[Bluetooth] Switch from OGF+OCF to using only opcodes
[linux-2.6/verdex.git] / drivers / block / umem.c
blob99806f9ee4ce85910deecfe194462b48cc047b35
1 /*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
26 * bh's instead.
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
52 #include <linux/fcntl.h> /* O_ACCMODE */
53 #include <linux/hdreg.h> /* HDIO_GETGEO */
55 #include "umem.h"
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2 /* two sectors */
62 #define MM_BLKSIZE 1024 /* 1k blocks */
63 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
64 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
67 * Version Information
70 #define DRIVER_NAME "umem"
71 #define DRIVER_VERSION "v2.3"
72 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
75 static int debug;
76 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
79 #define DEBUG_LED_ON_TRANSFER 0x01
80 #define DEBUG_BATTERY_POLLING 0x02
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
85 static int pci_read_cmd = 0x0C; /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
89 static int pci_write_cmd = 0x0F; /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
93 static int pci_cmds;
95 static int major_nr;
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
100 struct cardinfo {
101 struct pci_dev *dev;
103 unsigned char __iomem *csr_remap;
104 unsigned int mm_size; /* size in kbytes */
106 unsigned int init_size; /* initial segment, in sectors,
107 * that we know to
108 * have been written
110 struct bio *bio, *currentbio, **biotail;
111 int current_idx;
112 sector_t current_sector;
114 struct request_queue *queue;
116 struct mm_page {
117 dma_addr_t page_dma;
118 struct mm_dma_desc *desc;
119 int cnt, headcnt;
120 struct bio *bio, **biotail;
121 int idx;
122 } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
125 int Active, Ready;
127 struct tasklet_struct tasklet;
128 unsigned int dma_status;
130 struct {
131 int good;
132 int warned;
133 unsigned long last_change;
134 } battery[2];
136 spinlock_t lock;
137 int check_batteries;
139 int flags;
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct block_device_operations mm_fops;
144 static struct timer_list battery_timer;
146 static int num_cards = 0;
148 static struct gendisk *mm_gendisk[MM_MAXCARDS];
150 static void check_batteries(struct cardinfo *card);
153 -----------------------------------------------------------------------------------
154 -- get_userbit
155 -----------------------------------------------------------------------------------
157 static int get_userbit(struct cardinfo *card, int bit)
159 unsigned char led;
161 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
162 return led & bit;
165 -----------------------------------------------------------------------------------
166 -- set_userbit
167 -----------------------------------------------------------------------------------
169 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
171 unsigned char led;
173 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
174 if (state)
175 led |= bit;
176 else
177 led &= ~bit;
178 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
180 return 0;
183 -----------------------------------------------------------------------------------
184 -- set_led
185 -----------------------------------------------------------------------------------
188 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
190 static void set_led(struct cardinfo *card, int shift, unsigned char state)
192 unsigned char led;
194 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
195 if (state == LED_FLIP)
196 led ^= (1<<shift);
197 else {
198 led &= ~(0x03 << shift);
199 led |= (state << shift);
201 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
205 #ifdef MM_DIAG
207 -----------------------------------------------------------------------------------
208 -- dump_regs
209 -----------------------------------------------------------------------------------
211 static void dump_regs(struct cardinfo *card)
213 unsigned char *p;
214 int i, i1;
216 p = card->csr_remap;
217 for (i = 0; i < 8; i++) {
218 printk(KERN_DEBUG "%p ", p);
220 for (i1 = 0; i1 < 16; i1++)
221 printk("%02x ", *p++);
223 printk("\n");
226 #endif
228 -----------------------------------------------------------------------------------
229 -- dump_dmastat
230 -----------------------------------------------------------------------------------
232 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
234 dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
235 if (dmastat & DMASCR_ANY_ERR)
236 printk("ANY_ERR ");
237 if (dmastat & DMASCR_MBE_ERR)
238 printk("MBE_ERR ");
239 if (dmastat & DMASCR_PARITY_ERR_REP)
240 printk("PARITY_ERR_REP ");
241 if (dmastat & DMASCR_PARITY_ERR_DET)
242 printk("PARITY_ERR_DET ");
243 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
244 printk("SYSTEM_ERR_SIG ");
245 if (dmastat & DMASCR_TARGET_ABT)
246 printk("TARGET_ABT ");
247 if (dmastat & DMASCR_MASTER_ABT)
248 printk("MASTER_ABT ");
249 if (dmastat & DMASCR_CHAIN_COMPLETE)
250 printk("CHAIN_COMPLETE ");
251 if (dmastat & DMASCR_DMA_COMPLETE)
252 printk("DMA_COMPLETE ");
253 printk("\n");
257 * Theory of request handling
259 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
260 * We have two pages of mm_dma_desc, holding about 64 descriptors
261 * each. These are allocated at init time.
262 * One page is "Ready" and is either full, or can have request added.
263 * The other page might be "Active", which DMA is happening on it.
265 * Whenever IO on the active page completes, the Ready page is activated
266 * and the ex-Active page is clean out and made Ready.
267 * Otherwise the Ready page is only activated when it becomes full, or
268 * when mm_unplug_device is called via the unplug_io_fn.
270 * If a request arrives while both pages a full, it is queued, and b_rdev is
271 * overloaded to record whether it was a read or a write.
273 * The interrupt handler only polls the device to clear the interrupt.
274 * The processing of the result is done in a tasklet.
277 static void mm_start_io(struct cardinfo *card)
279 /* we have the lock, we know there is
280 * no IO active, and we know that card->Active
281 * is set
283 struct mm_dma_desc *desc;
284 struct mm_page *page;
285 int offset;
287 /* make the last descriptor end the chain */
288 page = &card->mm_pages[card->Active];
289 pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
290 desc = &page->desc[page->cnt-1];
292 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
293 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
294 desc->sem_control_bits = desc->control_bits;
297 if (debug & DEBUG_LED_ON_TRANSFER)
298 set_led(card, LED_REMOVE, LED_ON);
300 desc = &page->desc[page->headcnt];
301 writel(0, card->csr_remap + DMA_PCI_ADDR);
302 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
304 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
305 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
307 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
308 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
310 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
311 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
313 offset = ((char*)desc) - ((char*)page->desc);
314 writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
315 card->csr_remap + DMA_DESCRIPTOR_ADDR);
316 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
317 * and on some ports will do nothing ! */
318 writel(cpu_to_le32(((u64)page->page_dma)>>32),
319 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
321 /* Go, go, go */
322 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
323 card->csr_remap + DMA_STATUS_CTRL);
326 static int add_bio(struct cardinfo *card);
328 static void activate(struct cardinfo *card)
330 /* if No page is Active, and Ready is
331 * not empty, then switch Ready page
332 * to active and start IO.
333 * Then add any bh's that are available to Ready
336 do {
337 while (add_bio(card))
340 if (card->Active == -1 &&
341 card->mm_pages[card->Ready].cnt > 0) {
342 card->Active = card->Ready;
343 card->Ready = 1-card->Ready;
344 mm_start_io(card);
347 } while (card->Active == -1 && add_bio(card));
350 static inline void reset_page(struct mm_page *page)
352 page->cnt = 0;
353 page->headcnt = 0;
354 page->bio = NULL;
355 page->biotail = & page->bio;
358 static void mm_unplug_device(struct request_queue *q)
360 struct cardinfo *card = q->queuedata;
361 unsigned long flags;
363 spin_lock_irqsave(&card->lock, flags);
364 if (blk_remove_plug(q))
365 activate(card);
366 spin_unlock_irqrestore(&card->lock, flags);
370 * If there is room on Ready page, take
371 * one bh off list and add it.
372 * return 1 if there was room, else 0.
374 static int add_bio(struct cardinfo *card)
376 struct mm_page *p;
377 struct mm_dma_desc *desc;
378 dma_addr_t dma_handle;
379 int offset;
380 struct bio *bio;
381 struct bio_vec *vec;
382 int idx;
383 int rw;
384 int len;
386 bio = card->currentbio;
387 if (!bio && card->bio) {
388 card->currentbio = card->bio;
389 card->current_idx = card->bio->bi_idx;
390 card->current_sector = card->bio->bi_sector;
391 card->bio = card->bio->bi_next;
392 if (card->bio == NULL)
393 card->biotail = &card->bio;
394 card->currentbio->bi_next = NULL;
395 return 1;
397 if (!bio)
398 return 0;
399 idx = card->current_idx;
401 rw = bio_rw(bio);
402 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
403 return 0;
405 vec = bio_iovec_idx(bio, idx);
406 len = vec->bv_len;
407 dma_handle = pci_map_page(card->dev,
408 vec->bv_page,
409 vec->bv_offset,
410 len,
411 (rw==READ) ?
412 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
414 p = &card->mm_pages[card->Ready];
415 desc = &p->desc[p->cnt];
416 p->cnt++;
417 if (p->bio == NULL)
418 p->idx = idx;
419 if ((p->biotail) != &bio->bi_next) {
420 *(p->biotail) = bio;
421 p->biotail = &(bio->bi_next);
422 bio->bi_next = NULL;
425 desc->data_dma_handle = dma_handle;
427 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
428 desc->local_addr = cpu_to_le64(card->current_sector << 9);
429 desc->transfer_size = cpu_to_le32(len);
430 offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
431 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
432 desc->zero1 = desc->zero2 = 0;
433 offset = ( ((char*)(desc+1)) - ((char*)p->desc));
434 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
435 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
436 DMASCR_PARITY_INT_EN|
437 DMASCR_CHAIN_EN |
438 DMASCR_SEM_EN |
439 pci_cmds);
440 if (rw == WRITE)
441 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
442 desc->sem_control_bits = desc->control_bits;
444 card->current_sector += (len >> 9);
445 idx++;
446 card->current_idx = idx;
447 if (idx >= bio->bi_vcnt)
448 card->currentbio = NULL;
450 return 1;
453 static void process_page(unsigned long data)
455 /* check if any of the requests in the page are DMA_COMPLETE,
456 * and deal with them appropriately.
457 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
458 * dma must have hit an error on that descriptor, so use dma_status instead
459 * and assume that all following descriptors must be re-tried.
461 struct mm_page *page;
462 struct bio *return_bio=NULL;
463 struct cardinfo *card = (struct cardinfo *)data;
464 unsigned int dma_status = card->dma_status;
466 spin_lock_bh(&card->lock);
467 if (card->Active < 0)
468 goto out_unlock;
469 page = &card->mm_pages[card->Active];
471 while (page->headcnt < page->cnt) {
472 struct bio *bio = page->bio;
473 struct mm_dma_desc *desc = &page->desc[page->headcnt];
474 int control = le32_to_cpu(desc->sem_control_bits);
475 int last=0;
476 int idx;
478 if (!(control & DMASCR_DMA_COMPLETE)) {
479 control = dma_status;
480 last=1;
482 page->headcnt++;
483 idx = page->idx;
484 page->idx++;
485 if (page->idx >= bio->bi_vcnt) {
486 page->bio = bio->bi_next;
487 page->idx = page->bio->bi_idx;
490 pci_unmap_page(card->dev, desc->data_dma_handle,
491 bio_iovec_idx(bio,idx)->bv_len,
492 (control& DMASCR_TRANSFER_READ) ?
493 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
494 if (control & DMASCR_HARD_ERROR) {
495 /* error */
496 clear_bit(BIO_UPTODATE, &bio->bi_flags);
497 dev_printk(KERN_WARNING, &card->dev->dev,
498 "I/O error on sector %d/%d\n",
499 le32_to_cpu(desc->local_addr)>>9,
500 le32_to_cpu(desc->transfer_size));
501 dump_dmastat(card, control);
502 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
503 le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
504 card->init_size += le32_to_cpu(desc->transfer_size)>>9;
505 if (card->init_size>>1 >= card->mm_size) {
506 dev_printk(KERN_INFO, &card->dev->dev,
507 "memory now initialised\n");
508 set_userbit(card, MEMORY_INITIALIZED, 1);
511 if (bio != page->bio) {
512 bio->bi_next = return_bio;
513 return_bio = bio;
516 if (last) break;
519 if (debug & DEBUG_LED_ON_TRANSFER)
520 set_led(card, LED_REMOVE, LED_OFF);
522 if (card->check_batteries) {
523 card->check_batteries = 0;
524 check_batteries(card);
526 if (page->headcnt >= page->cnt) {
527 reset_page(page);
528 card->Active = -1;
529 activate(card);
530 } else {
531 /* haven't finished with this one yet */
532 pr_debug("do some more\n");
533 mm_start_io(card);
535 out_unlock:
536 spin_unlock_bh(&card->lock);
538 while(return_bio) {
539 struct bio *bio = return_bio;
541 return_bio = bio->bi_next;
542 bio->bi_next = NULL;
543 bio_endio(bio, 0);
548 -----------------------------------------------------------------------------------
549 -- mm_make_request
550 -----------------------------------------------------------------------------------
552 static int mm_make_request(struct request_queue *q, struct bio *bio)
554 struct cardinfo *card = q->queuedata;
555 pr_debug("mm_make_request %llu %u\n",
556 (unsigned long long)bio->bi_sector, bio->bi_size);
558 spin_lock_irq(&card->lock);
559 *card->biotail = bio;
560 bio->bi_next = NULL;
561 card->biotail = &bio->bi_next;
562 blk_plug_device(q);
563 spin_unlock_irq(&card->lock);
565 return 0;
569 -----------------------------------------------------------------------------------
570 -- mm_interrupt
571 -----------------------------------------------------------------------------------
573 static irqreturn_t mm_interrupt(int irq, void *__card)
575 struct cardinfo *card = (struct cardinfo *) __card;
576 unsigned int dma_status;
577 unsigned short cfg_status;
579 HW_TRACE(0x30);
581 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
583 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
584 /* interrupt wasn't for me ... */
585 return IRQ_NONE;
588 /* clear COMPLETION interrupts */
589 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
590 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
591 card->csr_remap+ DMA_STATUS_CTRL);
592 else
593 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
594 card->csr_remap+ DMA_STATUS_CTRL + 2);
596 /* log errors and clear interrupt status */
597 if (dma_status & DMASCR_ANY_ERR) {
598 unsigned int data_log1, data_log2;
599 unsigned int addr_log1, addr_log2;
600 unsigned char stat, count, syndrome, check;
602 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
604 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
605 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
606 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
607 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
609 count = readb(card->csr_remap + ERROR_COUNT);
610 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
611 check = readb(card->csr_remap + ERROR_CHECK);
613 dump_dmastat(card, dma_status);
615 if (stat & 0x01)
616 dev_printk(KERN_ERR, &card->dev->dev,
617 "Memory access error detected (err count %d)\n",
618 count);
619 if (stat & 0x02)
620 dev_printk(KERN_ERR, &card->dev->dev,
621 "Multi-bit EDC error\n");
623 dev_printk(KERN_ERR, &card->dev->dev,
624 "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
625 addr_log2, addr_log1, data_log2, data_log1);
626 dev_printk(KERN_ERR, &card->dev->dev,
627 "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
628 check, syndrome);
630 writeb(0, card->csr_remap + ERROR_COUNT);
633 if (dma_status & DMASCR_PARITY_ERR_REP) {
634 dev_printk(KERN_ERR, &card->dev->dev,
635 "PARITY ERROR REPORTED\n");
636 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
637 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
640 if (dma_status & DMASCR_PARITY_ERR_DET) {
641 dev_printk(KERN_ERR, &card->dev->dev,
642 "PARITY ERROR DETECTED\n");
643 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
644 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
647 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
648 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
649 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
650 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
653 if (dma_status & DMASCR_TARGET_ABT) {
654 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
655 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
656 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
659 if (dma_status & DMASCR_MASTER_ABT) {
660 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
661 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
662 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
665 /* and process the DMA descriptors */
666 card->dma_status = dma_status;
667 tasklet_schedule(&card->tasklet);
669 HW_TRACE(0x36);
671 return IRQ_HANDLED;
674 -----------------------------------------------------------------------------------
675 -- set_fault_to_battery_status
676 -----------------------------------------------------------------------------------
679 * If both batteries are good, no LED
680 * If either battery has been warned, solid LED
681 * If both batteries are bad, flash the LED quickly
682 * If either battery is bad, flash the LED semi quickly
684 static void set_fault_to_battery_status(struct cardinfo *card)
686 if (card->battery[0].good && card->battery[1].good)
687 set_led(card, LED_FAULT, LED_OFF);
688 else if (card->battery[0].warned || card->battery[1].warned)
689 set_led(card, LED_FAULT, LED_ON);
690 else if (!card->battery[0].good && !card->battery[1].good)
691 set_led(card, LED_FAULT, LED_FLASH_7_0);
692 else
693 set_led(card, LED_FAULT, LED_FLASH_3_5);
696 static void init_battery_timer(void);
700 -----------------------------------------------------------------------------------
701 -- check_battery
702 -----------------------------------------------------------------------------------
704 static int check_battery(struct cardinfo *card, int battery, int status)
706 if (status != card->battery[battery].good) {
707 card->battery[battery].good = !card->battery[battery].good;
708 card->battery[battery].last_change = jiffies;
710 if (card->battery[battery].good) {
711 dev_printk(KERN_ERR, &card->dev->dev,
712 "Battery %d now good\n", battery + 1);
713 card->battery[battery].warned = 0;
714 } else
715 dev_printk(KERN_ERR, &card->dev->dev,
716 "Battery %d now FAILED\n", battery + 1);
718 return 1;
719 } else if (!card->battery[battery].good &&
720 !card->battery[battery].warned &&
721 time_after_eq(jiffies, card->battery[battery].last_change +
722 (HZ * 60 * 60 * 5))) {
723 dev_printk(KERN_ERR, &card->dev->dev,
724 "Battery %d still FAILED after 5 hours\n", battery + 1);
725 card->battery[battery].warned = 1;
727 return 1;
730 return 0;
733 -----------------------------------------------------------------------------------
734 -- check_batteries
735 -----------------------------------------------------------------------------------
737 static void check_batteries(struct cardinfo *card)
739 /* NOTE: this must *never* be called while the card
740 * is doing (bus-to-card) DMA, or you will need the
741 * reset switch
743 unsigned char status;
744 int ret1, ret2;
746 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
747 if (debug & DEBUG_BATTERY_POLLING)
748 dev_printk(KERN_DEBUG, &card->dev->dev,
749 "checking battery status, 1 = %s, 2 = %s\n",
750 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
751 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
753 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
754 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
756 if (ret1 || ret2)
757 set_fault_to_battery_status(card);
760 static void check_all_batteries(unsigned long ptr)
762 int i;
764 for (i = 0; i < num_cards; i++)
765 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
766 struct cardinfo *card = &cards[i];
767 spin_lock_bh(&card->lock);
768 if (card->Active >= 0)
769 card->check_batteries = 1;
770 else
771 check_batteries(card);
772 spin_unlock_bh(&card->lock);
775 init_battery_timer();
778 -----------------------------------------------------------------------------------
779 -- init_battery_timer
780 -----------------------------------------------------------------------------------
782 static void init_battery_timer(void)
784 init_timer(&battery_timer);
785 battery_timer.function = check_all_batteries;
786 battery_timer.expires = jiffies + (HZ * 60);
787 add_timer(&battery_timer);
790 -----------------------------------------------------------------------------------
791 -- del_battery_timer
792 -----------------------------------------------------------------------------------
794 static void del_battery_timer(void)
796 del_timer(&battery_timer);
799 -----------------------------------------------------------------------------------
800 -- mm_revalidate
801 -----------------------------------------------------------------------------------
804 * Note no locks taken out here. In a worst case scenario, we could drop
805 * a chunk of system memory. But that should never happen, since validation
806 * happens at open or mount time, when locks are held.
808 * That's crap, since doing that while some partitions are opened
809 * or mounted will give you really nasty results.
811 static int mm_revalidate(struct gendisk *disk)
813 struct cardinfo *card = disk->private_data;
814 set_capacity(disk, card->mm_size << 1);
815 return 0;
818 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
820 struct cardinfo *card = bdev->bd_disk->private_data;
821 int size = card->mm_size * (1024 / MM_HARDSECT);
824 * get geometry: we have to fake one... trim the size to a
825 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
826 * whatever cylinders.
828 geo->heads = 64;
829 geo->sectors = 32;
830 geo->cylinders = size / (geo->heads * geo->sectors);
831 return 0;
835 -----------------------------------------------------------------------------------
836 -- mm_check_change
837 -----------------------------------------------------------------------------------
838 Future support for removable devices
840 static int mm_check_change(struct gendisk *disk)
842 /* struct cardinfo *dev = disk->private_data; */
843 return 0;
846 -----------------------------------------------------------------------------------
847 -- mm_fops
848 -----------------------------------------------------------------------------------
850 static struct block_device_operations mm_fops = {
851 .owner = THIS_MODULE,
852 .getgeo = mm_getgeo,
853 .revalidate_disk= mm_revalidate,
854 .media_changed = mm_check_change,
857 -----------------------------------------------------------------------------------
858 -- mm_pci_probe
859 -----------------------------------------------------------------------------------
861 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
863 int ret = -ENODEV;
864 struct cardinfo *card = &cards[num_cards];
865 unsigned char mem_present;
866 unsigned char batt_status;
867 unsigned int saved_bar, data;
868 unsigned long csr_base;
869 unsigned long csr_len;
870 int magic_number;
871 static int printed_version;
873 if (!printed_version++)
874 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
876 ret = pci_enable_device(dev);
877 if (ret)
878 return ret;
880 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
881 pci_set_master(dev);
883 card->dev = dev;
885 csr_base = pci_resource_start(dev, 0);
886 csr_len = pci_resource_len(dev, 0);
887 if (!csr_base || !csr_len)
888 return -ENODEV;
890 dev_printk(KERN_INFO, &dev->dev,
891 "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
893 if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
894 pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
895 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
896 return -ENOMEM;
899 ret = pci_request_regions(dev, DRIVER_NAME);
900 if (ret) {
901 dev_printk(KERN_ERR, &card->dev->dev,
902 "Unable to request memory region\n");
903 goto failed_req_csr;
906 card->csr_remap = ioremap_nocache(csr_base, csr_len);
907 if (!card->csr_remap) {
908 dev_printk(KERN_ERR, &card->dev->dev,
909 "Unable to remap memory region\n");
910 ret = -ENOMEM;
912 goto failed_remap_csr;
915 dev_printk(KERN_INFO, &card->dev->dev,
916 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
917 csr_base, card->csr_remap, csr_len);
919 switch(card->dev->device) {
920 case 0x5415:
921 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
922 magic_number = 0x59;
923 break;
925 case 0x5425:
926 card->flags |= UM_FLAG_NO_BYTE_STATUS;
927 magic_number = 0x5C;
928 break;
930 case 0x6155:
931 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
932 magic_number = 0x99;
933 break;
935 default:
936 magic_number = 0x100;
937 break;
940 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
941 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
942 ret = -ENOMEM;
943 goto failed_magic;
946 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
947 PAGE_SIZE*2,
948 &card->mm_pages[0].page_dma);
949 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
950 PAGE_SIZE*2,
951 &card->mm_pages[1].page_dma);
952 if (card->mm_pages[0].desc == NULL ||
953 card->mm_pages[1].desc == NULL) {
954 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
955 goto failed_alloc;
957 reset_page(&card->mm_pages[0]);
958 reset_page(&card->mm_pages[1]);
959 card->Ready = 0; /* page 0 is ready */
960 card->Active = -1; /* no page is active */
961 card->bio = NULL;
962 card->biotail = &card->bio;
964 card->queue = blk_alloc_queue(GFP_KERNEL);
965 if (!card->queue)
966 goto failed_alloc;
968 blk_queue_make_request(card->queue, mm_make_request);
969 card->queue->queuedata = card;
970 card->queue->unplug_fn = mm_unplug_device;
972 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
974 card->check_batteries = 0;
976 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
977 switch (mem_present) {
978 case MEM_128_MB:
979 card->mm_size = 1024 * 128;
980 break;
981 case MEM_256_MB:
982 card->mm_size = 1024 * 256;
983 break;
984 case MEM_512_MB:
985 card->mm_size = 1024 * 512;
986 break;
987 case MEM_1_GB:
988 card->mm_size = 1024 * 1024;
989 break;
990 case MEM_2_GB:
991 card->mm_size = 1024 * 2048;
992 break;
993 default:
994 card->mm_size = 0;
995 break;
998 /* Clear the LED's we control */
999 set_led(card, LED_REMOVE, LED_OFF);
1000 set_led(card, LED_FAULT, LED_OFF);
1002 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1004 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1005 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1006 card->battery[0].last_change = card->battery[1].last_change = jiffies;
1008 if (card->flags & UM_FLAG_NO_BATT)
1009 dev_printk(KERN_INFO, &card->dev->dev,
1010 "Size %d KB\n", card->mm_size);
1011 else {
1012 dev_printk(KERN_INFO, &card->dev->dev,
1013 "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1014 card->mm_size,
1015 (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1016 card->battery[0].good ? "OK" : "FAILURE",
1017 (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1018 card->battery[1].good ? "OK" : "FAILURE");
1020 set_fault_to_battery_status(card);
1023 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1024 data = 0xffffffff;
1025 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1026 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1027 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1028 data &= 0xfffffff0;
1029 data = ~data;
1030 data += 1;
1032 if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME, card)) {
1033 dev_printk(KERN_ERR, &card->dev->dev,
1034 "Unable to allocate IRQ\n");
1035 ret = -ENODEV;
1037 goto failed_req_irq;
1040 dev_printk(KERN_INFO, &card->dev->dev,
1041 "Window size %d bytes, IRQ %d\n", data, dev->irq);
1043 spin_lock_init(&card->lock);
1045 pci_set_drvdata(dev, card);
1047 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
1048 pci_write_cmd = 0x07; /* then Memory Write command */
1050 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1051 unsigned short cfg_command;
1052 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1053 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1054 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1056 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1058 num_cards++;
1060 if (!get_userbit(card, MEMORY_INITIALIZED)) {
1061 dev_printk(KERN_INFO, &card->dev->dev,
1062 "memory NOT initialized. Consider over-writing whole device.\n");
1063 card->init_size = 0;
1064 } else {
1065 dev_printk(KERN_INFO, &card->dev->dev,
1066 "memory already initialized\n");
1067 card->init_size = card->mm_size;
1070 /* Enable ECC */
1071 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1073 return 0;
1075 failed_req_irq:
1076 failed_alloc:
1077 if (card->mm_pages[0].desc)
1078 pci_free_consistent(card->dev, PAGE_SIZE*2,
1079 card->mm_pages[0].desc,
1080 card->mm_pages[0].page_dma);
1081 if (card->mm_pages[1].desc)
1082 pci_free_consistent(card->dev, PAGE_SIZE*2,
1083 card->mm_pages[1].desc,
1084 card->mm_pages[1].page_dma);
1085 failed_magic:
1086 iounmap(card->csr_remap);
1087 failed_remap_csr:
1088 pci_release_regions(dev);
1089 failed_req_csr:
1091 return ret;
1094 -----------------------------------------------------------------------------------
1095 -- mm_pci_remove
1096 -----------------------------------------------------------------------------------
1098 static void mm_pci_remove(struct pci_dev *dev)
1100 struct cardinfo *card = pci_get_drvdata(dev);
1102 tasklet_kill(&card->tasklet);
1103 free_irq(dev->irq, card);
1104 iounmap(card->csr_remap);
1106 if (card->mm_pages[0].desc)
1107 pci_free_consistent(card->dev, PAGE_SIZE*2,
1108 card->mm_pages[0].desc,
1109 card->mm_pages[0].page_dma);
1110 if (card->mm_pages[1].desc)
1111 pci_free_consistent(card->dev, PAGE_SIZE*2,
1112 card->mm_pages[1].desc,
1113 card->mm_pages[1].page_dma);
1114 blk_cleanup_queue(card->queue);
1116 pci_release_regions(dev);
1117 pci_disable_device(dev);
1120 static const struct pci_device_id mm_pci_ids[] = {
1121 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1122 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1123 {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1125 .vendor = 0x8086,
1126 .device = 0xB555,
1127 .subvendor= 0x1332,
1128 .subdevice= 0x5460,
1129 .class = 0x050000,
1130 .class_mask= 0,
1131 }, { /* end: all zeroes */ }
1134 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1136 static struct pci_driver mm_pci_driver = {
1137 .name = DRIVER_NAME,
1138 .id_table = mm_pci_ids,
1139 .probe = mm_pci_probe,
1140 .remove = mm_pci_remove,
1144 -----------------------------------------------------------------------------------
1145 -- mm_init
1146 -----------------------------------------------------------------------------------
1149 static int __init mm_init(void)
1151 int retval, i;
1152 int err;
1154 retval = pci_register_driver(&mm_pci_driver);
1155 if (retval)
1156 return -ENOMEM;
1158 err = major_nr = register_blkdev(0, DRIVER_NAME);
1159 if (err < 0) {
1160 pci_unregister_driver(&mm_pci_driver);
1161 return -EIO;
1164 for (i = 0; i < num_cards; i++) {
1165 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1166 if (!mm_gendisk[i])
1167 goto out;
1170 for (i = 0; i < num_cards; i++) {
1171 struct gendisk *disk = mm_gendisk[i];
1172 sprintf(disk->disk_name, "umem%c", 'a'+i);
1173 spin_lock_init(&cards[i].lock);
1174 disk->major = major_nr;
1175 disk->first_minor = i << MM_SHIFT;
1176 disk->fops = &mm_fops;
1177 disk->private_data = &cards[i];
1178 disk->queue = cards[i].queue;
1179 set_capacity(disk, cards[i].mm_size << 1);
1180 add_disk(disk);
1183 init_battery_timer();
1184 printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1185 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1186 return 0;
1188 out:
1189 pci_unregister_driver(&mm_pci_driver);
1190 unregister_blkdev(major_nr, DRIVER_NAME);
1191 while (i--)
1192 put_disk(mm_gendisk[i]);
1193 return -ENOMEM;
1196 -----------------------------------------------------------------------------------
1197 -- mm_cleanup
1198 -----------------------------------------------------------------------------------
1200 static void __exit mm_cleanup(void)
1202 int i;
1204 del_battery_timer();
1206 for (i=0; i < num_cards ; i++) {
1207 del_gendisk(mm_gendisk[i]);
1208 put_disk(mm_gendisk[i]);
1211 pci_unregister_driver(&mm_pci_driver);
1213 unregister_blkdev(major_nr, DRIVER_NAME);
1216 module_init(mm_init);
1217 module_exit(mm_cleanup);
1219 MODULE_AUTHOR(DRIVER_AUTHOR);
1220 MODULE_DESCRIPTION(DRIVER_DESC);
1221 MODULE_LICENSE("GPL");