[Bluetooth] Switch from OGF+OCF to using only opcodes
[linux-2.6/verdex.git] / drivers / block / xsysace.c
blob82effce97c514601dfbc3f5d9f5e953fe98bcd5b
1 /*
2 * Xilinx SystemACE device driver
4 * Copyright 2007 Secret Lab Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 */
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
18 * This driver is a block device driver for the SystemACE.
20 * Initialization:
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
28 * Processing:
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
42 * cleared.
43 * 3. release the lock.
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
58 * A state has two options when yielding execution:
59 * 1. ace_fsm_yield()
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
76 * To Do:
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
81 #undef DEBUG
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/hdreg.h>
93 #include <linux/platform_device.h>
94 #if defined(CONFIG_OF)
95 #include <linux/of_device.h>
96 #include <linux/of_platform.h>
97 #endif
99 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
100 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
101 MODULE_LICENSE("GPL");
103 /* SystemACE register definitions */
104 #define ACE_BUSMODE (0x00)
106 #define ACE_STATUS (0x04)
107 #define ACE_STATUS_CFGLOCK (0x00000001)
108 #define ACE_STATUS_MPULOCK (0x00000002)
109 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
110 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
111 #define ACE_STATUS_CFDETECT (0x00000010)
112 #define ACE_STATUS_DATABUFRDY (0x00000020)
113 #define ACE_STATUS_DATABUFMODE (0x00000040)
114 #define ACE_STATUS_CFGDONE (0x00000080)
115 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
116 #define ACE_STATUS_CFGMODEPIN (0x00000200)
117 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
118 #define ACE_STATUS_CFBSY (0x00020000)
119 #define ACE_STATUS_CFRDY (0x00040000)
120 #define ACE_STATUS_CFDWF (0x00080000)
121 #define ACE_STATUS_CFDSC (0x00100000)
122 #define ACE_STATUS_CFDRQ (0x00200000)
123 #define ACE_STATUS_CFCORR (0x00400000)
124 #define ACE_STATUS_CFERR (0x00800000)
126 #define ACE_ERROR (0x08)
127 #define ACE_CFGLBA (0x0c)
128 #define ACE_MPULBA (0x10)
130 #define ACE_SECCNTCMD (0x14)
131 #define ACE_SECCNTCMD_RESET (0x0100)
132 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
133 #define ACE_SECCNTCMD_READ_DATA (0x0300)
134 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
135 #define ACE_SECCNTCMD_ABORT (0x0600)
137 #define ACE_VERSION (0x16)
138 #define ACE_VERSION_REVISION_MASK (0x00FF)
139 #define ACE_VERSION_MINOR_MASK (0x0F00)
140 #define ACE_VERSION_MAJOR_MASK (0xF000)
142 #define ACE_CTRL (0x18)
143 #define ACE_CTRL_FORCELOCKREQ (0x0001)
144 #define ACE_CTRL_LOCKREQ (0x0002)
145 #define ACE_CTRL_FORCECFGADDR (0x0004)
146 #define ACE_CTRL_FORCECFGMODE (0x0008)
147 #define ACE_CTRL_CFGMODE (0x0010)
148 #define ACE_CTRL_CFGSTART (0x0020)
149 #define ACE_CTRL_CFGSEL (0x0040)
150 #define ACE_CTRL_CFGRESET (0x0080)
151 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
152 #define ACE_CTRL_ERRORIRQ (0x0200)
153 #define ACE_CTRL_CFGDONEIRQ (0x0400)
154 #define ACE_CTRL_RESETIRQ (0x0800)
155 #define ACE_CTRL_CFGPROG (0x1000)
156 #define ACE_CTRL_CFGADDR_MASK (0xe000)
158 #define ACE_FATSTAT (0x1c)
160 #define ACE_NUM_MINORS 16
161 #define ACE_SECTOR_SIZE (512)
162 #define ACE_FIFO_SIZE (32)
163 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
165 #define ACE_BUS_WIDTH_8 0
166 #define ACE_BUS_WIDTH_16 1
168 struct ace_reg_ops;
170 struct ace_device {
171 /* driver state data */
172 int id;
173 int media_change;
174 int users;
175 struct list_head list;
177 /* finite state machine data */
178 struct tasklet_struct fsm_tasklet;
179 uint fsm_task; /* Current activity (ACE_TASK_*) */
180 uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
181 uint fsm_continue_flag; /* cleared to exit FSM mainloop */
182 uint fsm_iter_num;
183 struct timer_list stall_timer;
185 /* Transfer state/result, use for both id and block request */
186 struct request *req; /* request being processed */
187 void *data_ptr; /* pointer to I/O buffer */
188 int data_count; /* number of buffers remaining */
189 int data_result; /* Result of transfer; 0 := success */
191 int id_req_count; /* count of id requests */
192 int id_result;
193 struct completion id_completion; /* used when id req finishes */
194 int in_irq;
196 /* Details of hardware device */
197 unsigned long physaddr;
198 void __iomem *baseaddr;
199 int irq;
200 int bus_width; /* 0 := 8 bit; 1 := 16 bit */
201 struct ace_reg_ops *reg_ops;
202 int lock_count;
204 /* Block device data structures */
205 spinlock_t lock;
206 struct device *dev;
207 struct request_queue *queue;
208 struct gendisk *gd;
210 /* Inserted CF card parameters */
211 struct hd_driveid cf_id;
214 static int ace_major;
216 /* ---------------------------------------------------------------------
217 * Low level register access
220 struct ace_reg_ops {
221 u16(*in) (struct ace_device * ace, int reg);
222 void (*out) (struct ace_device * ace, int reg, u16 val);
223 void (*datain) (struct ace_device * ace);
224 void (*dataout) (struct ace_device * ace);
227 /* 8 Bit bus width */
228 static u16 ace_in_8(struct ace_device *ace, int reg)
230 void __iomem *r = ace->baseaddr + reg;
231 return in_8(r) | (in_8(r + 1) << 8);
234 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
236 void __iomem *r = ace->baseaddr + reg;
237 out_8(r, val);
238 out_8(r + 1, val >> 8);
241 static void ace_datain_8(struct ace_device *ace)
243 void __iomem *r = ace->baseaddr + 0x40;
244 u8 *dst = ace->data_ptr;
245 int i = ACE_FIFO_SIZE;
246 while (i--)
247 *dst++ = in_8(r++);
248 ace->data_ptr = dst;
251 static void ace_dataout_8(struct ace_device *ace)
253 void __iomem *r = ace->baseaddr + 0x40;
254 u8 *src = ace->data_ptr;
255 int i = ACE_FIFO_SIZE;
256 while (i--)
257 out_8(r++, *src++);
258 ace->data_ptr = src;
261 static struct ace_reg_ops ace_reg_8_ops = {
262 .in = ace_in_8,
263 .out = ace_out_8,
264 .datain = ace_datain_8,
265 .dataout = ace_dataout_8,
268 /* 16 bit big endian bus attachment */
269 static u16 ace_in_be16(struct ace_device *ace, int reg)
271 return in_be16(ace->baseaddr + reg);
274 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
276 out_be16(ace->baseaddr + reg, val);
279 static void ace_datain_be16(struct ace_device *ace)
281 int i = ACE_FIFO_SIZE / 2;
282 u16 *dst = ace->data_ptr;
283 while (i--)
284 *dst++ = in_le16(ace->baseaddr + 0x40);
285 ace->data_ptr = dst;
288 static void ace_dataout_be16(struct ace_device *ace)
290 int i = ACE_FIFO_SIZE / 2;
291 u16 *src = ace->data_ptr;
292 while (i--)
293 out_le16(ace->baseaddr + 0x40, *src++);
294 ace->data_ptr = src;
297 /* 16 bit little endian bus attachment */
298 static u16 ace_in_le16(struct ace_device *ace, int reg)
300 return in_le16(ace->baseaddr + reg);
303 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
305 out_le16(ace->baseaddr + reg, val);
308 static void ace_datain_le16(struct ace_device *ace)
310 int i = ACE_FIFO_SIZE / 2;
311 u16 *dst = ace->data_ptr;
312 while (i--)
313 *dst++ = in_be16(ace->baseaddr + 0x40);
314 ace->data_ptr = dst;
317 static void ace_dataout_le16(struct ace_device *ace)
319 int i = ACE_FIFO_SIZE / 2;
320 u16 *src = ace->data_ptr;
321 while (i--)
322 out_be16(ace->baseaddr + 0x40, *src++);
323 ace->data_ptr = src;
326 static struct ace_reg_ops ace_reg_be16_ops = {
327 .in = ace_in_be16,
328 .out = ace_out_be16,
329 .datain = ace_datain_be16,
330 .dataout = ace_dataout_be16,
333 static struct ace_reg_ops ace_reg_le16_ops = {
334 .in = ace_in_le16,
335 .out = ace_out_le16,
336 .datain = ace_datain_le16,
337 .dataout = ace_dataout_le16,
340 static inline u16 ace_in(struct ace_device *ace, int reg)
342 return ace->reg_ops->in(ace, reg);
345 static inline u32 ace_in32(struct ace_device *ace, int reg)
347 return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
350 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
352 ace->reg_ops->out(ace, reg, val);
355 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
357 ace_out(ace, reg, val);
358 ace_out(ace, reg + 2, val >> 16);
361 /* ---------------------------------------------------------------------
362 * Debug support functions
365 #if defined(DEBUG)
366 static void ace_dump_mem(void *base, int len)
368 const char *ptr = base;
369 int i, j;
371 for (i = 0; i < len; i += 16) {
372 printk(KERN_INFO "%.8x:", i);
373 for (j = 0; j < 16; j++) {
374 if (!(j % 4))
375 printk(" ");
376 printk("%.2x", ptr[i + j]);
378 printk(" ");
379 for (j = 0; j < 16; j++)
380 printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
381 printk("\n");
384 #else
385 static inline void ace_dump_mem(void *base, int len)
388 #endif
390 static void ace_dump_regs(struct ace_device *ace)
392 dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
393 KERN_INFO " status:%.8x mpu_lba:%.8x busmode:%4x\n"
394 KERN_INFO " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
395 ace_in32(ace, ACE_CTRL),
396 ace_in(ace, ACE_SECCNTCMD),
397 ace_in(ace, ACE_VERSION),
398 ace_in32(ace, ACE_STATUS),
399 ace_in32(ace, ACE_MPULBA),
400 ace_in(ace, ACE_BUSMODE),
401 ace_in32(ace, ACE_ERROR),
402 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
405 void ace_fix_driveid(struct hd_driveid *id)
407 #if defined(__BIG_ENDIAN)
408 u16 *buf = (void *)id;
409 int i;
411 /* All half words have wrong byte order; swap the bytes */
412 for (i = 0; i < sizeof(struct hd_driveid); i += 2, buf++)
413 *buf = le16_to_cpu(*buf);
415 /* Some of the data values are 32bit; swap the half words */
416 id->lba_capacity = ((id->lba_capacity >> 16) & 0x0000FFFF) |
417 ((id->lba_capacity << 16) & 0xFFFF0000);
418 id->spg = ((id->spg >> 16) & 0x0000FFFF) |
419 ((id->spg << 16) & 0xFFFF0000);
420 #endif
423 /* ---------------------------------------------------------------------
424 * Finite State Machine (FSM) implementation
427 /* FSM tasks; used to direct state transitions */
428 #define ACE_TASK_IDLE 0
429 #define ACE_TASK_IDENTIFY 1
430 #define ACE_TASK_READ 2
431 #define ACE_TASK_WRITE 3
432 #define ACE_FSM_NUM_TASKS 4
434 /* FSM state definitions */
435 #define ACE_FSM_STATE_IDLE 0
436 #define ACE_FSM_STATE_REQ_LOCK 1
437 #define ACE_FSM_STATE_WAIT_LOCK 2
438 #define ACE_FSM_STATE_WAIT_CFREADY 3
439 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
440 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
441 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
442 #define ACE_FSM_STATE_REQ_PREPARE 7
443 #define ACE_FSM_STATE_REQ_TRANSFER 8
444 #define ACE_FSM_STATE_REQ_COMPLETE 9
445 #define ACE_FSM_STATE_ERROR 10
446 #define ACE_FSM_NUM_STATES 11
448 /* Set flag to exit FSM loop and reschedule tasklet */
449 static inline void ace_fsm_yield(struct ace_device *ace)
451 dev_dbg(ace->dev, "ace_fsm_yield()\n");
452 tasklet_schedule(&ace->fsm_tasklet);
453 ace->fsm_continue_flag = 0;
456 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
457 static inline void ace_fsm_yieldirq(struct ace_device *ace)
459 dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
461 if (ace->irq == NO_IRQ)
462 /* No IRQ assigned, so need to poll */
463 tasklet_schedule(&ace->fsm_tasklet);
464 ace->fsm_continue_flag = 0;
467 /* Get the next read/write request; ending requests that we don't handle */
468 struct request *ace_get_next_request(struct request_queue * q)
470 struct request *req;
472 while ((req = elv_next_request(q)) != NULL) {
473 if (blk_fs_request(req))
474 break;
475 end_request(req, 0);
477 return req;
480 static void ace_fsm_dostate(struct ace_device *ace)
482 struct request *req;
483 u32 status;
484 u16 val;
485 int count;
486 int i;
488 #if defined(DEBUG)
489 dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
490 ace->fsm_state, ace->id_req_count);
491 #endif
493 switch (ace->fsm_state) {
494 case ACE_FSM_STATE_IDLE:
495 /* See if there is anything to do */
496 if (ace->id_req_count || ace_get_next_request(ace->queue)) {
497 ace->fsm_iter_num++;
498 ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
499 mod_timer(&ace->stall_timer, jiffies + HZ);
500 if (!timer_pending(&ace->stall_timer))
501 add_timer(&ace->stall_timer);
502 break;
504 del_timer(&ace->stall_timer);
505 ace->fsm_continue_flag = 0;
506 break;
508 case ACE_FSM_STATE_REQ_LOCK:
509 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
510 /* Already have the lock, jump to next state */
511 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
512 break;
515 /* Request the lock */
516 val = ace_in(ace, ACE_CTRL);
517 ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
518 ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
519 break;
521 case ACE_FSM_STATE_WAIT_LOCK:
522 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
523 /* got the lock; move to next state */
524 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
525 break;
528 /* wait a bit for the lock */
529 ace_fsm_yield(ace);
530 break;
532 case ACE_FSM_STATE_WAIT_CFREADY:
533 status = ace_in32(ace, ACE_STATUS);
534 if (!(status & ACE_STATUS_RDYFORCFCMD) ||
535 (status & ACE_STATUS_CFBSY)) {
536 /* CF card isn't ready; it needs to be polled */
537 ace_fsm_yield(ace);
538 break;
541 /* Device is ready for command; determine what to do next */
542 if (ace->id_req_count)
543 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
544 else
545 ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
546 break;
548 case ACE_FSM_STATE_IDENTIFY_PREPARE:
549 /* Send identify command */
550 ace->fsm_task = ACE_TASK_IDENTIFY;
551 ace->data_ptr = &ace->cf_id;
552 ace->data_count = ACE_BUF_PER_SECTOR;
553 ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
555 /* As per datasheet, put config controller in reset */
556 val = ace_in(ace, ACE_CTRL);
557 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
559 /* irq handler takes over from this point; wait for the
560 * transfer to complete */
561 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
562 ace_fsm_yieldirq(ace);
563 break;
565 case ACE_FSM_STATE_IDENTIFY_TRANSFER:
566 /* Check that the sysace is ready to receive data */
567 status = ace_in32(ace, ACE_STATUS);
568 if (status & ACE_STATUS_CFBSY) {
569 dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
570 ace->fsm_task, ace->fsm_iter_num,
571 ace->data_count);
572 ace_fsm_yield(ace);
573 break;
575 if (!(status & ACE_STATUS_DATABUFRDY)) {
576 ace_fsm_yield(ace);
577 break;
580 /* Transfer the next buffer */
581 ace->reg_ops->datain(ace);
582 ace->data_count--;
584 /* If there are still buffers to be transfers; jump out here */
585 if (ace->data_count != 0) {
586 ace_fsm_yieldirq(ace);
587 break;
590 /* transfer finished; kick state machine */
591 dev_dbg(ace->dev, "identify finished\n");
592 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
593 break;
595 case ACE_FSM_STATE_IDENTIFY_COMPLETE:
596 ace_fix_driveid(&ace->cf_id);
597 ace_dump_mem(&ace->cf_id, 512); /* Debug: Dump out disk ID */
599 if (ace->data_result) {
600 /* Error occured, disable the disk */
601 ace->media_change = 1;
602 set_capacity(ace->gd, 0);
603 dev_err(ace->dev, "error fetching CF id (%i)\n",
604 ace->data_result);
605 } else {
606 ace->media_change = 0;
608 /* Record disk parameters */
609 set_capacity(ace->gd, ace->cf_id.lba_capacity);
610 dev_info(ace->dev, "capacity: %i sectors\n",
611 ace->cf_id.lba_capacity);
614 /* We're done, drop to IDLE state and notify waiters */
615 ace->fsm_state = ACE_FSM_STATE_IDLE;
616 ace->id_result = ace->data_result;
617 while (ace->id_req_count) {
618 complete(&ace->id_completion);
619 ace->id_req_count--;
621 break;
623 case ACE_FSM_STATE_REQ_PREPARE:
624 req = ace_get_next_request(ace->queue);
625 if (!req) {
626 ace->fsm_state = ACE_FSM_STATE_IDLE;
627 break;
630 /* Okay, it's a data request, set it up for transfer */
631 dev_dbg(ace->dev,
632 "request: sec=%lx hcnt=%lx, ccnt=%x, dir=%i\n",
633 req->sector, req->hard_nr_sectors,
634 req->current_nr_sectors, rq_data_dir(req));
636 ace->req = req;
637 ace->data_ptr = req->buffer;
638 ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR;
639 ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF);
641 count = req->hard_nr_sectors;
642 if (rq_data_dir(req)) {
643 /* Kick off write request */
644 dev_dbg(ace->dev, "write data\n");
645 ace->fsm_task = ACE_TASK_WRITE;
646 ace_out(ace, ACE_SECCNTCMD,
647 count | ACE_SECCNTCMD_WRITE_DATA);
648 } else {
649 /* Kick off read request */
650 dev_dbg(ace->dev, "read data\n");
651 ace->fsm_task = ACE_TASK_READ;
652 ace_out(ace, ACE_SECCNTCMD,
653 count | ACE_SECCNTCMD_READ_DATA);
656 /* As per datasheet, put config controller in reset */
657 val = ace_in(ace, ACE_CTRL);
658 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
660 /* Move to the transfer state. The systemace will raise
661 * an interrupt once there is something to do
663 ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
664 if (ace->fsm_task == ACE_TASK_READ)
665 ace_fsm_yieldirq(ace); /* wait for data ready */
666 break;
668 case ACE_FSM_STATE_REQ_TRANSFER:
669 /* Check that the sysace is ready to receive data */
670 status = ace_in32(ace, ACE_STATUS);
671 if (status & ACE_STATUS_CFBSY) {
672 dev_dbg(ace->dev,
673 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
674 ace->fsm_task, ace->fsm_iter_num,
675 ace->req->current_nr_sectors * 16,
676 ace->data_count, ace->in_irq);
677 ace_fsm_yield(ace); /* need to poll CFBSY bit */
678 break;
680 if (!(status & ACE_STATUS_DATABUFRDY)) {
681 dev_dbg(ace->dev,
682 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
683 ace->fsm_task, ace->fsm_iter_num,
684 ace->req->current_nr_sectors * 16,
685 ace->data_count, ace->in_irq);
686 ace_fsm_yieldirq(ace);
687 break;
690 /* Transfer the next buffer */
691 i = 16;
692 if (ace->fsm_task == ACE_TASK_WRITE)
693 ace->reg_ops->dataout(ace);
694 else
695 ace->reg_ops->datain(ace);
696 ace->data_count--;
698 /* If there are still buffers to be transfers; jump out here */
699 if (ace->data_count != 0) {
700 ace_fsm_yieldirq(ace);
701 break;
704 /* bio finished; is there another one? */
705 i = ace->req->current_nr_sectors;
706 if (end_that_request_first(ace->req, 1, i)) {
707 /* dev_dbg(ace->dev, "next block; h=%li c=%i\n",
708 * ace->req->hard_nr_sectors,
709 * ace->req->current_nr_sectors);
711 ace->data_ptr = ace->req->buffer;
712 ace->data_count = ace->req->current_nr_sectors * 16;
713 ace_fsm_yieldirq(ace);
714 break;
717 ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
718 break;
720 case ACE_FSM_STATE_REQ_COMPLETE:
721 /* Complete the block request */
722 blkdev_dequeue_request(ace->req);
723 end_that_request_last(ace->req, 1);
724 ace->req = NULL;
726 /* Finished request; go to idle state */
727 ace->fsm_state = ACE_FSM_STATE_IDLE;
728 break;
730 default:
731 ace->fsm_state = ACE_FSM_STATE_IDLE;
732 break;
736 static void ace_fsm_tasklet(unsigned long data)
738 struct ace_device *ace = (void *)data;
739 unsigned long flags;
741 spin_lock_irqsave(&ace->lock, flags);
743 /* Loop over state machine until told to stop */
744 ace->fsm_continue_flag = 1;
745 while (ace->fsm_continue_flag)
746 ace_fsm_dostate(ace);
748 spin_unlock_irqrestore(&ace->lock, flags);
751 static void ace_stall_timer(unsigned long data)
753 struct ace_device *ace = (void *)data;
754 unsigned long flags;
756 dev_warn(ace->dev,
757 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
758 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
759 ace->data_count);
760 spin_lock_irqsave(&ace->lock, flags);
762 /* Rearm the stall timer *before* entering FSM (which may then
763 * delete the timer) */
764 mod_timer(&ace->stall_timer, jiffies + HZ);
766 /* Loop over state machine until told to stop */
767 ace->fsm_continue_flag = 1;
768 while (ace->fsm_continue_flag)
769 ace_fsm_dostate(ace);
771 spin_unlock_irqrestore(&ace->lock, flags);
774 /* ---------------------------------------------------------------------
775 * Interrupt handling routines
777 static int ace_interrupt_checkstate(struct ace_device *ace)
779 u32 sreg = ace_in32(ace, ACE_STATUS);
780 u16 creg = ace_in(ace, ACE_CTRL);
782 /* Check for error occurance */
783 if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
784 (creg & ACE_CTRL_ERRORIRQ)) {
785 dev_err(ace->dev, "transfer failure\n");
786 ace_dump_regs(ace);
787 return -EIO;
790 return 0;
793 static irqreturn_t ace_interrupt(int irq, void *dev_id)
795 u16 creg;
796 struct ace_device *ace = dev_id;
798 /* be safe and get the lock */
799 spin_lock(&ace->lock);
800 ace->in_irq = 1;
802 /* clear the interrupt */
803 creg = ace_in(ace, ACE_CTRL);
804 ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
805 ace_out(ace, ACE_CTRL, creg);
807 /* check for IO failures */
808 if (ace_interrupt_checkstate(ace))
809 ace->data_result = -EIO;
811 if (ace->fsm_task == 0) {
812 dev_err(ace->dev,
813 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
814 ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
815 ace_in(ace, ACE_SECCNTCMD));
816 dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
817 ace->fsm_task, ace->fsm_state, ace->data_count);
820 /* Loop over state machine until told to stop */
821 ace->fsm_continue_flag = 1;
822 while (ace->fsm_continue_flag)
823 ace_fsm_dostate(ace);
825 /* done with interrupt; drop the lock */
826 ace->in_irq = 0;
827 spin_unlock(&ace->lock);
829 return IRQ_HANDLED;
832 /* ---------------------------------------------------------------------
833 * Block ops
835 static void ace_request(struct request_queue * q)
837 struct request *req;
838 struct ace_device *ace;
840 req = ace_get_next_request(q);
842 if (req) {
843 ace = req->rq_disk->private_data;
844 tasklet_schedule(&ace->fsm_tasklet);
848 static int ace_media_changed(struct gendisk *gd)
850 struct ace_device *ace = gd->private_data;
851 dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
853 return ace->media_change;
856 static int ace_revalidate_disk(struct gendisk *gd)
858 struct ace_device *ace = gd->private_data;
859 unsigned long flags;
861 dev_dbg(ace->dev, "ace_revalidate_disk()\n");
863 if (ace->media_change) {
864 dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
866 spin_lock_irqsave(&ace->lock, flags);
867 ace->id_req_count++;
868 spin_unlock_irqrestore(&ace->lock, flags);
870 tasklet_schedule(&ace->fsm_tasklet);
871 wait_for_completion(&ace->id_completion);
874 dev_dbg(ace->dev, "revalidate complete\n");
875 return ace->id_result;
878 static int ace_open(struct inode *inode, struct file *filp)
880 struct ace_device *ace = inode->i_bdev->bd_disk->private_data;
881 unsigned long flags;
883 dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
885 filp->private_data = ace;
886 spin_lock_irqsave(&ace->lock, flags);
887 ace->users++;
888 spin_unlock_irqrestore(&ace->lock, flags);
890 check_disk_change(inode->i_bdev);
891 return 0;
894 static int ace_release(struct inode *inode, struct file *filp)
896 struct ace_device *ace = inode->i_bdev->bd_disk->private_data;
897 unsigned long flags;
898 u16 val;
900 dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
902 spin_lock_irqsave(&ace->lock, flags);
903 ace->users--;
904 if (ace->users == 0) {
905 val = ace_in(ace, ACE_CTRL);
906 ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
908 spin_unlock_irqrestore(&ace->lock, flags);
909 return 0;
912 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
914 struct ace_device *ace = bdev->bd_disk->private_data;
916 dev_dbg(ace->dev, "ace_getgeo()\n");
918 geo->heads = ace->cf_id.heads;
919 geo->sectors = ace->cf_id.sectors;
920 geo->cylinders = ace->cf_id.cyls;
922 return 0;
925 static struct block_device_operations ace_fops = {
926 .owner = THIS_MODULE,
927 .open = ace_open,
928 .release = ace_release,
929 .media_changed = ace_media_changed,
930 .revalidate_disk = ace_revalidate_disk,
931 .getgeo = ace_getgeo,
934 /* --------------------------------------------------------------------
935 * SystemACE device setup/teardown code
937 static int __devinit ace_setup(struct ace_device *ace)
939 u16 version;
940 u16 val;
941 int rc;
943 dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
944 dev_dbg(ace->dev, "physaddr=0x%lx irq=%i\n", ace->physaddr, ace->irq);
946 spin_lock_init(&ace->lock);
947 init_completion(&ace->id_completion);
950 * Map the device
952 ace->baseaddr = ioremap(ace->physaddr, 0x80);
953 if (!ace->baseaddr)
954 goto err_ioremap;
957 * Initialize the state machine tasklet and stall timer
959 tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
960 setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
963 * Initialize the request queue
965 ace->queue = blk_init_queue(ace_request, &ace->lock);
966 if (ace->queue == NULL)
967 goto err_blk_initq;
968 blk_queue_hardsect_size(ace->queue, 512);
971 * Allocate and initialize GD structure
973 ace->gd = alloc_disk(ACE_NUM_MINORS);
974 if (!ace->gd)
975 goto err_alloc_disk;
977 ace->gd->major = ace_major;
978 ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
979 ace->gd->fops = &ace_fops;
980 ace->gd->queue = ace->queue;
981 ace->gd->private_data = ace;
982 snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
984 /* set bus width */
985 if (ace->bus_width == ACE_BUS_WIDTH_16) {
986 /* 0x0101 should work regardless of endianess */
987 ace_out_le16(ace, ACE_BUSMODE, 0x0101);
989 /* read it back to determine endianess */
990 if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
991 ace->reg_ops = &ace_reg_le16_ops;
992 else
993 ace->reg_ops = &ace_reg_be16_ops;
994 } else {
995 ace_out_8(ace, ACE_BUSMODE, 0x00);
996 ace->reg_ops = &ace_reg_8_ops;
999 /* Make sure version register is sane */
1000 version = ace_in(ace, ACE_VERSION);
1001 if ((version == 0) || (version == 0xFFFF))
1002 goto err_read;
1004 /* Put sysace in a sane state by clearing most control reg bits */
1005 ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1006 ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1008 /* Now we can hook up the irq handler */
1009 if (ace->irq != NO_IRQ) {
1010 rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1011 if (rc) {
1012 /* Failure - fall back to polled mode */
1013 dev_err(ace->dev, "request_irq failed\n");
1014 ace->irq = NO_IRQ;
1018 /* Enable interrupts */
1019 val = ace_in(ace, ACE_CTRL);
1020 val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1021 ace_out(ace, ACE_CTRL, val);
1023 /* Print the identification */
1024 dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1025 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1026 dev_dbg(ace->dev, "physaddr 0x%lx, mapped to 0x%p, irq=%i\n",
1027 ace->physaddr, ace->baseaddr, ace->irq);
1029 ace->media_change = 1;
1030 ace_revalidate_disk(ace->gd);
1032 /* Make the sysace device 'live' */
1033 add_disk(ace->gd);
1035 return 0;
1037 err_read:
1038 put_disk(ace->gd);
1039 err_alloc_disk:
1040 blk_cleanup_queue(ace->queue);
1041 err_blk_initq:
1042 iounmap(ace->baseaddr);
1043 err_ioremap:
1044 dev_info(ace->dev, "xsysace: error initializing device at 0x%lx\n",
1045 ace->physaddr);
1046 return -ENOMEM;
1049 static void __devexit ace_teardown(struct ace_device *ace)
1051 if (ace->gd) {
1052 del_gendisk(ace->gd);
1053 put_disk(ace->gd);
1056 if (ace->queue)
1057 blk_cleanup_queue(ace->queue);
1059 tasklet_kill(&ace->fsm_tasklet);
1061 if (ace->irq != NO_IRQ)
1062 free_irq(ace->irq, ace);
1064 iounmap(ace->baseaddr);
1067 static int __devinit
1068 ace_alloc(struct device *dev, int id, unsigned long physaddr,
1069 int irq, int bus_width)
1071 struct ace_device *ace;
1072 int rc;
1073 dev_dbg(dev, "ace_alloc(%p)\n", dev);
1075 if (!physaddr) {
1076 rc = -ENODEV;
1077 goto err_noreg;
1080 /* Allocate and initialize the ace device structure */
1081 ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1082 if (!ace) {
1083 rc = -ENOMEM;
1084 goto err_alloc;
1087 ace->dev = dev;
1088 ace->id = id;
1089 ace->physaddr = physaddr;
1090 ace->irq = irq;
1091 ace->bus_width = bus_width;
1093 /* Call the setup code */
1094 rc = ace_setup(ace);
1095 if (rc)
1096 goto err_setup;
1098 dev_set_drvdata(dev, ace);
1099 return 0;
1101 err_setup:
1102 dev_set_drvdata(dev, NULL);
1103 kfree(ace);
1104 err_alloc:
1105 err_noreg:
1106 dev_err(dev, "could not initialize device, err=%i\n", rc);
1107 return rc;
1110 static void __devexit ace_free(struct device *dev)
1112 struct ace_device *ace = dev_get_drvdata(dev);
1113 dev_dbg(dev, "ace_free(%p)\n", dev);
1115 if (ace) {
1116 ace_teardown(ace);
1117 dev_set_drvdata(dev, NULL);
1118 kfree(ace);
1122 /* ---------------------------------------------------------------------
1123 * Platform Bus Support
1126 static int __devinit ace_probe(struct platform_device *dev)
1128 unsigned long physaddr = 0;
1129 int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1130 int id = dev->id;
1131 int irq = NO_IRQ;
1132 int i;
1134 dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1136 for (i = 0; i < dev->num_resources; i++) {
1137 if (dev->resource[i].flags & IORESOURCE_MEM)
1138 physaddr = dev->resource[i].start;
1139 if (dev->resource[i].flags & IORESOURCE_IRQ)
1140 irq = dev->resource[i].start;
1143 /* Call the bus-independant setup code */
1144 return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1148 * Platform bus remove() method
1150 static int __devexit ace_remove(struct platform_device *dev)
1152 ace_free(&dev->dev);
1153 return 0;
1156 static struct platform_driver ace_platform_driver = {
1157 .probe = ace_probe,
1158 .remove = __devexit_p(ace_remove),
1159 .driver = {
1160 .owner = THIS_MODULE,
1161 .name = "xsysace",
1165 /* ---------------------------------------------------------------------
1166 * OF_Platform Bus Support
1169 #if defined(CONFIG_OF)
1170 static int __devinit
1171 ace_of_probe(struct of_device *op, const struct of_device_id *match)
1173 struct resource res;
1174 unsigned long physaddr;
1175 const u32 *id;
1176 int irq, bus_width, rc;
1178 dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
1180 /* device id */
1181 id = of_get_property(op->node, "port-number", NULL);
1183 /* physaddr */
1184 rc = of_address_to_resource(op->node, 0, &res);
1185 if (rc) {
1186 dev_err(&op->dev, "invalid address\n");
1187 return rc;
1189 physaddr = res.start;
1191 /* irq */
1192 irq = irq_of_parse_and_map(op->node, 0);
1194 /* bus width */
1195 bus_width = ACE_BUS_WIDTH_16;
1196 if (of_find_property(op->node, "8-bit", NULL))
1197 bus_width = ACE_BUS_WIDTH_8;
1199 /* Call the bus-independant setup code */
1200 return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
1203 static int __devexit ace_of_remove(struct of_device *op)
1205 ace_free(&op->dev);
1206 return 0;
1209 /* Match table for of_platform binding */
1210 static struct of_device_id __devinit ace_of_match[] = {
1211 { .compatible = "xilinx,xsysace", },
1214 MODULE_DEVICE_TABLE(of, ace_of_match);
1216 static struct of_platform_driver ace_of_driver = {
1217 .owner = THIS_MODULE,
1218 .name = "xsysace",
1219 .match_table = ace_of_match,
1220 .probe = ace_of_probe,
1221 .remove = __devexit_p(ace_of_remove),
1222 .driver = {
1223 .name = "xsysace",
1227 /* Registration helpers to keep the number of #ifdefs to a minimum */
1228 static inline int __init ace_of_register(void)
1230 pr_debug("xsysace: registering OF binding\n");
1231 return of_register_platform_driver(&ace_of_driver);
1234 static inline void __exit ace_of_unregister(void)
1236 of_unregister_platform_driver(&ace_of_driver);
1238 #else /* CONFIG_OF */
1239 /* CONFIG_OF not enabled; do nothing helpers */
1240 static inline int __init ace_of_register(void) { return 0; }
1241 static inline void __exit ace_of_unregister(void) { }
1242 #endif /* CONFIG_OF */
1244 /* ---------------------------------------------------------------------
1245 * Module init/exit routines
1247 static int __init ace_init(void)
1249 int rc;
1251 ace_major = register_blkdev(ace_major, "xsysace");
1252 if (ace_major <= 0) {
1253 rc = -ENOMEM;
1254 goto err_blk;
1257 rc = ace_of_register();
1258 if (rc)
1259 goto err_of;
1261 pr_debug("xsysace: registering platform binding\n");
1262 rc = platform_driver_register(&ace_platform_driver);
1263 if (rc)
1264 goto err_plat;
1266 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1267 return 0;
1269 err_plat:
1270 ace_of_unregister();
1271 err_of:
1272 unregister_blkdev(ace_major, "xsysace");
1273 err_blk:
1274 printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1275 return rc;
1278 static void __exit ace_exit(void)
1280 pr_debug("Unregistering Xilinx SystemACE driver\n");
1281 platform_driver_unregister(&ace_platform_driver);
1282 ace_of_unregister();
1283 unregister_blkdev(ace_major, "xsysace");
1286 module_init(ace_init);
1287 module_exit(ace_exit);