4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/smp_lock.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 static __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
44 EXPORT_SYMBOL(dcache_lock
);
46 static kmem_cache_t
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
64 static LIST_HEAD(dentry_unused
);
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat
= {
71 static void d_callback(struct rcu_head
*head
)
73 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
75 if (dname_external(dentry
))
76 kfree(dentry
->d_name
.name
);
77 kmem_cache_free(dentry_cache
, dentry
);
81 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
84 static void d_free(struct dentry
*dentry
)
86 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
87 dentry
->d_op
->d_release(dentry
);
88 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
92 * Release the dentry's inode, using the filesystem
93 * d_iput() operation if defined.
94 * Called with dcache_lock and per dentry lock held, drops both.
96 static void dentry_iput(struct dentry
* dentry
)
98 struct inode
*inode
= dentry
->d_inode
;
100 dentry
->d_inode
= NULL
;
101 list_del_init(&dentry
->d_alias
);
102 spin_unlock(&dentry
->d_lock
);
103 spin_unlock(&dcache_lock
);
105 fsnotify_inoderemove(inode
);
106 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
107 dentry
->d_op
->d_iput(dentry
, inode
);
111 spin_unlock(&dentry
->d_lock
);
112 spin_unlock(&dcache_lock
);
119 * This is complicated by the fact that we do not want to put
120 * dentries that are no longer on any hash chain on the unused
121 * list: we'd much rather just get rid of them immediately.
123 * However, that implies that we have to traverse the dentry
124 * tree upwards to the parents which might _also_ now be
125 * scheduled for deletion (it may have been only waiting for
126 * its last child to go away).
128 * This tail recursion is done by hand as we don't want to depend
129 * on the compiler to always get this right (gcc generally doesn't).
130 * Real recursion would eat up our stack space.
134 * dput - release a dentry
135 * @dentry: dentry to release
137 * Release a dentry. This will drop the usage count and if appropriate
138 * call the dentry unlink method as well as removing it from the queues and
139 * releasing its resources. If the parent dentries were scheduled for release
140 * they too may now get deleted.
142 * no dcache lock, please.
145 void dput(struct dentry
*dentry
)
151 if (atomic_read(&dentry
->d_count
) == 1)
153 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
156 spin_lock(&dentry
->d_lock
);
157 if (atomic_read(&dentry
->d_count
)) {
158 spin_unlock(&dentry
->d_lock
);
159 spin_unlock(&dcache_lock
);
164 * AV: ->d_delete() is _NOT_ allowed to block now.
166 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
167 if (dentry
->d_op
->d_delete(dentry
))
170 /* Unreachable? Get rid of it */
171 if (d_unhashed(dentry
))
173 if (list_empty(&dentry
->d_lru
)) {
174 dentry
->d_flags
|= DCACHE_REFERENCED
;
175 list_add(&dentry
->d_lru
, &dentry_unused
);
176 dentry_stat
.nr_unused
++;
178 spin_unlock(&dentry
->d_lock
);
179 spin_unlock(&dcache_lock
);
186 struct dentry
*parent
;
188 /* If dentry was on d_lru list
189 * delete it from there
191 if (!list_empty(&dentry
->d_lru
)) {
192 list_del(&dentry
->d_lru
);
193 dentry_stat
.nr_unused
--;
195 list_del(&dentry
->d_u
.d_child
);
196 dentry_stat
.nr_dentry
--; /* For d_free, below */
197 /*drops the locks, at that point nobody can reach this dentry */
199 parent
= dentry
->d_parent
;
201 if (dentry
== parent
)
209 * d_invalidate - invalidate a dentry
210 * @dentry: dentry to invalidate
212 * Try to invalidate the dentry if it turns out to be
213 * possible. If there are other dentries that can be
214 * reached through this one we can't delete it and we
215 * return -EBUSY. On success we return 0.
220 int d_invalidate(struct dentry
* dentry
)
223 * If it's already been dropped, return OK.
225 spin_lock(&dcache_lock
);
226 if (d_unhashed(dentry
)) {
227 spin_unlock(&dcache_lock
);
231 * Check whether to do a partial shrink_dcache
232 * to get rid of unused child entries.
234 if (!list_empty(&dentry
->d_subdirs
)) {
235 spin_unlock(&dcache_lock
);
236 shrink_dcache_parent(dentry
);
237 spin_lock(&dcache_lock
);
241 * Somebody else still using it?
243 * If it's a directory, we can't drop it
244 * for fear of somebody re-populating it
245 * with children (even though dropping it
246 * would make it unreachable from the root,
247 * we might still populate it if it was a
248 * working directory or similar).
250 spin_lock(&dentry
->d_lock
);
251 if (atomic_read(&dentry
->d_count
) > 1) {
252 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
253 spin_unlock(&dentry
->d_lock
);
254 spin_unlock(&dcache_lock
);
260 spin_unlock(&dentry
->d_lock
);
261 spin_unlock(&dcache_lock
);
265 /* This should be called _only_ with dcache_lock held */
267 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
269 atomic_inc(&dentry
->d_count
);
270 if (!list_empty(&dentry
->d_lru
)) {
271 dentry_stat
.nr_unused
--;
272 list_del_init(&dentry
->d_lru
);
277 struct dentry
* dget_locked(struct dentry
*dentry
)
279 return __dget_locked(dentry
);
283 * d_find_alias - grab a hashed alias of inode
284 * @inode: inode in question
285 * @want_discon: flag, used by d_splice_alias, to request
286 * that only a DISCONNECTED alias be returned.
288 * If inode has a hashed alias, or is a directory and has any alias,
289 * acquire the reference to alias and return it. Otherwise return NULL.
290 * Notice that if inode is a directory there can be only one alias and
291 * it can be unhashed only if it has no children, or if it is the root
294 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
295 * any other hashed alias over that one unless @want_discon is set,
296 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
299 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
301 struct list_head
*head
, *next
, *tmp
;
302 struct dentry
*alias
, *discon_alias
=NULL
;
304 head
= &inode
->i_dentry
;
305 next
= inode
->i_dentry
.next
;
306 while (next
!= head
) {
310 alias
= list_entry(tmp
, struct dentry
, d_alias
);
311 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
312 if (IS_ROOT(alias
) &&
313 (alias
->d_flags
& DCACHE_DISCONNECTED
))
314 discon_alias
= alias
;
315 else if (!want_discon
) {
316 __dget_locked(alias
);
322 __dget_locked(discon_alias
);
326 struct dentry
* d_find_alias(struct inode
*inode
)
328 struct dentry
*de
= NULL
;
330 if (!list_empty(&inode
->i_dentry
)) {
331 spin_lock(&dcache_lock
);
332 de
= __d_find_alias(inode
, 0);
333 spin_unlock(&dcache_lock
);
339 * Try to kill dentries associated with this inode.
340 * WARNING: you must own a reference to inode.
342 void d_prune_aliases(struct inode
*inode
)
344 struct dentry
*dentry
;
346 spin_lock(&dcache_lock
);
347 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
348 spin_lock(&dentry
->d_lock
);
349 if (!atomic_read(&dentry
->d_count
)) {
350 __dget_locked(dentry
);
352 spin_unlock(&dentry
->d_lock
);
353 spin_unlock(&dcache_lock
);
357 spin_unlock(&dentry
->d_lock
);
359 spin_unlock(&dcache_lock
);
363 * Throw away a dentry - free the inode, dput the parent. This requires that
364 * the LRU list has already been removed.
366 * Called with dcache_lock, drops it and then regains.
367 * Called with dentry->d_lock held, drops it.
369 static void prune_one_dentry(struct dentry
* dentry
)
371 struct dentry
* parent
;
374 list_del(&dentry
->d_u
.d_child
);
375 dentry_stat
.nr_dentry
--; /* For d_free, below */
377 parent
= dentry
->d_parent
;
379 if (parent
!= dentry
)
381 spin_lock(&dcache_lock
);
385 * prune_dcache - shrink the dcache
386 * @count: number of entries to try and free
387 * @sb: if given, ignore dentries for other superblocks
388 * which are being unmounted.
390 * Shrink the dcache. This is done when we need
391 * more memory, or simply when we need to unmount
392 * something (at which point we need to unuse
395 * This function may fail to free any resources if
396 * all the dentries are in use.
399 static void prune_dcache(int count
, struct super_block
*sb
)
401 spin_lock(&dcache_lock
);
402 for (; count
; count
--) {
403 struct dentry
*dentry
;
404 struct list_head
*tmp
;
405 struct rw_semaphore
*s_umount
;
407 cond_resched_lock(&dcache_lock
);
409 tmp
= dentry_unused
.prev
;
411 /* Try to find a dentry for this sb, but don't try
412 * too hard, if they aren't near the tail they will
413 * be moved down again soon
416 while (skip
&& tmp
!= &dentry_unused
&&
417 list_entry(tmp
, struct dentry
, d_lru
)->d_sb
!= sb
) {
422 if (tmp
== &dentry_unused
)
425 prefetch(dentry_unused
.prev
);
426 dentry_stat
.nr_unused
--;
427 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
429 spin_lock(&dentry
->d_lock
);
431 * We found an inuse dentry which was not removed from
432 * dentry_unused because of laziness during lookup. Do not free
433 * it - just keep it off the dentry_unused list.
435 if (atomic_read(&dentry
->d_count
)) {
436 spin_unlock(&dentry
->d_lock
);
439 /* If the dentry was recently referenced, don't free it. */
440 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
441 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
442 list_add(&dentry
->d_lru
, &dentry_unused
);
443 dentry_stat
.nr_unused
++;
444 spin_unlock(&dentry
->d_lock
);
448 * If the dentry is not DCACHED_REFERENCED, it is time
449 * to remove it from the dcache, provided the super block is
450 * NULL (which means we are trying to reclaim memory)
451 * or this dentry belongs to the same super block that
455 * If this dentry is for "my" filesystem, then I can prune it
456 * without taking the s_umount lock (I already hold it).
458 if (sb
&& dentry
->d_sb
== sb
) {
459 prune_one_dentry(dentry
);
463 * ...otherwise we need to be sure this filesystem isn't being
464 * unmounted, otherwise we could race with
465 * generic_shutdown_super(), and end up holding a reference to
466 * an inode while the filesystem is unmounted.
467 * So we try to get s_umount, and make sure s_root isn't NULL.
468 * (Take a local copy of s_umount to avoid a use-after-free of
471 s_umount
= &dentry
->d_sb
->s_umount
;
472 if (down_read_trylock(s_umount
)) {
473 if (dentry
->d_sb
->s_root
!= NULL
) {
474 prune_one_dentry(dentry
);
480 spin_unlock(&dentry
->d_lock
);
481 /* Cannot remove the first dentry, and it isn't appropriate
482 * to move it to the head of the list, so give up, and try
487 spin_unlock(&dcache_lock
);
491 * Shrink the dcache for the specified super block.
492 * This allows us to unmount a device without disturbing
493 * the dcache for the other devices.
495 * This implementation makes just two traversals of the
496 * unused list. On the first pass we move the selected
497 * dentries to the most recent end, and on the second
498 * pass we free them. The second pass must restart after
499 * each dput(), but since the target dentries are all at
500 * the end, it's really just a single traversal.
504 * shrink_dcache_sb - shrink dcache for a superblock
507 * Shrink the dcache for the specified super block. This
508 * is used to free the dcache before unmounting a file
512 void shrink_dcache_sb(struct super_block
* sb
)
514 struct list_head
*tmp
, *next
;
515 struct dentry
*dentry
;
518 * Pass one ... move the dentries for the specified
519 * superblock to the most recent end of the unused list.
521 spin_lock(&dcache_lock
);
522 list_for_each_safe(tmp
, next
, &dentry_unused
) {
523 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
524 if (dentry
->d_sb
!= sb
)
526 list_move(tmp
, &dentry_unused
);
530 * Pass two ... free the dentries for this superblock.
533 list_for_each_safe(tmp
, next
, &dentry_unused
) {
534 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
535 if (dentry
->d_sb
!= sb
)
537 dentry_stat
.nr_unused
--;
539 spin_lock(&dentry
->d_lock
);
540 if (atomic_read(&dentry
->d_count
)) {
541 spin_unlock(&dentry
->d_lock
);
544 prune_one_dentry(dentry
);
545 cond_resched_lock(&dcache_lock
);
548 spin_unlock(&dcache_lock
);
552 * Search for at least 1 mount point in the dentry's subdirs.
553 * We descend to the next level whenever the d_subdirs
554 * list is non-empty and continue searching.
558 * have_submounts - check for mounts over a dentry
559 * @parent: dentry to check.
561 * Return true if the parent or its subdirectories contain
565 int have_submounts(struct dentry
*parent
)
567 struct dentry
*this_parent
= parent
;
568 struct list_head
*next
;
570 spin_lock(&dcache_lock
);
571 if (d_mountpoint(parent
))
574 next
= this_parent
->d_subdirs
.next
;
576 while (next
!= &this_parent
->d_subdirs
) {
577 struct list_head
*tmp
= next
;
578 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
580 /* Have we found a mount point ? */
581 if (d_mountpoint(dentry
))
583 if (!list_empty(&dentry
->d_subdirs
)) {
584 this_parent
= dentry
;
589 * All done at this level ... ascend and resume the search.
591 if (this_parent
!= parent
) {
592 next
= this_parent
->d_u
.d_child
.next
;
593 this_parent
= this_parent
->d_parent
;
596 spin_unlock(&dcache_lock
);
597 return 0; /* No mount points found in tree */
599 spin_unlock(&dcache_lock
);
604 * Search the dentry child list for the specified parent,
605 * and move any unused dentries to the end of the unused
606 * list for prune_dcache(). We descend to the next level
607 * whenever the d_subdirs list is non-empty and continue
610 * It returns zero iff there are no unused children,
611 * otherwise it returns the number of children moved to
612 * the end of the unused list. This may not be the total
613 * number of unused children, because select_parent can
614 * drop the lock and return early due to latency
617 static int select_parent(struct dentry
* parent
)
619 struct dentry
*this_parent
= parent
;
620 struct list_head
*next
;
623 spin_lock(&dcache_lock
);
625 next
= this_parent
->d_subdirs
.next
;
627 while (next
!= &this_parent
->d_subdirs
) {
628 struct list_head
*tmp
= next
;
629 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
632 if (!list_empty(&dentry
->d_lru
)) {
633 dentry_stat
.nr_unused
--;
634 list_del_init(&dentry
->d_lru
);
637 * move only zero ref count dentries to the end
638 * of the unused list for prune_dcache
640 if (!atomic_read(&dentry
->d_count
)) {
641 list_add_tail(&dentry
->d_lru
, &dentry_unused
);
642 dentry_stat
.nr_unused
++;
647 * We can return to the caller if we have found some (this
648 * ensures forward progress). We'll be coming back to find
651 if (found
&& need_resched())
655 * Descend a level if the d_subdirs list is non-empty.
657 if (!list_empty(&dentry
->d_subdirs
)) {
658 this_parent
= dentry
;
663 * All done at this level ... ascend and resume the search.
665 if (this_parent
!= parent
) {
666 next
= this_parent
->d_u
.d_child
.next
;
667 this_parent
= this_parent
->d_parent
;
671 spin_unlock(&dcache_lock
);
676 * shrink_dcache_parent - prune dcache
677 * @parent: parent of entries to prune
679 * Prune the dcache to remove unused children of the parent dentry.
682 void shrink_dcache_parent(struct dentry
* parent
)
686 while ((found
= select_parent(parent
)) != 0)
687 prune_dcache(found
, parent
->d_sb
);
691 * Scan `nr' dentries and return the number which remain.
693 * We need to avoid reentering the filesystem if the caller is performing a
694 * GFP_NOFS allocation attempt. One example deadlock is:
696 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
697 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
698 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
700 * In this case we return -1 to tell the caller that we baled.
702 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
705 if (!(gfp_mask
& __GFP_FS
))
707 prune_dcache(nr
, NULL
);
709 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
713 * d_alloc - allocate a dcache entry
714 * @parent: parent of entry to allocate
715 * @name: qstr of the name
717 * Allocates a dentry. It returns %NULL if there is insufficient memory
718 * available. On a success the dentry is returned. The name passed in is
719 * copied and the copy passed in may be reused after this call.
722 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
724 struct dentry
*dentry
;
727 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
731 if (name
->len
> DNAME_INLINE_LEN
-1) {
732 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
734 kmem_cache_free(dentry_cache
, dentry
);
738 dname
= dentry
->d_iname
;
740 dentry
->d_name
.name
= dname
;
742 dentry
->d_name
.len
= name
->len
;
743 dentry
->d_name
.hash
= name
->hash
;
744 memcpy(dname
, name
->name
, name
->len
);
745 dname
[name
->len
] = 0;
747 atomic_set(&dentry
->d_count
, 1);
748 dentry
->d_flags
= DCACHE_UNHASHED
;
749 spin_lock_init(&dentry
->d_lock
);
750 dentry
->d_inode
= NULL
;
751 dentry
->d_parent
= NULL
;
754 dentry
->d_fsdata
= NULL
;
755 dentry
->d_mounted
= 0;
756 #ifdef CONFIG_PROFILING
757 dentry
->d_cookie
= NULL
;
759 INIT_HLIST_NODE(&dentry
->d_hash
);
760 INIT_LIST_HEAD(&dentry
->d_lru
);
761 INIT_LIST_HEAD(&dentry
->d_subdirs
);
762 INIT_LIST_HEAD(&dentry
->d_alias
);
765 dentry
->d_parent
= dget(parent
);
766 dentry
->d_sb
= parent
->d_sb
;
768 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
771 spin_lock(&dcache_lock
);
773 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
774 dentry_stat
.nr_dentry
++;
775 spin_unlock(&dcache_lock
);
780 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
785 q
.len
= strlen(name
);
786 q
.hash
= full_name_hash(q
.name
, q
.len
);
787 return d_alloc(parent
, &q
);
791 * d_instantiate - fill in inode information for a dentry
792 * @entry: dentry to complete
793 * @inode: inode to attach to this dentry
795 * Fill in inode information in the entry.
797 * This turns negative dentries into productive full members
800 * NOTE! This assumes that the inode count has been incremented
801 * (or otherwise set) by the caller to indicate that it is now
802 * in use by the dcache.
805 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
807 BUG_ON(!list_empty(&entry
->d_alias
));
808 spin_lock(&dcache_lock
);
810 list_add(&entry
->d_alias
, &inode
->i_dentry
);
811 entry
->d_inode
= inode
;
812 fsnotify_d_instantiate(entry
, inode
);
813 spin_unlock(&dcache_lock
);
814 security_d_instantiate(entry
, inode
);
818 * d_instantiate_unique - instantiate a non-aliased dentry
819 * @entry: dentry to instantiate
820 * @inode: inode to attach to this dentry
822 * Fill in inode information in the entry. On success, it returns NULL.
823 * If an unhashed alias of "entry" already exists, then we return the
824 * aliased dentry instead and drop one reference to inode.
826 * Note that in order to avoid conflicts with rename() etc, the caller
827 * had better be holding the parent directory semaphore.
829 * This also assumes that the inode count has been incremented
830 * (or otherwise set) by the caller to indicate that it is now
831 * in use by the dcache.
833 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
836 struct dentry
*alias
;
837 int len
= entry
->d_name
.len
;
838 const char *name
= entry
->d_name
.name
;
839 unsigned int hash
= entry
->d_name
.hash
;
842 entry
->d_inode
= NULL
;
846 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
847 struct qstr
*qstr
= &alias
->d_name
;
849 if (qstr
->hash
!= hash
)
851 if (alias
->d_parent
!= entry
->d_parent
)
853 if (qstr
->len
!= len
)
855 if (memcmp(qstr
->name
, name
, len
))
861 list_add(&entry
->d_alias
, &inode
->i_dentry
);
862 entry
->d_inode
= inode
;
863 fsnotify_d_instantiate(entry
, inode
);
867 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
869 struct dentry
*result
;
871 BUG_ON(!list_empty(&entry
->d_alias
));
873 spin_lock(&dcache_lock
);
874 result
= __d_instantiate_unique(entry
, inode
);
875 spin_unlock(&dcache_lock
);
878 security_d_instantiate(entry
, inode
);
882 BUG_ON(!d_unhashed(result
));
887 EXPORT_SYMBOL(d_instantiate_unique
);
890 * d_alloc_root - allocate root dentry
891 * @root_inode: inode to allocate the root for
893 * Allocate a root ("/") dentry for the inode given. The inode is
894 * instantiated and returned. %NULL is returned if there is insufficient
895 * memory or the inode passed is %NULL.
898 struct dentry
* d_alloc_root(struct inode
* root_inode
)
900 struct dentry
*res
= NULL
;
903 static const struct qstr name
= { .name
= "/", .len
= 1 };
905 res
= d_alloc(NULL
, &name
);
907 res
->d_sb
= root_inode
->i_sb
;
909 d_instantiate(res
, root_inode
);
915 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
918 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
919 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
920 return dentry_hashtable
+ (hash
& D_HASHMASK
);
924 * d_alloc_anon - allocate an anonymous dentry
925 * @inode: inode to allocate the dentry for
927 * This is similar to d_alloc_root. It is used by filesystems when
928 * creating a dentry for a given inode, often in the process of
929 * mapping a filehandle to a dentry. The returned dentry may be
930 * anonymous, or may have a full name (if the inode was already
931 * in the cache). The file system may need to make further
932 * efforts to connect this dentry into the dcache properly.
934 * When called on a directory inode, we must ensure that
935 * the inode only ever has one dentry. If a dentry is
936 * found, that is returned instead of allocating a new one.
938 * On successful return, the reference to the inode has been transferred
939 * to the dentry. If %NULL is returned (indicating kmalloc failure),
940 * the reference on the inode has not been released.
943 struct dentry
* d_alloc_anon(struct inode
*inode
)
945 static const struct qstr anonstring
= { .name
= "" };
949 if ((res
= d_find_alias(inode
))) {
954 tmp
= d_alloc(NULL
, &anonstring
);
958 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
960 spin_lock(&dcache_lock
);
961 res
= __d_find_alias(inode
, 0);
963 /* attach a disconnected dentry */
966 spin_lock(&res
->d_lock
);
967 res
->d_sb
= inode
->i_sb
;
969 res
->d_inode
= inode
;
970 res
->d_flags
|= DCACHE_DISCONNECTED
;
971 res
->d_flags
&= ~DCACHE_UNHASHED
;
972 list_add(&res
->d_alias
, &inode
->i_dentry
);
973 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
974 spin_unlock(&res
->d_lock
);
976 inode
= NULL
; /* don't drop reference */
978 spin_unlock(&dcache_lock
);
989 * d_splice_alias - splice a disconnected dentry into the tree if one exists
990 * @inode: the inode which may have a disconnected dentry
991 * @dentry: a negative dentry which we want to point to the inode.
993 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
994 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
995 * and return it, else simply d_add the inode to the dentry and return NULL.
997 * This is needed in the lookup routine of any filesystem that is exportable
998 * (via knfsd) so that we can build dcache paths to directories effectively.
1000 * If a dentry was found and moved, then it is returned. Otherwise NULL
1001 * is returned. This matches the expected return value of ->lookup.
1004 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1006 struct dentry
*new = NULL
;
1008 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1009 spin_lock(&dcache_lock
);
1010 new = __d_find_alias(inode
, 1);
1012 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1013 fsnotify_d_instantiate(new, inode
);
1014 spin_unlock(&dcache_lock
);
1015 security_d_instantiate(new, inode
);
1017 d_move(new, dentry
);
1020 /* d_instantiate takes dcache_lock, so we do it by hand */
1021 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1022 dentry
->d_inode
= inode
;
1023 fsnotify_d_instantiate(dentry
, inode
);
1024 spin_unlock(&dcache_lock
);
1025 security_d_instantiate(dentry
, inode
);
1029 d_add(dentry
, inode
);
1035 * d_lookup - search for a dentry
1036 * @parent: parent dentry
1037 * @name: qstr of name we wish to find
1039 * Searches the children of the parent dentry for the name in question. If
1040 * the dentry is found its reference count is incremented and the dentry
1041 * is returned. The caller must use d_put to free the entry when it has
1042 * finished using it. %NULL is returned on failure.
1044 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1045 * Memory barriers are used while updating and doing lockless traversal.
1046 * To avoid races with d_move while rename is happening, d_lock is used.
1048 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1049 * and name pointer in one structure pointed by d_qstr.
1051 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1052 * lookup is going on.
1054 * dentry_unused list is not updated even if lookup finds the required dentry
1055 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1056 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1059 * d_lookup() is protected against the concurrent renames in some unrelated
1060 * directory using the seqlockt_t rename_lock.
1063 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1065 struct dentry
* dentry
= NULL
;
1069 seq
= read_seqbegin(&rename_lock
);
1070 dentry
= __d_lookup(parent
, name
);
1073 } while (read_seqretry(&rename_lock
, seq
));
1077 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1079 unsigned int len
= name
->len
;
1080 unsigned int hash
= name
->hash
;
1081 const unsigned char *str
= name
->name
;
1082 struct hlist_head
*head
= d_hash(parent
,hash
);
1083 struct dentry
*found
= NULL
;
1084 struct hlist_node
*node
;
1085 struct dentry
*dentry
;
1089 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1092 if (dentry
->d_name
.hash
!= hash
)
1094 if (dentry
->d_parent
!= parent
)
1097 spin_lock(&dentry
->d_lock
);
1100 * Recheck the dentry after taking the lock - d_move may have
1101 * changed things. Don't bother checking the hash because we're
1102 * about to compare the whole name anyway.
1104 if (dentry
->d_parent
!= parent
)
1108 * It is safe to compare names since d_move() cannot
1109 * change the qstr (protected by d_lock).
1111 qstr
= &dentry
->d_name
;
1112 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1113 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1116 if (qstr
->len
!= len
)
1118 if (memcmp(qstr
->name
, str
, len
))
1122 if (!d_unhashed(dentry
)) {
1123 atomic_inc(&dentry
->d_count
);
1126 spin_unlock(&dentry
->d_lock
);
1129 spin_unlock(&dentry
->d_lock
);
1137 * d_hash_and_lookup - hash the qstr then search for a dentry
1138 * @dir: Directory to search in
1139 * @name: qstr of name we wish to find
1141 * On hash failure or on lookup failure NULL is returned.
1143 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1145 struct dentry
*dentry
= NULL
;
1148 * Check for a fs-specific hash function. Note that we must
1149 * calculate the standard hash first, as the d_op->d_hash()
1150 * routine may choose to leave the hash value unchanged.
1152 name
->hash
= full_name_hash(name
->name
, name
->len
);
1153 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1154 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1157 dentry
= d_lookup(dir
, name
);
1163 * d_validate - verify dentry provided from insecure source
1164 * @dentry: The dentry alleged to be valid child of @dparent
1165 * @dparent: The parent dentry (known to be valid)
1166 * @hash: Hash of the dentry
1167 * @len: Length of the name
1169 * An insecure source has sent us a dentry, here we verify it and dget() it.
1170 * This is used by ncpfs in its readdir implementation.
1171 * Zero is returned in the dentry is invalid.
1174 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1176 struct hlist_head
*base
;
1177 struct hlist_node
*lhp
;
1179 /* Check whether the ptr might be valid at all.. */
1180 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1183 if (dentry
->d_parent
!= dparent
)
1186 spin_lock(&dcache_lock
);
1187 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1188 hlist_for_each(lhp
,base
) {
1189 /* hlist_for_each_entry_rcu() not required for d_hash list
1190 * as it is parsed under dcache_lock
1192 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1193 __dget_locked(dentry
);
1194 spin_unlock(&dcache_lock
);
1198 spin_unlock(&dcache_lock
);
1204 * When a file is deleted, we have two options:
1205 * - turn this dentry into a negative dentry
1206 * - unhash this dentry and free it.
1208 * Usually, we want to just turn this into
1209 * a negative dentry, but if anybody else is
1210 * currently using the dentry or the inode
1211 * we can't do that and we fall back on removing
1212 * it from the hash queues and waiting for
1213 * it to be deleted later when it has no users
1217 * d_delete - delete a dentry
1218 * @dentry: The dentry to delete
1220 * Turn the dentry into a negative dentry if possible, otherwise
1221 * remove it from the hash queues so it can be deleted later
1224 void d_delete(struct dentry
* dentry
)
1228 * Are we the only user?
1230 spin_lock(&dcache_lock
);
1231 spin_lock(&dentry
->d_lock
);
1232 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1233 if (atomic_read(&dentry
->d_count
) == 1) {
1234 dentry_iput(dentry
);
1235 fsnotify_nameremove(dentry
, isdir
);
1237 /* remove this and other inotify debug checks after 2.6.18 */
1238 dentry
->d_flags
&= ~DCACHE_INOTIFY_PARENT_WATCHED
;
1242 if (!d_unhashed(dentry
))
1245 spin_unlock(&dentry
->d_lock
);
1246 spin_unlock(&dcache_lock
);
1248 fsnotify_nameremove(dentry
, isdir
);
1251 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1254 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1255 hlist_add_head_rcu(&entry
->d_hash
, list
);
1258 static void _d_rehash(struct dentry
* entry
)
1260 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1264 * d_rehash - add an entry back to the hash
1265 * @entry: dentry to add to the hash
1267 * Adds a dentry to the hash according to its name.
1270 void d_rehash(struct dentry
* entry
)
1272 spin_lock(&dcache_lock
);
1273 spin_lock(&entry
->d_lock
);
1275 spin_unlock(&entry
->d_lock
);
1276 spin_unlock(&dcache_lock
);
1279 #define do_switch(x,y) do { \
1280 __typeof__ (x) __tmp = x; \
1281 x = y; y = __tmp; } while (0)
1284 * When switching names, the actual string doesn't strictly have to
1285 * be preserved in the target - because we're dropping the target
1286 * anyway. As such, we can just do a simple memcpy() to copy over
1287 * the new name before we switch.
1289 * Note that we have to be a lot more careful about getting the hash
1290 * switched - we have to switch the hash value properly even if it
1291 * then no longer matches the actual (corrupted) string of the target.
1292 * The hash value has to match the hash queue that the dentry is on..
1294 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1296 if (dname_external(target
)) {
1297 if (dname_external(dentry
)) {
1299 * Both external: swap the pointers
1301 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1304 * dentry:internal, target:external. Steal target's
1305 * storage and make target internal.
1307 dentry
->d_name
.name
= target
->d_name
.name
;
1308 target
->d_name
.name
= target
->d_iname
;
1311 if (dname_external(dentry
)) {
1313 * dentry:external, target:internal. Give dentry's
1314 * storage to target and make dentry internal
1316 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1317 target
->d_name
.len
+ 1);
1318 target
->d_name
.name
= dentry
->d_name
.name
;
1319 dentry
->d_name
.name
= dentry
->d_iname
;
1322 * Both are internal. Just copy target to dentry
1324 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1325 target
->d_name
.len
+ 1);
1331 * We cannibalize "target" when moving dentry on top of it,
1332 * because it's going to be thrown away anyway. We could be more
1333 * polite about it, though.
1335 * This forceful removal will result in ugly /proc output if
1336 * somebody holds a file open that got deleted due to a rename.
1337 * We could be nicer about the deleted file, and let it show
1338 * up under the name it got deleted rather than the name that
1343 * d_move - move a dentry
1344 * @dentry: entry to move
1345 * @target: new dentry
1347 * Update the dcache to reflect the move of a file name. Negative
1348 * dcache entries should not be moved in this way.
1351 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1353 struct hlist_head
*list
;
1355 if (!dentry
->d_inode
)
1356 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1358 spin_lock(&dcache_lock
);
1359 write_seqlock(&rename_lock
);
1361 * XXXX: do we really need to take target->d_lock?
1363 if (target
< dentry
) {
1364 spin_lock(&target
->d_lock
);
1365 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1367 spin_lock(&dentry
->d_lock
);
1368 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1371 /* Move the dentry to the target hash queue, if on different bucket */
1372 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1373 goto already_unhashed
;
1375 hlist_del_rcu(&dentry
->d_hash
);
1378 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1379 __d_rehash(dentry
, list
);
1381 /* Unhash the target: dput() will then get rid of it */
1384 list_del(&dentry
->d_u
.d_child
);
1385 list_del(&target
->d_u
.d_child
);
1387 /* Switch the names.. */
1388 switch_names(dentry
, target
);
1389 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1390 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1392 /* ... and switch the parents */
1393 if (IS_ROOT(dentry
)) {
1394 dentry
->d_parent
= target
->d_parent
;
1395 target
->d_parent
= target
;
1396 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1398 do_switch(dentry
->d_parent
, target
->d_parent
);
1400 /* And add them back to the (new) parent lists */
1401 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1404 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1405 spin_unlock(&target
->d_lock
);
1406 fsnotify_d_move(dentry
);
1407 spin_unlock(&dentry
->d_lock
);
1408 write_sequnlock(&rename_lock
);
1409 spin_unlock(&dcache_lock
);
1413 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1414 * named dentry in place of the dentry to be replaced.
1416 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1418 struct dentry
*dparent
, *aparent
;
1420 switch_names(dentry
, anon
);
1421 do_switch(dentry
->d_name
.len
, anon
->d_name
.len
);
1422 do_switch(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1424 dparent
= dentry
->d_parent
;
1425 aparent
= anon
->d_parent
;
1427 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1428 list_del(&dentry
->d_u
.d_child
);
1429 if (!IS_ROOT(dentry
))
1430 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1432 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1434 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1435 list_del(&anon
->d_u
.d_child
);
1437 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1439 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1441 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1445 * d_materialise_unique - introduce an inode into the tree
1446 * @dentry: candidate dentry
1447 * @inode: inode to bind to the dentry, to which aliases may be attached
1449 * Introduces an dentry into the tree, substituting an extant disconnected
1450 * root directory alias in its place if there is one
1452 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1454 struct dentry
*alias
, *actual
;
1456 BUG_ON(!d_unhashed(dentry
));
1458 spin_lock(&dcache_lock
);
1462 dentry
->d_inode
= NULL
;
1466 /* See if a disconnected directory already exists as an anonymous root
1467 * that we should splice into the tree instead */
1468 if (S_ISDIR(inode
->i_mode
) && (alias
= __d_find_alias(inode
, 1))) {
1469 spin_lock(&alias
->d_lock
);
1471 /* Is this a mountpoint that we could splice into our tree? */
1473 goto connect_mountpoint
;
1475 if (alias
->d_name
.len
== dentry
->d_name
.len
&&
1476 alias
->d_parent
== dentry
->d_parent
&&
1477 memcmp(alias
->d_name
.name
,
1478 dentry
->d_name
.name
,
1479 dentry
->d_name
.len
) == 0)
1480 goto replace_with_alias
;
1482 spin_unlock(&alias
->d_lock
);
1484 /* Doh! Seem to be aliasing directories for some reason... */
1488 /* Add a unique reference */
1489 actual
= __d_instantiate_unique(dentry
, inode
);
1492 else if (unlikely(!d_unhashed(actual
)))
1493 goto shouldnt_be_hashed
;
1496 spin_lock(&actual
->d_lock
);
1499 spin_unlock(&actual
->d_lock
);
1500 spin_unlock(&dcache_lock
);
1502 if (actual
== dentry
) {
1503 security_d_instantiate(dentry
, inode
);
1510 /* Convert the anonymous/root alias into an ordinary dentry */
1512 __d_materialise_dentry(dentry
, alias
);
1514 /* Replace the candidate dentry with the alias in the tree */
1521 spin_unlock(&dcache_lock
);
1523 goto shouldnt_be_hashed
;
1527 * d_path - return the path of a dentry
1528 * @dentry: dentry to report
1529 * @vfsmnt: vfsmnt to which the dentry belongs
1530 * @root: root dentry
1531 * @rootmnt: vfsmnt to which the root dentry belongs
1532 * @buffer: buffer to return value in
1533 * @buflen: buffer length
1535 * Convert a dentry into an ASCII path name. If the entry has been deleted
1536 * the string " (deleted)" is appended. Note that this is ambiguous.
1538 * Returns the buffer or an error code if the path was too long.
1540 * "buflen" should be positive. Caller holds the dcache_lock.
1542 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1543 struct dentry
*root
, struct vfsmount
*rootmnt
,
1544 char *buffer
, int buflen
)
1546 char * end
= buffer
+buflen
;
1552 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1557 memcpy(end
, " (deleted)", 10);
1567 struct dentry
* parent
;
1569 if (dentry
== root
&& vfsmnt
== rootmnt
)
1571 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1573 spin_lock(&vfsmount_lock
);
1574 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1575 spin_unlock(&vfsmount_lock
);
1578 dentry
= vfsmnt
->mnt_mountpoint
;
1579 vfsmnt
= vfsmnt
->mnt_parent
;
1580 spin_unlock(&vfsmount_lock
);
1583 parent
= dentry
->d_parent
;
1585 namelen
= dentry
->d_name
.len
;
1586 buflen
-= namelen
+ 1;
1590 memcpy(end
, dentry
->d_name
.name
, namelen
);
1599 namelen
= dentry
->d_name
.len
;
1603 retval
-= namelen
-1; /* hit the slash */
1604 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1607 return ERR_PTR(-ENAMETOOLONG
);
1610 /* write full pathname into buffer and return start of pathname */
1611 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1612 char *buf
, int buflen
)
1615 struct vfsmount
*rootmnt
;
1616 struct dentry
*root
;
1618 read_lock(¤t
->fs
->lock
);
1619 rootmnt
= mntget(current
->fs
->rootmnt
);
1620 root
= dget(current
->fs
->root
);
1621 read_unlock(¤t
->fs
->lock
);
1622 spin_lock(&dcache_lock
);
1623 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1624 spin_unlock(&dcache_lock
);
1631 * NOTE! The user-level library version returns a
1632 * character pointer. The kernel system call just
1633 * returns the length of the buffer filled (which
1634 * includes the ending '\0' character), or a negative
1635 * error value. So libc would do something like
1637 * char *getcwd(char * buf, size_t size)
1641 * retval = sys_getcwd(buf, size);
1648 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1651 struct vfsmount
*pwdmnt
, *rootmnt
;
1652 struct dentry
*pwd
, *root
;
1653 char *page
= (char *) __get_free_page(GFP_USER
);
1658 read_lock(¤t
->fs
->lock
);
1659 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1660 pwd
= dget(current
->fs
->pwd
);
1661 rootmnt
= mntget(current
->fs
->rootmnt
);
1662 root
= dget(current
->fs
->root
);
1663 read_unlock(¤t
->fs
->lock
);
1666 /* Has the current directory has been unlinked? */
1667 spin_lock(&dcache_lock
);
1668 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1672 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1673 spin_unlock(&dcache_lock
);
1675 error
= PTR_ERR(cwd
);
1680 len
= PAGE_SIZE
+ page
- cwd
;
1683 if (copy_to_user(buf
, cwd
, len
))
1687 spin_unlock(&dcache_lock
);
1694 free_page((unsigned long) page
);
1699 * Test whether new_dentry is a subdirectory of old_dentry.
1701 * Trivially implemented using the dcache structure
1705 * is_subdir - is new dentry a subdirectory of old_dentry
1706 * @new_dentry: new dentry
1707 * @old_dentry: old dentry
1709 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1710 * Returns 0 otherwise.
1711 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1714 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1717 struct dentry
* saved
= new_dentry
;
1720 /* need rcu_readlock to protect against the d_parent trashing due to
1725 /* for restarting inner loop in case of seq retry */
1728 seq
= read_seqbegin(&rename_lock
);
1730 if (new_dentry
!= old_dentry
) {
1731 struct dentry
* parent
= new_dentry
->d_parent
;
1732 if (parent
== new_dentry
)
1734 new_dentry
= parent
;
1740 } while (read_seqretry(&rename_lock
, seq
));
1746 void d_genocide(struct dentry
*root
)
1748 struct dentry
*this_parent
= root
;
1749 struct list_head
*next
;
1751 spin_lock(&dcache_lock
);
1753 next
= this_parent
->d_subdirs
.next
;
1755 while (next
!= &this_parent
->d_subdirs
) {
1756 struct list_head
*tmp
= next
;
1757 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1759 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1761 if (!list_empty(&dentry
->d_subdirs
)) {
1762 this_parent
= dentry
;
1765 atomic_dec(&dentry
->d_count
);
1767 if (this_parent
!= root
) {
1768 next
= this_parent
->d_u
.d_child
.next
;
1769 atomic_dec(&this_parent
->d_count
);
1770 this_parent
= this_parent
->d_parent
;
1773 spin_unlock(&dcache_lock
);
1777 * find_inode_number - check for dentry with name
1778 * @dir: directory to check
1779 * @name: Name to find.
1781 * Check whether a dentry already exists for the given name,
1782 * and return the inode number if it has an inode. Otherwise
1785 * This routine is used to post-process directory listings for
1786 * filesystems using synthetic inode numbers, and is necessary
1787 * to keep getcwd() working.
1790 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
1792 struct dentry
* dentry
;
1795 dentry
= d_hash_and_lookup(dir
, name
);
1797 if (dentry
->d_inode
)
1798 ino
= dentry
->d_inode
->i_ino
;
1804 static __initdata
unsigned long dhash_entries
;
1805 static int __init
set_dhash_entries(char *str
)
1809 dhash_entries
= simple_strtoul(str
, &str
, 0);
1812 __setup("dhash_entries=", set_dhash_entries
);
1814 static void __init
dcache_init_early(void)
1818 /* If hashes are distributed across NUMA nodes, defer
1819 * hash allocation until vmalloc space is available.
1825 alloc_large_system_hash("Dentry cache",
1826 sizeof(struct hlist_head
),
1834 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1835 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1838 static void __init
dcache_init(unsigned long mempages
)
1843 * A constructor could be added for stable state like the lists,
1844 * but it is probably not worth it because of the cache nature
1847 dentry_cache
= kmem_cache_create("dentry_cache",
1848 sizeof(struct dentry
),
1850 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1854 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
1856 /* Hash may have been set up in dcache_init_early */
1861 alloc_large_system_hash("Dentry cache",
1862 sizeof(struct hlist_head
),
1870 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1871 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1874 /* SLAB cache for __getname() consumers */
1875 kmem_cache_t
*names_cachep __read_mostly
;
1877 /* SLAB cache for file structures */
1878 kmem_cache_t
*filp_cachep __read_mostly
;
1880 EXPORT_SYMBOL(d_genocide
);
1882 void __init
vfs_caches_init_early(void)
1884 dcache_init_early();
1888 void __init
vfs_caches_init(unsigned long mempages
)
1890 unsigned long reserve
;
1892 /* Base hash sizes on available memory, with a reserve equal to
1893 150% of current kernel size */
1895 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
1896 mempages
-= reserve
;
1898 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
1899 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1901 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
1902 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1904 dcache_init(mempages
);
1905 inode_init(mempages
);
1906 files_init(mempages
);
1912 EXPORT_SYMBOL(d_alloc
);
1913 EXPORT_SYMBOL(d_alloc_anon
);
1914 EXPORT_SYMBOL(d_alloc_root
);
1915 EXPORT_SYMBOL(d_delete
);
1916 EXPORT_SYMBOL(d_find_alias
);
1917 EXPORT_SYMBOL(d_instantiate
);
1918 EXPORT_SYMBOL(d_invalidate
);
1919 EXPORT_SYMBOL(d_lookup
);
1920 EXPORT_SYMBOL(d_move
);
1921 EXPORT_SYMBOL_GPL(d_materialise_unique
);
1922 EXPORT_SYMBOL(d_path
);
1923 EXPORT_SYMBOL(d_prune_aliases
);
1924 EXPORT_SYMBOL(d_rehash
);
1925 EXPORT_SYMBOL(d_splice_alias
);
1926 EXPORT_SYMBOL(d_validate
);
1927 EXPORT_SYMBOL(dget_locked
);
1928 EXPORT_SYMBOL(dput
);
1929 EXPORT_SYMBOL(find_inode_number
);
1930 EXPORT_SYMBOL(have_submounts
);
1931 EXPORT_SYMBOL(names_cachep
);
1932 EXPORT_SYMBOL(shrink_dcache_parent
);
1933 EXPORT_SYMBOL(shrink_dcache_sb
);