry(p->sibling.prev,struct task_struct,sibling);
4093 static inline struct task_struct *younger_sibling(struct task_struct *p)
4095 if (p->sibling.next==&p->parent->children) return NULL;
4096 return list_entry(p->sibling.next,struct task_struct,sibling);
4099 static void show_task(task_t * p)
4101 task_t *relative;
4102 unsigned state;
4103 unsigned long free = 0;
4104 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4106 printk("%-13.13s ", p->comm);
4107 state = p->state ? __ffs(p->state) + 1 : 0;
4108 if (state < ARRAY_SIZE(stat_nam))
4109 printk(stat_nam[state]);
4110 else
4111 printk("?");
4112 #if (BITS_PER_LONG == 32)
4113 if (state == TASK_RUNNING)
4114 printk(" running ");
4115 else
4116 printk(" %08lX ", thread_saved_pc(p));
4117 #else
4118 if (state == TASK_RUNNING)
4119 printk(" running task ");
4120 else
4121 printk(" %016lx ", thread_saved_pc(p));
4122 #endif
4123 #ifdef CONFIG_DEBUG_STACK_USAGE
4125 unsigned long * n = (unsigned long *) (p->thread_info+1);
4126 while (!*n)
4127 n++;
4128 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4130 #endif
4131 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4132 if ((relative = eldest_child(p)))
4133 printk("%5d ", relative->pid);
4134 else
4135 printk(" ");
4136 if ((relative = younger_sibling(p)))
4137 printk("%7d", relative->pid);
4138 else
4139 printk(" ");
4140 if ((relative = older_sibling(p)))
4141 printk(" %5d", relative->pid);
4142 else
4143 printk(" ");
4144 if (!p->mm)
4145 printk(" (L-TLB)\n");
4146 else
4147 printk(" (NOTLB)\n");
4149 if (state != TASK_RUNNING)
4150 show_stack(p, NULL);
4153 void show_state(void)
4155 task_t *g, *p;
4157 #if (BITS_PER_LONG == 32)
4158 printk("\n"
4159 " sibling\n");
4160 printk(" task PC pid father child younger older\n");
4161 #else
4162 printk("\n"
4163 " sibling\n");
4164 printk(" task PC pid father child younger older\n");
4165 #endif
4166 read_lock(&tasklist_lock);
4167 do_each_thread(g, p) {
4169 * reset the NMI-timeout, listing all files on a slow
4170 * console might take alot of time:
4172 touch_nmi_watchdog();
4173 show_task(p);
4174 } while_each_thread(g, p);
4176 read_unlock(&tasklist_lock);
4180 * init_idle - set up an idle thread for a given CPU
4181 * @idle: task in question
4182 * @cpu: cpu the idle task belongs to
4184 * NOTE: this function does not set the idle thread's NEED_RESCHED
4185 * flag, to make booting more robust.
4187 void __devinit init_idle(task_t *idle, int cpu)
4189 runqueue_t *rq = cpu_rq(cpu);
4190 unsigned long flags;
4192 idle->sleep_avg = 0;
4193 idle->array = NULL;
4194 idle->prio = MAX_PRIO;
4195 idle->state = TASK_RUNNING;
4196 idle->cpus_allowed = cpumask_of_cpu(cpu);
4197 set_task_cpu(idle, cpu);
4199 spin_lock_irqsave(&rq->lock, flags);
4200 rq->curr = rq->idle = idle;
4201 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4202 idle->oncpu = 1;
4203 #endif
4204 spin_unlock_irqrestore(&rq->lock, flags);
4206 /* Set the preempt count _outside_ the spinlocks! */
4207 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4208 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4209 #else
4210 idle->thread_info->preempt_count = 0;
4211 #endif
4215 * In a system that switches off the HZ timer nohz_cpu_mask
4216 * indicates which cpus entered this state. This is used
4217 * in the rcu update to wait only for active cpus. For system
4218 * which do not switch off the HZ timer nohz_cpu_mask should
4219 * always be CPU_MASK_NONE.
4221 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4223 #ifdef CONFIG_SMP
4225 * This is how migration works:
4227 * 1) we queue a migration_req_t structure in the source CPU's
4228 * runqueue and wake up that CPU's migration thread.
4229 * 2) we down() the locked semaphore => thread blocks.
4230 * 3) migration thread wakes up (implicitly it forces the migrated
4231 * thread off the CPU)
4232 * 4) it gets the migration request and checks whether the migrated
4233 * task is still in the wrong runqueue.
4234 * 5) if it's in the wrong runqueue then the migration thread removes
4235 * it and puts it into the right queue.
4236 * 6) migration thread up()s the semaphore.
4237 * 7) we wake up and the migration is done.
4241 * Change a given task's CPU affinity. Migrate the thread to a
4242 * proper CPU and schedule it away if the CPU it's executing on
4243 * is removed from the allowed bitmask.
4245 * NOTE: the caller must have a valid reference to the task, the
4246 * task must not exit() & deallocate itself prematurely. The
4247 * call is not atomic; no spinlocks may be held.
4249 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4251 unsigned long flags;
4252 int ret = 0;
4253 migration_req_t req;
4254 runqueue_t *rq;
4256 rq = task_rq_lock(p, &flags);
4257 if (!cpus_intersects(new_mask, cpu_online_map)) {
4258 ret = -EINVAL;
4259 goto out;
4262 p->cpus_allowed = new_mask;
4263 /* Can the task run on the task's current CPU? If so, we're done */
4264 if (cpu_isset(task_cpu(p), new_mask))
4265 goto out;
4267 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4268 /* Need help from migration thread: drop lock and wait. */
4269 task_rq_unlock(rq, &flags);
4270 wake_up_process(rq->migration_thread);
4271 wait_for_completion(&req.done);
4272 tlb_migrate_finish(p->mm);
4273 return 0;
4275 out:
4276 task_rq_unlock(rq, &flags);
4277 return ret;
4280 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4283 * Move (not current) task off this cpu, onto dest cpu. We're doing
4284 * this because either it can't run here any more (set_cpus_allowed()
4285 * away from this CPU, or CPU going down), or because we're
4286 * attempting to rebalance this task on exec (sched_exec).
4288 * So we race with normal scheduler movements, but that's OK, as long
4289 * as the task is no longer on this CPU.
4291 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4293 runqueue_t *rq_dest, *rq_src;
4295 if (unlikely(cpu_is_offline(dest_cpu)))
4296 return;
4298 rq_src = cpu_rq(src_cpu);
4299 rq_dest = cpu_rq(dest_cpu);
4301 double_rq_lock(rq_src, rq_dest);
4302 /* Already moved. */
4303 if (task_cpu(p) != src_cpu)
4304 goto out;
4305 /* Affinity changed (again). */
4306 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4307 goto out;
4309 set_task_cpu(p, dest_cpu);
4310 if (p->array) {
4312 * Sync timestamp with rq_dest's before activating.
4313 * The same thing could be achieved by doing this step
4314 * afterwards, and pretending it was a local activate.
4315 * This way is cleaner and logically correct.
4317 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4318 + rq_dest->timestamp_last_tick;
4319 deactivate_task(p, rq_src);
4320 activate_task(p, rq_dest, 0);
4321 if (TASK_PREEMPTS_CURR(p, rq_dest))
4322 resched_task(rq_dest->curr);
4325 out:
4326 double_rq_unlock(rq_src, rq_dest);
4330 * migration_thread - this is a highprio system thread that performs
4331 * thread migration by bumping thread off CPU then 'pushing' onto
4332 * another runqueue.
4334 static int migration_thread(void * data)
4336 runqueue_t *rq;
4337 int cpu = (long)data;
4339 rq = cpu_rq(cpu);
4340 BUG_ON(rq->migration_thread != current);
4342 set_current_state(TASK_INTERRUPTIBLE);
4343 while (!kthread_should_stop()) {
4344 struct list_head *head;
4345 migration_req_t *req;
4347 try_to_freeze();
4349 spin_lock_irq(&rq->lock);
4351 if (cpu_is_offline(cpu)) {
4352 spin_unlock_irq(&rq->lock);
4353 goto wait_to_die;
4356 if (rq->active_balance) {
4357 active_load_balance(rq, cpu);
4358 rq->active_balance = 0;
4361 head = &rq->migration_queue;
4363 if (list_empty(head)) {
4364 spin_unlock_irq(&rq->lock);
4365 schedule();
4366 set_current_state(TASK_INTERRUPTIBLE);
4367 continue;
4369 req = list_entry(head->next, migration_req_t, list);
4370 list_del_init(head->next);
4372 spin_unlock(&rq->lock);
4373 __migrate_task(req->task, cpu, req->dest_cpu);
4374 local_irq_enable();
4376 complete(&req->done);
4378 __set_current_state(TASK_RUNNING);
4379 return 0;
4381 wait_to_die:
4382 /* Wait for kthread_stop */
4383 set_current_state(TASK_INTERRUPTIBLE);
4384 while (!kthread_should_stop()) {
4385 schedule();
4386 set_current_state(TASK_INTERRUPTIBLE);
4388 __set_current_state(TASK_RUNNING);
4389 return 0;
4392 #ifdef CONFIG_HOTPLUG_CPU
4393 /* Figure out where task on dead CPU should go, use force if neccessary. */
4394 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4396 int dest_cpu;
4397 cpumask_t mask;
4399 /* On same node? */
4400 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4401 cpus_and(mask, mask, tsk->cpus_allowed);
4402 dest_cpu = any_online_cpu(mask);
4404 /* On any allowed CPU? */
4405 if (dest_cpu == NR_CPUS)
4406 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4408 /* No more Mr. Nice Guy. */
4409 if (dest_cpu == NR_CPUS) {
4410 cpus_setall(tsk->cpus_allowed);
4411 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4414 * Don't tell them about moving exiting tasks or
4415 * kernel threads (both mm NULL), since they never
4416 * leave kernel.
4418 if (tsk->mm && printk_ratelimit())
4419 printk(KERN_INFO "process %d (%s) no "
4420 "longer affine to cpu%d\n",
4421 tsk->pid, tsk->comm, dead_cpu);
4423 __migrate_task(tsk, dead_cpu, dest_cpu);
4427 * While a dead CPU has no uninterruptible tasks queued at this point,
4428 * it might still have a nonzero ->nr_uninterruptible counter, because
4429 * for performance reasons the counter is not stricly tracking tasks to
4430 * their home CPUs. So we just add the counter to another CPU's counter,
4431 * to keep the global sum constant after CPU-down:
4433 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4435 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4436 unsigned long flags;
4438 local_irq_save(flags);
4439 double_rq_lock(rq_src, rq_dest);
4440 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4441 rq_src->nr_uninterruptible = 0;
4442 double_rq_unlock(rq_src, rq_dest);
4443 local_irq_restore(flags);
4446 /* Run through task list and migrate tasks from the dead cpu. */
4447 static void migrate_live_tasks(int src_cpu)
4449 struct task_struct *tsk, *t;
4451 write_lock_irq(&tasklist_lock);
4453 do_each_thread(t, tsk) {
4454 if (tsk == current)
4455 continue;
4457 if (task_cpu(tsk) == src_cpu)
4458 move_task_off_dead_cpu(src_cpu, tsk);
4459 } while_each_thread(t, tsk);
4461 write_unlock_irq(&tasklist_lock);
4464 /* Schedules idle task to be the next runnable task on current CPU.
4465 * It does so by boosting its priority to highest possible and adding it to
4466 * the _front_ of runqueue. Used by CPU offline code.
4468 void sched_idle_next(void)
4470 int cpu = smp_processor_id();
4471 runqueue_t *rq = this_rq();
4472 struct task_struct *p = rq->idle;
4473 unsigned long flags;
4475 /* cpu has to be offline */
4476 BUG_ON(cpu_online(cpu));
4478 /* Strictly not necessary since rest of the CPUs are stopped by now
4479 * and interrupts disabled on current cpu.
4481 spin_lock_irqsave(&rq->lock, flags);
4483 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4484 /* Add idle task to _front_ of it's priority queue */
4485 __activate_idle_task(p, rq);
4487 spin_unlock_irqrestore(&rq->lock, flags);
4490 /* Ensures that the idle task is using init_mm right before its cpu goes
4491 * offline.
4493 void idle_task_exit(void)
4495 struct mm_struct *mm = current->active_mm;
4497 BUG_ON(cpu_online(smp_processor_id()));
4499 if (mm != &init_mm)
4500 switch_mm(mm, &init_mm, current);
4501 mmdrop(mm);
4504 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4506 struct runqueue *rq = cpu_rq(dead_cpu);
4508 /* Must be exiting, otherwise would be on tasklist. */
4509 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4511 /* Cannot have done final schedule yet: would have vanished. */
4512 BUG_ON(tsk->flags & PF_DEAD);
4514 get_task_struct(tsk);
4517 * Drop lock around migration; if someone else moves it,
4518 * that's OK. No task can be added to this CPU, so iteration is
4519 * fine.
4521 spin_unlock_irq(&rq->lock);
4522 move_task_off_dead_cpu(dead_cpu, tsk);
4523 spin_lock_irq(&rq->lock);
4525 put_task_struct(tsk);
4528 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4529 static void migrate_dead_tasks(unsigned int dead_cpu)
4531 unsigned arr, i;
4532 struct runqueue *rq = cpu_rq(dead_cpu);
4534 for (arr = 0; arr < 2; arr++) {
4535 for (i = 0; i < MAX_PRIO; i++) {
4536 struct list_head *list = &rq->arrays[arr].queue[i];
4537 while (!list_empty(list))
4538 migrate_dead(dead_cpu,
4539 list_entry(list->next, task_t,
4540 run_list));
4544 #endif /* CONFIG_HOTPLUG_CPU */
4547 * migration_call - callback that gets triggered when a CPU is added.
4548 * Here we can start up the necessary migration thread for the new CPU.
4550 static int migration_call(struct notifier_block *nfb, unsigned long action,
4551 void *hcpu)
4553 int cpu = (long)hcpu;
4554 struct task_struct *p;
4555 struct runqueue *rq;
4556 unsigned long flags;
4558 switch (action) {
4559 case CPU_UP_PREPARE:
4560 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4561 if (IS_ERR(p))
4562 return NOTIFY_BAD;
4563 p->flags |= PF_NOFREEZE;
4564 kthread_bind(p, cpu);
4565 /* Must be high prio: stop_machine expects to yield to it. */
4566 rq = task_rq_lock(p, &flags);
4567 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4568 task_rq_unlock(rq, &flags);
4569 cpu_rq(cpu)->migration_thread = p;
4570 break;
4571 case CPU_ONLINE:
4572 /* Strictly unneccessary, as first user will wake it. */
4573 wake_up_process(cpu_rq(cpu)->migration_thread);
4574 break;
4575 #ifdef CONFIG_HOTPLUG_CPU
4576 case CPU_UP_CANCELED:
4577 /* Unbind it from offline cpu so it can run. Fall thru. */
4578 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4579 kthread_stop(cpu_rq(cpu)->migration_thread);
4580 cpu_rq(cpu)->migration_thread = NULL;
4581 break;
4582 case CPU_DEAD:
4583 migrate_live_tasks(cpu);
4584 rq = cpu_rq(cpu);
4585 kthread_stop(rq->migration_thread);
4586 rq->migration_thread = NULL;
4587 /* Idle task back to normal (off runqueue, low prio) */
4588 rq = task_rq_lock(rq->idle, &flags);
4589 deactivate_task(rq->idle, rq);
4590 rq->idle->static_prio = MAX_PRIO;
4591 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4592 migrate_dead_tasks(cpu);
4593 task_rq_unlock(rq, &flags);
4594 migrate_nr_uninterruptible(rq);
4595 BUG_ON(rq->nr_running != 0);
4597 /* No need to migrate the tasks: it was best-effort if
4598 * they didn't do lock_cpu_hotplug(). Just wake up
4599 * the requestors. */
4600 spin_lock_irq(&rq->lock);
4601 while (!list_empty(&rq->migration_queue)) {
4602 migration_req_t *req;
4603 req = list_entry(rq->migration_queue.next,
4604 migration_req_t, list);
4605 list_del_init(&req->list);
4606 complete(&req->done);
4608 spin_unlock_irq(&rq->lock);
4609 break;
4610 #endif
4612 return NOTIFY_OK;
4615 /* Register at highest priority so that task migration (migrate_all_tasks)
4616 * happens before everything else.
4618 static struct notifier_block __devinitdata migration_notifier = {
4619 .notifier_call = migration_call,
4620 .priority = 10
4623 int __init migration_init(void)
4625 void *cpu = (void *)(long)smp_processor_id();
4626 /* Start one for boot CPU. */
4627 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4628 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4629 register_cpu_notifier(&migration_notifier);
4630 return 0;
4632 #endif
4634 #ifdef CONFIG_SMP
4635 #undef SCHED_DOMAIN_DEBUG
4636 #ifdef SCHED_DOMAIN_DEBUG
4637 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4639 int level = 0;
4641 if (!sd) {
4642 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4643 return;
4646 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4648 do {
4649 int i;
4650 char str[NR_CPUS];
4651 struct sched_group *group = sd->groups;
4652 cpumask_t groupmask;
4654 cpumask_scnprintf(str, NR_CPUS, sd->span);
4655 cpus_clear(groupmask);
4657 printk(KERN_DEBUG);
4658 for (i = 0; i < level + 1; i++)
4659 printk(" ");
4660 printk("domain %d: ", level);
4662 if (!(sd->flags & SD_LOAD_BALANCE)) {
4663 printk("does not load-balance\n");
4664 if (sd->parent)
4665 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4666 break;
4669 printk("span %s\n", str);
4671 if (!cpu_isset(cpu, sd->span))
4672 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4673 if (!cpu_isset(cpu, group->cpumask))
4674 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4676 printk(KERN_DEBUG);
4677 for (i = 0; i < level + 2; i++)
4678 printk(" ");
4679 printk("groups:");
4680 do {
4681 if (!group) {
4682 printk("\n");
4683 printk(KERN_ERR "ERROR: group is NULL\n");
4684 break;
4687 if (!group->cpu_power) {
4688 printk("\n");
4689 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4692 if (!cpus_weight(group->cpumask)) {
4693 printk("\n");
4694 printk(KERN_ERR "ERROR: empty group\n");
4697 if (cpus_intersects(groupmask, group->cpumask)) {
4698 printk("\n");
4699 printk(KERN_ERR "ERROR: repeated CPUs\n");
4702 cpus_or(groupmask, groupmask, group->cpumask);
4704 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4705 printk(" %s", str);
4707 group = group->next;
4708 } while (group != sd->groups);
4709 printk("\n");
4711 if (!cpus_equal(sd->span, groupmask))
4712 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4714 level++;
4715 sd = sd->parent;
4717 if (sd) {
4718 if (!cpus_subset(groupmask, sd->span))
4719 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4722 } while (sd);
4724 #else
4725 #define sched_domain_debug(sd, cpu) {}
4726 #endif
4728 static int sd_degenerate(struct sched_domain *sd)
4730 if (cpus_weight(sd->span) == 1)
4731 return 1;
4733 /* Following flags need at least 2 groups */
4734 if (sd->flags & (SD_LOAD_BALANCE |
4735 SD_BALANCE_NEWIDLE |
4736 SD_BALANCE_FORK |
4737 SD_BALANCE_EXEC)) {
4738 if (sd->groups != sd->groups->next)
4739 return 0;
4742 /* Following flags don't use groups */
4743 if (sd->flags & (SD_WAKE_IDLE |
4744 SD_WAKE_AFFINE |
4745 SD_WAKE_BALANCE))
4746 return 0;
4748 return 1;
4751 static int sd_parent_degenerate(struct sched_domain *sd,
4752 struct sched_domain *parent)
4754 unsigned long cflags = sd->flags, pflags = parent->flags;
4756 if (sd_degenerate(parent))
4757 return 1;
4759 if (!cpus_equal(sd->span, parent->span))
4760 return 0;
4762 /* Does parent contain flags not in child? */
4763 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4764 if (cflags & SD_WAKE_AFFINE)
4765 pflags &= ~SD_WAKE_BALANCE;
4766 /* Flags needing groups don't count if only 1 group in parent */
4767 if (parent->groups == parent->groups->next) {
4768 pflags &= ~(SD_LOAD_BALANCE |
4769 SD_BALANCE_NEWIDLE |
4770 SD_BALANCE_FORK |
4771 SD_BALANCE_EXEC);
4773 if (~cflags & pflags)
4774 return 0;
4776 return 1;
4780 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4781 * hold the hotplug lock.
4783 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4785 runqueue_t *rq = cpu_rq(cpu);
4786 struct sched_domain *tmp;
4788 /* Remove the sched domains which do not contribute to scheduling. */
4789 for (tmp = sd; tmp; tmp = tmp->parent) {
4790 struct sched_domain *parent = tmp->parent;
4791 if (!parent)
4792 break;
4793 if (sd_parent_degenerate(tmp, parent))
4794 tmp->parent = parent->parent;
4797 if (sd && sd_degenerate(sd))
4798 sd = sd->parent;
4800 sched_domain_debug(sd, cpu);
4802 rcu_assign_pointer(rq->sd, sd);
4805 /* cpus with isolated domains */
4806 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4808 /* Setup the mask of cpus configured for isolated domains */
4809 static int __init isolated_cpu_setup(char *str)
4811 int ints[NR_CPUS], i;
4813 str = get_options(str, ARRAY_SIZE(ints), ints);
4814 cpus_clear(cpu_isolated_map);
4815 for (i = 1; i <= ints[0]; i++)
4816 if (ints[i] < NR_CPUS)
4817 cpu_set(ints[i], cpu_isolated_map);
4818 return 1;
4821 __setup ("isolcpus=", isolated_cpu_setup);
4824 * init_sched_build_groups takes an array of groups, the cpumask we wish
4825 * to span, and a pointer to a function which identifies what group a CPU
4826 * belongs to. The return value of group_fn must be a valid index into the
4827 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4828 * keep track of groups covered with a cpumask_t).
4830 * init_sched_build_groups will build a circular linked list of the groups
4831 * covered by the given span, and will set each group's ->cpumask correctly,
4832 * and ->cpu_power to 0.
4834 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4835 int (*group_fn)(int cpu))
4837 struct sched_group *first = NULL, *last = NULL;
4838 cpumask_t covered = CPU_MASK_NONE;
4839 int i;
4841 for_each_cpu_mask(i, span) {
4842 int group = group_fn(i);
4843 struct sched_group *sg = &groups[group];
4844 int j;
4846 if (cpu_isset(i, covered))
4847 continue;
4849 sg->cpumask = CPU_MASK_NONE;
4850 sg->cpu_power = 0;
4852 for_each_cpu_mask(j, span) {
4853 if (group_fn(j) != group)
4854 continue;
4856 cpu_set(j, covered);
4857 cpu_set(j, sg->cpumask);
4859 if (!first)
4860 first = sg;
4861 if (last)
4862 last->next = sg;
4863 last = sg;
4865 last->next = first;
4868 #define SD_NODES_PER_DOMAIN 16
4870 #ifdef CONFIG_NUMA
4872 * find_next_best_node - find the next node to include in a sched_domain
4873 * @node: node whose sched_domain we're building
4874 * @used_nodes: nodes already in the sched_domain
4876 * Find the next node to include in a given scheduling domain. Simply
4877 * finds the closest node not already in the @used_nodes map.
4879 * Should use nodemask_t.
4881 static int find_next_best_node(int node, unsigned long *used_nodes)
4883 int i, n, val, min_val, best_node = 0;
4885 min_val = INT_MAX;
4887 for (i = 0; i < MAX_NUMNODES; i++) {
4888 /* Start at @node */
4889 n = (node + i) % MAX_NUMNODES;
4891 if (!nr_cpus_node(n))
4892 continue;
4894 /* Skip already used nodes */
4895 if (test_bit(n, used_nodes))
4896 continue;
4898 /* Simple min distance search */
4899 val = node_distance(node, n);
4901 if (val < min_val) {
4902 min_val = val;
4903 best_node = n;
4907 set_bit(best_node, used_nodes);
4908 return best_node;
4912 * sched_domain_node_span - get a cpumask for a node's sched_domain
4913 * @node: node whose cpumask we're constructing
4914 * @size: number of nodes to include in this span
4916 * Given a node, construct a good cpumask for its sched_domain to span. It
4917 * should be one that prevents unnecessary balancing, but also spreads tasks
4918 * out optimally.
4920 static cpumask_t sched_domain_node_span(int node)
4922 int i;
4923 cpumask_t span, nodemask;
4924 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4926 cpus_clear(span);
4927 bitmap_zero(used_nodes, MAX_NUMNODES);
4929 nodemask = node_to_cpumask(node);
4930 cpus_or(span, span, nodemask);
4931 set_bit(node, used_nodes);
4933 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4934 int next_node = find_next_best_node(node, used_nodes);
4935 nodemask = node_to_cpumask(next_node);
4936 cpus_or(span, span, nodemask);
4939 return span;
4941 #endif
4944 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
4945 * can switch it on easily if needed.
4947 #ifdef CONFIG_SCHED_SMT
4948 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4949 static struct sched_group sched_group_cpus[NR_CPUS];
4950 static int cpu_to_cpu_group(int cpu)
4952 return cpu;
4954 #endif
4956 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4957 static struct sched_group sched_group_phys[NR_CPUS];
4958 static int cpu_to_phys_group(int cpu)
4960 #ifdef CONFIG_SCHED_SMT
4961 return first_cpu(cpu_sibling_map[cpu]);
4962 #else
4963 return cpu;
4964 #endif
4967 #ifdef CONFIG_NUMA
4969 * The init_sched_build_groups can't handle what we want to do with node
4970 * groups, so roll our own. Now each node has its own list of groups which
4971 * gets dynamically allocated.
4973 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4974 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
4976 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
4977 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
4979 static int cpu_to_allnodes_group(int cpu)
4981 return cpu_to_node(cpu);
4983 #endif
4986 * Build sched domains for a given set of cpus and attach the sched domains
4987 * to the individual cpus
4989 void build_sched_domains(const cpumask_t *cpu_map)
4991 int i;
4992 #ifdef CONFIG_NUMA
4993 struct sched_group **sched_group_nodes = NULL;
4994 struct sched_group *sched_group_allnodes = NULL;
4997 * Allocate the per-node list of sched groups
4999 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5000 GFP_ATOMIC);
5001 if (!sched_group_nodes) {
5002 printk(KERN_WARNING "Can not alloc sched group node list\n");
5003 return;
5005 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5006 #endif
5009 * Set up domains for cpus specified by the cpu_map.
5011 for_each_cpu_mask(i, *cpu_map) {
5012 int group;
5013 struct sched_domain *sd = NULL, *p;
5014 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5016 cpus_and(nodemask, nodemask, *cpu_map);
5018 #ifdef CONFIG_NUMA
5019 if (cpus_weight(*cpu_map)
5020 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5021 if (!sched_group_allnodes) {
5022 sched_group_allnodes
5023 = kmalloc(sizeof(struct sched_group)
5024 * MAX_NUMNODES,
5025 GFP_KERNEL);
5026 if (!sched_group_allnodes) {
5027 printk(KERN_WARNING
5028 "Can not alloc allnodes sched group\n");
5029 break;
5031 sched_group_allnodes_bycpu[i]
5032 = sched_group_allnodes;
5034 sd = &per_cpu(allnodes_domains, i);
5035 *sd = SD_ALLNODES_INIT;
5036 sd->span = *cpu_map;
5037 group = cpu_to_allnodes_group(i);
5038 sd->groups = &sched_group_allnodes[group];
5039 p = sd;
5040 } else
5041 p = NULL;
5043 sd = &per_cpu(node_domains, i);
5044 *sd = SD_NODE_INIT;
5045 sd->span = sched_domain_node_span(cpu_to_node(i));
5046 sd->parent = p;
5047 cpus_and(sd->span, sd->span, *cpu_map);
5048 #endif
5050 p = sd;
5051 sd = &per_cpu(phys_domains, i);
5052 group = cpu_to_phys_group(i);
5053 *sd = SD_CPU_INIT;
5054 sd->span = nodemask;
5055 sd->parent = p;
5056 sd->groups = &sched_group_phys[group];
5058 #ifdef CONFIG_SCHED_SMT
5059 p = sd;
5060 sd = &per_cpu(cpu_domains, i);
5061 group = cpu_to_cpu_group(i);
5062 *sd = SD_SIBLING_INIT;
5063 sd->span = cpu_sibling_map[i];
5064 cpus_and(sd->span, sd->span, *cpu_map);
5065 sd->parent = p;
5066 sd->groups = &sched_group_cpus[group];
5067 #endif
5070 #ifdef CONFIG_SCHED_SMT
5071 /* Set up CPU (sibling) groups */
5072 for_each_cpu_mask(i, *cpu_map) {
5073 cpumask_t this_sibling_map = cpu_sibling_map[i];
5074 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5075 if (i != first_cpu(this_sibling_map))
5076 continue;
5078 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5079 &cpu_to_cpu_group);
5081 #endif
5083 /* Set up physical groups */
5084 for (i = 0; i < MAX_NUMNODES; i++) {
5085 cpumask_t nodemask = node_to_cpumask(i);
5087 cpus_and(nodemask, nodemask, *cpu_map);
5088 if (cpus_empty(nodemask))
5089 continue;
5091 init_sched_build_groups(sched_group_phys, nodemask,
5092 &cpu_to_phys_group);
5095 #ifdef CONFIG_NUMA
5096 /* Set up node groups */
5097 if (sched_group_allnodes)
5098 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5099 &cpu_to_allnodes_group);
5101 for (i = 0; i < MAX_NUMNODES; i++) {
5102 /* Set up node groups */
5103 struct sched_group *sg, *prev;
5104 cpumask_t nodemask = node_to_cpumask(i);
5105 cpumask_t domainspan;
5106 cpumask_t covered = CPU_MASK_NONE;
5107 int j;
5109 cpus_and(nodemask, nodemask, *cpu_map);
5110 if (cpus_empty(nodemask)) {
5111 sched_group_nodes[i] = NULL;
5112 continue;
5115 domainspan = sched_domain_node_span(i);
5116 cpus_and(domainspan, domainspan, *cpu_map);
5118 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5119 sched_group_nodes[i] = sg;
5120 for_each_cpu_mask(j, nodemask) {
5121 struct sched_domain *sd;
5122 sd = &per_cpu(node_domains, j);
5123 sd->groups = sg;
5124 if (sd->groups == NULL) {
5125 /* Turn off balancing if we have no groups */
5126 sd->flags = 0;
5129 if (!sg) {
5130 printk(KERN_WARNING
5131 "Can not alloc domain group for node %d\n", i);
5132 continue;
5134 sg->cpu_power = 0;
5135 sg->cpumask = nodemask;
5136 cpus_or(covered, covered, nodemask);
5137 prev = sg;
5139 for (j = 0; j < MAX_NUMNODES; j++) {
5140 cpumask_t tmp, notcovered;
5141 int n = (i + j) % MAX_NUMNODES;
5143 cpus_complement(notcovered, covered);
5144 cpus_and(tmp, notcovered, *cpu_map);
5145 cpus_and(tmp, tmp, domainspan);
5146 if (cpus_empty(tmp))
5147 break;
5149 nodemask = node_to_cpumask(n);
5150 cpus_and(tmp, tmp, nodemask);
5151 if (cpus_empty(tmp))
5152 continue;
5154 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5155 if (!sg) {
5156 printk(KERN_WARNING
5157 "Can not alloc domain group for node %d\n", j);
5158 break;
5160 sg->cpu_power = 0;
5161 sg->cpumask = tmp;
5162 cpus_or(covered, covered, tmp);
5163 prev->next = sg;
5164 prev = sg;
5166 prev->next = sched_group_nodes[i];
5168 #endif
5170 /* Calculate CPU power for physical packages and nodes */
5171 for_each_cpu_mask(i, *cpu_map) {
5172 int power;
5173 struct sched_domain *sd;
5174 #ifdef CONFIG_SCHED_SMT
5175 sd = &per_cpu(cpu_domains, i);
5176 power = SCHED_LOAD_SCALE;
5177 sd->groups->cpu_power = power;
5178 #endif
5180 sd = &per_cpu(phys_domains, i);
5181 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5182 (cpus_weight(sd->groups->cpumask)-1) / 10;
5183 sd->groups->cpu_power = power;
5185 #ifdef CONFIG_NUMA
5186 sd = &per_cpu(allnodes_domains, i);
5187 if (sd->groups) {
5188 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5189 (cpus_weight(sd->groups->cpumask)-1) / 10;
5190 sd->groups->cpu_power = power;
5192 #endif
5195 #ifdef CONFIG_NUMA
5196 for (i = 0; i < MAX_NUMNODES; i++) {
5197 struct sched_group *sg = sched_group_nodes[i];
5198 int j;
5200 if (sg == NULL)
5201 continue;
5202 next_sg:
5203 for_each_cpu_mask(j, sg->cpumask) {
5204 struct sched_domain *sd;
5205 int power;
5207 sd = &per_cpu(phys_domains, j);
5208 if (j != first_cpu(sd->groups->cpumask)) {
5210 * Only add "power" once for each
5211 * physical package.
5213 continue;
5215 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5216 (cpus_weight(sd->groups->cpumask)-1) / 10;
5218 sg->cpu_power += power;
5220 sg = sg->next;
5221 if (sg != sched_group_nodes[i])
5222 goto next_sg;
5224 #endif
5226 /* Attach the domains */
5227 for_each_cpu_mask(i, *cpu_map) {
5228 struct sched_domain *sd;
5229 #ifdef CONFIG_SCHED_SMT
5230 sd = &per_cpu(cpu_domains, i);
5231 #else
5232 sd = &per_cpu(phys_domains, i);
5233 #endif
5234 cpu_attach_domain(sd, i);
5238 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5240 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5242 cpumask_t cpu_default_map;
5245 * Setup mask for cpus without special case scheduling requirements.
5246 * For now this just excludes isolated cpus, but could be used to
5247 * exclude other special cases in the future.
5249 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5251 build_sched_domains(&cpu_default_map);
5254 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5256 #ifdef CONFIG_NUMA
5257 int i;
5258 int cpu;
5260 for_each_cpu_mask(cpu, *cpu_map) {
5261 struct sched_group *sched_group_allnodes
5262 = sched_group_allnodes_bycpu[cpu];
5263 struct sched_group **sched_group_nodes
5264 = sched_group_nodes_bycpu[cpu];
5266 if (sched_group_allnodes) {
5267 kfree(sched_group_allnodes);
5268 sched_group_allnodes_bycpu[cpu] = NULL;
5271 if (!sched_group_nodes)
5272 continue;
5274 for (i = 0; i < MAX_NUMNODES; i++) {
5275 cpumask_t nodemask = node_to_cpumask(i);
5276 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5278 cpus_and(nodemask, nodemask, *cpu_map);
5279 if (cpus_empty(nodemask))
5280 continue;
5282 if (sg == NULL)
5283 continue;
5284 sg = sg->next;
5285 next_sg:
5286 oldsg = sg;
5287 sg = sg->next;
5288 kfree(oldsg);
5289 if (oldsg != sched_group_nodes[i])
5290 goto next_sg;
5292 kfree(sched_group_nodes);
5293 sched_group_nodes_bycpu[cpu] = NULL;
5295 #endif
5299 * Detach sched domains from a group of cpus specified in cpu_map
5300 * These cpus will now be attached to the NULL domain
5302 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5304 int i;
5306 for_each_cpu_mask(i, *cpu_map)
5307 cpu_attach_domain(NULL, i);
5308 synchronize_sched();
5309 arch_destroy_sched_domains(cpu_map);
5313 * Partition sched domains as specified by the cpumasks below.
5314 * This attaches all cpus from the cpumasks to the NULL domain,
5315 * waits for a RCU quiescent period, recalculates sched
5316 * domain information and then attaches them back to the
5317 * correct sched domains
5318 * Call with hotplug lock held
5320 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5322 cpumask_t change_map;
5324 cpus_and(*partition1, *partition1, cpu_online_map);
5325 cpus_and(*partition2, *partition2, cpu_online_map);
5326 cpus_or(change_map, *partition1, *partition2);
5328 /* Detach sched domains from all of the affected cpus */
5329 detach_destroy_domains(&change_map);
5330 if (!cpus_empty(*partition1))
5331 build_sched_domains(partition1);
5332 if (!cpus_empty(*partition2))
5333 build_sched_domains(partition2);
5336 #ifdef CONFIG_HOTPLUG_CPU
5338 * Force a reinitialization of the sched domains hierarchy. The domains
5339 * and groups cannot be updated in place without racing with the balancing
5340 * code, so we temporarily attach all running cpus to the NULL domain
5341 * which will prevent rebalancing while the sched domains are recalculated.
5343 static int update_sched_domains(struct notifier_block *nfb,
5344 unsigned long action, void *hcpu)
5346 switch (action) {
5347 case CPU_UP_PREPARE:
5348 case CPU_DOWN_PREPARE:
5349 detach_destroy_domains(&cpu_online_map);
5350 return NOTIFY_OK;
5352 case CPU_UP_CANCELED:
5353 case CPU_DOWN_FAILED:
5354 case CPU_ONLINE:
5355 case CPU_DEAD:
5357 * Fall through and re-initialise the domains.
5359 break;
5360 default:
5361 return NOTIFY_DONE;
5364 /* The hotplug lock is already held by cpu_up/cpu_down */
5365 arch_init_sched_domains(&cpu_online_map);
5367 return NOTIFY_OK;
5369 #endif
5371 void __init sched_init_smp(void)
5373 lock_cpu_hotplug();
5374 arch_init_sched_domains(&cpu_online_map);
5375 unlock_cpu_hotplug();
5376 /* XXX: Theoretical race here - CPU may be hotplugged now */
5377 hotcpu_notifier(update_sched_domains, 0);
5379 #else
5380 void __init sched_init_smp(void)
5383 #endif /* CONFIG_SMP */
5385 int in_sched_functions(unsigned long addr)
5387 /* Linker adds these: start and end of __sched functions */
5388 extern char __sched_text_start[], __sched_text_end[];
5389 return in_lock_functions(addr) ||
5390 (addr >= (unsigned long)__sched_text_start
5391 && addr < (unsigned long)__sched_text_end);
5394 void __init sched_init(void)
5396 runqueue_t *rq;
5397 int i, j, k;
5399 for (i = 0; i < NR_CPUS; i++) {
5400 prio_array_t *array;
5402 rq = cpu_rq(i);
5403 spin_lock_init(&rq->lock);
5404 rq->nr_running = 0;
5405 rq->active = rq->arrays;
5406 rq->expired = rq->arrays + 1;
5407 rq->best_expired_prio = MAX_PRIO;
5409 #ifdef CONFIG_SMP
5410 rq->sd = NULL;
5411 for (j = 1; j < 3; j++)
5412 rq->cpu_load[j] = 0;
5413 rq->active_balance = 0;
5414 rq->push_cpu = 0;
5415 rq->migration_thread = NULL;
5416 INIT_LIST_HEAD(&rq->migration_queue);
5417 #endif
5418 atomic_set(&rq->nr_iowait, 0);
5420 for (j = 0; j < 2; j++) {
5421 array = rq->arrays + j;
5422 for (k = 0; k < MAX_PRIO; k++) {
5423 INIT_LIST_HEAD(array->queue + k);
5424 __clear_bit(k, array->bitmap);
5426 // delimiter for bitsearch
5427 __set_bit(MAX_PRIO, array->bitmap);
5432 * The boot idle thread does lazy MMU switching as well:
5434 atomic_inc(&init_mm.mm_count);
5435 enter_lazy_tlb(&init_mm, current);
5438 * Make us the idle thread. Technically, schedule() should not be
5439 * called from this thread, however somewhere below it might be,
5440 * but because we are the idle thread, we just pick up running again
5441 * when this runqueue becomes "idle".
5443 init_idle(current, smp_processor_id());
5446 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5447 void __might_sleep(char *file, int line)
5449 #if defined(in_atomic)
5450 static unsigned long prev_jiffy; /* ratelimiting */
5452 if ((in_atomic() || irqs_disabled()) &&
5453 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5454 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5455 return;
5456 prev_jiffy = jiffies;
5457 printk(KERN_ERR "Debug: sleeping function called from invalid"
5458 " context at %s:%d\n", file, line);
5459 printk("in_atomic():%d, irqs_disabled():%d\n",
5460 in_atomic(), irqs_disabled());
5461 dump_stack();
5463 #endif
5465 EXPORT_SYMBOL(__might_sleep);
5466 #endif
5468 #ifdef CONFIG_MAGIC_SYSRQ
5469 void normalize_rt_tasks(void)
5471 struct task_struct *p;
5472 prio_array_t *array;
5473 unsigned long flags;
5474 runqueue_t *rq;
5476 read_lock_irq(&tasklist_lock);
5477 for_each_process (p) {
5478 if (!rt_task(p))
5479 continue;
5481 rq = task_rq_lock(p, &flags);
5483 array = p->array;
5484 if (array)
5485 deactivate_task(p, task_rq(p));
5486 __setscheduler(p, SCHED_NORMAL, 0);
5487 if (array) {
5488 __activate_task(p, task_rq(p));
5489 resched_task(rq->curr);
5492 task_rq_unlock(rq, &flags);
5494 read_unlock_irq(&tasklist_lock);
5497 #endif /* CONFIG_MAGIC_SYSRQ */