2 * linux/include/asm-xtensa/pgtable.h
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version2 as
6 * published by the Free Software Foundation.
8 * Copyright (C) 2001 - 2005 Tensilica Inc.
11 #ifndef _XTENSA_PGTABLE_H
12 #define _XTENSA_PGTABLE_H
14 #include <asm-generic/pgtable-nopmd.h>
22 #if (XCHAL_MMU_RINGS < 2)
23 # error Linux build assumes at least 2 ring levels.
26 #if (XCHAL_MMU_CA_BITS != 4)
27 # error We assume exactly four bits for CA.
30 #if (XCHAL_MMU_SR_BITS != 0)
31 # error We have no room for SR bits.
35 * Use the first min-wired way for mapping page-table pages.
36 * Page coloring requires a second min-wired way.
39 #if (XCHAL_DTLB_MINWIRED_SETS == 0)
40 # error Need a min-wired way for mapping page-table pages
43 #define DTLB_WAY_PGTABLE XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAY)
45 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
46 # if XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAYS) >= 2
47 # define DTLB_WAY_DCACHE_ALIAS0 (DTLB_WAY_PGTABLE + 1)
48 # define DTLB_WAY_DCACHE_ALIAS1 (DTLB_WAY_PGTABLE + 2)
50 # error Page coloring requires its own wired dtlb way!
54 #endif /* CONFIG_MMU */
57 * We only use two ring levels, user and kernel space.
60 #define USER_RING 1 /* user ring level */
61 #define KERNEL_RING 0 /* kernel ring level */
64 * The Xtensa architecture port of Linux has a two-level page table system,
65 * i.e. the logical three-level Linux page table layout are folded.
66 * Each task has the following memory page tables:
68 * PGD table (page directory), ie. 3rd-level page table:
69 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
70 * (Architectures that don't have the PMD folded point to the PMD tables)
72 * The pointer to the PGD table for a given task can be retrieved from
73 * the task structure (struct task_struct*) t, e.g. current():
74 * (t->mm ? t->mm : t->active_mm)->pgd
76 * PMD tables (page middle-directory), ie. 2nd-level page tables:
77 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
79 * PTE tables (page table entry), ie. 1st-level page tables:
80 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
81 * invalid_pte_table for absent mappings.
83 * The individual pages are 4 kB big with special pages for the empty_zero_page.
85 #define PGDIR_SHIFT 22
86 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
87 #define PGDIR_MASK (~(PGDIR_SIZE-1))
90 * Entries per page directory level: we use two-level, so
91 * we don't really have any PMD directory physically.
93 #define PTRS_PER_PTE 1024
94 #define PTRS_PER_PTE_SHIFT 10
95 #define PTRS_PER_PMD 1
96 #define PTRS_PER_PGD 1024
99 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
100 #define FIRST_USER_ADDRESS XCHAL_SEG_MAPPABLE_VADDR
101 #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
103 /* virtual memory area. We keep a distance to other memory regions to be
104 * on the safe side. We also use this area for cache aliasing.
107 // FIXME: virtual memory area must be configuration-dependent
109 #define VMALLOC_START 0xC0000000
110 #define VMALLOC_END 0xC7FF0000
112 /* Xtensa Linux config PTE layout (when present):
118 * Similar to the Alpha and MIPS ports, we need to keep track of the ref
119 * and mod bits in software. We have a software "you can read
120 * from this page" bit, and a hardware one which actually lets the
121 * process read from the page. On the same token we have a software
122 * writable bit and the real hardware one which actually lets the
123 * process write to the page.
125 * See further below for PTE layout for swapped-out pages.
128 #define _PAGE_VALID (1<<0) /* hardware: page is accessible */
129 #define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */
131 /* None of these cache modes include MP coherency: */
132 #define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */
133 #if XCHAL_DCACHE_IS_WRITEBACK
134 # define _PAGE_WRITEBACK (1<<2) /* write back */
135 # define _PAGE_WRITETHRU (2<<2) /* write through */
137 # define _PAGE_WRITEBACK (1<<2) /* assume write through */
138 # define _PAGE_WRITETHRU (1<<2)
140 #define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */
141 #define _CACHE_MASK (3<<2)
143 #define _PAGE_USER (1<<4) /* user access (ring=1) */
144 #define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */
147 #define _PAGE_RW (1<<6) /* software: page writable */
148 #define _PAGE_DIRTY (1<<7) /* software: page dirty */
149 #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
150 #define _PAGE_FILE (1<<9) /* nonlinear file mapping*/
152 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY)
153 #define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED)
157 # define PAGE_NONE __pgprot(_PAGE_PRESENT)
158 # define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW)
159 # define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
160 # define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
161 # define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE)
162 # define PAGE_INVALID __pgprot(_PAGE_USER)
164 # if (DCACHE_WAY_SIZE > PAGE_SIZE)
165 # define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL)
167 # define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL)
172 # define PAGE_NONE __pgprot(0)
173 # define PAGE_SHARED __pgprot(0)
174 # define PAGE_COPY __pgprot(0)
175 # define PAGE_READONLY __pgprot(0)
176 # define PAGE_KERNEL __pgprot(0)
181 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
182 * the MMU can't do page protection for execute, and considers that the same as
183 * read. Also, write permissions may imply read permissions.
184 * What follows is the closest we can get by reasonable means..
185 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
187 #define __P000 PAGE_NONE /* private --- */
188 #define __P001 PAGE_READONLY /* private --r */
189 #define __P010 PAGE_COPY /* private -w- */
190 #define __P011 PAGE_COPY /* private -wr */
191 #define __P100 PAGE_READONLY /* private x-- */
192 #define __P101 PAGE_READONLY /* private x-r */
193 #define __P110 PAGE_COPY /* private xw- */
194 #define __P111 PAGE_COPY /* private xwr */
196 #define __S000 PAGE_NONE /* shared --- */
197 #define __S001 PAGE_READONLY /* shared --r */
198 #define __S010 PAGE_SHARED /* shared -w- */
199 #define __S011 PAGE_SHARED /* shared -wr */
200 #define __S100 PAGE_READONLY /* shared x-- */
201 #define __S101 PAGE_READONLY /* shared x-r */
202 #define __S110 PAGE_SHARED /* shared xw- */
203 #define __S111 PAGE_SHARED /* shared xwr */
207 #define pte_ERROR(e) \
208 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
209 #define pgd_ERROR(e) \
210 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
212 extern unsigned long empty_zero_page
[1024];
214 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
216 extern pgd_t swapper_pg_dir
[PAGE_SIZE
/sizeof(pgd_t
)];
219 * The pmd contains the kernel virtual address of the pte page.
221 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
222 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
225 * The following only work if pte_present() is true.
227 #define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER))
228 #define pte_present(pte) (pte_val(pte) & _PAGE_VALID)
229 #define pte_clear(mm,addr,ptep) \
230 do { update_pte(ptep, __pte(_PAGE_USER)); } while(0)
232 #define pmd_none(pmd) (!pmd_val(pmd))
233 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
234 #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
235 #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
237 /* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */
239 static inline int pte_read(pte_t pte
) { return pte_val(pte
) & _PAGE_USER
; }
240 static inline int pte_write(pte_t pte
) { return pte_val(pte
) & _PAGE_RW
; }
241 static inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
242 static inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
243 static inline int pte_file(pte_t pte
) { return pte_val(pte
) & _PAGE_FILE
; }
244 static inline pte_t
pte_wrprotect(pte_t pte
) { pte_val(pte
) &= ~(_PAGE_RW
| _PAGE_WRENABLE
); return pte
; }
245 static inline pte_t
pte_rdprotect(pte_t pte
) { pte_val(pte
) &= ~_PAGE_USER
; return pte
; }
246 static inline pte_t
pte_mkclean(pte_t pte
) { pte_val(pte
) &= ~_PAGE_DIRTY
; return pte
; }
247 static inline pte_t
pte_mkold(pte_t pte
) { pte_val(pte
) &= ~_PAGE_ACCESSED
; return pte
; }
248 static inline pte_t
pte_mkread(pte_t pte
) { pte_val(pte
) |= _PAGE_USER
; return pte
; }
249 static inline pte_t
pte_mkdirty(pte_t pte
) { pte_val(pte
) |= _PAGE_DIRTY
; return pte
; }
250 static inline pte_t
pte_mkyoung(pte_t pte
) { pte_val(pte
) |= _PAGE_ACCESSED
; return pte
; }
251 static inline pte_t
pte_mkwrite(pte_t pte
) { pte_val(pte
) |= _PAGE_RW
; return pte
; }
254 * Conversion functions: convert a page and protection to a page entry,
255 * and a page entry and page directory to the page they refer to.
257 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
258 #define pte_same(a,b) (pte_val(a) == pte_val(b))
259 #define pte_page(x) pfn_to_page(pte_pfn(x))
260 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
261 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
263 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
265 return __pte((pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
));
269 * Certain architectures need to do special things when pte's
270 * within a page table are directly modified. Thus, the following
271 * hook is made available.
273 static inline void update_pte(pte_t
*ptep
, pte_t pteval
)
276 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
277 __asm__
__volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep
));
284 set_pte_at(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
, pte_t pteval
)
286 update_pte(ptep
, pteval
);
291 set_pmd(pmd_t
*pmdp
, pmd_t pmdval
)
294 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
295 __asm__
__volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp
));
299 struct vm_area_struct
;
302 ptep_test_and_clear_young(struct vm_area_struct
*vma
, unsigned long addr
,
308 update_pte(ptep
, pte_mkold(pte
));
313 ptep_test_and_clear_dirty(struct vm_area_struct
*vma
, unsigned long addr
,
319 update_pte(ptep
, pte_mkclean(pte
));
324 ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
327 pte_clear(mm
, addr
, ptep
);
332 ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
335 update_pte(ptep
, pte_wrprotect(pte
));
338 /* to find an entry in a kernel page-table-directory */
339 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
341 /* to find an entry in a page-table-directory */
342 #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
344 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
346 /* Find an entry in the second-level page table.. */
347 #define pmd_offset(dir,address) ((pmd_t*)(dir))
349 /* Find an entry in the third-level page table.. */
350 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
351 #define pte_offset_kernel(dir,addr) \
352 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
353 #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
354 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr))
356 #define pte_unmap(pte) do { } while (0)
357 #define pte_unmap_nested(pte) do { } while (0)
361 * Encode and decode a swap entry.
362 * Each PTE in a process VM's page table is either:
363 * "present" -- valid and not swapped out, protection bits are meaningful;
364 * "not present" -- which further subdivides in these two cases:
365 * "none" -- no mapping at all; identified by pte_none(), set by pte_clear(
366 * "swapped out" -- the page is swapped out, and the SWP macros below
367 * are used to store swap file info in the PTE itself.
369 * In the Xtensa processor MMU, any PTE entries in user space (or anywhere
370 * in virtual memory that can map differently across address spaces)
371 * must have a correct ring value that represents the RASID field that
372 * is changed when switching address spaces. Eg. such PTE entries cannot
373 * be set to ring zero, because that can cause a (global) kernel ASID
374 * entry to be created in the TLBs (even with invalid cache attribute),
375 * potentially causing a multihit exception when going back to another
376 * address space that mapped the same virtual address at another ring.
378 * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs.
379 * We also avoid using the _PAGE_VALID bit which must be zero for non-present
382 * We end up with the following available bits: 1..3 and 7..31.
383 * We don't bother with 1..3 for now (we can use them later if needed),
384 * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits
385 * for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it
386 * is currently implemented as an index into swap_info[MAX_SWAPFILES]
387 * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>.
388 * However, for some reason all other architectures in the 2.4 kernel
389 * reserve either 6, 7, or 8 bits so I'll not detract from that for now. :)
390 * SWP_OFFSET is an offset into the swap file in page-size units, so
391 * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB.
393 * FIXME: 2 GB isn't very big. Other bits can be used to allow
394 * larger swap sizes. In the meantime, it appears relatively easy to get
395 * around the 2 GB limitation by simply using multiple swap files.
398 #define __swp_type(entry) (((entry).val >> 7) & 0x3f)
399 #define __swp_offset(entry) ((entry).val >> 13)
400 #define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)})
401 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
402 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
404 #define PTE_FILE_MAX_BITS 29
405 #define pte_to_pgoff(pte) (pte_val(pte) >> 3)
406 #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
409 #endif /* !defined (__ASSEMBLY__) */
414 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
415 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
416 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
417 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
419 * Note: We require an additional temporary register which can be the same as
420 * the register that holds the address.
422 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
425 #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
426 #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
428 #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
429 _PGD_INDEX(tmp, adr); \
432 #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
433 srli pmd, pmd, PAGE_SHIFT; \
434 slli pmd, pmd, PAGE_SHIFT; \
439 extern void paging_init(void);
441 #define kern_addr_valid(addr) (1)
443 extern void update_mmu_cache(struct vm_area_struct
* vma
,
444 unsigned long address
, pte_t pte
);
447 * remap a physical page `pfn' of size `size' with page protection `prot'
448 * into virtual address `from'
450 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
451 remap_pfn_range(vma, from, pfn, size, prot)
454 /* No page table caches to init */
456 #define pgtable_cache_init() do { } while (0)
458 typedef pte_t
*pte_addr_t
;
460 #endif /* !defined (__ASSEMBLY__) */
462 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
463 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
464 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
465 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
466 #define __HAVE_ARCH_PTEP_MKDIRTY
467 #define __HAVE_ARCH_PTE_SAME
469 #include <asm-generic/pgtable.h>
471 #endif /* _XTENSA_PGTABLE_H */