IB/mthca: Query port fix
[linux-2.6/verdex.git] / mm / page_alloc.c
bloba8c003e7b3d51ae97c1a443f0c8d2fb1989f57a4
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
45 #include "internal.h"
48 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
49 * initializer cleaner
51 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
52 EXPORT_SYMBOL(node_online_map);
53 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
54 EXPORT_SYMBOL(node_possible_map);
55 unsigned long totalram_pages __read_mostly;
56 unsigned long totalreserve_pages __read_mostly;
57 long nr_swap_pages;
58 int percpu_pagelist_fraction;
60 static void __free_pages_ok(struct page *page, unsigned int order);
63 * results with 256, 32 in the lowmem_reserve sysctl:
64 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65 * 1G machine -> (16M dma, 784M normal, 224M high)
66 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
70 * TBD: should special case ZONE_DMA32 machines here - in those we normally
71 * don't need any ZONE_NORMAL reservation
73 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
74 256,
75 #ifdef CONFIG_ZONE_DMA32
76 256,
77 #endif
78 #ifdef CONFIG_HIGHMEM
80 #endif
83 EXPORT_SYMBOL(totalram_pages);
86 * Used by page_zone() to look up the address of the struct zone whose
87 * id is encoded in the upper bits of page->flags
89 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
90 EXPORT_SYMBOL(zone_table);
92 static char *zone_names[MAX_NR_ZONES] = {
93 "DMA",
94 #ifdef CONFIG_ZONE_DMA32
95 "DMA32",
96 #endif
97 "Normal",
98 #ifdef CONFIG_HIGHMEM
99 "HighMem"
100 #endif
103 int min_free_kbytes = 1024;
105 unsigned long __meminitdata nr_kernel_pages;
106 unsigned long __meminitdata nr_all_pages;
107 static unsigned long __initdata dma_reserve;
109 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
111 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
112 * ranges of memory (RAM) that may be registered with add_active_range().
113 * Ranges passed to add_active_range() will be merged if possible
114 * so the number of times add_active_range() can be called is
115 * related to the number of nodes and the number of holes
117 #ifdef CONFIG_MAX_ACTIVE_REGIONS
118 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
119 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
120 #else
121 #if MAX_NUMNODES >= 32
122 /* If there can be many nodes, allow up to 50 holes per node */
123 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
124 #else
125 /* By default, allow up to 256 distinct regions */
126 #define MAX_ACTIVE_REGIONS 256
127 #endif
128 #endif
130 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
131 int __initdata nr_nodemap_entries;
132 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
133 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
134 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
135 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
136 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
137 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
138 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
140 #ifdef CONFIG_DEBUG_VM
141 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
143 int ret = 0;
144 unsigned seq;
145 unsigned long pfn = page_to_pfn(page);
147 do {
148 seq = zone_span_seqbegin(zone);
149 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
150 ret = 1;
151 else if (pfn < zone->zone_start_pfn)
152 ret = 1;
153 } while (zone_span_seqretry(zone, seq));
155 return ret;
158 static int page_is_consistent(struct zone *zone, struct page *page)
160 #ifdef CONFIG_HOLES_IN_ZONE
161 if (!pfn_valid(page_to_pfn(page)))
162 return 0;
163 #endif
164 if (zone != page_zone(page))
165 return 0;
167 return 1;
170 * Temporary debugging check for pages not lying within a given zone.
172 static int bad_range(struct zone *zone, struct page *page)
174 if (page_outside_zone_boundaries(zone, page))
175 return 1;
176 if (!page_is_consistent(zone, page))
177 return 1;
179 return 0;
181 #else
182 static inline int bad_range(struct zone *zone, struct page *page)
184 return 0;
186 #endif
188 static void bad_page(struct page *page)
190 printk(KERN_EMERG "Bad page state in process '%s'\n"
191 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
192 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
193 KERN_EMERG "Backtrace:\n",
194 current->comm, page, (int)(2*sizeof(unsigned long)),
195 (unsigned long)page->flags, page->mapping,
196 page_mapcount(page), page_count(page));
197 dump_stack();
198 page->flags &= ~(1 << PG_lru |
199 1 << PG_private |
200 1 << PG_locked |
201 1 << PG_active |
202 1 << PG_dirty |
203 1 << PG_reclaim |
204 1 << PG_slab |
205 1 << PG_swapcache |
206 1 << PG_writeback |
207 1 << PG_buddy );
208 set_page_count(page, 0);
209 reset_page_mapcount(page);
210 page->mapping = NULL;
211 add_taint(TAINT_BAD_PAGE);
215 * Higher-order pages are called "compound pages". They are structured thusly:
217 * The first PAGE_SIZE page is called the "head page".
219 * The remaining PAGE_SIZE pages are called "tail pages".
221 * All pages have PG_compound set. All pages have their ->private pointing at
222 * the head page (even the head page has this).
224 * The first tail page's ->lru.next holds the address of the compound page's
225 * put_page() function. Its ->lru.prev holds the order of allocation.
226 * This usage means that zero-order pages may not be compound.
229 static void free_compound_page(struct page *page)
231 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
234 static void prep_compound_page(struct page *page, unsigned long order)
236 int i;
237 int nr_pages = 1 << order;
239 page[1].lru.next = (void *)free_compound_page; /* set dtor */
240 page[1].lru.prev = (void *)order;
241 for (i = 0; i < nr_pages; i++) {
242 struct page *p = page + i;
244 __SetPageCompound(p);
245 set_page_private(p, (unsigned long)page);
249 static void destroy_compound_page(struct page *page, unsigned long order)
251 int i;
252 int nr_pages = 1 << order;
254 if (unlikely((unsigned long)page[1].lru.prev != order))
255 bad_page(page);
257 for (i = 0; i < nr_pages; i++) {
258 struct page *p = page + i;
260 if (unlikely(!PageCompound(p) |
261 (page_private(p) != (unsigned long)page)))
262 bad_page(page);
263 __ClearPageCompound(p);
267 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
269 int i;
271 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
273 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
274 * and __GFP_HIGHMEM from hard or soft interrupt context.
276 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
277 for (i = 0; i < (1 << order); i++)
278 clear_highpage(page + i);
282 * function for dealing with page's order in buddy system.
283 * zone->lock is already acquired when we use these.
284 * So, we don't need atomic page->flags operations here.
286 static inline unsigned long page_order(struct page *page)
288 return page_private(page);
291 static inline void set_page_order(struct page *page, int order)
293 set_page_private(page, order);
294 __SetPageBuddy(page);
297 static inline void rmv_page_order(struct page *page)
299 __ClearPageBuddy(page);
300 set_page_private(page, 0);
304 * Locate the struct page for both the matching buddy in our
305 * pair (buddy1) and the combined O(n+1) page they form (page).
307 * 1) Any buddy B1 will have an order O twin B2 which satisfies
308 * the following equation:
309 * B2 = B1 ^ (1 << O)
310 * For example, if the starting buddy (buddy2) is #8 its order
311 * 1 buddy is #10:
312 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
314 * 2) Any buddy B will have an order O+1 parent P which
315 * satisfies the following equation:
316 * P = B & ~(1 << O)
318 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
320 static inline struct page *
321 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
323 unsigned long buddy_idx = page_idx ^ (1 << order);
325 return page + (buddy_idx - page_idx);
328 static inline unsigned long
329 __find_combined_index(unsigned long page_idx, unsigned int order)
331 return (page_idx & ~(1 << order));
335 * This function checks whether a page is free && is the buddy
336 * we can do coalesce a page and its buddy if
337 * (a) the buddy is not in a hole &&
338 * (b) the buddy is in the buddy system &&
339 * (c) a page and its buddy have the same order &&
340 * (d) a page and its buddy are in the same zone.
342 * For recording whether a page is in the buddy system, we use PG_buddy.
343 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
345 * For recording page's order, we use page_private(page).
347 static inline int page_is_buddy(struct page *page, struct page *buddy,
348 int order)
350 #ifdef CONFIG_HOLES_IN_ZONE
351 if (!pfn_valid(page_to_pfn(buddy)))
352 return 0;
353 #endif
355 if (page_zone_id(page) != page_zone_id(buddy))
356 return 0;
358 if (PageBuddy(buddy) && page_order(buddy) == order) {
359 BUG_ON(page_count(buddy) != 0);
360 return 1;
362 return 0;
366 * Freeing function for a buddy system allocator.
368 * The concept of a buddy system is to maintain direct-mapped table
369 * (containing bit values) for memory blocks of various "orders".
370 * The bottom level table contains the map for the smallest allocatable
371 * units of memory (here, pages), and each level above it describes
372 * pairs of units from the levels below, hence, "buddies".
373 * At a high level, all that happens here is marking the table entry
374 * at the bottom level available, and propagating the changes upward
375 * as necessary, plus some accounting needed to play nicely with other
376 * parts of the VM system.
377 * At each level, we keep a list of pages, which are heads of continuous
378 * free pages of length of (1 << order) and marked with PG_buddy. Page's
379 * order is recorded in page_private(page) field.
380 * So when we are allocating or freeing one, we can derive the state of the
381 * other. That is, if we allocate a small block, and both were
382 * free, the remainder of the region must be split into blocks.
383 * If a block is freed, and its buddy is also free, then this
384 * triggers coalescing into a block of larger size.
386 * -- wli
389 static inline void __free_one_page(struct page *page,
390 struct zone *zone, unsigned int order)
392 unsigned long page_idx;
393 int order_size = 1 << order;
395 if (unlikely(PageCompound(page)))
396 destroy_compound_page(page, order);
398 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
400 VM_BUG_ON(page_idx & (order_size - 1));
401 VM_BUG_ON(bad_range(zone, page));
403 zone->free_pages += order_size;
404 while (order < MAX_ORDER-1) {
405 unsigned long combined_idx;
406 struct free_area *area;
407 struct page *buddy;
409 buddy = __page_find_buddy(page, page_idx, order);
410 if (!page_is_buddy(page, buddy, order))
411 break; /* Move the buddy up one level. */
413 list_del(&buddy->lru);
414 area = zone->free_area + order;
415 area->nr_free--;
416 rmv_page_order(buddy);
417 combined_idx = __find_combined_index(page_idx, order);
418 page = page + (combined_idx - page_idx);
419 page_idx = combined_idx;
420 order++;
422 set_page_order(page, order);
423 list_add(&page->lru, &zone->free_area[order].free_list);
424 zone->free_area[order].nr_free++;
427 static inline int free_pages_check(struct page *page)
429 if (unlikely(page_mapcount(page) |
430 (page->mapping != NULL) |
431 (page_count(page) != 0) |
432 (page->flags & (
433 1 << PG_lru |
434 1 << PG_private |
435 1 << PG_locked |
436 1 << PG_active |
437 1 << PG_reclaim |
438 1 << PG_slab |
439 1 << PG_swapcache |
440 1 << PG_writeback |
441 1 << PG_reserved |
442 1 << PG_buddy ))))
443 bad_page(page);
444 if (PageDirty(page))
445 __ClearPageDirty(page);
447 * For now, we report if PG_reserved was found set, but do not
448 * clear it, and do not free the page. But we shall soon need
449 * to do more, for when the ZERO_PAGE count wraps negative.
451 return PageReserved(page);
455 * Frees a list of pages.
456 * Assumes all pages on list are in same zone, and of same order.
457 * count is the number of pages to free.
459 * If the zone was previously in an "all pages pinned" state then look to
460 * see if this freeing clears that state.
462 * And clear the zone's pages_scanned counter, to hold off the "all pages are
463 * pinned" detection logic.
465 static void free_pages_bulk(struct zone *zone, int count,
466 struct list_head *list, int order)
468 spin_lock(&zone->lock);
469 zone->all_unreclaimable = 0;
470 zone->pages_scanned = 0;
471 while (count--) {
472 struct page *page;
474 VM_BUG_ON(list_empty(list));
475 page = list_entry(list->prev, struct page, lru);
476 /* have to delete it as __free_one_page list manipulates */
477 list_del(&page->lru);
478 __free_one_page(page, zone, order);
480 spin_unlock(&zone->lock);
483 static void free_one_page(struct zone *zone, struct page *page, int order)
485 spin_lock(&zone->lock);
486 zone->all_unreclaimable = 0;
487 zone->pages_scanned = 0;
488 __free_one_page(page, zone ,order);
489 spin_unlock(&zone->lock);
492 static void __free_pages_ok(struct page *page, unsigned int order)
494 unsigned long flags;
495 int i;
496 int reserved = 0;
498 arch_free_page(page, order);
499 if (!PageHighMem(page))
500 debug_check_no_locks_freed(page_address(page),
501 PAGE_SIZE<<order);
503 for (i = 0 ; i < (1 << order) ; ++i)
504 reserved += free_pages_check(page + i);
505 if (reserved)
506 return;
508 kernel_map_pages(page, 1 << order, 0);
509 local_irq_save(flags);
510 __count_vm_events(PGFREE, 1 << order);
511 free_one_page(page_zone(page), page, order);
512 local_irq_restore(flags);
516 * permit the bootmem allocator to evade page validation on high-order frees
518 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
520 if (order == 0) {
521 __ClearPageReserved(page);
522 set_page_count(page, 0);
523 set_page_refcounted(page);
524 __free_page(page);
525 } else {
526 int loop;
528 prefetchw(page);
529 for (loop = 0; loop < BITS_PER_LONG; loop++) {
530 struct page *p = &page[loop];
532 if (loop + 1 < BITS_PER_LONG)
533 prefetchw(p + 1);
534 __ClearPageReserved(p);
535 set_page_count(p, 0);
538 set_page_refcounted(page);
539 __free_pages(page, order);
545 * The order of subdivision here is critical for the IO subsystem.
546 * Please do not alter this order without good reasons and regression
547 * testing. Specifically, as large blocks of memory are subdivided,
548 * the order in which smaller blocks are delivered depends on the order
549 * they're subdivided in this function. This is the primary factor
550 * influencing the order in which pages are delivered to the IO
551 * subsystem according to empirical testing, and this is also justified
552 * by considering the behavior of a buddy system containing a single
553 * large block of memory acted on by a series of small allocations.
554 * This behavior is a critical factor in sglist merging's success.
556 * -- wli
558 static inline void expand(struct zone *zone, struct page *page,
559 int low, int high, struct free_area *area)
561 unsigned long size = 1 << high;
563 while (high > low) {
564 area--;
565 high--;
566 size >>= 1;
567 VM_BUG_ON(bad_range(zone, &page[size]));
568 list_add(&page[size].lru, &area->free_list);
569 area->nr_free++;
570 set_page_order(&page[size], high);
575 * This page is about to be returned from the page allocator
577 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
579 if (unlikely(page_mapcount(page) |
580 (page->mapping != NULL) |
581 (page_count(page) != 0) |
582 (page->flags & (
583 1 << PG_lru |
584 1 << PG_private |
585 1 << PG_locked |
586 1 << PG_active |
587 1 << PG_dirty |
588 1 << PG_reclaim |
589 1 << PG_slab |
590 1 << PG_swapcache |
591 1 << PG_writeback |
592 1 << PG_reserved |
593 1 << PG_buddy ))))
594 bad_page(page);
597 * For now, we report if PG_reserved was found set, but do not
598 * clear it, and do not allocate the page: as a safety net.
600 if (PageReserved(page))
601 return 1;
603 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
604 1 << PG_referenced | 1 << PG_arch_1 |
605 1 << PG_checked | 1 << PG_mappedtodisk);
606 set_page_private(page, 0);
607 set_page_refcounted(page);
608 kernel_map_pages(page, 1 << order, 1);
610 if (gfp_flags & __GFP_ZERO)
611 prep_zero_page(page, order, gfp_flags);
613 if (order && (gfp_flags & __GFP_COMP))
614 prep_compound_page(page, order);
616 return 0;
620 * Do the hard work of removing an element from the buddy allocator.
621 * Call me with the zone->lock already held.
623 static struct page *__rmqueue(struct zone *zone, unsigned int order)
625 struct free_area * area;
626 unsigned int current_order;
627 struct page *page;
629 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
630 area = zone->free_area + current_order;
631 if (list_empty(&area->free_list))
632 continue;
634 page = list_entry(area->free_list.next, struct page, lru);
635 list_del(&page->lru);
636 rmv_page_order(page);
637 area->nr_free--;
638 zone->free_pages -= 1UL << order;
639 expand(zone, page, order, current_order, area);
640 return page;
643 return NULL;
647 * Obtain a specified number of elements from the buddy allocator, all under
648 * a single hold of the lock, for efficiency. Add them to the supplied list.
649 * Returns the number of new pages which were placed at *list.
651 static int rmqueue_bulk(struct zone *zone, unsigned int order,
652 unsigned long count, struct list_head *list)
654 int i;
656 spin_lock(&zone->lock);
657 for (i = 0; i < count; ++i) {
658 struct page *page = __rmqueue(zone, order);
659 if (unlikely(page == NULL))
660 break;
661 list_add_tail(&page->lru, list);
663 spin_unlock(&zone->lock);
664 return i;
667 #ifdef CONFIG_NUMA
669 * Called from the slab reaper to drain pagesets on a particular node that
670 * belongs to the currently executing processor.
671 * Note that this function must be called with the thread pinned to
672 * a single processor.
674 void drain_node_pages(int nodeid)
676 int i;
677 enum zone_type z;
678 unsigned long flags;
680 for (z = 0; z < MAX_NR_ZONES; z++) {
681 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
682 struct per_cpu_pageset *pset;
684 if (!populated_zone(zone))
685 continue;
687 pset = zone_pcp(zone, smp_processor_id());
688 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
689 struct per_cpu_pages *pcp;
691 pcp = &pset->pcp[i];
692 if (pcp->count) {
693 local_irq_save(flags);
694 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
695 pcp->count = 0;
696 local_irq_restore(flags);
701 #endif
703 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
704 static void __drain_pages(unsigned int cpu)
706 unsigned long flags;
707 struct zone *zone;
708 int i;
710 for_each_zone(zone) {
711 struct per_cpu_pageset *pset;
713 pset = zone_pcp(zone, cpu);
714 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
715 struct per_cpu_pages *pcp;
717 pcp = &pset->pcp[i];
718 local_irq_save(flags);
719 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
720 pcp->count = 0;
721 local_irq_restore(flags);
725 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
727 #ifdef CONFIG_PM
729 void mark_free_pages(struct zone *zone)
731 unsigned long pfn, max_zone_pfn;
732 unsigned long flags;
733 int order;
734 struct list_head *curr;
736 if (!zone->spanned_pages)
737 return;
739 spin_lock_irqsave(&zone->lock, flags);
741 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743 if (pfn_valid(pfn)) {
744 struct page *page = pfn_to_page(pfn);
746 if (!PageNosave(page))
747 ClearPageNosaveFree(page);
750 for (order = MAX_ORDER - 1; order >= 0; --order)
751 list_for_each(curr, &zone->free_area[order].free_list) {
752 unsigned long i;
754 pfn = page_to_pfn(list_entry(curr, struct page, lru));
755 for (i = 0; i < (1UL << order); i++)
756 SetPageNosaveFree(pfn_to_page(pfn + i));
759 spin_unlock_irqrestore(&zone->lock, flags);
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
765 void drain_local_pages(void)
767 unsigned long flags;
769 local_irq_save(flags);
770 __drain_pages(smp_processor_id());
771 local_irq_restore(flags);
773 #endif /* CONFIG_PM */
776 * Free a 0-order page
778 static void fastcall free_hot_cold_page(struct page *page, int cold)
780 struct zone *zone = page_zone(page);
781 struct per_cpu_pages *pcp;
782 unsigned long flags;
784 arch_free_page(page, 0);
786 if (PageAnon(page))
787 page->mapping = NULL;
788 if (free_pages_check(page))
789 return;
791 kernel_map_pages(page, 1, 0);
793 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
794 local_irq_save(flags);
795 __count_vm_event(PGFREE);
796 list_add(&page->lru, &pcp->list);
797 pcp->count++;
798 if (pcp->count >= pcp->high) {
799 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
800 pcp->count -= pcp->batch;
802 local_irq_restore(flags);
803 put_cpu();
806 void fastcall free_hot_page(struct page *page)
808 free_hot_cold_page(page, 0);
811 void fastcall free_cold_page(struct page *page)
813 free_hot_cold_page(page, 1);
817 * split_page takes a non-compound higher-order page, and splits it into
818 * n (1<<order) sub-pages: page[0..n]
819 * Each sub-page must be freed individually.
821 * Note: this is probably too low level an operation for use in drivers.
822 * Please consult with lkml before using this in your driver.
824 void split_page(struct page *page, unsigned int order)
826 int i;
828 VM_BUG_ON(PageCompound(page));
829 VM_BUG_ON(!page_count(page));
830 for (i = 1; i < (1 << order); i++)
831 set_page_refcounted(page + i);
835 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
836 * we cheat by calling it from here, in the order > 0 path. Saves a branch
837 * or two.
839 static struct page *buffered_rmqueue(struct zonelist *zonelist,
840 struct zone *zone, int order, gfp_t gfp_flags)
842 unsigned long flags;
843 struct page *page;
844 int cold = !!(gfp_flags & __GFP_COLD);
845 int cpu;
847 again:
848 cpu = get_cpu();
849 if (likely(order == 0)) {
850 struct per_cpu_pages *pcp;
852 pcp = &zone_pcp(zone, cpu)->pcp[cold];
853 local_irq_save(flags);
854 if (!pcp->count) {
855 pcp->count += rmqueue_bulk(zone, 0,
856 pcp->batch, &pcp->list);
857 if (unlikely(!pcp->count))
858 goto failed;
860 page = list_entry(pcp->list.next, struct page, lru);
861 list_del(&page->lru);
862 pcp->count--;
863 } else {
864 spin_lock_irqsave(&zone->lock, flags);
865 page = __rmqueue(zone, order);
866 spin_unlock(&zone->lock);
867 if (!page)
868 goto failed;
871 __count_zone_vm_events(PGALLOC, zone, 1 << order);
872 zone_statistics(zonelist, zone);
873 local_irq_restore(flags);
874 put_cpu();
876 VM_BUG_ON(bad_range(zone, page));
877 if (prep_new_page(page, order, gfp_flags))
878 goto again;
879 return page;
881 failed:
882 local_irq_restore(flags);
883 put_cpu();
884 return NULL;
887 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
888 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
889 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
890 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
891 #define ALLOC_HARDER 0x10 /* try to alloc harder */
892 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
893 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
896 * Return 1 if free pages are above 'mark'. This takes into account the order
897 * of the allocation.
899 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
900 int classzone_idx, int alloc_flags)
902 /* free_pages my go negative - that's OK */
903 unsigned long min = mark;
904 long free_pages = z->free_pages - (1 << order) + 1;
905 int o;
907 if (alloc_flags & ALLOC_HIGH)
908 min -= min / 2;
909 if (alloc_flags & ALLOC_HARDER)
910 min -= min / 4;
912 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
913 return 0;
914 for (o = 0; o < order; o++) {
915 /* At the next order, this order's pages become unavailable */
916 free_pages -= z->free_area[o].nr_free << o;
918 /* Require fewer higher order pages to be free */
919 min >>= 1;
921 if (free_pages <= min)
922 return 0;
924 return 1;
928 * get_page_from_freeliest goes through the zonelist trying to allocate
929 * a page.
931 static struct page *
932 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
933 struct zonelist *zonelist, int alloc_flags)
935 struct zone **z = zonelist->zones;
936 struct page *page = NULL;
937 int classzone_idx = zone_idx(*z);
938 struct zone *zone;
941 * Go through the zonelist once, looking for a zone with enough free.
942 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
944 do {
945 zone = *z;
946 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
947 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
948 break;
949 if ((alloc_flags & ALLOC_CPUSET) &&
950 !cpuset_zone_allowed(zone, gfp_mask))
951 continue;
953 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
954 unsigned long mark;
955 if (alloc_flags & ALLOC_WMARK_MIN)
956 mark = zone->pages_min;
957 else if (alloc_flags & ALLOC_WMARK_LOW)
958 mark = zone->pages_low;
959 else
960 mark = zone->pages_high;
961 if (!zone_watermark_ok(zone , order, mark,
962 classzone_idx, alloc_flags))
963 if (!zone_reclaim_mode ||
964 !zone_reclaim(zone, gfp_mask, order))
965 continue;
968 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
969 if (page) {
970 break;
972 } while (*(++z) != NULL);
973 return page;
977 * This is the 'heart' of the zoned buddy allocator.
979 struct page * fastcall
980 __alloc_pages(gfp_t gfp_mask, unsigned int order,
981 struct zonelist *zonelist)
983 const gfp_t wait = gfp_mask & __GFP_WAIT;
984 struct zone **z;
985 struct page *page;
986 struct reclaim_state reclaim_state;
987 struct task_struct *p = current;
988 int do_retry;
989 int alloc_flags;
990 int did_some_progress;
992 might_sleep_if(wait);
994 restart:
995 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
997 if (unlikely(*z == NULL)) {
998 /* Should this ever happen?? */
999 return NULL;
1002 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1003 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1004 if (page)
1005 goto got_pg;
1007 do {
1008 wakeup_kswapd(*z, order);
1009 } while (*(++z));
1012 * OK, we're below the kswapd watermark and have kicked background
1013 * reclaim. Now things get more complex, so set up alloc_flags according
1014 * to how we want to proceed.
1016 * The caller may dip into page reserves a bit more if the caller
1017 * cannot run direct reclaim, or if the caller has realtime scheduling
1018 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1019 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1021 alloc_flags = ALLOC_WMARK_MIN;
1022 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1023 alloc_flags |= ALLOC_HARDER;
1024 if (gfp_mask & __GFP_HIGH)
1025 alloc_flags |= ALLOC_HIGH;
1026 if (wait)
1027 alloc_flags |= ALLOC_CPUSET;
1030 * Go through the zonelist again. Let __GFP_HIGH and allocations
1031 * coming from realtime tasks go deeper into reserves.
1033 * This is the last chance, in general, before the goto nopage.
1034 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1035 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1037 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1038 if (page)
1039 goto got_pg;
1041 /* This allocation should allow future memory freeing. */
1043 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1044 && !in_interrupt()) {
1045 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1046 nofail_alloc:
1047 /* go through the zonelist yet again, ignoring mins */
1048 page = get_page_from_freelist(gfp_mask, order,
1049 zonelist, ALLOC_NO_WATERMARKS);
1050 if (page)
1051 goto got_pg;
1052 if (gfp_mask & __GFP_NOFAIL) {
1053 blk_congestion_wait(WRITE, HZ/50);
1054 goto nofail_alloc;
1057 goto nopage;
1060 /* Atomic allocations - we can't balance anything */
1061 if (!wait)
1062 goto nopage;
1064 rebalance:
1065 cond_resched();
1067 /* We now go into synchronous reclaim */
1068 cpuset_memory_pressure_bump();
1069 p->flags |= PF_MEMALLOC;
1070 reclaim_state.reclaimed_slab = 0;
1071 p->reclaim_state = &reclaim_state;
1073 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1075 p->reclaim_state = NULL;
1076 p->flags &= ~PF_MEMALLOC;
1078 cond_resched();
1080 if (likely(did_some_progress)) {
1081 page = get_page_from_freelist(gfp_mask, order,
1082 zonelist, alloc_flags);
1083 if (page)
1084 goto got_pg;
1085 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1087 * Go through the zonelist yet one more time, keep
1088 * very high watermark here, this is only to catch
1089 * a parallel oom killing, we must fail if we're still
1090 * under heavy pressure.
1092 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1093 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1094 if (page)
1095 goto got_pg;
1097 out_of_memory(zonelist, gfp_mask, order);
1098 goto restart;
1102 * Don't let big-order allocations loop unless the caller explicitly
1103 * requests that. Wait for some write requests to complete then retry.
1105 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1106 * <= 3, but that may not be true in other implementations.
1108 do_retry = 0;
1109 if (!(gfp_mask & __GFP_NORETRY)) {
1110 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1111 do_retry = 1;
1112 if (gfp_mask & __GFP_NOFAIL)
1113 do_retry = 1;
1115 if (do_retry) {
1116 blk_congestion_wait(WRITE, HZ/50);
1117 goto rebalance;
1120 nopage:
1121 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1122 printk(KERN_WARNING "%s: page allocation failure."
1123 " order:%d, mode:0x%x\n",
1124 p->comm, order, gfp_mask);
1125 dump_stack();
1126 show_mem();
1128 got_pg:
1129 return page;
1132 EXPORT_SYMBOL(__alloc_pages);
1135 * Common helper functions.
1137 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1139 struct page * page;
1140 page = alloc_pages(gfp_mask, order);
1141 if (!page)
1142 return 0;
1143 return (unsigned long) page_address(page);
1146 EXPORT_SYMBOL(__get_free_pages);
1148 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1150 struct page * page;
1153 * get_zeroed_page() returns a 32-bit address, which cannot represent
1154 * a highmem page
1156 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1158 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1159 if (page)
1160 return (unsigned long) page_address(page);
1161 return 0;
1164 EXPORT_SYMBOL(get_zeroed_page);
1166 void __pagevec_free(struct pagevec *pvec)
1168 int i = pagevec_count(pvec);
1170 while (--i >= 0)
1171 free_hot_cold_page(pvec->pages[i], pvec->cold);
1174 fastcall void __free_pages(struct page *page, unsigned int order)
1176 if (put_page_testzero(page)) {
1177 if (order == 0)
1178 free_hot_page(page);
1179 else
1180 __free_pages_ok(page, order);
1184 EXPORT_SYMBOL(__free_pages);
1186 fastcall void free_pages(unsigned long addr, unsigned int order)
1188 if (addr != 0) {
1189 VM_BUG_ON(!virt_addr_valid((void *)addr));
1190 __free_pages(virt_to_page((void *)addr), order);
1194 EXPORT_SYMBOL(free_pages);
1197 * Total amount of free (allocatable) RAM:
1199 unsigned int nr_free_pages(void)
1201 unsigned int sum = 0;
1202 struct zone *zone;
1204 for_each_zone(zone)
1205 sum += zone->free_pages;
1207 return sum;
1210 EXPORT_SYMBOL(nr_free_pages);
1212 #ifdef CONFIG_NUMA
1213 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1215 unsigned int sum = 0;
1216 enum zone_type i;
1218 for (i = 0; i < MAX_NR_ZONES; i++)
1219 sum += pgdat->node_zones[i].free_pages;
1221 return sum;
1223 #endif
1225 static unsigned int nr_free_zone_pages(int offset)
1227 /* Just pick one node, since fallback list is circular */
1228 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1229 unsigned int sum = 0;
1231 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1232 struct zone **zonep = zonelist->zones;
1233 struct zone *zone;
1235 for (zone = *zonep++; zone; zone = *zonep++) {
1236 unsigned long size = zone->present_pages;
1237 unsigned long high = zone->pages_high;
1238 if (size > high)
1239 sum += size - high;
1242 return sum;
1246 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1248 unsigned int nr_free_buffer_pages(void)
1250 return nr_free_zone_pages(gfp_zone(GFP_USER));
1254 * Amount of free RAM allocatable within all zones
1256 unsigned int nr_free_pagecache_pages(void)
1258 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1261 static inline void show_node(struct zone *zone)
1263 if (NUMA_BUILD)
1264 printk("Node %ld ", zone_to_nid(zone));
1267 void si_meminfo(struct sysinfo *val)
1269 val->totalram = totalram_pages;
1270 val->sharedram = 0;
1271 val->freeram = nr_free_pages();
1272 val->bufferram = nr_blockdev_pages();
1273 val->totalhigh = totalhigh_pages;
1274 val->freehigh = nr_free_highpages();
1275 val->mem_unit = PAGE_SIZE;
1278 EXPORT_SYMBOL(si_meminfo);
1280 #ifdef CONFIG_NUMA
1281 void si_meminfo_node(struct sysinfo *val, int nid)
1283 pg_data_t *pgdat = NODE_DATA(nid);
1285 val->totalram = pgdat->node_present_pages;
1286 val->freeram = nr_free_pages_pgdat(pgdat);
1287 #ifdef CONFIG_HIGHMEM
1288 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1289 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1290 #else
1291 val->totalhigh = 0;
1292 val->freehigh = 0;
1293 #endif
1294 val->mem_unit = PAGE_SIZE;
1296 #endif
1298 #define K(x) ((x) << (PAGE_SHIFT-10))
1301 * Show free area list (used inside shift_scroll-lock stuff)
1302 * We also calculate the percentage fragmentation. We do this by counting the
1303 * memory on each free list with the exception of the first item on the list.
1305 void show_free_areas(void)
1307 int cpu;
1308 unsigned long active;
1309 unsigned long inactive;
1310 unsigned long free;
1311 struct zone *zone;
1313 for_each_zone(zone) {
1314 if (!populated_zone(zone))
1315 continue;
1317 show_node(zone);
1318 printk("%s per-cpu:\n", zone->name);
1320 for_each_online_cpu(cpu) {
1321 struct per_cpu_pageset *pageset;
1323 pageset = zone_pcp(zone, cpu);
1325 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1326 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1327 cpu, pageset->pcp[0].high,
1328 pageset->pcp[0].batch, pageset->pcp[0].count,
1329 pageset->pcp[1].high, pageset->pcp[1].batch,
1330 pageset->pcp[1].count);
1334 get_zone_counts(&active, &inactive, &free);
1336 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1337 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1338 active,
1339 inactive,
1340 global_page_state(NR_FILE_DIRTY),
1341 global_page_state(NR_WRITEBACK),
1342 global_page_state(NR_UNSTABLE_NFS),
1343 nr_free_pages(),
1344 global_page_state(NR_SLAB_RECLAIMABLE) +
1345 global_page_state(NR_SLAB_UNRECLAIMABLE),
1346 global_page_state(NR_FILE_MAPPED),
1347 global_page_state(NR_PAGETABLE));
1349 for_each_zone(zone) {
1350 int i;
1352 if (!populated_zone(zone))
1353 continue;
1355 show_node(zone);
1356 printk("%s"
1357 " free:%lukB"
1358 " min:%lukB"
1359 " low:%lukB"
1360 " high:%lukB"
1361 " active:%lukB"
1362 " inactive:%lukB"
1363 " present:%lukB"
1364 " pages_scanned:%lu"
1365 " all_unreclaimable? %s"
1366 "\n",
1367 zone->name,
1368 K(zone->free_pages),
1369 K(zone->pages_min),
1370 K(zone->pages_low),
1371 K(zone->pages_high),
1372 K(zone->nr_active),
1373 K(zone->nr_inactive),
1374 K(zone->present_pages),
1375 zone->pages_scanned,
1376 (zone->all_unreclaimable ? "yes" : "no")
1378 printk("lowmem_reserve[]:");
1379 for (i = 0; i < MAX_NR_ZONES; i++)
1380 printk(" %lu", zone->lowmem_reserve[i]);
1381 printk("\n");
1384 for_each_zone(zone) {
1385 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1387 if (!populated_zone(zone))
1388 continue;
1390 show_node(zone);
1391 printk("%s: ", zone->name);
1393 spin_lock_irqsave(&zone->lock, flags);
1394 for (order = 0; order < MAX_ORDER; order++) {
1395 nr[order] = zone->free_area[order].nr_free;
1396 total += nr[order] << order;
1398 spin_unlock_irqrestore(&zone->lock, flags);
1399 for (order = 0; order < MAX_ORDER; order++)
1400 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1401 printk("= %lukB\n", K(total));
1404 show_swap_cache_info();
1408 * Builds allocation fallback zone lists.
1410 * Add all populated zones of a node to the zonelist.
1412 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1413 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1415 struct zone *zone;
1417 BUG_ON(zone_type >= MAX_NR_ZONES);
1418 zone_type++;
1420 do {
1421 zone_type--;
1422 zone = pgdat->node_zones + zone_type;
1423 if (populated_zone(zone)) {
1424 zonelist->zones[nr_zones++] = zone;
1425 check_highest_zone(zone_type);
1428 } while (zone_type);
1429 return nr_zones;
1432 #ifdef CONFIG_NUMA
1433 #define MAX_NODE_LOAD (num_online_nodes())
1434 static int __meminitdata node_load[MAX_NUMNODES];
1436 * find_next_best_node - find the next node that should appear in a given node's fallback list
1437 * @node: node whose fallback list we're appending
1438 * @used_node_mask: nodemask_t of already used nodes
1440 * We use a number of factors to determine which is the next node that should
1441 * appear on a given node's fallback list. The node should not have appeared
1442 * already in @node's fallback list, and it should be the next closest node
1443 * according to the distance array (which contains arbitrary distance values
1444 * from each node to each node in the system), and should also prefer nodes
1445 * with no CPUs, since presumably they'll have very little allocation pressure
1446 * on them otherwise.
1447 * It returns -1 if no node is found.
1449 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1451 int n, val;
1452 int min_val = INT_MAX;
1453 int best_node = -1;
1455 /* Use the local node if we haven't already */
1456 if (!node_isset(node, *used_node_mask)) {
1457 node_set(node, *used_node_mask);
1458 return node;
1461 for_each_online_node(n) {
1462 cpumask_t tmp;
1464 /* Don't want a node to appear more than once */
1465 if (node_isset(n, *used_node_mask))
1466 continue;
1468 /* Use the distance array to find the distance */
1469 val = node_distance(node, n);
1471 /* Penalize nodes under us ("prefer the next node") */
1472 val += (n < node);
1474 /* Give preference to headless and unused nodes */
1475 tmp = node_to_cpumask(n);
1476 if (!cpus_empty(tmp))
1477 val += PENALTY_FOR_NODE_WITH_CPUS;
1479 /* Slight preference for less loaded node */
1480 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1481 val += node_load[n];
1483 if (val < min_val) {
1484 min_val = val;
1485 best_node = n;
1489 if (best_node >= 0)
1490 node_set(best_node, *used_node_mask);
1492 return best_node;
1495 static void __meminit build_zonelists(pg_data_t *pgdat)
1497 int j, node, local_node;
1498 enum zone_type i;
1499 int prev_node, load;
1500 struct zonelist *zonelist;
1501 nodemask_t used_mask;
1503 /* initialize zonelists */
1504 for (i = 0; i < MAX_NR_ZONES; i++) {
1505 zonelist = pgdat->node_zonelists + i;
1506 zonelist->zones[0] = NULL;
1509 /* NUMA-aware ordering of nodes */
1510 local_node = pgdat->node_id;
1511 load = num_online_nodes();
1512 prev_node = local_node;
1513 nodes_clear(used_mask);
1514 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1515 int distance = node_distance(local_node, node);
1518 * If another node is sufficiently far away then it is better
1519 * to reclaim pages in a zone before going off node.
1521 if (distance > RECLAIM_DISTANCE)
1522 zone_reclaim_mode = 1;
1525 * We don't want to pressure a particular node.
1526 * So adding penalty to the first node in same
1527 * distance group to make it round-robin.
1530 if (distance != node_distance(local_node, prev_node))
1531 node_load[node] += load;
1532 prev_node = node;
1533 load--;
1534 for (i = 0; i < MAX_NR_ZONES; i++) {
1535 zonelist = pgdat->node_zonelists + i;
1536 for (j = 0; zonelist->zones[j] != NULL; j++);
1538 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1539 zonelist->zones[j] = NULL;
1544 #else /* CONFIG_NUMA */
1546 static void __meminit build_zonelists(pg_data_t *pgdat)
1548 int node, local_node;
1549 enum zone_type i,j;
1551 local_node = pgdat->node_id;
1552 for (i = 0; i < MAX_NR_ZONES; i++) {
1553 struct zonelist *zonelist;
1555 zonelist = pgdat->node_zonelists + i;
1557 j = build_zonelists_node(pgdat, zonelist, 0, i);
1559 * Now we build the zonelist so that it contains the zones
1560 * of all the other nodes.
1561 * We don't want to pressure a particular node, so when
1562 * building the zones for node N, we make sure that the
1563 * zones coming right after the local ones are those from
1564 * node N+1 (modulo N)
1566 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1567 if (!node_online(node))
1568 continue;
1569 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1571 for (node = 0; node < local_node; node++) {
1572 if (!node_online(node))
1573 continue;
1574 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1577 zonelist->zones[j] = NULL;
1581 #endif /* CONFIG_NUMA */
1583 /* return values int ....just for stop_machine_run() */
1584 static int __meminit __build_all_zonelists(void *dummy)
1586 int nid;
1587 for_each_online_node(nid)
1588 build_zonelists(NODE_DATA(nid));
1589 return 0;
1592 void __meminit build_all_zonelists(void)
1594 if (system_state == SYSTEM_BOOTING) {
1595 __build_all_zonelists(NULL);
1596 cpuset_init_current_mems_allowed();
1597 } else {
1598 /* we have to stop all cpus to guaranntee there is no user
1599 of zonelist */
1600 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1601 /* cpuset refresh routine should be here */
1603 vm_total_pages = nr_free_pagecache_pages();
1604 printk("Built %i zonelists. Total pages: %ld\n",
1605 num_online_nodes(), vm_total_pages);
1609 * Helper functions to size the waitqueue hash table.
1610 * Essentially these want to choose hash table sizes sufficiently
1611 * large so that collisions trying to wait on pages are rare.
1612 * But in fact, the number of active page waitqueues on typical
1613 * systems is ridiculously low, less than 200. So this is even
1614 * conservative, even though it seems large.
1616 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1617 * waitqueues, i.e. the size of the waitq table given the number of pages.
1619 #define PAGES_PER_WAITQUEUE 256
1621 #ifndef CONFIG_MEMORY_HOTPLUG
1622 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1624 unsigned long size = 1;
1626 pages /= PAGES_PER_WAITQUEUE;
1628 while (size < pages)
1629 size <<= 1;
1632 * Once we have dozens or even hundreds of threads sleeping
1633 * on IO we've got bigger problems than wait queue collision.
1634 * Limit the size of the wait table to a reasonable size.
1636 size = min(size, 4096UL);
1638 return max(size, 4UL);
1640 #else
1642 * A zone's size might be changed by hot-add, so it is not possible to determine
1643 * a suitable size for its wait_table. So we use the maximum size now.
1645 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1647 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1648 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1649 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1651 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1652 * or more by the traditional way. (See above). It equals:
1654 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1655 * ia64(16K page size) : = ( 8G + 4M)byte.
1656 * powerpc (64K page size) : = (32G +16M)byte.
1658 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1660 return 4096UL;
1662 #endif
1665 * This is an integer logarithm so that shifts can be used later
1666 * to extract the more random high bits from the multiplicative
1667 * hash function before the remainder is taken.
1669 static inline unsigned long wait_table_bits(unsigned long size)
1671 return ffz(~size);
1674 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1677 * Initially all pages are reserved - free ones are freed
1678 * up by free_all_bootmem() once the early boot process is
1679 * done. Non-atomic initialization, single-pass.
1681 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1682 unsigned long start_pfn)
1684 struct page *page;
1685 unsigned long end_pfn = start_pfn + size;
1686 unsigned long pfn;
1688 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1689 if (!early_pfn_valid(pfn))
1690 continue;
1691 page = pfn_to_page(pfn);
1692 set_page_links(page, zone, nid, pfn);
1693 init_page_count(page);
1694 reset_page_mapcount(page);
1695 SetPageReserved(page);
1696 INIT_LIST_HEAD(&page->lru);
1697 #ifdef WANT_PAGE_VIRTUAL
1698 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1699 if (!is_highmem_idx(zone))
1700 set_page_address(page, __va(pfn << PAGE_SHIFT));
1701 #endif
1705 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1706 unsigned long size)
1708 int order;
1709 for (order = 0; order < MAX_ORDER ; order++) {
1710 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1711 zone->free_area[order].nr_free = 0;
1715 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1716 void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1717 unsigned long pfn, unsigned long size)
1719 unsigned long snum = pfn_to_section_nr(pfn);
1720 unsigned long end = pfn_to_section_nr(pfn + size);
1722 if (FLAGS_HAS_NODE)
1723 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1724 else
1725 for (; snum <= end; snum++)
1726 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1729 #ifndef __HAVE_ARCH_MEMMAP_INIT
1730 #define memmap_init(size, nid, zone, start_pfn) \
1731 memmap_init_zone((size), (nid), (zone), (start_pfn))
1732 #endif
1734 static int __cpuinit zone_batchsize(struct zone *zone)
1736 int batch;
1739 * The per-cpu-pages pools are set to around 1000th of the
1740 * size of the zone. But no more than 1/2 of a meg.
1742 * OK, so we don't know how big the cache is. So guess.
1744 batch = zone->present_pages / 1024;
1745 if (batch * PAGE_SIZE > 512 * 1024)
1746 batch = (512 * 1024) / PAGE_SIZE;
1747 batch /= 4; /* We effectively *= 4 below */
1748 if (batch < 1)
1749 batch = 1;
1752 * Clamp the batch to a 2^n - 1 value. Having a power
1753 * of 2 value was found to be more likely to have
1754 * suboptimal cache aliasing properties in some cases.
1756 * For example if 2 tasks are alternately allocating
1757 * batches of pages, one task can end up with a lot
1758 * of pages of one half of the possible page colors
1759 * and the other with pages of the other colors.
1761 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1763 return batch;
1766 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1768 struct per_cpu_pages *pcp;
1770 memset(p, 0, sizeof(*p));
1772 pcp = &p->pcp[0]; /* hot */
1773 pcp->count = 0;
1774 pcp->high = 6 * batch;
1775 pcp->batch = max(1UL, 1 * batch);
1776 INIT_LIST_HEAD(&pcp->list);
1778 pcp = &p->pcp[1]; /* cold*/
1779 pcp->count = 0;
1780 pcp->high = 2 * batch;
1781 pcp->batch = max(1UL, batch/2);
1782 INIT_LIST_HEAD(&pcp->list);
1786 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1787 * to the value high for the pageset p.
1790 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1791 unsigned long high)
1793 struct per_cpu_pages *pcp;
1795 pcp = &p->pcp[0]; /* hot list */
1796 pcp->high = high;
1797 pcp->batch = max(1UL, high/4);
1798 if ((high/4) > (PAGE_SHIFT * 8))
1799 pcp->batch = PAGE_SHIFT * 8;
1803 #ifdef CONFIG_NUMA
1805 * Boot pageset table. One per cpu which is going to be used for all
1806 * zones and all nodes. The parameters will be set in such a way
1807 * that an item put on a list will immediately be handed over to
1808 * the buddy list. This is safe since pageset manipulation is done
1809 * with interrupts disabled.
1811 * Some NUMA counter updates may also be caught by the boot pagesets.
1813 * The boot_pagesets must be kept even after bootup is complete for
1814 * unused processors and/or zones. They do play a role for bootstrapping
1815 * hotplugged processors.
1817 * zoneinfo_show() and maybe other functions do
1818 * not check if the processor is online before following the pageset pointer.
1819 * Other parts of the kernel may not check if the zone is available.
1821 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1824 * Dynamically allocate memory for the
1825 * per cpu pageset array in struct zone.
1827 static int __cpuinit process_zones(int cpu)
1829 struct zone *zone, *dzone;
1831 for_each_zone(zone) {
1833 if (!populated_zone(zone))
1834 continue;
1836 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1837 GFP_KERNEL, cpu_to_node(cpu));
1838 if (!zone_pcp(zone, cpu))
1839 goto bad;
1841 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1843 if (percpu_pagelist_fraction)
1844 setup_pagelist_highmark(zone_pcp(zone, cpu),
1845 (zone->present_pages / percpu_pagelist_fraction));
1848 return 0;
1849 bad:
1850 for_each_zone(dzone) {
1851 if (dzone == zone)
1852 break;
1853 kfree(zone_pcp(dzone, cpu));
1854 zone_pcp(dzone, cpu) = NULL;
1856 return -ENOMEM;
1859 static inline void free_zone_pagesets(int cpu)
1861 struct zone *zone;
1863 for_each_zone(zone) {
1864 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1866 /* Free per_cpu_pageset if it is slab allocated */
1867 if (pset != &boot_pageset[cpu])
1868 kfree(pset);
1869 zone_pcp(zone, cpu) = NULL;
1873 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1874 unsigned long action,
1875 void *hcpu)
1877 int cpu = (long)hcpu;
1878 int ret = NOTIFY_OK;
1880 switch (action) {
1881 case CPU_UP_PREPARE:
1882 if (process_zones(cpu))
1883 ret = NOTIFY_BAD;
1884 break;
1885 case CPU_UP_CANCELED:
1886 case CPU_DEAD:
1887 free_zone_pagesets(cpu);
1888 break;
1889 default:
1890 break;
1892 return ret;
1895 static struct notifier_block __cpuinitdata pageset_notifier =
1896 { &pageset_cpuup_callback, NULL, 0 };
1898 void __init setup_per_cpu_pageset(void)
1900 int err;
1902 /* Initialize per_cpu_pageset for cpu 0.
1903 * A cpuup callback will do this for every cpu
1904 * as it comes online
1906 err = process_zones(smp_processor_id());
1907 BUG_ON(err);
1908 register_cpu_notifier(&pageset_notifier);
1911 #endif
1913 static __meminit
1914 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1916 int i;
1917 struct pglist_data *pgdat = zone->zone_pgdat;
1918 size_t alloc_size;
1921 * The per-page waitqueue mechanism uses hashed waitqueues
1922 * per zone.
1924 zone->wait_table_hash_nr_entries =
1925 wait_table_hash_nr_entries(zone_size_pages);
1926 zone->wait_table_bits =
1927 wait_table_bits(zone->wait_table_hash_nr_entries);
1928 alloc_size = zone->wait_table_hash_nr_entries
1929 * sizeof(wait_queue_head_t);
1931 if (system_state == SYSTEM_BOOTING) {
1932 zone->wait_table = (wait_queue_head_t *)
1933 alloc_bootmem_node(pgdat, alloc_size);
1934 } else {
1936 * This case means that a zone whose size was 0 gets new memory
1937 * via memory hot-add.
1938 * But it may be the case that a new node was hot-added. In
1939 * this case vmalloc() will not be able to use this new node's
1940 * memory - this wait_table must be initialized to use this new
1941 * node itself as well.
1942 * To use this new node's memory, further consideration will be
1943 * necessary.
1945 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1947 if (!zone->wait_table)
1948 return -ENOMEM;
1950 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1951 init_waitqueue_head(zone->wait_table + i);
1953 return 0;
1956 static __meminit void zone_pcp_init(struct zone *zone)
1958 int cpu;
1959 unsigned long batch = zone_batchsize(zone);
1961 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1962 #ifdef CONFIG_NUMA
1963 /* Early boot. Slab allocator not functional yet */
1964 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1965 setup_pageset(&boot_pageset[cpu],0);
1966 #else
1967 setup_pageset(zone_pcp(zone,cpu), batch);
1968 #endif
1970 if (zone->present_pages)
1971 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1972 zone->name, zone->present_pages, batch);
1975 __meminit int init_currently_empty_zone(struct zone *zone,
1976 unsigned long zone_start_pfn,
1977 unsigned long size)
1979 struct pglist_data *pgdat = zone->zone_pgdat;
1980 int ret;
1981 ret = zone_wait_table_init(zone, size);
1982 if (ret)
1983 return ret;
1984 pgdat->nr_zones = zone_idx(zone) + 1;
1986 zone->zone_start_pfn = zone_start_pfn;
1988 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1990 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1992 return 0;
1995 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1997 * Basic iterator support. Return the first range of PFNs for a node
1998 * Note: nid == MAX_NUMNODES returns first region regardless of node
2000 static int __init first_active_region_index_in_nid(int nid)
2002 int i;
2004 for (i = 0; i < nr_nodemap_entries; i++)
2005 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2006 return i;
2008 return -1;
2012 * Basic iterator support. Return the next active range of PFNs for a node
2013 * Note: nid == MAX_NUMNODES returns next region regardles of node
2015 static int __init next_active_region_index_in_nid(int index, int nid)
2017 for (index = index + 1; index < nr_nodemap_entries; index++)
2018 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2019 return index;
2021 return -1;
2024 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2026 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2027 * Architectures may implement their own version but if add_active_range()
2028 * was used and there are no special requirements, this is a convenient
2029 * alternative
2031 int __init early_pfn_to_nid(unsigned long pfn)
2033 int i;
2035 for (i = 0; i < nr_nodemap_entries; i++) {
2036 unsigned long start_pfn = early_node_map[i].start_pfn;
2037 unsigned long end_pfn = early_node_map[i].end_pfn;
2039 if (start_pfn <= pfn && pfn < end_pfn)
2040 return early_node_map[i].nid;
2043 return 0;
2045 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2047 /* Basic iterator support to walk early_node_map[] */
2048 #define for_each_active_range_index_in_nid(i, nid) \
2049 for (i = first_active_region_index_in_nid(nid); i != -1; \
2050 i = next_active_region_index_in_nid(i, nid))
2053 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2054 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2055 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2057 * If an architecture guarantees that all ranges registered with
2058 * add_active_ranges() contain no holes and may be freed, this
2059 * this function may be used instead of calling free_bootmem() manually.
2061 void __init free_bootmem_with_active_regions(int nid,
2062 unsigned long max_low_pfn)
2064 int i;
2066 for_each_active_range_index_in_nid(i, nid) {
2067 unsigned long size_pages = 0;
2068 unsigned long end_pfn = early_node_map[i].end_pfn;
2070 if (early_node_map[i].start_pfn >= max_low_pfn)
2071 continue;
2073 if (end_pfn > max_low_pfn)
2074 end_pfn = max_low_pfn;
2076 size_pages = end_pfn - early_node_map[i].start_pfn;
2077 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2078 PFN_PHYS(early_node_map[i].start_pfn),
2079 size_pages << PAGE_SHIFT);
2084 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2085 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2087 * If an architecture guarantees that all ranges registered with
2088 * add_active_ranges() contain no holes and may be freed, this
2089 * function may be used instead of calling memory_present() manually.
2091 void __init sparse_memory_present_with_active_regions(int nid)
2093 int i;
2095 for_each_active_range_index_in_nid(i, nid)
2096 memory_present(early_node_map[i].nid,
2097 early_node_map[i].start_pfn,
2098 early_node_map[i].end_pfn);
2102 * push_node_boundaries - Push node boundaries to at least the requested boundary
2103 * @nid: The nid of the node to push the boundary for
2104 * @start_pfn: The start pfn of the node
2105 * @end_pfn: The end pfn of the node
2107 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2108 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2109 * be hotplugged even though no physical memory exists. This function allows
2110 * an arch to push out the node boundaries so mem_map is allocated that can
2111 * be used later.
2113 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2114 void __init push_node_boundaries(unsigned int nid,
2115 unsigned long start_pfn, unsigned long end_pfn)
2117 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2118 nid, start_pfn, end_pfn);
2120 /* Initialise the boundary for this node if necessary */
2121 if (node_boundary_end_pfn[nid] == 0)
2122 node_boundary_start_pfn[nid] = -1UL;
2124 /* Update the boundaries */
2125 if (node_boundary_start_pfn[nid] > start_pfn)
2126 node_boundary_start_pfn[nid] = start_pfn;
2127 if (node_boundary_end_pfn[nid] < end_pfn)
2128 node_boundary_end_pfn[nid] = end_pfn;
2131 /* If necessary, push the node boundary out for reserve hotadd */
2132 static void __init account_node_boundary(unsigned int nid,
2133 unsigned long *start_pfn, unsigned long *end_pfn)
2135 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2136 nid, *start_pfn, *end_pfn);
2138 /* Return if boundary information has not been provided */
2139 if (node_boundary_end_pfn[nid] == 0)
2140 return;
2142 /* Check the boundaries and update if necessary */
2143 if (node_boundary_start_pfn[nid] < *start_pfn)
2144 *start_pfn = node_boundary_start_pfn[nid];
2145 if (node_boundary_end_pfn[nid] > *end_pfn)
2146 *end_pfn = node_boundary_end_pfn[nid];
2148 #else
2149 void __init push_node_boundaries(unsigned int nid,
2150 unsigned long start_pfn, unsigned long end_pfn) {}
2152 static void __init account_node_boundary(unsigned int nid,
2153 unsigned long *start_pfn, unsigned long *end_pfn) {}
2154 #endif
2158 * get_pfn_range_for_nid - Return the start and end page frames for a node
2159 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2160 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2161 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2163 * It returns the start and end page frame of a node based on information
2164 * provided by an arch calling add_active_range(). If called for a node
2165 * with no available memory, a warning is printed and the start and end
2166 * PFNs will be 0.
2168 void __init get_pfn_range_for_nid(unsigned int nid,
2169 unsigned long *start_pfn, unsigned long *end_pfn)
2171 int i;
2172 *start_pfn = -1UL;
2173 *end_pfn = 0;
2175 for_each_active_range_index_in_nid(i, nid) {
2176 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2177 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2180 if (*start_pfn == -1UL) {
2181 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2182 *start_pfn = 0;
2185 /* Push the node boundaries out if requested */
2186 account_node_boundary(nid, start_pfn, end_pfn);
2190 * Return the number of pages a zone spans in a node, including holes
2191 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2193 unsigned long __init zone_spanned_pages_in_node(int nid,
2194 unsigned long zone_type,
2195 unsigned long *ignored)
2197 unsigned long node_start_pfn, node_end_pfn;
2198 unsigned long zone_start_pfn, zone_end_pfn;
2200 /* Get the start and end of the node and zone */
2201 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2202 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2203 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2205 /* Check that this node has pages within the zone's required range */
2206 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2207 return 0;
2209 /* Move the zone boundaries inside the node if necessary */
2210 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2211 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2213 /* Return the spanned pages */
2214 return zone_end_pfn - zone_start_pfn;
2218 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2219 * then all holes in the requested range will be accounted for.
2221 unsigned long __init __absent_pages_in_range(int nid,
2222 unsigned long range_start_pfn,
2223 unsigned long range_end_pfn)
2225 int i = 0;
2226 unsigned long prev_end_pfn = 0, hole_pages = 0;
2227 unsigned long start_pfn;
2229 /* Find the end_pfn of the first active range of pfns in the node */
2230 i = first_active_region_index_in_nid(nid);
2231 if (i == -1)
2232 return 0;
2234 /* Account for ranges before physical memory on this node */
2235 if (early_node_map[i].start_pfn > range_start_pfn)
2236 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2238 prev_end_pfn = early_node_map[i].start_pfn;
2240 /* Find all holes for the zone within the node */
2241 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2243 /* No need to continue if prev_end_pfn is outside the zone */
2244 if (prev_end_pfn >= range_end_pfn)
2245 break;
2247 /* Make sure the end of the zone is not within the hole */
2248 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2249 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2251 /* Update the hole size cound and move on */
2252 if (start_pfn > range_start_pfn) {
2253 BUG_ON(prev_end_pfn > start_pfn);
2254 hole_pages += start_pfn - prev_end_pfn;
2256 prev_end_pfn = early_node_map[i].end_pfn;
2259 /* Account for ranges past physical memory on this node */
2260 if (range_end_pfn > prev_end_pfn)
2261 hole_pages = range_end_pfn -
2262 max(range_start_pfn, prev_end_pfn);
2264 return hole_pages;
2268 * absent_pages_in_range - Return number of page frames in holes within a range
2269 * @start_pfn: The start PFN to start searching for holes
2270 * @end_pfn: The end PFN to stop searching for holes
2272 * It returns the number of pages frames in memory holes within a range.
2274 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2275 unsigned long end_pfn)
2277 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2280 /* Return the number of page frames in holes in a zone on a node */
2281 unsigned long __init zone_absent_pages_in_node(int nid,
2282 unsigned long zone_type,
2283 unsigned long *ignored)
2285 unsigned long node_start_pfn, node_end_pfn;
2286 unsigned long zone_start_pfn, zone_end_pfn;
2288 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2289 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2290 node_start_pfn);
2291 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2292 node_end_pfn);
2294 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2297 /* Return the zone index a PFN is in */
2298 int memmap_zone_idx(struct page *lmem_map)
2300 int i;
2301 unsigned long phys_addr = virt_to_phys(lmem_map);
2302 unsigned long pfn = phys_addr >> PAGE_SHIFT;
2304 for (i = 0; i < MAX_NR_ZONES; i++)
2305 if (pfn < arch_zone_highest_possible_pfn[i])
2306 break;
2308 return i;
2310 #else
2311 static inline unsigned long zone_spanned_pages_in_node(int nid,
2312 unsigned long zone_type,
2313 unsigned long *zones_size)
2315 return zones_size[zone_type];
2318 static inline unsigned long zone_absent_pages_in_node(int nid,
2319 unsigned long zone_type,
2320 unsigned long *zholes_size)
2322 if (!zholes_size)
2323 return 0;
2325 return zholes_size[zone_type];
2328 static inline int memmap_zone_idx(struct page *lmem_map)
2330 return MAX_NR_ZONES;
2332 #endif
2334 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2335 unsigned long *zones_size, unsigned long *zholes_size)
2337 unsigned long realtotalpages, totalpages = 0;
2338 enum zone_type i;
2340 for (i = 0; i < MAX_NR_ZONES; i++)
2341 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2342 zones_size);
2343 pgdat->node_spanned_pages = totalpages;
2345 realtotalpages = totalpages;
2346 for (i = 0; i < MAX_NR_ZONES; i++)
2347 realtotalpages -=
2348 zone_absent_pages_in_node(pgdat->node_id, i,
2349 zholes_size);
2350 pgdat->node_present_pages = realtotalpages;
2351 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2352 realtotalpages);
2356 * Set up the zone data structures:
2357 * - mark all pages reserved
2358 * - mark all memory queues empty
2359 * - clear the memory bitmaps
2361 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2362 unsigned long *zones_size, unsigned long *zholes_size)
2364 enum zone_type j;
2365 int nid = pgdat->node_id;
2366 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2367 int ret;
2369 pgdat_resize_init(pgdat);
2370 pgdat->nr_zones = 0;
2371 init_waitqueue_head(&pgdat->kswapd_wait);
2372 pgdat->kswapd_max_order = 0;
2374 for (j = 0; j < MAX_NR_ZONES; j++) {
2375 struct zone *zone = pgdat->node_zones + j;
2376 unsigned long size, realsize, memmap_pages;
2378 size = zone_spanned_pages_in_node(nid, j, zones_size);
2379 realsize = size - zone_absent_pages_in_node(nid, j,
2380 zholes_size);
2383 * Adjust realsize so that it accounts for how much memory
2384 * is used by this zone for memmap. This affects the watermark
2385 * and per-cpu initialisations
2387 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2388 if (realsize >= memmap_pages) {
2389 realsize -= memmap_pages;
2390 printk(KERN_DEBUG
2391 " %s zone: %lu pages used for memmap\n",
2392 zone_names[j], memmap_pages);
2393 } else
2394 printk(KERN_WARNING
2395 " %s zone: %lu pages exceeds realsize %lu\n",
2396 zone_names[j], memmap_pages, realsize);
2398 /* Account for reserved DMA pages */
2399 if (j == ZONE_DMA && realsize > dma_reserve) {
2400 realsize -= dma_reserve;
2401 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
2402 dma_reserve);
2405 if (!is_highmem_idx(j))
2406 nr_kernel_pages += realsize;
2407 nr_all_pages += realsize;
2409 zone->spanned_pages = size;
2410 zone->present_pages = realsize;
2411 #ifdef CONFIG_NUMA
2412 zone->node = nid;
2413 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2414 / 100;
2415 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2416 #endif
2417 zone->name = zone_names[j];
2418 spin_lock_init(&zone->lock);
2419 spin_lock_init(&zone->lru_lock);
2420 zone_seqlock_init(zone);
2421 zone->zone_pgdat = pgdat;
2422 zone->free_pages = 0;
2424 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2426 zone_pcp_init(zone);
2427 INIT_LIST_HEAD(&zone->active_list);
2428 INIT_LIST_HEAD(&zone->inactive_list);
2429 zone->nr_scan_active = 0;
2430 zone->nr_scan_inactive = 0;
2431 zone->nr_active = 0;
2432 zone->nr_inactive = 0;
2433 zap_zone_vm_stats(zone);
2434 atomic_set(&zone->reclaim_in_progress, 0);
2435 if (!size)
2436 continue;
2438 zonetable_add(zone, nid, j, zone_start_pfn, size);
2439 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2440 BUG_ON(ret);
2441 zone_start_pfn += size;
2445 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2447 /* Skip empty nodes */
2448 if (!pgdat->node_spanned_pages)
2449 return;
2451 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2452 /* ia64 gets its own node_mem_map, before this, without bootmem */
2453 if (!pgdat->node_mem_map) {
2454 unsigned long size, start, end;
2455 struct page *map;
2458 * The zone's endpoints aren't required to be MAX_ORDER
2459 * aligned but the node_mem_map endpoints must be in order
2460 * for the buddy allocator to function correctly.
2462 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2463 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2464 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2465 size = (end - start) * sizeof(struct page);
2466 map = alloc_remap(pgdat->node_id, size);
2467 if (!map)
2468 map = alloc_bootmem_node(pgdat, size);
2469 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2471 #ifdef CONFIG_FLATMEM
2473 * With no DISCONTIG, the global mem_map is just set as node 0's
2475 if (pgdat == NODE_DATA(0)) {
2476 mem_map = NODE_DATA(0)->node_mem_map;
2477 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2478 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2479 mem_map -= pgdat->node_start_pfn;
2480 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2482 #endif
2483 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2486 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2487 unsigned long *zones_size, unsigned long node_start_pfn,
2488 unsigned long *zholes_size)
2490 pgdat->node_id = nid;
2491 pgdat->node_start_pfn = node_start_pfn;
2492 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2494 alloc_node_mem_map(pgdat);
2496 free_area_init_core(pgdat, zones_size, zholes_size);
2499 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2501 * add_active_range - Register a range of PFNs backed by physical memory
2502 * @nid: The node ID the range resides on
2503 * @start_pfn: The start PFN of the available physical memory
2504 * @end_pfn: The end PFN of the available physical memory
2506 * These ranges are stored in an early_node_map[] and later used by
2507 * free_area_init_nodes() to calculate zone sizes and holes. If the
2508 * range spans a memory hole, it is up to the architecture to ensure
2509 * the memory is not freed by the bootmem allocator. If possible
2510 * the range being registered will be merged with existing ranges.
2512 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2513 unsigned long end_pfn)
2515 int i;
2517 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2518 "%d entries of %d used\n",
2519 nid, start_pfn, end_pfn,
2520 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2522 /* Merge with existing active regions if possible */
2523 for (i = 0; i < nr_nodemap_entries; i++) {
2524 if (early_node_map[i].nid != nid)
2525 continue;
2527 /* Skip if an existing region covers this new one */
2528 if (start_pfn >= early_node_map[i].start_pfn &&
2529 end_pfn <= early_node_map[i].end_pfn)
2530 return;
2532 /* Merge forward if suitable */
2533 if (start_pfn <= early_node_map[i].end_pfn &&
2534 end_pfn > early_node_map[i].end_pfn) {
2535 early_node_map[i].end_pfn = end_pfn;
2536 return;
2539 /* Merge backward if suitable */
2540 if (start_pfn < early_node_map[i].end_pfn &&
2541 end_pfn >= early_node_map[i].start_pfn) {
2542 early_node_map[i].start_pfn = start_pfn;
2543 return;
2547 /* Check that early_node_map is large enough */
2548 if (i >= MAX_ACTIVE_REGIONS) {
2549 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2550 MAX_ACTIVE_REGIONS);
2551 return;
2554 early_node_map[i].nid = nid;
2555 early_node_map[i].start_pfn = start_pfn;
2556 early_node_map[i].end_pfn = end_pfn;
2557 nr_nodemap_entries = i + 1;
2561 * shrink_active_range - Shrink an existing registered range of PFNs
2562 * @nid: The node id the range is on that should be shrunk
2563 * @old_end_pfn: The old end PFN of the range
2564 * @new_end_pfn: The new PFN of the range
2566 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2567 * The map is kept at the end physical page range that has already been
2568 * registered with add_active_range(). This function allows an arch to shrink
2569 * an existing registered range.
2571 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2572 unsigned long new_end_pfn)
2574 int i;
2576 /* Find the old active region end and shrink */
2577 for_each_active_range_index_in_nid(i, nid)
2578 if (early_node_map[i].end_pfn == old_end_pfn) {
2579 early_node_map[i].end_pfn = new_end_pfn;
2580 break;
2585 * remove_all_active_ranges - Remove all currently registered regions
2587 * During discovery, it may be found that a table like SRAT is invalid
2588 * and an alternative discovery method must be used. This function removes
2589 * all currently registered regions.
2591 void __init remove_all_active_ranges(void)
2593 memset(early_node_map, 0, sizeof(early_node_map));
2594 nr_nodemap_entries = 0;
2595 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2596 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2597 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2598 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2601 /* Compare two active node_active_regions */
2602 static int __init cmp_node_active_region(const void *a, const void *b)
2604 struct node_active_region *arange = (struct node_active_region *)a;
2605 struct node_active_region *brange = (struct node_active_region *)b;
2607 /* Done this way to avoid overflows */
2608 if (arange->start_pfn > brange->start_pfn)
2609 return 1;
2610 if (arange->start_pfn < brange->start_pfn)
2611 return -1;
2613 return 0;
2616 /* sort the node_map by start_pfn */
2617 static void __init sort_node_map(void)
2619 sort(early_node_map, (size_t)nr_nodemap_entries,
2620 sizeof(struct node_active_region),
2621 cmp_node_active_region, NULL);
2624 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2625 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2627 int i;
2629 /* Assuming a sorted map, the first range found has the starting pfn */
2630 for_each_active_range_index_in_nid(i, nid)
2631 return early_node_map[i].start_pfn;
2633 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2634 return 0;
2638 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2640 * It returns the minimum PFN based on information provided via
2641 * add_active_range().
2643 unsigned long __init find_min_pfn_with_active_regions(void)
2645 return find_min_pfn_for_node(MAX_NUMNODES);
2649 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2651 * It returns the maximum PFN based on information provided via
2652 * add_active_range().
2654 unsigned long __init find_max_pfn_with_active_regions(void)
2656 int i;
2657 unsigned long max_pfn = 0;
2659 for (i = 0; i < nr_nodemap_entries; i++)
2660 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2662 return max_pfn;
2666 * free_area_init_nodes - Initialise all pg_data_t and zone data
2667 * @max_zone_pfn: an array of max PFNs for each zone
2669 * This will call free_area_init_node() for each active node in the system.
2670 * Using the page ranges provided by add_active_range(), the size of each
2671 * zone in each node and their holes is calculated. If the maximum PFN
2672 * between two adjacent zones match, it is assumed that the zone is empty.
2673 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2674 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2675 * starts where the previous one ended. For example, ZONE_DMA32 starts
2676 * at arch_max_dma_pfn.
2678 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2680 unsigned long nid;
2681 enum zone_type i;
2683 /* Record where the zone boundaries are */
2684 memset(arch_zone_lowest_possible_pfn, 0,
2685 sizeof(arch_zone_lowest_possible_pfn));
2686 memset(arch_zone_highest_possible_pfn, 0,
2687 sizeof(arch_zone_highest_possible_pfn));
2688 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2689 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2690 for (i = 1; i < MAX_NR_ZONES; i++) {
2691 arch_zone_lowest_possible_pfn[i] =
2692 arch_zone_highest_possible_pfn[i-1];
2693 arch_zone_highest_possible_pfn[i] =
2694 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2697 /* Regions in the early_node_map can be in any order */
2698 sort_node_map();
2700 /* Print out the zone ranges */
2701 printk("Zone PFN ranges:\n");
2702 for (i = 0; i < MAX_NR_ZONES; i++)
2703 printk(" %-8s %8lu -> %8lu\n",
2704 zone_names[i],
2705 arch_zone_lowest_possible_pfn[i],
2706 arch_zone_highest_possible_pfn[i]);
2708 /* Print out the early_node_map[] */
2709 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2710 for (i = 0; i < nr_nodemap_entries; i++)
2711 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2712 early_node_map[i].start_pfn,
2713 early_node_map[i].end_pfn);
2715 /* Initialise every node */
2716 for_each_online_node(nid) {
2717 pg_data_t *pgdat = NODE_DATA(nid);
2718 free_area_init_node(nid, pgdat, NULL,
2719 find_min_pfn_for_node(nid), NULL);
2722 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2725 * set_dma_reserve - set the specified number of pages reserved in the first zone
2726 * @new_dma_reserve: The number of pages to mark reserved
2728 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2729 * In the DMA zone, a significant percentage may be consumed by kernel image
2730 * and other unfreeable allocations which can skew the watermarks badly. This
2731 * function may optionally be used to account for unfreeable pages in the
2732 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2733 * smaller per-cpu batchsize.
2735 void __init set_dma_reserve(unsigned long new_dma_reserve)
2737 dma_reserve = new_dma_reserve;
2740 #ifndef CONFIG_NEED_MULTIPLE_NODES
2741 static bootmem_data_t contig_bootmem_data;
2742 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2744 EXPORT_SYMBOL(contig_page_data);
2745 #endif
2747 void __init free_area_init(unsigned long *zones_size)
2749 free_area_init_node(0, NODE_DATA(0), zones_size,
2750 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2753 #ifdef CONFIG_HOTPLUG_CPU
2754 static int page_alloc_cpu_notify(struct notifier_block *self,
2755 unsigned long action, void *hcpu)
2757 int cpu = (unsigned long)hcpu;
2759 if (action == CPU_DEAD) {
2760 local_irq_disable();
2761 __drain_pages(cpu);
2762 vm_events_fold_cpu(cpu);
2763 local_irq_enable();
2764 refresh_cpu_vm_stats(cpu);
2766 return NOTIFY_OK;
2768 #endif /* CONFIG_HOTPLUG_CPU */
2770 void __init page_alloc_init(void)
2772 hotcpu_notifier(page_alloc_cpu_notify, 0);
2776 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2777 * or min_free_kbytes changes.
2779 static void calculate_totalreserve_pages(void)
2781 struct pglist_data *pgdat;
2782 unsigned long reserve_pages = 0;
2783 enum zone_type i, j;
2785 for_each_online_pgdat(pgdat) {
2786 for (i = 0; i < MAX_NR_ZONES; i++) {
2787 struct zone *zone = pgdat->node_zones + i;
2788 unsigned long max = 0;
2790 /* Find valid and maximum lowmem_reserve in the zone */
2791 for (j = i; j < MAX_NR_ZONES; j++) {
2792 if (zone->lowmem_reserve[j] > max)
2793 max = zone->lowmem_reserve[j];
2796 /* we treat pages_high as reserved pages. */
2797 max += zone->pages_high;
2799 if (max > zone->present_pages)
2800 max = zone->present_pages;
2801 reserve_pages += max;
2804 totalreserve_pages = reserve_pages;
2808 * setup_per_zone_lowmem_reserve - called whenever
2809 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2810 * has a correct pages reserved value, so an adequate number of
2811 * pages are left in the zone after a successful __alloc_pages().
2813 static void setup_per_zone_lowmem_reserve(void)
2815 struct pglist_data *pgdat;
2816 enum zone_type j, idx;
2818 for_each_online_pgdat(pgdat) {
2819 for (j = 0; j < MAX_NR_ZONES; j++) {
2820 struct zone *zone = pgdat->node_zones + j;
2821 unsigned long present_pages = zone->present_pages;
2823 zone->lowmem_reserve[j] = 0;
2825 idx = j;
2826 while (idx) {
2827 struct zone *lower_zone;
2829 idx--;
2831 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2832 sysctl_lowmem_reserve_ratio[idx] = 1;
2834 lower_zone = pgdat->node_zones + idx;
2835 lower_zone->lowmem_reserve[j] = present_pages /
2836 sysctl_lowmem_reserve_ratio[idx];
2837 present_pages += lower_zone->present_pages;
2842 /* update totalreserve_pages */
2843 calculate_totalreserve_pages();
2847 * setup_per_zone_pages_min - called when min_free_kbytes changes.
2849 * Ensures that the pages_{min,low,high} values for each zone are set correctly
2850 * with respect to min_free_kbytes.
2852 void setup_per_zone_pages_min(void)
2854 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2855 unsigned long lowmem_pages = 0;
2856 struct zone *zone;
2857 unsigned long flags;
2859 /* Calculate total number of !ZONE_HIGHMEM pages */
2860 for_each_zone(zone) {
2861 if (!is_highmem(zone))
2862 lowmem_pages += zone->present_pages;
2865 for_each_zone(zone) {
2866 u64 tmp;
2868 spin_lock_irqsave(&zone->lru_lock, flags);
2869 tmp = (u64)pages_min * zone->present_pages;
2870 do_div(tmp, lowmem_pages);
2871 if (is_highmem(zone)) {
2873 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2874 * need highmem pages, so cap pages_min to a small
2875 * value here.
2877 * The (pages_high-pages_low) and (pages_low-pages_min)
2878 * deltas controls asynch page reclaim, and so should
2879 * not be capped for highmem.
2881 int min_pages;
2883 min_pages = zone->present_pages / 1024;
2884 if (min_pages < SWAP_CLUSTER_MAX)
2885 min_pages = SWAP_CLUSTER_MAX;
2886 if (min_pages > 128)
2887 min_pages = 128;
2888 zone->pages_min = min_pages;
2889 } else {
2891 * If it's a lowmem zone, reserve a number of pages
2892 * proportionate to the zone's size.
2894 zone->pages_min = tmp;
2897 zone->pages_low = zone->pages_min + (tmp >> 2);
2898 zone->pages_high = zone->pages_min + (tmp >> 1);
2899 spin_unlock_irqrestore(&zone->lru_lock, flags);
2902 /* update totalreserve_pages */
2903 calculate_totalreserve_pages();
2907 * Initialise min_free_kbytes.
2909 * For small machines we want it small (128k min). For large machines
2910 * we want it large (64MB max). But it is not linear, because network
2911 * bandwidth does not increase linearly with machine size. We use
2913 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2914 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2916 * which yields
2918 * 16MB: 512k
2919 * 32MB: 724k
2920 * 64MB: 1024k
2921 * 128MB: 1448k
2922 * 256MB: 2048k
2923 * 512MB: 2896k
2924 * 1024MB: 4096k
2925 * 2048MB: 5792k
2926 * 4096MB: 8192k
2927 * 8192MB: 11584k
2928 * 16384MB: 16384k
2930 static int __init init_per_zone_pages_min(void)
2932 unsigned long lowmem_kbytes;
2934 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2936 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2937 if (min_free_kbytes < 128)
2938 min_free_kbytes = 128;
2939 if (min_free_kbytes > 65536)
2940 min_free_kbytes = 65536;
2941 setup_per_zone_pages_min();
2942 setup_per_zone_lowmem_reserve();
2943 return 0;
2945 module_init(init_per_zone_pages_min)
2948 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2949 * that we can call two helper functions whenever min_free_kbytes
2950 * changes.
2952 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2953 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2955 proc_dointvec(table, write, file, buffer, length, ppos);
2956 setup_per_zone_pages_min();
2957 return 0;
2960 #ifdef CONFIG_NUMA
2961 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2962 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2964 struct zone *zone;
2965 int rc;
2967 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2968 if (rc)
2969 return rc;
2971 for_each_zone(zone)
2972 zone->min_unmapped_pages = (zone->present_pages *
2973 sysctl_min_unmapped_ratio) / 100;
2974 return 0;
2977 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
2978 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2980 struct zone *zone;
2981 int rc;
2983 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2984 if (rc)
2985 return rc;
2987 for_each_zone(zone)
2988 zone->min_slab_pages = (zone->present_pages *
2989 sysctl_min_slab_ratio) / 100;
2990 return 0;
2992 #endif
2995 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2996 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2997 * whenever sysctl_lowmem_reserve_ratio changes.
2999 * The reserve ratio obviously has absolutely no relation with the
3000 * pages_min watermarks. The lowmem reserve ratio can only make sense
3001 * if in function of the boot time zone sizes.
3003 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3004 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3006 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3007 setup_per_zone_lowmem_reserve();
3008 return 0;
3012 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3013 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3014 * can have before it gets flushed back to buddy allocator.
3017 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3018 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3020 struct zone *zone;
3021 unsigned int cpu;
3022 int ret;
3024 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3025 if (!write || (ret == -EINVAL))
3026 return ret;
3027 for_each_zone(zone) {
3028 for_each_online_cpu(cpu) {
3029 unsigned long high;
3030 high = zone->present_pages / percpu_pagelist_fraction;
3031 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3034 return 0;
3037 int hashdist = HASHDIST_DEFAULT;
3039 #ifdef CONFIG_NUMA
3040 static int __init set_hashdist(char *str)
3042 if (!str)
3043 return 0;
3044 hashdist = simple_strtoul(str, &str, 0);
3045 return 1;
3047 __setup("hashdist=", set_hashdist);
3048 #endif
3051 * allocate a large system hash table from bootmem
3052 * - it is assumed that the hash table must contain an exact power-of-2
3053 * quantity of entries
3054 * - limit is the number of hash buckets, not the total allocation size
3056 void *__init alloc_large_system_hash(const char *tablename,
3057 unsigned long bucketsize,
3058 unsigned long numentries,
3059 int scale,
3060 int flags,
3061 unsigned int *_hash_shift,
3062 unsigned int *_hash_mask,
3063 unsigned long limit)
3065 unsigned long long max = limit;
3066 unsigned long log2qty, size;
3067 void *table = NULL;
3069 /* allow the kernel cmdline to have a say */
3070 if (!numentries) {
3071 /* round applicable memory size up to nearest megabyte */
3072 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
3073 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3074 numentries >>= 20 - PAGE_SHIFT;
3075 numentries <<= 20 - PAGE_SHIFT;
3077 /* limit to 1 bucket per 2^scale bytes of low memory */
3078 if (scale > PAGE_SHIFT)
3079 numentries >>= (scale - PAGE_SHIFT);
3080 else
3081 numentries <<= (PAGE_SHIFT - scale);
3083 numentries = roundup_pow_of_two(numentries);
3085 /* limit allocation size to 1/16 total memory by default */
3086 if (max == 0) {
3087 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3088 do_div(max, bucketsize);
3091 if (numentries > max)
3092 numentries = max;
3094 log2qty = long_log2(numentries);
3096 do {
3097 size = bucketsize << log2qty;
3098 if (flags & HASH_EARLY)
3099 table = alloc_bootmem(size);
3100 else if (hashdist)
3101 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3102 else {
3103 unsigned long order;
3104 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3106 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3108 } while (!table && size > PAGE_SIZE && --log2qty);
3110 if (!table)
3111 panic("Failed to allocate %s hash table\n", tablename);
3113 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3114 tablename,
3115 (1U << log2qty),
3116 long_log2(size) - PAGE_SHIFT,
3117 size);
3119 if (_hash_shift)
3120 *_hash_shift = log2qty;
3121 if (_hash_mask)
3122 *_hash_mask = (1 << log2qty) - 1;
3124 return table;
3127 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3128 struct page *pfn_to_page(unsigned long pfn)
3130 return __pfn_to_page(pfn);
3132 unsigned long page_to_pfn(struct page *page)
3134 return __page_to_pfn(page);
3136 EXPORT_SYMBOL(pfn_to_page);
3137 EXPORT_SYMBOL(page_to_pfn);
3138 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */