2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
54 kmem_zone_t
*xfs_ifork_zone
;
55 kmem_zone_t
*xfs_inode_zone
;
56 kmem_zone_t
*xfs_chashlist_zone
;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
65 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
66 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
67 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
72 * Make sure that the extents in the given memory buffer
87 for (i
= 0; i
< nrecs
; i
++) {
88 ep
= xfs_iext_get_ext(ifp
, i
);
89 rec
.l0
= get_unaligned((__uint64_t
*)&ep
->l0
);
90 rec
.l1
= get_unaligned((__uint64_t
*)&ep
->l1
);
92 xfs_bmbt_disk_get_all(&rec
, &irec
);
94 xfs_bmbt_get_all(&rec
, &irec
);
95 if (fmt
== XFS_EXTFMT_NOSTATE
)
96 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
100 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
104 * Check that none of the inode's in the buffer have a next
105 * unlinked field of 0.
117 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
119 for (i
= 0; i
< j
; i
++) {
120 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
121 i
* mp
->m_sb
.sb_inodesize
);
122 if (!dip
->di_next_unlinked
) {
123 xfs_fs_cmn_err(CE_ALERT
, mp
,
124 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
126 ASSERT(dip
->di_next_unlinked
);
133 * This routine is called to map an inode number within a file
134 * system to the buffer containing the on-disk version of the
135 * inode. It returns a pointer to the buffer containing the
136 * on-disk inode in the bpp parameter, and in the dip parameter
137 * it returns a pointer to the on-disk inode within that buffer.
139 * If a non-zero error is returned, then the contents of bpp and
140 * dipp are undefined.
142 * Use xfs_imap() to determine the size and location of the
143 * buffer to read from disk.
161 * Call the space management code to find the location of the
165 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
168 "xfs_inotobp: xfs_imap() returned an "
169 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
174 * If the inode number maps to a block outside the bounds of the
175 * file system then return NULL rather than calling read_buf
176 * and panicing when we get an error from the driver.
178 if ((imap
.im_blkno
+ imap
.im_len
) >
179 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
181 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
182 "of the file system %s. Returning EINVAL.",
183 (unsigned long long)imap
.im_blkno
,
184 imap
.im_len
, mp
->m_fsname
);
185 return XFS_ERROR(EINVAL
);
189 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
190 * default to just a read_buf() call.
192 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
193 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
197 "xfs_inotobp: xfs_trans_read_buf() returned an "
198 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
201 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, 0);
203 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
204 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
205 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
206 XFS_RANDOM_ITOBP_INOTOBP
))) {
207 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW
, mp
, dip
);
208 xfs_trans_brelse(tp
, bp
);
210 "xfs_inotobp: XFS_TEST_ERROR() returned an "
211 "error on %s. Returning EFSCORRUPTED.", mp
->m_fsname
);
212 return XFS_ERROR(EFSCORRUPTED
);
215 xfs_inobp_check(mp
, bp
);
218 * Set *dipp to point to the on-disk inode in the buffer.
220 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
222 *offset
= imap
.im_boffset
;
228 * This routine is called to map an inode to the buffer containing
229 * the on-disk version of the inode. It returns a pointer to the
230 * buffer containing the on-disk inode in the bpp parameter, and in
231 * the dip parameter it returns a pointer to the on-disk inode within
234 * If a non-zero error is returned, then the contents of bpp and
235 * dipp are undefined.
237 * If the inode is new and has not yet been initialized, use xfs_imap()
238 * to determine the size and location of the buffer to read from disk.
239 * If the inode has already been mapped to its buffer and read in once,
240 * then use the mapping information stored in the inode rather than
241 * calling xfs_imap(). This allows us to avoid the overhead of looking
242 * at the inode btree for small block file systems (see xfs_dilocate()).
243 * We can tell whether the inode has been mapped in before by comparing
244 * its disk block address to 0. Only uninitialized inodes will have
245 * 0 for the disk block address.
263 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
265 * Call the space management code to find the location of the
269 if ((error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
,
270 XFS_IMAP_LOOKUP
| imap_flags
)))
274 * If the inode number maps to a block outside the bounds
275 * of the file system then return NULL rather than calling
276 * read_buf and panicing when we get an error from the
279 if ((imap
.im_blkno
+ imap
.im_len
) >
280 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
282 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
283 "(imap.im_blkno (0x%llx) "
284 "+ imap.im_len (0x%llx)) > "
285 " XFS_FSB_TO_BB(mp, "
286 "mp->m_sb.sb_dblocks) (0x%llx)",
287 (unsigned long long) imap
.im_blkno
,
288 (unsigned long long) imap
.im_len
,
289 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
291 return XFS_ERROR(EINVAL
);
295 * Fill in the fields in the inode that will be used to
296 * map the inode to its buffer from now on.
298 ip
->i_blkno
= imap
.im_blkno
;
299 ip
->i_len
= imap
.im_len
;
300 ip
->i_boffset
= imap
.im_boffset
;
303 * We've already mapped the inode once, so just use the
304 * mapping that we saved the first time.
306 imap
.im_blkno
= ip
->i_blkno
;
307 imap
.im_len
= ip
->i_len
;
308 imap
.im_boffset
= ip
->i_boffset
;
310 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
313 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
314 * default to just a read_buf() call.
316 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
317 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
320 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
321 "xfs_trans_read_buf() returned error %d, "
322 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
323 error
, (unsigned long long) imap
.im_blkno
,
324 (unsigned long long) imap
.im_len
);
330 * Validate the magic number and version of every inode in the buffer
331 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
332 * No validation is done here in userspace (xfs_repair).
334 #if !defined(__KERNEL__)
337 ni
= BBTOB(imap
.im_len
) >> mp
->m_sb
.sb_inodelog
;
338 #else /* usual case */
342 for (i
= 0; i
< ni
; i
++) {
346 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
347 (i
<< mp
->m_sb
.sb_inodelog
));
348 di_ok
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
350 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
351 XFS_ERRTAG_ITOBP_INOTOBP
,
352 XFS_RANDOM_ITOBP_INOTOBP
))) {
353 if (imap_flags
& XFS_IMAP_BULKSTAT
) {
354 xfs_trans_brelse(tp
, bp
);
355 return XFS_ERROR(EINVAL
);
359 "Device %s - bad inode magic/vsn "
360 "daddr %lld #%d (magic=%x)",
361 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
362 (unsigned long long)imap
.im_blkno
, i
,
363 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
));
365 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH
,
367 xfs_trans_brelse(tp
, bp
);
368 return XFS_ERROR(EFSCORRUPTED
);
372 xfs_inobp_check(mp
, bp
);
375 * Mark the buffer as an inode buffer now that it looks good
377 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
380 * Set *dipp to point to the on-disk inode in the buffer.
382 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
388 * Move inode type and inode format specific information from the
389 * on-disk inode to the in-core inode. For fifos, devs, and sockets
390 * this means set if_rdev to the proper value. For files, directories,
391 * and symlinks this means to bring in the in-line data or extent
392 * pointers. For a file in B-tree format, only the root is immediately
393 * brought in-core. The rest will be in-lined in if_extents when it
394 * is first referenced (see xfs_iread_extents()).
401 xfs_attr_shortform_t
*atp
;
405 ip
->i_df
.if_ext_max
=
406 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
410 INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
) +
411 INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
) >
412 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
))) {
413 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
414 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
415 (unsigned long long)ip
->i_ino
,
416 (int)(INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
)
417 + INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
)),
419 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
));
420 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
422 return XFS_ERROR(EFSCORRUPTED
);
425 if (unlikely(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
) > ip
->i_mount
->m_sb
.sb_inodesize
)) {
426 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
427 "corrupt dinode %Lu, forkoff = 0x%x.",
428 (unsigned long long)ip
->i_ino
,
429 (int)(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
)));
430 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
432 return XFS_ERROR(EFSCORRUPTED
);
435 switch (ip
->i_d
.di_mode
& S_IFMT
) {
440 if (unlikely(INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
) != XFS_DINODE_FMT_DEV
)) {
441 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
443 return XFS_ERROR(EFSCORRUPTED
);
446 ip
->i_df
.if_u2
.if_rdev
= INT_GET(dip
->di_u
.di_dev
, ARCH_CONVERT
);
452 switch (INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
)) {
453 case XFS_DINODE_FMT_LOCAL
:
455 * no local regular files yet
457 if (unlikely((INT_GET(dip
->di_core
.di_mode
, ARCH_CONVERT
) & S_IFMT
) == S_IFREG
)) {
458 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
460 "(local format for regular file).",
461 (unsigned long long) ip
->i_ino
);
462 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
465 return XFS_ERROR(EFSCORRUPTED
);
468 di_size
= INT_GET(dip
->di_core
.di_size
, ARCH_CONVERT
);
469 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
470 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
472 "(bad size %Ld for local inode).",
473 (unsigned long long) ip
->i_ino
,
474 (long long) di_size
);
475 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
478 return XFS_ERROR(EFSCORRUPTED
);
482 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
484 case XFS_DINODE_FMT_EXTENTS
:
485 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
487 case XFS_DINODE_FMT_BTREE
:
488 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
491 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
493 return XFS_ERROR(EFSCORRUPTED
);
498 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
499 return XFS_ERROR(EFSCORRUPTED
);
504 if (!XFS_DFORK_Q(dip
))
506 ASSERT(ip
->i_afp
== NULL
);
507 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
508 ip
->i_afp
->if_ext_max
=
509 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
510 switch (INT_GET(dip
->di_core
.di_aformat
, ARCH_CONVERT
)) {
511 case XFS_DINODE_FMT_LOCAL
:
512 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
513 size
= be16_to_cpu(atp
->hdr
.totsize
);
514 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
516 case XFS_DINODE_FMT_EXTENTS
:
517 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
519 case XFS_DINODE_FMT_BTREE
:
520 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
523 error
= XFS_ERROR(EFSCORRUPTED
);
527 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
529 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
535 * The file is in-lined in the on-disk inode.
536 * If it fits into if_inline_data, then copy
537 * it there, otherwise allocate a buffer for it
538 * and copy the data there. Either way, set
539 * if_data to point at the data.
540 * If we allocate a buffer for the data, make
541 * sure that its size is a multiple of 4 and
542 * record the real size in i_real_bytes.
555 * If the size is unreasonable, then something
556 * is wrong and we just bail out rather than crash in
557 * kmem_alloc() or memcpy() below.
559 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
560 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
562 "(bad size %d for local fork, size = %d).",
563 (unsigned long long) ip
->i_ino
, size
,
564 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
565 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
567 return XFS_ERROR(EFSCORRUPTED
);
569 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
572 ifp
->if_u1
.if_data
= NULL
;
573 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
574 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
576 real_size
= roundup(size
, 4);
577 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
579 ifp
->if_bytes
= size
;
580 ifp
->if_real_bytes
= real_size
;
582 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
583 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
584 ifp
->if_flags
|= XFS_IFINLINE
;
589 * The file consists of a set of extents all
590 * of which fit into the on-disk inode.
591 * If there are few enough extents to fit into
592 * the if_inline_ext, then copy them there.
593 * Otherwise allocate a buffer for them and copy
594 * them into it. Either way, set if_extents
595 * to point at the extents.
603 xfs_bmbt_rec_t
*ep
, *dp
;
609 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
610 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
611 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
614 * If the number of extents is unreasonable, then something
615 * is wrong and we just bail out rather than crash in
616 * kmem_alloc() or memcpy() below.
618 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
619 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
620 "corrupt inode %Lu ((a)extents = %d).",
621 (unsigned long long) ip
->i_ino
, nex
);
622 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
624 return XFS_ERROR(EFSCORRUPTED
);
627 ifp
->if_real_bytes
= 0;
629 ifp
->if_u1
.if_extents
= NULL
;
630 else if (nex
<= XFS_INLINE_EXTS
)
631 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
633 xfs_iext_add(ifp
, 0, nex
);
635 ifp
->if_bytes
= size
;
637 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
638 xfs_validate_extents(ifp
, nex
, 1, XFS_EXTFMT_INODE(ip
));
639 for (i
= 0; i
< nex
; i
++, dp
++) {
640 ep
= xfs_iext_get_ext(ifp
, i
);
641 ep
->l0
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l0
),
643 ep
->l1
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l1
),
646 xfs_bmap_trace_exlist("xfs_iformat_extents", ip
, nex
,
648 if (whichfork
!= XFS_DATA_FORK
||
649 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
650 if (unlikely(xfs_check_nostate_extents(
652 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
655 return XFS_ERROR(EFSCORRUPTED
);
658 ifp
->if_flags
|= XFS_IFEXTENTS
;
663 * The file has too many extents to fit into
664 * the inode, so they are in B-tree format.
665 * Allocate a buffer for the root of the B-tree
666 * and copy the root into it. The i_extents
667 * field will remain NULL until all of the
668 * extents are read in (when they are needed).
676 xfs_bmdr_block_t
*dfp
;
682 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
683 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
684 size
= XFS_BMAP_BROOT_SPACE(dfp
);
685 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
688 * blow out if -- fork has less extents than can fit in
689 * fork (fork shouldn't be a btree format), root btree
690 * block has more records than can fit into the fork,
691 * or the number of extents is greater than the number of
694 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
695 || XFS_BMDR_SPACE_CALC(nrecs
) >
696 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
697 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
698 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
699 "corrupt inode %Lu (btree).",
700 (unsigned long long) ip
->i_ino
);
701 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
703 return XFS_ERROR(EFSCORRUPTED
);
706 ifp
->if_broot_bytes
= size
;
707 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
708 ASSERT(ifp
->if_broot
!= NULL
);
710 * Copy and convert from the on-disk structure
711 * to the in-memory structure.
713 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
714 ifp
->if_broot
, size
);
715 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
716 ifp
->if_flags
|= XFS_IFBROOT
;
722 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
725 * buf = on-disk representation
726 * dip = native representation
727 * dir = direction - +ve -> disk to native
728 * -ve -> native to disk
731 xfs_xlate_dinode_core(
733 xfs_dinode_core_t
*dip
,
736 xfs_dinode_core_t
*buf_core
= (xfs_dinode_core_t
*)buf
;
737 xfs_dinode_core_t
*mem_core
= (xfs_dinode_core_t
*)dip
;
738 xfs_arch_t arch
= ARCH_CONVERT
;
742 INT_XLATE(buf_core
->di_magic
, mem_core
->di_magic
, dir
, arch
);
743 INT_XLATE(buf_core
->di_mode
, mem_core
->di_mode
, dir
, arch
);
744 INT_XLATE(buf_core
->di_version
, mem_core
->di_version
, dir
, arch
);
745 INT_XLATE(buf_core
->di_format
, mem_core
->di_format
, dir
, arch
);
746 INT_XLATE(buf_core
->di_onlink
, mem_core
->di_onlink
, dir
, arch
);
747 INT_XLATE(buf_core
->di_uid
, mem_core
->di_uid
, dir
, arch
);
748 INT_XLATE(buf_core
->di_gid
, mem_core
->di_gid
, dir
, arch
);
749 INT_XLATE(buf_core
->di_nlink
, mem_core
->di_nlink
, dir
, arch
);
750 INT_XLATE(buf_core
->di_projid
, mem_core
->di_projid
, dir
, arch
);
753 memcpy(mem_core
->di_pad
, buf_core
->di_pad
,
754 sizeof(buf_core
->di_pad
));
756 memcpy(buf_core
->di_pad
, mem_core
->di_pad
,
757 sizeof(buf_core
->di_pad
));
760 INT_XLATE(buf_core
->di_flushiter
, mem_core
->di_flushiter
, dir
, arch
);
762 INT_XLATE(buf_core
->di_atime
.t_sec
, mem_core
->di_atime
.t_sec
,
764 INT_XLATE(buf_core
->di_atime
.t_nsec
, mem_core
->di_atime
.t_nsec
,
766 INT_XLATE(buf_core
->di_mtime
.t_sec
, mem_core
->di_mtime
.t_sec
,
768 INT_XLATE(buf_core
->di_mtime
.t_nsec
, mem_core
->di_mtime
.t_nsec
,
770 INT_XLATE(buf_core
->di_ctime
.t_sec
, mem_core
->di_ctime
.t_sec
,
772 INT_XLATE(buf_core
->di_ctime
.t_nsec
, mem_core
->di_ctime
.t_nsec
,
774 INT_XLATE(buf_core
->di_size
, mem_core
->di_size
, dir
, arch
);
775 INT_XLATE(buf_core
->di_nblocks
, mem_core
->di_nblocks
, dir
, arch
);
776 INT_XLATE(buf_core
->di_extsize
, mem_core
->di_extsize
, dir
, arch
);
777 INT_XLATE(buf_core
->di_nextents
, mem_core
->di_nextents
, dir
, arch
);
778 INT_XLATE(buf_core
->di_anextents
, mem_core
->di_anextents
, dir
, arch
);
779 INT_XLATE(buf_core
->di_forkoff
, mem_core
->di_forkoff
, dir
, arch
);
780 INT_XLATE(buf_core
->di_aformat
, mem_core
->di_aformat
, dir
, arch
);
781 INT_XLATE(buf_core
->di_dmevmask
, mem_core
->di_dmevmask
, dir
, arch
);
782 INT_XLATE(buf_core
->di_dmstate
, mem_core
->di_dmstate
, dir
, arch
);
783 INT_XLATE(buf_core
->di_flags
, mem_core
->di_flags
, dir
, arch
);
784 INT_XLATE(buf_core
->di_gen
, mem_core
->di_gen
, dir
, arch
);
793 if (di_flags
& XFS_DIFLAG_ANY
) {
794 if (di_flags
& XFS_DIFLAG_REALTIME
)
795 flags
|= XFS_XFLAG_REALTIME
;
796 if (di_flags
& XFS_DIFLAG_PREALLOC
)
797 flags
|= XFS_XFLAG_PREALLOC
;
798 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
799 flags
|= XFS_XFLAG_IMMUTABLE
;
800 if (di_flags
& XFS_DIFLAG_APPEND
)
801 flags
|= XFS_XFLAG_APPEND
;
802 if (di_flags
& XFS_DIFLAG_SYNC
)
803 flags
|= XFS_XFLAG_SYNC
;
804 if (di_flags
& XFS_DIFLAG_NOATIME
)
805 flags
|= XFS_XFLAG_NOATIME
;
806 if (di_flags
& XFS_DIFLAG_NODUMP
)
807 flags
|= XFS_XFLAG_NODUMP
;
808 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
809 flags
|= XFS_XFLAG_RTINHERIT
;
810 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
811 flags
|= XFS_XFLAG_PROJINHERIT
;
812 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
813 flags
|= XFS_XFLAG_NOSYMLINKS
;
814 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
815 flags
|= XFS_XFLAG_EXTSIZE
;
816 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
817 flags
|= XFS_XFLAG_EXTSZINHERIT
;
818 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
819 flags
|= XFS_XFLAG_NODEFRAG
;
829 xfs_dinode_core_t
*dic
= &ip
->i_d
;
831 return _xfs_dic2xflags(dic
->di_flags
) |
832 (XFS_CFORK_Q(dic
) ? XFS_XFLAG_HASATTR
: 0);
837 xfs_dinode_core_t
*dic
)
839 return _xfs_dic2xflags(INT_GET(dic
->di_flags
, ARCH_CONVERT
)) |
840 (XFS_CFORK_Q_DISK(dic
) ? XFS_XFLAG_HASATTR
: 0);
844 * Given a mount structure and an inode number, return a pointer
845 * to a newly allocated in-core inode corresponding to the given
848 * Initialize the inode's attributes and extent pointers if it
849 * already has them (it will not if the inode has no links).
865 ASSERT(xfs_inode_zone
!= NULL
);
867 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
870 spin_lock_init(&ip
->i_flags_lock
);
873 * Get pointer's to the on-disk inode and the buffer containing it.
874 * If the inode number refers to a block outside the file system
875 * then xfs_itobp() will return NULL. In this case we should
876 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
877 * know that this is a new incore inode.
879 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
, imap_flags
);
881 kmem_zone_free(xfs_inode_zone
, ip
);
886 * Initialize inode's trace buffers.
887 * Do this before xfs_iformat in case it adds entries.
889 #ifdef XFS_BMAP_TRACE
890 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
892 #ifdef XFS_BMBT_TRACE
893 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
896 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
898 #ifdef XFS_ILOCK_TRACE
899 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
901 #ifdef XFS_DIR2_TRACE
902 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
906 * If we got something that isn't an inode it means someone
907 * (nfs or dmi) has a stale handle.
909 if (INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) != XFS_DINODE_MAGIC
) {
910 kmem_zone_free(xfs_inode_zone
, ip
);
911 xfs_trans_brelse(tp
, bp
);
913 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
914 "dip->di_core.di_magic (0x%x) != "
915 "XFS_DINODE_MAGIC (0x%x)",
916 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
),
919 return XFS_ERROR(EINVAL
);
923 * If the on-disk inode is already linked to a directory
924 * entry, copy all of the inode into the in-core inode.
925 * xfs_iformat() handles copying in the inode format
926 * specific information.
927 * Otherwise, just get the truly permanent information.
929 if (dip
->di_core
.di_mode
) {
930 xfs_xlate_dinode_core((xfs_caddr_t
)&dip
->di_core
,
932 error
= xfs_iformat(ip
, dip
);
934 kmem_zone_free(xfs_inode_zone
, ip
);
935 xfs_trans_brelse(tp
, bp
);
937 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
938 "xfs_iformat() returned error %d",
944 ip
->i_d
.di_magic
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
);
945 ip
->i_d
.di_version
= INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
);
946 ip
->i_d
.di_gen
= INT_GET(dip
->di_core
.di_gen
, ARCH_CONVERT
);
947 ip
->i_d
.di_flushiter
= INT_GET(dip
->di_core
.di_flushiter
, ARCH_CONVERT
);
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
960 ip
->i_df
.if_ext_max
=
961 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
964 INIT_LIST_HEAD(&ip
->i_reclaim
);
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
977 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
978 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
979 ip
->i_d
.di_onlink
= 0;
980 ip
->i_d
.di_projid
= 0;
983 ip
->i_delayed_blks
= 0;
986 * Mark the buffer containing the inode as something to keep
987 * around for a while. This helps to keep recently accessed
988 * meta-data in-core longer.
990 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
993 * Use xfs_trans_brelse() to release the buffer containing the
994 * on-disk inode, because it was acquired with xfs_trans_read_buf()
995 * in xfs_itobp() above. If tp is NULL, this is just a normal
996 * brelse(). If we're within a transaction, then xfs_trans_brelse()
997 * will only release the buffer if it is not dirty within the
998 * transaction. It will be OK to release the buffer in this case,
999 * because inodes on disk are never destroyed and we will be
1000 * locking the new in-core inode before putting it in the hash
1001 * table where other processes can find it. Thus we don't have
1002 * to worry about the inode being changed just because we released
1005 xfs_trans_brelse(tp
, bp
);
1011 * Read in extents from a btree-format inode.
1012 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1022 xfs_extnum_t nextents
;
1025 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1026 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1028 return XFS_ERROR(EFSCORRUPTED
);
1030 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
1031 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
1032 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1035 * We know that the size is valid (it's checked in iformat_btree)
1037 ifp
->if_lastex
= NULLEXTNUM
;
1038 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1039 ifp
->if_flags
|= XFS_IFEXTENTS
;
1040 xfs_iext_add(ifp
, 0, nextents
);
1041 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1043 xfs_iext_destroy(ifp
);
1044 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1047 xfs_validate_extents(ifp
, nextents
, 0, XFS_EXTFMT_INODE(ip
));
1052 * Allocate an inode on disk and return a copy of its in-core version.
1053 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1054 * appropriately within the inode. The uid and gid for the inode are
1055 * set according to the contents of the given cred structure.
1057 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1058 * has a free inode available, call xfs_iget()
1059 * to obtain the in-core version of the allocated inode. Finally,
1060 * fill in the inode and log its initial contents. In this case,
1061 * ialloc_context would be set to NULL and call_again set to false.
1063 * If xfs_dialloc() does not have an available inode,
1064 * it will replenish its supply by doing an allocation. Since we can
1065 * only do one allocation within a transaction without deadlocks, we
1066 * must commit the current transaction before returning the inode itself.
1067 * In this case, therefore, we will set call_again to true and return.
1068 * The caller should then commit the current transaction, start a new
1069 * transaction, and call xfs_ialloc() again to actually get the inode.
1071 * To ensure that some other process does not grab the inode that
1072 * was allocated during the first call to xfs_ialloc(), this routine
1073 * also returns the [locked] bp pointing to the head of the freelist
1074 * as ialloc_context. The caller should hold this buffer across
1075 * the commit and pass it back into this routine on the second call.
1087 xfs_buf_t
**ialloc_context
,
1088 boolean_t
*call_again
,
1098 * Call the space management code to pick
1099 * the on-disk inode to be allocated.
1101 error
= xfs_dialloc(tp
, pip
->i_ino
, mode
, okalloc
,
1102 ialloc_context
, call_again
, &ino
);
1106 if (*call_again
|| ino
== NULLFSINO
) {
1110 ASSERT(*ialloc_context
== NULL
);
1113 * Get the in-core inode with the lock held exclusively.
1114 * This is because we're setting fields here we need
1115 * to prevent others from looking at until we're done.
1117 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1118 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1125 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1126 ip
->i_d
.di_onlink
= 0;
1127 ip
->i_d
.di_nlink
= nlink
;
1128 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1129 ip
->i_d
.di_uid
= current_fsuid(cr
);
1130 ip
->i_d
.di_gid
= current_fsgid(cr
);
1131 ip
->i_d
.di_projid
= prid
;
1132 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1135 * If the superblock version is up to where we support new format
1136 * inodes and this is currently an old format inode, then change
1137 * the inode version number now. This way we only do the conversion
1138 * here rather than here and in the flush/logging code.
1140 if (XFS_SB_VERSION_HASNLINK(&tp
->t_mountp
->m_sb
) &&
1141 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1142 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1144 * We've already zeroed the old link count, the projid field,
1145 * and the pad field.
1150 * Project ids won't be stored on disk if we are using a version 1 inode.
1152 if ( (prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1153 xfs_bump_ino_vers2(tp
, ip
);
1155 if (XFS_INHERIT_GID(pip
, vp
->v_vfsp
)) {
1156 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1157 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1158 ip
->i_d
.di_mode
|= S_ISGID
;
1163 * If the group ID of the new file does not match the effective group
1164 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1165 * (and only if the irix_sgid_inherit compatibility variable is set).
1167 if ((irix_sgid_inherit
) &&
1168 (ip
->i_d
.di_mode
& S_ISGID
) &&
1169 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1170 ip
->i_d
.di_mode
&= ~S_ISGID
;
1173 ip
->i_d
.di_size
= 0;
1174 ip
->i_d
.di_nextents
= 0;
1175 ASSERT(ip
->i_d
.di_nblocks
== 0);
1176 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1178 * di_gen will have been taken care of in xfs_iread.
1180 ip
->i_d
.di_extsize
= 0;
1181 ip
->i_d
.di_dmevmask
= 0;
1182 ip
->i_d
.di_dmstate
= 0;
1183 ip
->i_d
.di_flags
= 0;
1184 flags
= XFS_ILOG_CORE
;
1185 switch (mode
& S_IFMT
) {
1190 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1191 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1192 ip
->i_df
.if_flags
= 0;
1193 flags
|= XFS_ILOG_DEV
;
1197 if (unlikely(pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1200 if ((mode
& S_IFMT
) == S_IFDIR
) {
1201 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1202 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1203 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1204 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1205 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1207 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1208 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
) {
1209 di_flags
|= XFS_DIFLAG_REALTIME
;
1210 ip
->i_iocore
.io_flags
|= XFS_IOCORE_RT
;
1212 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1213 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1214 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1217 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1218 xfs_inherit_noatime
)
1219 di_flags
|= XFS_DIFLAG_NOATIME
;
1220 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1222 di_flags
|= XFS_DIFLAG_NODUMP
;
1223 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1225 di_flags
|= XFS_DIFLAG_SYNC
;
1226 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1227 xfs_inherit_nosymlinks
)
1228 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1229 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1230 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1231 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1232 xfs_inherit_nodefrag
)
1233 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1234 ip
->i_d
.di_flags
|= di_flags
;
1238 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1239 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1240 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1241 ip
->i_df
.if_u1
.if_extents
= NULL
;
1247 * Attribute fork settings for new inode.
1249 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1250 ip
->i_d
.di_anextents
= 0;
1253 * Log the new values stuffed into the inode.
1255 xfs_trans_log_inode(tp
, ip
, flags
);
1257 /* now that we have an i_mode we can setup inode ops and unlock */
1258 bhv_vfs_init_vnode(XFS_MTOVFS(tp
->t_mountp
), vp
, XFS_ITOBHV(ip
), 1);
1265 * Check to make sure that there are no blocks allocated to the
1266 * file beyond the size of the file. We don't check this for
1267 * files with fixed size extents or real time extents, but we
1268 * at least do it for regular files.
1277 xfs_fileoff_t map_first
;
1279 xfs_bmbt_irec_t imaps
[2];
1281 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1284 if (ip
->i_d
.di_flags
& (XFS_DIFLAG_REALTIME
| XFS_DIFLAG_EXTSIZE
))
1288 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1290 * The filesystem could be shutting down, so bmapi may return
1293 if (xfs_bmapi(NULL
, ip
, map_first
,
1295 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1297 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1300 ASSERT(nimaps
== 1);
1301 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1306 * Calculate the last possible buffered byte in a file. This must
1307 * include data that was buffered beyond the EOF by the write code.
1308 * This also needs to deal with overflowing the xfs_fsize_t type
1309 * which can happen for sizes near the limit.
1311 * We also need to take into account any blocks beyond the EOF. It
1312 * may be the case that they were buffered by a write which failed.
1313 * In that case the pages will still be in memory, but the inode size
1314 * will never have been updated.
1321 xfs_fsize_t last_byte
;
1322 xfs_fileoff_t last_block
;
1323 xfs_fileoff_t size_last_block
;
1326 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
| MR_ACCESS
));
1330 * Only check for blocks beyond the EOF if the extents have
1331 * been read in. This eliminates the need for the inode lock,
1332 * and it also saves us from looking when it really isn't
1335 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1336 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1344 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_d
.di_size
);
1345 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1347 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1348 if (last_byte
< 0) {
1349 return XFS_MAXIOFFSET(mp
);
1351 last_byte
+= (1 << mp
->m_writeio_log
);
1352 if (last_byte
< 0) {
1353 return XFS_MAXIOFFSET(mp
);
1358 #if defined(XFS_RW_TRACE)
1364 xfs_fsize_t new_size
,
1365 xfs_off_t toss_start
,
1366 xfs_off_t toss_finish
)
1368 if (ip
->i_rwtrace
== NULL
) {
1372 ktrace_enter(ip
->i_rwtrace
,
1375 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1376 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1377 (void*)((long)flag
),
1378 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1379 (void*)(unsigned long)(new_size
& 0xffffffff),
1380 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1381 (void*)(unsigned long)(toss_start
& 0xffffffff),
1382 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1383 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1384 (void*)(unsigned long)current_cpu(),
1385 (void*)(unsigned long)current_pid(),
1391 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1395 * Start the truncation of the file to new_size. The new size
1396 * must be smaller than the current size. This routine will
1397 * clear the buffer and page caches of file data in the removed
1398 * range, and xfs_itruncate_finish() will remove the underlying
1401 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1402 * must NOT have the inode lock held at all. This is because we're
1403 * calling into the buffer/page cache code and we can't hold the
1404 * inode lock when we do so.
1406 * We need to wait for any direct I/Os in flight to complete before we
1407 * proceed with the truncate. This is needed to prevent the extents
1408 * being read or written by the direct I/Os from being removed while the
1409 * I/O is in flight as there is no other method of synchronising
1410 * direct I/O with the truncate operation. Also, because we hold
1411 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1412 * started until the truncate completes and drops the lock. Essentially,
1413 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1414 * between direct I/Os and the truncate operation.
1416 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1417 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1418 * in the case that the caller is locking things out of order and
1419 * may not be able to call xfs_itruncate_finish() with the inode lock
1420 * held without dropping the I/O lock. If the caller must drop the
1421 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1422 * must be called again with all the same restrictions as the initial
1426 xfs_itruncate_start(
1429 xfs_fsize_t new_size
)
1431 xfs_fsize_t last_byte
;
1432 xfs_off_t toss_start
;
1436 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1437 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1438 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1439 (flags
== XFS_ITRUNC_MAYBE
));
1444 vn_iowait(vp
); /* wait for the completion of any pending DIOs */
1447 * Call toss_pages or flushinval_pages to get rid of pages
1448 * overlapping the region being removed. We have to use
1449 * the less efficient flushinval_pages in the case that the
1450 * caller may not be able to finish the truncate without
1451 * dropping the inode's I/O lock. Make sure
1452 * to catch any pages brought in by buffers overlapping
1453 * the EOF by searching out beyond the isize by our
1454 * block size. We round new_size up to a block boundary
1455 * so that we don't toss things on the same block as
1456 * new_size but before it.
1458 * Before calling toss_page or flushinval_pages, make sure to
1459 * call remapf() over the same region if the file is mapped.
1460 * This frees up mapped file references to the pages in the
1461 * given range and for the flushinval_pages case it ensures
1462 * that we get the latest mapped changes flushed out.
1464 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1465 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1466 if (toss_start
< 0) {
1468 * The place to start tossing is beyond our maximum
1469 * file size, so there is no way that the data extended
1474 last_byte
= xfs_file_last_byte(ip
);
1475 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1477 if (last_byte
> toss_start
) {
1478 if (flags
& XFS_ITRUNC_DEFINITE
) {
1479 bhv_vop_toss_pages(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1481 bhv_vop_flushinval_pages(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1486 if (new_size
== 0) {
1487 ASSERT(VN_CACHED(vp
) == 0);
1493 * Shrink the file to the given new_size. The new
1494 * size must be smaller than the current size.
1495 * This will free up the underlying blocks
1496 * in the removed range after a call to xfs_itruncate_start()
1497 * or xfs_atruncate_start().
1499 * The transaction passed to this routine must have made
1500 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1501 * This routine may commit the given transaction and
1502 * start new ones, so make sure everything involved in
1503 * the transaction is tidy before calling here.
1504 * Some transaction will be returned to the caller to be
1505 * committed. The incoming transaction must already include
1506 * the inode, and both inode locks must be held exclusively.
1507 * The inode must also be "held" within the transaction. On
1508 * return the inode will be "held" within the returned transaction.
1509 * This routine does NOT require any disk space to be reserved
1510 * for it within the transaction.
1512 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1513 * and it indicates the fork which is to be truncated. For the
1514 * attribute fork we only support truncation to size 0.
1516 * We use the sync parameter to indicate whether or not the first
1517 * transaction we perform might have to be synchronous. For the attr fork,
1518 * it needs to be so if the unlink of the inode is not yet known to be
1519 * permanent in the log. This keeps us from freeing and reusing the
1520 * blocks of the attribute fork before the unlink of the inode becomes
1523 * For the data fork, we normally have to run synchronously if we're
1524 * being called out of the inactive path or we're being called
1525 * out of the create path where we're truncating an existing file.
1526 * Either way, the truncate needs to be sync so blocks don't reappear
1527 * in the file with altered data in case of a crash. wsync filesystems
1528 * can run the first case async because anything that shrinks the inode
1529 * has to run sync so by the time we're called here from inactive, the
1530 * inode size is permanently set to 0.
1532 * Calls from the truncate path always need to be sync unless we're
1533 * in a wsync filesystem and the file has already been unlinked.
1535 * The caller is responsible for correctly setting the sync parameter.
1536 * It gets too hard for us to guess here which path we're being called
1537 * out of just based on inode state.
1540 xfs_itruncate_finish(
1543 xfs_fsize_t new_size
,
1547 xfs_fsblock_t first_block
;
1548 xfs_fileoff_t first_unmap_block
;
1549 xfs_fileoff_t last_block
;
1550 xfs_filblks_t unmap_len
=0;
1555 xfs_bmap_free_t free_list
;
1558 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1559 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
) != 0);
1560 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1561 ASSERT(*tp
!= NULL
);
1562 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1563 ASSERT(ip
->i_transp
== *tp
);
1564 ASSERT(ip
->i_itemp
!= NULL
);
1565 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1569 mp
= (ntp
)->t_mountp
;
1570 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1573 * We only support truncating the entire attribute fork.
1575 if (fork
== XFS_ATTR_FORK
) {
1578 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1579 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1581 * The first thing we do is set the size to new_size permanently
1582 * on disk. This way we don't have to worry about anyone ever
1583 * being able to look at the data being freed even in the face
1584 * of a crash. What we're getting around here is the case where
1585 * we free a block, it is allocated to another file, it is written
1586 * to, and then we crash. If the new data gets written to the
1587 * file but the log buffers containing the free and reallocation
1588 * don't, then we'd end up with garbage in the blocks being freed.
1589 * As long as we make the new_size permanent before actually
1590 * freeing any blocks it doesn't matter if they get writtten to.
1592 * The callers must signal into us whether or not the size
1593 * setting here must be synchronous. There are a few cases
1594 * where it doesn't have to be synchronous. Those cases
1595 * occur if the file is unlinked and we know the unlink is
1596 * permanent or if the blocks being truncated are guaranteed
1597 * to be beyond the inode eof (regardless of the link count)
1598 * and the eof value is permanent. Both of these cases occur
1599 * only on wsync-mounted filesystems. In those cases, we're
1600 * guaranteed that no user will ever see the data in the blocks
1601 * that are being truncated so the truncate can run async.
1602 * In the free beyond eof case, the file may wind up with
1603 * more blocks allocated to it than it needs if we crash
1604 * and that won't get fixed until the next time the file
1605 * is re-opened and closed but that's ok as that shouldn't
1606 * be too many blocks.
1608 * However, we can't just make all wsync xactions run async
1609 * because there's one call out of the create path that needs
1610 * to run sync where it's truncating an existing file to size
1611 * 0 whose size is > 0.
1613 * It's probably possible to come up with a test in this
1614 * routine that would correctly distinguish all the above
1615 * cases from the values of the function parameters and the
1616 * inode state but for sanity's sake, I've decided to let the
1617 * layers above just tell us. It's simpler to correctly figure
1618 * out in the layer above exactly under what conditions we
1619 * can run async and I think it's easier for others read and
1620 * follow the logic in case something has to be changed.
1621 * cscope is your friend -- rcc.
1623 * The attribute fork is much simpler.
1625 * For the attribute fork we allow the caller to tell us whether
1626 * the unlink of the inode that led to this call is yet permanent
1627 * in the on disk log. If it is not and we will be freeing extents
1628 * in this inode then we make the first transaction synchronous
1629 * to make sure that the unlink is permanent by the time we free
1632 if (fork
== XFS_DATA_FORK
) {
1633 if (ip
->i_d
.di_nextents
> 0) {
1634 ip
->i_d
.di_size
= new_size
;
1635 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1638 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1639 if (ip
->i_d
.di_anextents
> 0)
1640 xfs_trans_set_sync(ntp
);
1642 ASSERT(fork
== XFS_DATA_FORK
||
1643 (fork
== XFS_ATTR_FORK
&&
1644 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1645 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1648 * Since it is possible for space to become allocated beyond
1649 * the end of the file (in a crash where the space is allocated
1650 * but the inode size is not yet updated), simply remove any
1651 * blocks which show up between the new EOF and the maximum
1652 * possible file size. If the first block to be removed is
1653 * beyond the maximum file size (ie it is the same as last_block),
1654 * then there is nothing to do.
1656 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1657 ASSERT(first_unmap_block
<= last_block
);
1659 if (last_block
== first_unmap_block
) {
1662 unmap_len
= last_block
- first_unmap_block
+ 1;
1666 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1667 * will tell us whether it freed the entire range or
1668 * not. If this is a synchronous mount (wsync),
1669 * then we can tell bunmapi to keep all the
1670 * transactions asynchronous since the unlink
1671 * transaction that made this inode inactive has
1672 * already hit the disk. There's no danger of
1673 * the freed blocks being reused, there being a
1674 * crash, and the reused blocks suddenly reappearing
1675 * in this file with garbage in them once recovery
1678 XFS_BMAP_INIT(&free_list
, &first_block
);
1679 error
= XFS_BUNMAPI(mp
, ntp
, &ip
->i_iocore
,
1680 first_unmap_block
, unmap_len
,
1681 XFS_BMAPI_AFLAG(fork
) |
1682 (sync
? 0 : XFS_BMAPI_ASYNC
),
1683 XFS_ITRUNC_MAX_EXTENTS
,
1684 &first_block
, &free_list
,
1688 * If the bunmapi call encounters an error,
1689 * return to the caller where the transaction
1690 * can be properly aborted. We just need to
1691 * make sure we're not holding any resources
1692 * that we were not when we came in.
1694 xfs_bmap_cancel(&free_list
);
1699 * Duplicate the transaction that has the permanent
1700 * reservation and commit the old transaction.
1702 error
= xfs_bmap_finish(tp
, &free_list
, first_block
,
1707 * If the bmap finish call encounters an error,
1708 * return to the caller where the transaction
1709 * can be properly aborted. We just need to
1710 * make sure we're not holding any resources
1711 * that we were not when we came in.
1713 * Aborting from this point might lose some
1714 * blocks in the file system, but oh well.
1716 xfs_bmap_cancel(&free_list
);
1719 * If the passed in transaction committed
1720 * in xfs_bmap_finish(), then we want to
1721 * add the inode to this one before returning.
1722 * This keeps things simple for the higher
1723 * level code, because it always knows that
1724 * the inode is locked and held in the
1725 * transaction that returns to it whether
1726 * errors occur or not. We don't mark the
1727 * inode dirty so that this transaction can
1728 * be easily aborted if possible.
1730 xfs_trans_ijoin(ntp
, ip
,
1731 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1732 xfs_trans_ihold(ntp
, ip
);
1739 * The first xact was committed,
1740 * so add the inode to the new one.
1741 * Mark it dirty so it will be logged
1742 * and moved forward in the log as
1743 * part of every commit.
1745 xfs_trans_ijoin(ntp
, ip
,
1746 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1747 xfs_trans_ihold(ntp
, ip
);
1748 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1750 ntp
= xfs_trans_dup(ntp
);
1751 (void) xfs_trans_commit(*tp
, 0, NULL
);
1753 error
= xfs_trans_reserve(ntp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0,
1754 XFS_TRANS_PERM_LOG_RES
,
1755 XFS_ITRUNCATE_LOG_COUNT
);
1757 * Add the inode being truncated to the next chained
1760 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1761 xfs_trans_ihold(ntp
, ip
);
1766 * Only update the size in the case of the data fork, but
1767 * always re-log the inode so that our permanent transaction
1768 * can keep on rolling it forward in the log.
1770 if (fork
== XFS_DATA_FORK
) {
1771 xfs_isize_check(mp
, ip
, new_size
);
1772 ip
->i_d
.di_size
= new_size
;
1774 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1775 ASSERT((new_size
!= 0) ||
1776 (fork
== XFS_ATTR_FORK
) ||
1777 (ip
->i_delayed_blks
== 0));
1778 ASSERT((new_size
!= 0) ||
1779 (fork
== XFS_ATTR_FORK
) ||
1780 (ip
->i_d
.di_nextents
== 0));
1781 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1789 * Do the first part of growing a file: zero any data in the last
1790 * block that is beyond the old EOF. We need to do this before
1791 * the inode is joined to the transaction to modify the i_size.
1792 * That way we can drop the inode lock and call into the buffer
1793 * cache to get the buffer mapping the EOF.
1798 xfs_fsize_t new_size
,
1803 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1804 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1805 ASSERT(new_size
> ip
->i_d
.di_size
);
1808 * Zero any pages that may have been created by
1809 * xfs_write_file() beyond the end of the file
1810 * and any blocks between the old and new file sizes.
1812 error
= xfs_zero_eof(XFS_ITOV(ip
), &ip
->i_iocore
, new_size
,
1813 ip
->i_d
.di_size
, new_size
);
1820 * This routine is called to extend the size of a file.
1821 * The inode must have both the iolock and the ilock locked
1822 * for update and it must be a part of the current transaction.
1823 * The xfs_igrow_start() function must have been called previously.
1824 * If the change_flag is not zero, the inode change timestamp will
1831 xfs_fsize_t new_size
,
1834 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1835 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1836 ASSERT(ip
->i_transp
== tp
);
1837 ASSERT(new_size
> ip
->i_d
.di_size
);
1840 * Update the file size. Update the inode change timestamp
1841 * if change_flag set.
1843 ip
->i_d
.di_size
= new_size
;
1845 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1846 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1852 * This is called when the inode's link count goes to 0.
1853 * We place the on-disk inode on a list in the AGI. It
1854 * will be pulled from this list when the inode is freed.
1866 xfs_agnumber_t agno
;
1867 xfs_daddr_t agdaddr
;
1874 ASSERT(ip
->i_d
.di_nlink
== 0);
1875 ASSERT(ip
->i_d
.di_mode
!= 0);
1876 ASSERT(ip
->i_transp
== tp
);
1880 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1881 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1884 * Get the agi buffer first. It ensures lock ordering
1887 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1888 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1893 * Validate the magic number of the agi block.
1895 agi
= XFS_BUF_TO_AGI(agibp
);
1897 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1898 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1899 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1900 XFS_RANDOM_IUNLINK
))) {
1901 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1902 xfs_trans_brelse(tp
, agibp
);
1903 return XFS_ERROR(EFSCORRUPTED
);
1906 * Get the index into the agi hash table for the
1907 * list this inode will go on.
1909 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1911 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1912 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1913 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1915 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1917 * There is already another inode in the bucket we need
1918 * to add ourselves to. Add us at the front of the list.
1919 * Here we put the head pointer into our next pointer,
1920 * and then we fall through to point the head at us.
1922 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
1926 ASSERT(INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
) == NULLAGINO
);
1927 ASSERT(dip
->di_next_unlinked
);
1928 /* both on-disk, don't endian flip twice */
1929 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1930 offset
= ip
->i_boffset
+
1931 offsetof(xfs_dinode_t
, di_next_unlinked
);
1932 xfs_trans_inode_buf(tp
, ibp
);
1933 xfs_trans_log_buf(tp
, ibp
, offset
,
1934 (offset
+ sizeof(xfs_agino_t
) - 1));
1935 xfs_inobp_check(mp
, ibp
);
1939 * Point the bucket head pointer at the inode being inserted.
1942 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1943 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1944 (sizeof(xfs_agino_t
) * bucket_index
);
1945 xfs_trans_log_buf(tp
, agibp
, offset
,
1946 (offset
+ sizeof(xfs_agino_t
) - 1));
1951 * Pull the on-disk inode from the AGI unlinked list.
1964 xfs_agnumber_t agno
;
1965 xfs_daddr_t agdaddr
;
1967 xfs_agino_t next_agino
;
1968 xfs_buf_t
*last_ibp
;
1969 xfs_dinode_t
*last_dip
= NULL
;
1971 int offset
, last_offset
= 0;
1976 * First pull the on-disk inode from the AGI unlinked list.
1980 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1981 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1984 * Get the agi buffer first. It ensures lock ordering
1987 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1988 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1991 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1992 error
, mp
->m_fsname
);
1996 * Validate the magic number of the agi block.
1998 agi
= XFS_BUF_TO_AGI(agibp
);
2000 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
2001 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
2002 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
2003 XFS_RANDOM_IUNLINK_REMOVE
))) {
2004 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
2006 xfs_trans_brelse(tp
, agibp
);
2008 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2010 return XFS_ERROR(EFSCORRUPTED
);
2013 * Get the index into the agi hash table for the
2014 * list this inode will go on.
2016 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2018 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2019 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
2020 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2022 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2024 * We're at the head of the list. Get the inode's
2025 * on-disk buffer to see if there is anyone after us
2026 * on the list. Only modify our next pointer if it
2027 * is not already NULLAGINO. This saves us the overhead
2028 * of dealing with the buffer when there is no need to
2031 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2034 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2035 error
, mp
->m_fsname
);
2038 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2039 ASSERT(next_agino
!= 0);
2040 if (next_agino
!= NULLAGINO
) {
2041 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2042 offset
= ip
->i_boffset
+
2043 offsetof(xfs_dinode_t
, di_next_unlinked
);
2044 xfs_trans_inode_buf(tp
, ibp
);
2045 xfs_trans_log_buf(tp
, ibp
, offset
,
2046 (offset
+ sizeof(xfs_agino_t
) - 1));
2047 xfs_inobp_check(mp
, ibp
);
2049 xfs_trans_brelse(tp
, ibp
);
2052 * Point the bucket head pointer at the next inode.
2054 ASSERT(next_agino
!= 0);
2055 ASSERT(next_agino
!= agino
);
2056 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2057 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2058 (sizeof(xfs_agino_t
) * bucket_index
);
2059 xfs_trans_log_buf(tp
, agibp
, offset
,
2060 (offset
+ sizeof(xfs_agino_t
) - 1));
2063 * We need to search the list for the inode being freed.
2065 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2067 while (next_agino
!= agino
) {
2069 * If the last inode wasn't the one pointing to
2070 * us, then release its buffer since we're not
2071 * going to do anything with it.
2073 if (last_ibp
!= NULL
) {
2074 xfs_trans_brelse(tp
, last_ibp
);
2076 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2077 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2078 &last_ibp
, &last_offset
);
2081 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2082 error
, mp
->m_fsname
);
2085 next_agino
= INT_GET(last_dip
->di_next_unlinked
, ARCH_CONVERT
);
2086 ASSERT(next_agino
!= NULLAGINO
);
2087 ASSERT(next_agino
!= 0);
2090 * Now last_ibp points to the buffer previous to us on
2091 * the unlinked list. Pull us from the list.
2093 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2096 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2097 error
, mp
->m_fsname
);
2100 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2101 ASSERT(next_agino
!= 0);
2102 ASSERT(next_agino
!= agino
);
2103 if (next_agino
!= NULLAGINO
) {
2104 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2105 offset
= ip
->i_boffset
+
2106 offsetof(xfs_dinode_t
, di_next_unlinked
);
2107 xfs_trans_inode_buf(tp
, ibp
);
2108 xfs_trans_log_buf(tp
, ibp
, offset
,
2109 (offset
+ sizeof(xfs_agino_t
) - 1));
2110 xfs_inobp_check(mp
, ibp
);
2112 xfs_trans_brelse(tp
, ibp
);
2115 * Point the previous inode on the list to the next inode.
2117 INT_SET(last_dip
->di_next_unlinked
, ARCH_CONVERT
, next_agino
);
2118 ASSERT(next_agino
!= 0);
2119 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2120 xfs_trans_inode_buf(tp
, last_ibp
);
2121 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2122 (offset
+ sizeof(xfs_agino_t
) - 1));
2123 xfs_inobp_check(mp
, last_ibp
);
2128 static __inline__
int xfs_inode_clean(xfs_inode_t
*ip
)
2130 return (((ip
->i_itemp
== NULL
) ||
2131 !(ip
->i_itemp
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
2132 (ip
->i_update_core
== 0));
2137 xfs_inode_t
*free_ip
,
2141 xfs_mount_t
*mp
= free_ip
->i_mount
;
2142 int blks_per_cluster
;
2145 int i
, j
, found
, pre_flushed
;
2149 xfs_inode_t
*ip
, **ip_found
;
2150 xfs_inode_log_item_t
*iip
;
2151 xfs_log_item_t
*lip
;
2154 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2155 blks_per_cluster
= 1;
2156 ninodes
= mp
->m_sb
.sb_inopblock
;
2157 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2159 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2160 mp
->m_sb
.sb_blocksize
;
2161 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2162 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2165 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2167 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2168 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2169 XFS_INO_TO_AGBNO(mp
, inum
));
2173 * Look for each inode in memory and attempt to lock it,
2174 * we can be racing with flush and tail pushing here.
2175 * any inode we get the locks on, add to an array of
2176 * inode items to process later.
2178 * The get the buffer lock, we could beat a flush
2179 * or tail pushing thread to the lock here, in which
2180 * case they will go looking for the inode buffer
2181 * and fail, we need some other form of interlock
2185 for (i
= 0; i
< ninodes
; i
++) {
2186 ih
= XFS_IHASH(mp
, inum
+ i
);
2187 read_lock(&ih
->ih_lock
);
2188 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
2189 if (ip
->i_ino
== inum
+ i
)
2193 /* Inode not in memory or we found it already,
2196 if (!ip
|| (ip
->i_flags
& XFS_ISTALE
)) {
2197 read_unlock(&ih
->ih_lock
);
2201 if (xfs_inode_clean(ip
)) {
2202 read_unlock(&ih
->ih_lock
);
2206 /* If we can get the locks then add it to the
2207 * list, otherwise by the time we get the bp lock
2208 * below it will already be attached to the
2212 /* This inode will already be locked - by us, lets
2216 if (ip
== free_ip
) {
2217 if (xfs_iflock_nowait(ip
)) {
2218 spin_lock(&ip
->i_flags_lock
);
2219 ip
->i_flags
|= XFS_ISTALE
;
2220 spin_unlock(&ip
->i_flags_lock
);
2222 if (xfs_inode_clean(ip
)) {
2225 ip_found
[found
++] = ip
;
2228 read_unlock(&ih
->ih_lock
);
2232 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2233 if (xfs_iflock_nowait(ip
)) {
2234 spin_lock(&ip
->i_flags_lock
);
2235 ip
->i_flags
|= XFS_ISTALE
;
2236 spin_unlock(&ip
->i_flags_lock
);
2238 if (xfs_inode_clean(ip
)) {
2240 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2242 ip_found
[found
++] = ip
;
2245 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2249 read_unlock(&ih
->ih_lock
);
2252 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2253 mp
->m_bsize
* blks_per_cluster
,
2257 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2259 if (lip
->li_type
== XFS_LI_INODE
) {
2260 iip
= (xfs_inode_log_item_t
*)lip
;
2261 ASSERT(iip
->ili_logged
== 1);
2262 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2264 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2266 spin_lock(&iip
->ili_inode
->i_flags_lock
);
2267 iip
->ili_inode
->i_flags
|= XFS_ISTALE
;
2268 spin_unlock(&iip
->ili_inode
->i_flags_lock
);
2271 lip
= lip
->li_bio_list
;
2274 for (i
= 0; i
< found
; i
++) {
2279 ip
->i_update_core
= 0;
2281 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2285 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2286 iip
->ili_format
.ilf_fields
= 0;
2287 iip
->ili_logged
= 1;
2289 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2292 xfs_buf_attach_iodone(bp
,
2293 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2294 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2295 if (ip
!= free_ip
) {
2296 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2300 if (found
|| pre_flushed
)
2301 xfs_trans_stale_inode_buf(tp
, bp
);
2302 xfs_trans_binval(tp
, bp
);
2305 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2309 * This is called to return an inode to the inode free list.
2310 * The inode should already be truncated to 0 length and have
2311 * no pages associated with it. This routine also assumes that
2312 * the inode is already a part of the transaction.
2314 * The on-disk copy of the inode will have been added to the list
2315 * of unlinked inodes in the AGI. We need to remove the inode from
2316 * that list atomically with respect to freeing it here.
2322 xfs_bmap_free_t
*flist
)
2326 xfs_ino_t first_ino
;
2328 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2329 ASSERT(ip
->i_transp
== tp
);
2330 ASSERT(ip
->i_d
.di_nlink
== 0);
2331 ASSERT(ip
->i_d
.di_nextents
== 0);
2332 ASSERT(ip
->i_d
.di_anextents
== 0);
2333 ASSERT((ip
->i_d
.di_size
== 0) ||
2334 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2335 ASSERT(ip
->i_d
.di_nblocks
== 0);
2338 * Pull the on-disk inode from the AGI unlinked list.
2340 error
= xfs_iunlink_remove(tp
, ip
);
2345 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2349 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2350 ip
->i_d
.di_flags
= 0;
2351 ip
->i_d
.di_dmevmask
= 0;
2352 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2353 ip
->i_df
.if_ext_max
=
2354 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2355 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2356 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2358 * Bump the generation count so no one will be confused
2359 * by reincarnations of this inode.
2362 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2365 xfs_ifree_cluster(ip
, tp
, first_ino
);
2372 * Reallocate the space for if_broot based on the number of records
2373 * being added or deleted as indicated in rec_diff. Move the records
2374 * and pointers in if_broot to fit the new size. When shrinking this
2375 * will eliminate holes between the records and pointers created by
2376 * the caller. When growing this will create holes to be filled in
2379 * The caller must not request to add more records than would fit in
2380 * the on-disk inode root. If the if_broot is currently NULL, then
2381 * if we adding records one will be allocated. The caller must also
2382 * not request that the number of records go below zero, although
2383 * it can go to zero.
2385 * ip -- the inode whose if_broot area is changing
2386 * ext_diff -- the change in the number of records, positive or negative,
2387 * requested for the if_broot array.
2397 xfs_bmbt_block_t
*new_broot
;
2404 * Handle the degenerate case quietly.
2406 if (rec_diff
== 0) {
2410 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2413 * If there wasn't any memory allocated before, just
2414 * allocate it now and get out.
2416 if (ifp
->if_broot_bytes
== 0) {
2417 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2418 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2420 ifp
->if_broot_bytes
= (int)new_size
;
2425 * If there is already an existing if_broot, then we need
2426 * to realloc() it and shift the pointers to their new
2427 * location. The records don't change location because
2428 * they are kept butted up against the btree block header.
2430 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2431 new_max
= cur_max
+ rec_diff
;
2432 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2433 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2434 kmem_realloc(ifp
->if_broot
,
2436 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2438 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2439 ifp
->if_broot_bytes
);
2440 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2442 ifp
->if_broot_bytes
= (int)new_size
;
2443 ASSERT(ifp
->if_broot_bytes
<=
2444 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2445 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2450 * rec_diff is less than 0. In this case, we are shrinking the
2451 * if_broot buffer. It must already exist. If we go to zero
2452 * records, just get rid of the root and clear the status bit.
2454 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2455 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2456 new_max
= cur_max
+ rec_diff
;
2457 ASSERT(new_max
>= 0);
2459 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2463 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2465 * First copy over the btree block header.
2467 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2470 ifp
->if_flags
&= ~XFS_IFBROOT
;
2474 * Only copy the records and pointers if there are any.
2478 * First copy the records.
2480 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2481 ifp
->if_broot_bytes
);
2482 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2484 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2487 * Then copy the pointers.
2489 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2490 ifp
->if_broot_bytes
);
2491 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2493 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2495 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2496 ifp
->if_broot
= new_broot
;
2497 ifp
->if_broot_bytes
= (int)new_size
;
2498 ASSERT(ifp
->if_broot_bytes
<=
2499 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2505 * This is called when the amount of space needed for if_data
2506 * is increased or decreased. The change in size is indicated by
2507 * the number of bytes that need to be added or deleted in the
2508 * byte_diff parameter.
2510 * If the amount of space needed has decreased below the size of the
2511 * inline buffer, then switch to using the inline buffer. Otherwise,
2512 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2513 * to what is needed.
2515 * ip -- the inode whose if_data area is changing
2516 * byte_diff -- the change in the number of bytes, positive or negative,
2517 * requested for the if_data array.
2529 if (byte_diff
== 0) {
2533 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2534 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2535 ASSERT(new_size
>= 0);
2537 if (new_size
== 0) {
2538 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2539 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2541 ifp
->if_u1
.if_data
= NULL
;
2543 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2545 * If the valid extents/data can fit in if_inline_ext/data,
2546 * copy them from the malloc'd vector and free it.
2548 if (ifp
->if_u1
.if_data
== NULL
) {
2549 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2550 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2551 ASSERT(ifp
->if_real_bytes
!= 0);
2552 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2554 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2555 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2560 * Stuck with malloc/realloc.
2561 * For inline data, the underlying buffer must be
2562 * a multiple of 4 bytes in size so that it can be
2563 * logged and stay on word boundaries. We enforce
2566 real_size
= roundup(new_size
, 4);
2567 if (ifp
->if_u1
.if_data
== NULL
) {
2568 ASSERT(ifp
->if_real_bytes
== 0);
2569 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2570 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2572 * Only do the realloc if the underlying size
2573 * is really changing.
2575 if (ifp
->if_real_bytes
!= real_size
) {
2576 ifp
->if_u1
.if_data
=
2577 kmem_realloc(ifp
->if_u1
.if_data
,
2583 ASSERT(ifp
->if_real_bytes
== 0);
2584 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2585 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2589 ifp
->if_real_bytes
= real_size
;
2590 ifp
->if_bytes
= new_size
;
2591 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2598 * Map inode to disk block and offset.
2600 * mp -- the mount point structure for the current file system
2601 * tp -- the current transaction
2602 * ino -- the inode number of the inode to be located
2603 * imap -- this structure is filled in with the information necessary
2604 * to retrieve the given inode from disk
2605 * flags -- flags to pass to xfs_dilocate indicating whether or not
2606 * lookups in the inode btree were OK or not
2616 xfs_fsblock_t fsbno
;
2621 fsbno
= imap
->im_blkno
?
2622 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2623 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2627 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2628 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2629 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2630 imap
->im_ioffset
= (ushort
)off
;
2631 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2642 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2643 if (ifp
->if_broot
!= NULL
) {
2644 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2645 ifp
->if_broot
= NULL
;
2649 * If the format is local, then we can't have an extents
2650 * array so just look for an inline data array. If we're
2651 * not local then we may or may not have an extents list,
2652 * so check and free it up if we do.
2654 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2655 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2656 (ifp
->if_u1
.if_data
!= NULL
)) {
2657 ASSERT(ifp
->if_real_bytes
!= 0);
2658 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2659 ifp
->if_u1
.if_data
= NULL
;
2660 ifp
->if_real_bytes
= 0;
2662 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2663 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2664 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2665 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2666 ASSERT(ifp
->if_real_bytes
!= 0);
2667 xfs_iext_destroy(ifp
);
2669 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2670 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2671 ASSERT(ifp
->if_real_bytes
== 0);
2672 if (whichfork
== XFS_ATTR_FORK
) {
2673 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2679 * This is called free all the memory associated with an inode.
2680 * It must free the inode itself and any buffers allocated for
2681 * if_extents/if_data and if_broot. It must also free the lock
2682 * associated with the inode.
2689 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2693 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2697 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2698 mrfree(&ip
->i_lock
);
2699 mrfree(&ip
->i_iolock
);
2700 freesema(&ip
->i_flock
);
2701 #ifdef XFS_BMAP_TRACE
2702 ktrace_free(ip
->i_xtrace
);
2704 #ifdef XFS_BMBT_TRACE
2705 ktrace_free(ip
->i_btrace
);
2708 ktrace_free(ip
->i_rwtrace
);
2710 #ifdef XFS_ILOCK_TRACE
2711 ktrace_free(ip
->i_lock_trace
);
2713 #ifdef XFS_DIR2_TRACE
2714 ktrace_free(ip
->i_dir_trace
);
2717 /* XXXdpd should be able to assert this but shutdown
2718 * is leaving the AIL behind. */
2719 ASSERT(((ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0) ||
2720 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2721 xfs_inode_item_destroy(ip
);
2723 kmem_zone_free(xfs_inode_zone
, ip
);
2728 * Increment the pin count of the given buffer.
2729 * This value is protected by ipinlock spinlock in the mount structure.
2735 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2737 atomic_inc(&ip
->i_pincount
);
2741 * Decrement the pin count of the given inode, and wake up
2742 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2743 * inode must have been previously pinned with a call to xfs_ipin().
2749 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2751 if (atomic_dec_and_test(&ip
->i_pincount
)) {
2753 * If the inode is currently being reclaimed, the
2754 * linux inode _and_ the xfs vnode may have been
2755 * freed so we cannot reference either of them safely.
2756 * Hence we should not try to do anything to them
2757 * if the xfs inode is currently in the reclaim
2760 * However, we still need to issue the unpin wakeup
2761 * call as the inode reclaim may be blocked waiting for
2762 * the inode to become unpinned.
2764 struct inode
*inode
= NULL
;
2766 spin_lock(&ip
->i_flags_lock
);
2767 if (!(ip
->i_flags
& (XFS_IRECLAIM
|XFS_IRECLAIMABLE
))) {
2768 bhv_vnode_t
*vp
= XFS_ITOV_NULL(ip
);
2770 /* make sync come back and flush this inode */
2772 inode
= vn_to_inode(vp
);
2774 if (!(inode
->i_state
&
2775 (I_NEW
|I_FREEING
|I_CLEAR
))) {
2776 inode
= igrab(inode
);
2778 mark_inode_dirty_sync(inode
);
2783 spin_unlock(&ip
->i_flags_lock
);
2784 wake_up(&ip
->i_ipin_wait
);
2791 * This is called to wait for the given inode to be unpinned.
2792 * It will sleep until this happens. The caller must have the
2793 * inode locked in at least shared mode so that the buffer cannot
2794 * be subsequently pinned once someone is waiting for it to be
2801 xfs_inode_log_item_t
*iip
;
2804 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
| MR_ACCESS
));
2806 if (atomic_read(&ip
->i_pincount
) == 0) {
2811 if (iip
&& iip
->ili_last_lsn
) {
2812 lsn
= iip
->ili_last_lsn
;
2818 * Give the log a push so we don't wait here too long.
2820 xfs_log_force(ip
->i_mount
, lsn
, XFS_LOG_FORCE
);
2822 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2827 * xfs_iextents_copy()
2829 * This is called to copy the REAL extents (as opposed to the delayed
2830 * allocation extents) from the inode into the given buffer. It
2831 * returns the number of bytes copied into the buffer.
2833 * If there are no delayed allocation extents, then we can just
2834 * memcpy() the extents into the buffer. Otherwise, we need to
2835 * examine each extent in turn and skip those which are delayed.
2840 xfs_bmbt_rec_t
*buffer
,
2844 xfs_bmbt_rec_t
*dest_ep
;
2846 #ifdef XFS_BMAP_TRACE
2847 static char fname
[] = "xfs_iextents_copy";
2852 xfs_fsblock_t start_block
;
2854 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2855 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
2856 ASSERT(ifp
->if_bytes
> 0);
2858 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2859 xfs_bmap_trace_exlist(fname
, ip
, nrecs
, whichfork
);
2863 * There are some delayed allocation extents in the
2864 * inode, so copy the extents one at a time and skip
2865 * the delayed ones. There must be at least one
2866 * non-delayed extent.
2870 for (i
= 0; i
< nrecs
; i
++) {
2871 ep
= xfs_iext_get_ext(ifp
, i
);
2872 start_block
= xfs_bmbt_get_startblock(ep
);
2873 if (ISNULLSTARTBLOCK(start_block
)) {
2875 * It's a delayed allocation extent, so skip it.
2880 /* Translate to on disk format */
2881 put_unaligned(INT_GET(ep
->l0
, ARCH_CONVERT
),
2882 (__uint64_t
*)&dest_ep
->l0
);
2883 put_unaligned(INT_GET(ep
->l1
, ARCH_CONVERT
),
2884 (__uint64_t
*)&dest_ep
->l1
);
2888 ASSERT(copied
!= 0);
2889 xfs_validate_extents(ifp
, copied
, 1, XFS_EXTFMT_INODE(ip
));
2891 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2895 * Each of the following cases stores data into the same region
2896 * of the on-disk inode, so only one of them can be valid at
2897 * any given time. While it is possible to have conflicting formats
2898 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2899 * in EXTENTS format, this can only happen when the fork has
2900 * changed formats after being modified but before being flushed.
2901 * In these cases, the format always takes precedence, because the
2902 * format indicates the current state of the fork.
2909 xfs_inode_log_item_t
*iip
,
2916 #ifdef XFS_TRANS_DEBUG
2919 static const short brootflag
[2] =
2920 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2921 static const short dataflag
[2] =
2922 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2923 static const short extflag
[2] =
2924 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2928 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2930 * This can happen if we gave up in iformat in an error path,
2931 * for the attribute fork.
2934 ASSERT(whichfork
== XFS_ATTR_FORK
);
2937 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2939 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2940 case XFS_DINODE_FMT_LOCAL
:
2941 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2942 (ifp
->if_bytes
> 0)) {
2943 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2944 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2945 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2949 case XFS_DINODE_FMT_EXTENTS
:
2950 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2951 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2952 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2953 (ifp
->if_bytes
== 0));
2954 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2955 (ifp
->if_bytes
> 0));
2956 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2957 (ifp
->if_bytes
> 0)) {
2958 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2959 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2964 case XFS_DINODE_FMT_BTREE
:
2965 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2966 (ifp
->if_broot_bytes
> 0)) {
2967 ASSERT(ifp
->if_broot
!= NULL
);
2968 ASSERT(ifp
->if_broot_bytes
<=
2969 (XFS_IFORK_SIZE(ip
, whichfork
) +
2970 XFS_BROOT_SIZE_ADJ
));
2971 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
2972 (xfs_bmdr_block_t
*)cp
,
2973 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2977 case XFS_DINODE_FMT_DEV
:
2978 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2979 ASSERT(whichfork
== XFS_DATA_FORK
);
2980 INT_SET(dip
->di_u
.di_dev
, ARCH_CONVERT
, ip
->i_df
.if_u2
.if_rdev
);
2984 case XFS_DINODE_FMT_UUID
:
2985 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2986 ASSERT(whichfork
== XFS_DATA_FORK
);
2987 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
3001 * xfs_iflush() will write a modified inode's changes out to the
3002 * inode's on disk home. The caller must have the inode lock held
3003 * in at least shared mode and the inode flush semaphore must be
3004 * held as well. The inode lock will still be held upon return from
3005 * the call and the caller is free to unlock it.
3006 * The inode flush lock will be unlocked when the inode reaches the disk.
3007 * The flags indicate how the inode's buffer should be written out.
3014 xfs_inode_log_item_t
*iip
;
3022 int clcount
; /* count of inodes clustered */
3024 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3027 XFS_STATS_INC(xs_iflush_count
);
3029 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3030 ASSERT(issemalocked(&(ip
->i_flock
)));
3031 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3032 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3038 * If the inode isn't dirty, then just release the inode
3039 * flush lock and do nothing.
3041 if ((ip
->i_update_core
== 0) &&
3042 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3043 ASSERT((iip
!= NULL
) ?
3044 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3050 * We can't flush the inode until it is unpinned, so
3051 * wait for it. We know noone new can pin it, because
3052 * we are holding the inode lock shared and you need
3053 * to hold it exclusively to pin the inode.
3055 xfs_iunpin_wait(ip
);
3058 * This may have been unpinned because the filesystem is shutting
3059 * down forcibly. If that's the case we must not write this inode
3060 * to disk, because the log record didn't make it to disk!
3062 if (XFS_FORCED_SHUTDOWN(mp
)) {
3063 ip
->i_update_core
= 0;
3065 iip
->ili_format
.ilf_fields
= 0;
3067 return XFS_ERROR(EIO
);
3071 * Get the buffer containing the on-disk inode.
3073 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0, 0);
3080 * Decide how buffer will be flushed out. This is done before
3081 * the call to xfs_iflush_int because this field is zeroed by it.
3083 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3085 * Flush out the inode buffer according to the directions
3086 * of the caller. In the cases where the caller has given
3087 * us a choice choose the non-delwri case. This is because
3088 * the inode is in the AIL and we need to get it out soon.
3091 case XFS_IFLUSH_SYNC
:
3092 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3095 case XFS_IFLUSH_ASYNC
:
3096 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3099 case XFS_IFLUSH_DELWRI
:
3109 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3110 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3111 case XFS_IFLUSH_DELWRI
:
3114 case XFS_IFLUSH_ASYNC
:
3117 case XFS_IFLUSH_SYNC
:
3128 * First flush out the inode that xfs_iflush was called with.
3130 error
= xfs_iflush_int(ip
, bp
);
3137 * see if other inodes can be gathered into this write
3140 ip
->i_chash
->chl_buf
= bp
;
3142 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
3143 s
= mutex_spinlock(&ch
->ch_lock
);
3146 for (iq
= ip
->i_cnext
; iq
!= ip
; iq
= iq
->i_cnext
) {
3148 * Do an un-protected check to see if the inode is dirty and
3149 * is a candidate for flushing. These checks will be repeated
3150 * later after the appropriate locks are acquired.
3153 if ((iq
->i_update_core
== 0) &&
3155 !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
3156 xfs_ipincount(iq
) == 0) {
3161 * Try to get locks. If any are unavailable,
3162 * then this inode cannot be flushed and is skipped.
3165 /* get inode locks (just i_lock) */
3166 if (xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
)) {
3167 /* get inode flush lock */
3168 if (xfs_iflock_nowait(iq
)) {
3169 /* check if pinned */
3170 if (xfs_ipincount(iq
) == 0) {
3171 /* arriving here means that
3172 * this inode can be flushed.
3173 * first re-check that it's
3177 if ((iq
->i_update_core
!= 0)||
3179 (iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3181 error
= xfs_iflush_int(iq
, bp
);
3185 goto cluster_corrupt_out
;
3194 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3197 mutex_spinunlock(&ch
->ch_lock
, s
);
3200 XFS_STATS_INC(xs_icluster_flushcnt
);
3201 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3205 * If the buffer is pinned then push on the log so we won't
3206 * get stuck waiting in the write for too long.
3208 if (XFS_BUF_ISPINNED(bp
)){
3209 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3212 if (flags
& INT_DELWRI
) {
3213 xfs_bdwrite(mp
, bp
);
3214 } else if (flags
& INT_ASYNC
) {
3215 xfs_bawrite(mp
, bp
);
3217 error
= xfs_bwrite(mp
, bp
);
3223 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3224 xfs_iflush_abort(ip
);
3226 * Unlocks the flush lock
3228 return XFS_ERROR(EFSCORRUPTED
);
3230 cluster_corrupt_out
:
3231 /* Corruption detected in the clustering loop. Invalidate the
3232 * inode buffer and shut down the filesystem.
3234 mutex_spinunlock(&ch
->ch_lock
, s
);
3237 * Clean up the buffer. If it was B_DELWRI, just release it --
3238 * brelse can handle it with no problems. If not, shut down the
3239 * filesystem before releasing the buffer.
3241 if ((bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
))) {
3245 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3249 * Just like incore_relse: if we have b_iodone functions,
3250 * mark the buffer as an error and call them. Otherwise
3251 * mark it as stale and brelse.
3253 if (XFS_BUF_IODONE_FUNC(bp
)) {
3254 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3258 XFS_BUF_ERROR(bp
,EIO
);
3266 xfs_iflush_abort(iq
);
3268 * Unlocks the flush lock
3270 return XFS_ERROR(EFSCORRUPTED
);
3279 xfs_inode_log_item_t
*iip
;
3282 #ifdef XFS_TRANS_DEBUG
3287 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3288 ASSERT(issemalocked(&(ip
->i_flock
)));
3289 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3290 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3297 * If the inode isn't dirty, then just release the inode
3298 * flush lock and do nothing.
3300 if ((ip
->i_update_core
== 0) &&
3301 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3306 /* set *dip = inode's place in the buffer */
3307 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3310 * Clear i_update_core before copying out the data.
3311 * This is for coordination with our timestamp updates
3312 * that don't hold the inode lock. They will always
3313 * update the timestamps BEFORE setting i_update_core,
3314 * so if we clear i_update_core after they set it we
3315 * are guaranteed to see their updates to the timestamps.
3316 * I believe that this depends on strongly ordered memory
3317 * semantics, but we have that. We use the SYNCHRONIZE
3318 * macro to make sure that the compiler does not reorder
3319 * the i_update_core access below the data copy below.
3321 ip
->i_update_core
= 0;
3325 * Make sure to get the latest atime from the Linux inode.
3327 xfs_synchronize_atime(ip
);
3329 if (XFS_TEST_ERROR(INT_GET(dip
->di_core
.di_magic
,ARCH_CONVERT
) != XFS_DINODE_MAGIC
,
3330 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3331 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3332 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3333 ip
->i_ino
, (int) INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
), dip
);
3336 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3337 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3338 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3339 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3340 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3343 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3345 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3346 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3347 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3348 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3349 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3353 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3355 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3356 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3357 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3358 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3359 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3360 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3365 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3366 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3367 XFS_RANDOM_IFLUSH_5
)) {
3368 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3369 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3371 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3376 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3377 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3378 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3379 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3380 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3384 * bump the flush iteration count, used to detect flushes which
3385 * postdate a log record during recovery.
3388 ip
->i_d
.di_flushiter
++;
3391 * Copy the dirty parts of the inode into the on-disk
3392 * inode. We always copy out the core of the inode,
3393 * because if the inode is dirty at all the core must
3396 xfs_xlate_dinode_core((xfs_caddr_t
)&(dip
->di_core
), &(ip
->i_d
), -1);
3398 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3399 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3400 ip
->i_d
.di_flushiter
= 0;
3403 * If this is really an old format inode and the superblock version
3404 * has not been updated to support only new format inodes, then
3405 * convert back to the old inode format. If the superblock version
3406 * has been updated, then make the conversion permanent.
3408 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3409 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
3410 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3411 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
3415 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3416 INT_SET(dip
->di_core
.di_onlink
, ARCH_CONVERT
, ip
->i_d
.di_nlink
);
3419 * The superblock version has already been bumped,
3420 * so just make the conversion to the new inode
3423 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3424 INT_SET(dip
->di_core
.di_version
, ARCH_CONVERT
, XFS_DINODE_VERSION_2
);
3425 ip
->i_d
.di_onlink
= 0;
3426 dip
->di_core
.di_onlink
= 0;
3427 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3428 memset(&(dip
->di_core
.di_pad
[0]), 0,
3429 sizeof(dip
->di_core
.di_pad
));
3430 ASSERT(ip
->i_d
.di_projid
== 0);
3434 if (xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
) == EFSCORRUPTED
) {
3438 if (XFS_IFORK_Q(ip
)) {
3440 * The only error from xfs_iflush_fork is on the data fork.
3442 (void) xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3444 xfs_inobp_check(mp
, bp
);
3447 * We've recorded everything logged in the inode, so we'd
3448 * like to clear the ilf_fields bits so we don't log and
3449 * flush things unnecessarily. However, we can't stop
3450 * logging all this information until the data we've copied
3451 * into the disk buffer is written to disk. If we did we might
3452 * overwrite the copy of the inode in the log with all the
3453 * data after re-logging only part of it, and in the face of
3454 * a crash we wouldn't have all the data we need to recover.
3456 * What we do is move the bits to the ili_last_fields field.
3457 * When logging the inode, these bits are moved back to the
3458 * ilf_fields field. In the xfs_iflush_done() routine we
3459 * clear ili_last_fields, since we know that the information
3460 * those bits represent is permanently on disk. As long as
3461 * the flush completes before the inode is logged again, then
3462 * both ilf_fields and ili_last_fields will be cleared.
3464 * We can play with the ilf_fields bits here, because the inode
3465 * lock must be held exclusively in order to set bits there
3466 * and the flush lock protects the ili_last_fields bits.
3467 * Set ili_logged so the flush done
3468 * routine can tell whether or not to look in the AIL.
3469 * Also, store the current LSN of the inode so that we can tell
3470 * whether the item has moved in the AIL from xfs_iflush_done().
3471 * In order to read the lsn we need the AIL lock, because
3472 * it is a 64 bit value that cannot be read atomically.
3474 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3475 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3476 iip
->ili_format
.ilf_fields
= 0;
3477 iip
->ili_logged
= 1;
3479 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3481 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3485 * Attach the function xfs_iflush_done to the inode's
3486 * buffer. This will remove the inode from the AIL
3487 * and unlock the inode's flush lock when the inode is
3488 * completely written to disk.
3490 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3491 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3493 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3494 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3497 * We're flushing an inode which is not in the AIL and has
3498 * not been logged but has i_update_core set. For this
3499 * case we can use a B_DELWRI flush and immediately drop
3500 * the inode flush lock because we can avoid the whole
3501 * AIL state thing. It's OK to drop the flush lock now,
3502 * because we've already locked the buffer and to do anything
3503 * you really need both.
3506 ASSERT(iip
->ili_logged
== 0);
3507 ASSERT(iip
->ili_last_fields
== 0);
3508 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3516 return XFS_ERROR(EFSCORRUPTED
);
3521 * Flush all inactive inodes in mp.
3531 XFS_MOUNT_ILOCK(mp
);
3537 /* Make sure we skip markers inserted by sync */
3538 if (ip
->i_mount
== NULL
) {
3543 vp
= XFS_ITOV_NULL(ip
);
3545 XFS_MOUNT_IUNLOCK(mp
);
3546 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3550 ASSERT(vn_count(vp
) == 0);
3553 } while (ip
!= mp
->m_inodes
);
3555 XFS_MOUNT_IUNLOCK(mp
);
3559 * xfs_iaccess: check accessibility of inode for mode.
3568 mode_t orgmode
= mode
;
3569 struct inode
*inode
= vn_to_inode(XFS_ITOV(ip
));
3571 if (mode
& S_IWUSR
) {
3572 umode_t imode
= inode
->i_mode
;
3574 if (IS_RDONLY(inode
) &&
3575 (S_ISREG(imode
) || S_ISDIR(imode
) || S_ISLNK(imode
)))
3576 return XFS_ERROR(EROFS
);
3578 if (IS_IMMUTABLE(inode
))
3579 return XFS_ERROR(EACCES
);
3583 * If there's an Access Control List it's used instead of
3586 if ((error
= _ACL_XFS_IACCESS(ip
, mode
, cr
)) != -1)
3587 return error
? XFS_ERROR(error
) : 0;
3589 if (current_fsuid(cr
) != ip
->i_d
.di_uid
) {
3591 if (!in_group_p((gid_t
)ip
->i_d
.di_gid
))
3596 * If the DACs are ok we don't need any capability check.
3598 if ((ip
->i_d
.di_mode
& mode
) == mode
)
3601 * Read/write DACs are always overridable.
3602 * Executable DACs are overridable if at least one exec bit is set.
3604 if (!(orgmode
& S_IXUSR
) ||
3605 (inode
->i_mode
& S_IXUGO
) || S_ISDIR(inode
->i_mode
))
3606 if (capable_cred(cr
, CAP_DAC_OVERRIDE
))
3609 if ((orgmode
== S_IRUSR
) ||
3610 (S_ISDIR(inode
->i_mode
) && (!(orgmode
& S_IWUSR
)))) {
3611 if (capable_cred(cr
, CAP_DAC_READ_SEARCH
))
3614 cmn_err(CE_NOTE
, "Ick: mode=%o, orgmode=%o", mode
, orgmode
);
3616 return XFS_ERROR(EACCES
);
3618 return XFS_ERROR(EACCES
);
3622 * xfs_iroundup: round up argument to next power of two
3631 if ((v
& (v
- 1)) == 0)
3633 ASSERT((v
& 0x80000000) == 0);
3634 if ((v
& (v
+ 1)) == 0)
3636 for (i
= 0, m
= 1; i
< 31; i
++, m
<<= 1) {
3640 if ((v
& (v
+ 1)) == 0)
3647 #ifdef XFS_ILOCK_TRACE
3648 ktrace_t
*xfs_ilock_trace_buf
;
3651 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3653 ktrace_enter(ip
->i_lock_trace
,
3655 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3656 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3657 (void *)ra
, /* caller of ilock */
3658 (void *)(unsigned long)current_cpu(),
3659 (void *)(unsigned long)current_pid(),
3660 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3665 * Return a pointer to the extent record at file index idx.
3669 xfs_ifork_t
*ifp
, /* inode fork pointer */
3670 xfs_extnum_t idx
) /* index of target extent */
3673 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3674 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3675 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3676 xfs_ext_irec_t
*erp
; /* irec pointer */
3677 int erp_idx
= 0; /* irec index */
3678 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3680 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3681 return &erp
->er_extbuf
[page_idx
];
3682 } else if (ifp
->if_bytes
) {
3683 return &ifp
->if_u1
.if_extents
[idx
];
3690 * Insert new item(s) into the extent records for incore inode
3691 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3695 xfs_ifork_t
*ifp
, /* inode fork pointer */
3696 xfs_extnum_t idx
, /* starting index of new items */
3697 xfs_extnum_t count
, /* number of inserted items */
3698 xfs_bmbt_irec_t
*new) /* items to insert */
3700 xfs_bmbt_rec_t
*ep
; /* extent record pointer */
3701 xfs_extnum_t i
; /* extent record index */
3703 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3704 xfs_iext_add(ifp
, idx
, count
);
3705 for (i
= idx
; i
< idx
+ count
; i
++, new++) {
3706 ep
= xfs_iext_get_ext(ifp
, i
);
3707 xfs_bmbt_set_all(ep
, new);
3712 * This is called when the amount of space required for incore file
3713 * extents needs to be increased. The ext_diff parameter stores the
3714 * number of new extents being added and the idx parameter contains
3715 * the extent index where the new extents will be added. If the new
3716 * extents are being appended, then we just need to (re)allocate and
3717 * initialize the space. Otherwise, if the new extents are being
3718 * inserted into the middle of the existing entries, a bit more work
3719 * is required to make room for the new extents to be inserted. The
3720 * caller is responsible for filling in the new extent entries upon
3725 xfs_ifork_t
*ifp
, /* inode fork pointer */
3726 xfs_extnum_t idx
, /* index to begin adding exts */
3727 int ext_diff
) /* number of extents to add */
3729 int byte_diff
; /* new bytes being added */
3730 int new_size
; /* size of extents after adding */
3731 xfs_extnum_t nextents
; /* number of extents in file */
3733 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3734 ASSERT((idx
>= 0) && (idx
<= nextents
));
3735 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3736 new_size
= ifp
->if_bytes
+ byte_diff
;
3738 * If the new number of extents (nextents + ext_diff)
3739 * fits inside the inode, then continue to use the inline
3742 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3743 if (idx
< nextents
) {
3744 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3745 &ifp
->if_u2
.if_inline_ext
[idx
],
3746 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3747 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3749 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3750 ifp
->if_real_bytes
= 0;
3751 ifp
->if_lastex
= nextents
+ ext_diff
;
3754 * Otherwise use a linear (direct) extent list.
3755 * If the extents are currently inside the inode,
3756 * xfs_iext_realloc_direct will switch us from
3757 * inline to direct extent allocation mode.
3759 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3760 xfs_iext_realloc_direct(ifp
, new_size
);
3761 if (idx
< nextents
) {
3762 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3763 &ifp
->if_u1
.if_extents
[idx
],
3764 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3765 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3768 /* Indirection array */
3770 xfs_ext_irec_t
*erp
;
3774 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3775 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3776 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3778 xfs_iext_irec_init(ifp
);
3779 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3780 erp
= ifp
->if_u1
.if_ext_irec
;
3782 /* Extents fit in target extent page */
3783 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3784 if (page_idx
< erp
->er_extcount
) {
3785 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3786 &erp
->er_extbuf
[page_idx
],
3787 (erp
->er_extcount
- page_idx
) *
3788 sizeof(xfs_bmbt_rec_t
));
3789 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3791 erp
->er_extcount
+= ext_diff
;
3792 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3794 /* Insert a new extent page */
3796 xfs_iext_add_indirect_multi(ifp
,
3797 erp_idx
, page_idx
, ext_diff
);
3800 * If extent(s) are being appended to the last page in
3801 * the indirection array and the new extent(s) don't fit
3802 * in the page, then erp is NULL and erp_idx is set to
3803 * the next index needed in the indirection array.
3806 int count
= ext_diff
;
3809 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3810 erp
->er_extcount
= count
;
3811 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3818 ifp
->if_bytes
= new_size
;
3822 * This is called when incore extents are being added to the indirection
3823 * array and the new extents do not fit in the target extent list. The
3824 * erp_idx parameter contains the irec index for the target extent list
3825 * in the indirection array, and the idx parameter contains the extent
3826 * index within the list. The number of extents being added is stored
3827 * in the count parameter.
3829 * |-------| |-------|
3830 * | | | | idx - number of extents before idx
3832 * | | | | count - number of extents being inserted at idx
3833 * |-------| |-------|
3834 * | count | | nex2 | nex2 - number of extents after idx + count
3835 * |-------| |-------|
3838 xfs_iext_add_indirect_multi(
3839 xfs_ifork_t
*ifp
, /* inode fork pointer */
3840 int erp_idx
, /* target extent irec index */
3841 xfs_extnum_t idx
, /* index within target list */
3842 int count
) /* new extents being added */
3844 int byte_diff
; /* new bytes being added */
3845 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3846 xfs_extnum_t ext_diff
; /* number of extents to add */
3847 xfs_extnum_t ext_cnt
; /* new extents still needed */
3848 xfs_extnum_t nex2
; /* extents after idx + count */
3849 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3850 int nlists
; /* number of irec's (lists) */
3852 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3853 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3854 nex2
= erp
->er_extcount
- idx
;
3855 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3858 * Save second part of target extent list
3859 * (all extents past */
3861 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3862 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_SLEEP
);
3863 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3864 erp
->er_extcount
-= nex2
;
3865 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3866 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3870 * Add the new extents to the end of the target
3871 * list, then allocate new irec record(s) and
3872 * extent buffer(s) as needed to store the rest
3873 * of the new extents.
3876 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3878 erp
->er_extcount
+= ext_diff
;
3879 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3880 ext_cnt
-= ext_diff
;
3884 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3885 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3886 erp
->er_extcount
= ext_diff
;
3887 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3888 ext_cnt
-= ext_diff
;
3891 /* Add nex2 extents back to indirection array */
3893 xfs_extnum_t ext_avail
;
3896 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3897 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3900 * If nex2 extents fit in the current page, append
3901 * nex2_ep after the new extents.
3903 if (nex2
<= ext_avail
) {
3904 i
= erp
->er_extcount
;
3907 * Otherwise, check if space is available in the
3910 else if ((erp_idx
< nlists
- 1) &&
3911 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3912 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3915 /* Create a hole for nex2 extents */
3916 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3917 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3920 * Final choice, create a new extent page for
3925 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3927 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3928 kmem_free(nex2_ep
, byte_diff
);
3929 erp
->er_extcount
+= nex2
;
3930 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3935 * This is called when the amount of space required for incore file
3936 * extents needs to be decreased. The ext_diff parameter stores the
3937 * number of extents to be removed and the idx parameter contains
3938 * the extent index where the extents will be removed from.
3940 * If the amount of space needed has decreased below the linear
3941 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3942 * extent array. Otherwise, use kmem_realloc() to adjust the
3943 * size to what is needed.
3947 xfs_ifork_t
*ifp
, /* inode fork pointer */
3948 xfs_extnum_t idx
, /* index to begin removing exts */
3949 int ext_diff
) /* number of extents to remove */
3951 xfs_extnum_t nextents
; /* number of extents in file */
3952 int new_size
; /* size of extents after removal */
3954 ASSERT(ext_diff
> 0);
3955 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3956 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3958 if (new_size
== 0) {
3959 xfs_iext_destroy(ifp
);
3960 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3961 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3962 } else if (ifp
->if_real_bytes
) {
3963 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3965 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3967 ifp
->if_bytes
= new_size
;
3971 * This removes ext_diff extents from the inline buffer, beginning
3972 * at extent index idx.
3975 xfs_iext_remove_inline(
3976 xfs_ifork_t
*ifp
, /* inode fork pointer */
3977 xfs_extnum_t idx
, /* index to begin removing exts */
3978 int ext_diff
) /* number of extents to remove */
3980 int nextents
; /* number of extents in file */
3982 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3983 ASSERT(idx
< XFS_INLINE_EXTS
);
3984 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3985 ASSERT(((nextents
- ext_diff
) > 0) &&
3986 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3988 if (idx
+ ext_diff
< nextents
) {
3989 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3990 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3991 (nextents
- (idx
+ ext_diff
)) *
3992 sizeof(xfs_bmbt_rec_t
));
3993 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3994 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3996 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3997 ext_diff
* sizeof(xfs_bmbt_rec_t
));
4002 * This removes ext_diff extents from a linear (direct) extent list,
4003 * beginning at extent index idx. If the extents are being removed
4004 * from the end of the list (ie. truncate) then we just need to re-
4005 * allocate the list to remove the extra space. Otherwise, if the
4006 * extents are being removed from the middle of the existing extent
4007 * entries, then we first need to move the extent records beginning
4008 * at idx + ext_diff up in the list to overwrite the records being
4009 * removed, then remove the extra space via kmem_realloc.
4012 xfs_iext_remove_direct(
4013 xfs_ifork_t
*ifp
, /* inode fork pointer */
4014 xfs_extnum_t idx
, /* index to begin removing exts */
4015 int ext_diff
) /* number of extents to remove */
4017 xfs_extnum_t nextents
; /* number of extents in file */
4018 int new_size
; /* size of extents after removal */
4020 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4021 new_size
= ifp
->if_bytes
-
4022 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
4023 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4025 if (new_size
== 0) {
4026 xfs_iext_destroy(ifp
);
4029 /* Move extents up in the list (if needed) */
4030 if (idx
+ ext_diff
< nextents
) {
4031 memmove(&ifp
->if_u1
.if_extents
[idx
],
4032 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
4033 (nextents
- (idx
+ ext_diff
)) *
4034 sizeof(xfs_bmbt_rec_t
));
4036 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
4037 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4039 * Reallocate the direct extent list. If the extents
4040 * will fit inside the inode then xfs_iext_realloc_direct
4041 * will switch from direct to inline extent allocation
4044 xfs_iext_realloc_direct(ifp
, new_size
);
4045 ifp
->if_bytes
= new_size
;
4049 * This is called when incore extents are being removed from the
4050 * indirection array and the extents being removed span multiple extent
4051 * buffers. The idx parameter contains the file extent index where we
4052 * want to begin removing extents, and the count parameter contains
4053 * how many extents need to be removed.
4055 * |-------| |-------|
4056 * | nex1 | | | nex1 - number of extents before idx
4057 * |-------| | count |
4058 * | | | | count - number of extents being removed at idx
4059 * | count | |-------|
4060 * | | | nex2 | nex2 - number of extents after idx + count
4061 * |-------| |-------|
4064 xfs_iext_remove_indirect(
4065 xfs_ifork_t
*ifp
, /* inode fork pointer */
4066 xfs_extnum_t idx
, /* index to begin removing extents */
4067 int count
) /* number of extents to remove */
4069 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4070 int erp_idx
= 0; /* indirection array index */
4071 xfs_extnum_t ext_cnt
; /* extents left to remove */
4072 xfs_extnum_t ext_diff
; /* extents to remove in current list */
4073 xfs_extnum_t nex1
; /* number of extents before idx */
4074 xfs_extnum_t nex2
; /* extents after idx + count */
4075 int nlists
; /* entries in indirection array */
4076 int page_idx
= idx
; /* index in target extent list */
4078 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4079 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
4080 ASSERT(erp
!= NULL
);
4081 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4085 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
4086 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
4088 * Check for deletion of entire list;
4089 * xfs_iext_irec_remove() updates extent offsets.
4091 if (ext_diff
== erp
->er_extcount
) {
4092 xfs_iext_irec_remove(ifp
, erp_idx
);
4093 ext_cnt
-= ext_diff
;
4096 ASSERT(erp_idx
< ifp
->if_real_bytes
/
4098 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4105 /* Move extents up (if needed) */
4107 memmove(&erp
->er_extbuf
[nex1
],
4108 &erp
->er_extbuf
[nex1
+ ext_diff
],
4109 nex2
* sizeof(xfs_bmbt_rec_t
));
4111 /* Zero out rest of page */
4112 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
4113 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
4114 /* Update remaining counters */
4115 erp
->er_extcount
-= ext_diff
;
4116 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
4117 ext_cnt
-= ext_diff
;
4122 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
4123 xfs_iext_irec_compact(ifp
);
4127 * Create, destroy, or resize a linear (direct) block of extents.
4130 xfs_iext_realloc_direct(
4131 xfs_ifork_t
*ifp
, /* inode fork pointer */
4132 int new_size
) /* new size of extents */
4134 int rnew_size
; /* real new size of extents */
4136 rnew_size
= new_size
;
4138 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
4139 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
4140 (new_size
!= ifp
->if_real_bytes
)));
4142 /* Free extent records */
4143 if (new_size
== 0) {
4144 xfs_iext_destroy(ifp
);
4146 /* Resize direct extent list and zero any new bytes */
4147 else if (ifp
->if_real_bytes
) {
4148 /* Check if extents will fit inside the inode */
4149 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
4150 xfs_iext_direct_to_inline(ifp
, new_size
/
4151 (uint
)sizeof(xfs_bmbt_rec_t
));
4152 ifp
->if_bytes
= new_size
;
4155 if ((new_size
& (new_size
- 1)) != 0) {
4156 rnew_size
= xfs_iroundup(new_size
);
4158 if (rnew_size
!= ifp
->if_real_bytes
) {
4159 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4160 kmem_realloc(ifp
->if_u1
.if_extents
,
4165 if (rnew_size
> ifp
->if_real_bytes
) {
4166 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
4167 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
4168 rnew_size
- ifp
->if_real_bytes
);
4172 * Switch from the inline extent buffer to a direct
4173 * extent list. Be sure to include the inline extent
4174 * bytes in new_size.
4177 new_size
+= ifp
->if_bytes
;
4178 if ((new_size
& (new_size
- 1)) != 0) {
4179 rnew_size
= xfs_iroundup(new_size
);
4181 xfs_iext_inline_to_direct(ifp
, rnew_size
);
4183 ifp
->if_real_bytes
= rnew_size
;
4184 ifp
->if_bytes
= new_size
;
4188 * Switch from linear (direct) extent records to inline buffer.
4191 xfs_iext_direct_to_inline(
4192 xfs_ifork_t
*ifp
, /* inode fork pointer */
4193 xfs_extnum_t nextents
) /* number of extents in file */
4195 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
4196 ASSERT(nextents
<= XFS_INLINE_EXTS
);
4198 * The inline buffer was zeroed when we switched
4199 * from inline to direct extent allocation mode,
4200 * so we don't need to clear it here.
4202 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
4203 nextents
* sizeof(xfs_bmbt_rec_t
));
4204 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4205 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
4206 ifp
->if_real_bytes
= 0;
4210 * Switch from inline buffer to linear (direct) extent records.
4211 * new_size should already be rounded up to the next power of 2
4212 * by the caller (when appropriate), so use new_size as it is.
4213 * However, since new_size may be rounded up, we can't update
4214 * if_bytes here. It is the caller's responsibility to update
4215 * if_bytes upon return.
4218 xfs_iext_inline_to_direct(
4219 xfs_ifork_t
*ifp
, /* inode fork pointer */
4220 int new_size
) /* number of extents in file */
4222 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4223 kmem_alloc(new_size
, KM_SLEEP
);
4224 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
4225 if (ifp
->if_bytes
) {
4226 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
4228 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4229 sizeof(xfs_bmbt_rec_t
));
4231 ifp
->if_real_bytes
= new_size
;
4235 * Resize an extent indirection array to new_size bytes.
4238 xfs_iext_realloc_indirect(
4239 xfs_ifork_t
*ifp
, /* inode fork pointer */
4240 int new_size
) /* new indirection array size */
4242 int nlists
; /* number of irec's (ex lists) */
4243 int size
; /* current indirection array size */
4245 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4246 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4247 size
= nlists
* sizeof(xfs_ext_irec_t
);
4248 ASSERT(ifp
->if_real_bytes
);
4249 ASSERT((new_size
>= 0) && (new_size
!= size
));
4250 if (new_size
== 0) {
4251 xfs_iext_destroy(ifp
);
4253 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
4254 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
4255 new_size
, size
, KM_SLEEP
);
4260 * Switch from indirection array to linear (direct) extent allocations.
4263 xfs_iext_indirect_to_direct(
4264 xfs_ifork_t
*ifp
) /* inode fork pointer */
4266 xfs_bmbt_rec_t
*ep
; /* extent record pointer */
4267 xfs_extnum_t nextents
; /* number of extents in file */
4268 int size
; /* size of file extents */
4270 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4271 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4272 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4273 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
4275 xfs_iext_irec_compact_full(ifp
);
4276 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
4278 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
4279 kmem_free(ifp
->if_u1
.if_ext_irec
, sizeof(xfs_ext_irec_t
));
4280 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4281 ifp
->if_u1
.if_extents
= ep
;
4282 ifp
->if_bytes
= size
;
4283 if (nextents
< XFS_LINEAR_EXTS
) {
4284 xfs_iext_realloc_direct(ifp
, size
);
4289 * Free incore file extents.
4293 xfs_ifork_t
*ifp
) /* inode fork pointer */
4295 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4299 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4300 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
4301 xfs_iext_irec_remove(ifp
, erp_idx
);
4303 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4304 } else if (ifp
->if_real_bytes
) {
4305 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4306 } else if (ifp
->if_bytes
) {
4307 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4308 sizeof(xfs_bmbt_rec_t
));
4310 ifp
->if_u1
.if_extents
= NULL
;
4311 ifp
->if_real_bytes
= 0;
4316 * Return a pointer to the extent record for file system block bno.
4318 xfs_bmbt_rec_t
* /* pointer to found extent record */
4319 xfs_iext_bno_to_ext(
4320 xfs_ifork_t
*ifp
, /* inode fork pointer */
4321 xfs_fileoff_t bno
, /* block number to search for */
4322 xfs_extnum_t
*idxp
) /* index of target extent */
4324 xfs_bmbt_rec_t
*base
; /* pointer to first extent */
4325 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
4326 xfs_bmbt_rec_t
*ep
= NULL
; /* pointer to target extent */
4327 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4328 int high
; /* upper boundary in search */
4329 xfs_extnum_t idx
= 0; /* index of target extent */
4330 int low
; /* lower boundary in search */
4331 xfs_extnum_t nextents
; /* number of file extents */
4332 xfs_fileoff_t startoff
= 0; /* start offset of extent */
4334 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4335 if (nextents
== 0) {
4340 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4341 /* Find target extent list */
4343 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
4344 base
= erp
->er_extbuf
;
4345 high
= erp
->er_extcount
- 1;
4347 base
= ifp
->if_u1
.if_extents
;
4348 high
= nextents
- 1;
4350 /* Binary search extent records */
4351 while (low
<= high
) {
4352 idx
= (low
+ high
) >> 1;
4354 startoff
= xfs_bmbt_get_startoff(ep
);
4355 blockcount
= xfs_bmbt_get_blockcount(ep
);
4356 if (bno
< startoff
) {
4358 } else if (bno
>= startoff
+ blockcount
) {
4361 /* Convert back to file-based extent index */
4362 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4363 idx
+= erp
->er_extoff
;
4369 /* Convert back to file-based extent index */
4370 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4371 idx
+= erp
->er_extoff
;
4373 if (bno
>= startoff
+ blockcount
) {
4374 if (++idx
== nextents
) {
4377 ep
= xfs_iext_get_ext(ifp
, idx
);
4385 * Return a pointer to the indirection array entry containing the
4386 * extent record for filesystem block bno. Store the index of the
4387 * target irec in *erp_idxp.
4389 xfs_ext_irec_t
* /* pointer to found extent record */
4390 xfs_iext_bno_to_irec(
4391 xfs_ifork_t
*ifp
, /* inode fork pointer */
4392 xfs_fileoff_t bno
, /* block number to search for */
4393 int *erp_idxp
) /* irec index of target ext list */
4395 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4396 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4397 int erp_idx
; /* indirection array index */
4398 int nlists
; /* number of extent irec's (lists) */
4399 int high
; /* binary search upper limit */
4400 int low
; /* binary search lower limit */
4402 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4403 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4407 while (low
<= high
) {
4408 erp_idx
= (low
+ high
) >> 1;
4409 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4410 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4411 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4413 } else if (erp_next
&& bno
>=
4414 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4420 *erp_idxp
= erp_idx
;
4425 * Return a pointer to the indirection array entry containing the
4426 * extent record at file extent index *idxp. Store the index of the
4427 * target irec in *erp_idxp and store the page index of the target
4428 * extent record in *idxp.
4431 xfs_iext_idx_to_irec(
4432 xfs_ifork_t
*ifp
, /* inode fork pointer */
4433 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4434 int *erp_idxp
, /* pointer to target irec */
4435 int realloc
) /* new bytes were just added */
4437 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4438 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4439 int erp_idx
; /* indirection array index */
4440 int nlists
; /* number of irec's (ex lists) */
4441 int high
; /* binary search upper limit */
4442 int low
; /* binary search lower limit */
4443 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4445 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4446 ASSERT(page_idx
>= 0 && page_idx
<=
4447 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4448 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4453 /* Binary search extent irec's */
4454 while (low
<= high
) {
4455 erp_idx
= (low
+ high
) >> 1;
4456 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4457 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4458 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4459 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4461 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4462 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4465 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4466 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4470 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4473 page_idx
-= erp
->er_extoff
;
4478 *erp_idxp
= erp_idx
;
4483 * Allocate and initialize an indirection array once the space needed
4484 * for incore extents increases above XFS_IEXT_BUFSZ.
4488 xfs_ifork_t
*ifp
) /* inode fork pointer */
4490 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4491 xfs_extnum_t nextents
; /* number of extents in file */
4493 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4494 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4495 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4497 erp
= (xfs_ext_irec_t
*)
4498 kmem_alloc(sizeof(xfs_ext_irec_t
), KM_SLEEP
);
4500 if (nextents
== 0) {
4501 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4502 kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4503 } else if (!ifp
->if_real_bytes
) {
4504 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4505 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4506 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4508 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4509 erp
->er_extcount
= nextents
;
4512 ifp
->if_flags
|= XFS_IFEXTIREC
;
4513 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4514 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4515 ifp
->if_u1
.if_ext_irec
= erp
;
4521 * Allocate and initialize a new entry in the indirection array.
4525 xfs_ifork_t
*ifp
, /* inode fork pointer */
4526 int erp_idx
) /* index for new irec */
4528 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4529 int i
; /* loop counter */
4530 int nlists
; /* number of irec's (ex lists) */
4532 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4533 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4535 /* Resize indirection array */
4536 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4537 sizeof(xfs_ext_irec_t
));
4539 * Move records down in the array so the
4540 * new page can use erp_idx.
4542 erp
= ifp
->if_u1
.if_ext_irec
;
4543 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4544 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4546 ASSERT(i
== erp_idx
);
4548 /* Initialize new extent record */
4549 erp
= ifp
->if_u1
.if_ext_irec
;
4550 erp
[erp_idx
].er_extbuf
= (xfs_bmbt_rec_t
*)
4551 kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4552 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4553 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4554 erp
[erp_idx
].er_extcount
= 0;
4555 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4556 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4557 return (&erp
[erp_idx
]);
4561 * Remove a record from the indirection array.
4564 xfs_iext_irec_remove(
4565 xfs_ifork_t
*ifp
, /* inode fork pointer */
4566 int erp_idx
) /* irec index to remove */
4568 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4569 int i
; /* loop counter */
4570 int nlists
; /* number of irec's (ex lists) */
4572 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4573 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4574 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4575 if (erp
->er_extbuf
) {
4576 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4578 kmem_free(erp
->er_extbuf
, XFS_IEXT_BUFSZ
);
4580 /* Compact extent records */
4581 erp
= ifp
->if_u1
.if_ext_irec
;
4582 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4583 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4586 * Manually free the last extent record from the indirection
4587 * array. A call to xfs_iext_realloc_indirect() with a size
4588 * of zero would result in a call to xfs_iext_destroy() which
4589 * would in turn call this function again, creating a nasty
4593 xfs_iext_realloc_indirect(ifp
,
4594 nlists
* sizeof(xfs_ext_irec_t
));
4596 kmem_free(ifp
->if_u1
.if_ext_irec
,
4597 sizeof(xfs_ext_irec_t
));
4599 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4603 * This is called to clean up large amounts of unused memory allocated
4604 * by the indirection array. Before compacting anything though, verify
4605 * that the indirection array is still needed and switch back to the
4606 * linear extent list (or even the inline buffer) if possible. The
4607 * compaction policy is as follows:
4609 * Full Compaction: Extents fit into a single page (or inline buffer)
4610 * Full Compaction: Extents occupy less than 10% of allocated space
4611 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4612 * No Compaction: Extents occupy at least 50% of allocated space
4615 xfs_iext_irec_compact(
4616 xfs_ifork_t
*ifp
) /* inode fork pointer */
4618 xfs_extnum_t nextents
; /* number of extents in file */
4619 int nlists
; /* number of irec's (ex lists) */
4621 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4622 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4623 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4625 if (nextents
== 0) {
4626 xfs_iext_destroy(ifp
);
4627 } else if (nextents
<= XFS_INLINE_EXTS
) {
4628 xfs_iext_indirect_to_direct(ifp
);
4629 xfs_iext_direct_to_inline(ifp
, nextents
);
4630 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4631 xfs_iext_indirect_to_direct(ifp
);
4632 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 3) {
4633 xfs_iext_irec_compact_full(ifp
);
4634 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4635 xfs_iext_irec_compact_pages(ifp
);
4640 * Combine extents from neighboring extent pages.
4643 xfs_iext_irec_compact_pages(
4644 xfs_ifork_t
*ifp
) /* inode fork pointer */
4646 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4647 int erp_idx
= 0; /* indirection array index */
4648 int nlists
; /* number of irec's (ex lists) */
4650 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4651 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4652 while (erp_idx
< nlists
- 1) {
4653 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4655 if (erp_next
->er_extcount
<=
4656 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4657 memmove(&erp
->er_extbuf
[erp
->er_extcount
],
4658 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4659 sizeof(xfs_bmbt_rec_t
));
4660 erp
->er_extcount
+= erp_next
->er_extcount
;
4662 * Free page before removing extent record
4663 * so er_extoffs don't get modified in
4664 * xfs_iext_irec_remove.
4666 kmem_free(erp_next
->er_extbuf
, XFS_IEXT_BUFSZ
);
4667 erp_next
->er_extbuf
= NULL
;
4668 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4669 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4677 * Fully compact the extent records managed by the indirection array.
4680 xfs_iext_irec_compact_full(
4681 xfs_ifork_t
*ifp
) /* inode fork pointer */
4683 xfs_bmbt_rec_t
*ep
, *ep_next
; /* extent record pointers */
4684 xfs_ext_irec_t
*erp
, *erp_next
; /* extent irec pointers */
4685 int erp_idx
= 0; /* extent irec index */
4686 int ext_avail
; /* empty entries in ex list */
4687 int ext_diff
; /* number of exts to add */
4688 int nlists
; /* number of irec's (ex lists) */
4690 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4691 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4692 erp
= ifp
->if_u1
.if_ext_irec
;
4693 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4695 ep_next
= erp_next
->er_extbuf
;
4696 while (erp_idx
< nlists
- 1) {
4697 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
4698 ext_diff
= MIN(ext_avail
, erp_next
->er_extcount
);
4699 memcpy(ep
, ep_next
, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4700 erp
->er_extcount
+= ext_diff
;
4701 erp_next
->er_extcount
-= ext_diff
;
4702 /* Remove next page */
4703 if (erp_next
->er_extcount
== 0) {
4705 * Free page before removing extent record
4706 * so er_extoffs don't get modified in
4707 * xfs_iext_irec_remove.
4709 kmem_free(erp_next
->er_extbuf
,
4710 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4711 erp_next
->er_extbuf
= NULL
;
4712 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4713 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4714 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4715 /* Update next page */
4717 /* Move rest of page up to become next new page */
4718 memmove(erp_next
->er_extbuf
, ep_next
,
4719 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4720 ep_next
= erp_next
->er_extbuf
;
4721 memset(&ep_next
[erp_next
->er_extcount
], 0,
4722 (XFS_LINEAR_EXTS
- erp_next
->er_extcount
) *
4723 sizeof(xfs_bmbt_rec_t
));
4725 if (erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4727 if (erp_idx
< nlists
)
4728 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4732 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4734 ep_next
= erp_next
->er_extbuf
;
4739 * This is called to update the er_extoff field in the indirection
4740 * array when extents have been added or removed from one of the
4741 * extent lists. erp_idx contains the irec index to begin updating
4742 * at and ext_diff contains the number of extents that were added
4746 xfs_iext_irec_update_extoffs(
4747 xfs_ifork_t
*ifp
, /* inode fork pointer */
4748 int erp_idx
, /* irec index to update */
4749 int ext_diff
) /* number of new extents */
4751 int i
; /* loop counter */
4752 int nlists
; /* number of irec's (ex lists */
4754 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4755 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4756 for (i
= erp_idx
; i
< nlists
; i
++) {
4757 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;