4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, unsigned int nr_bytes
, int dequeue
)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
67 nr_bytes
= rq
->hard_nr_sectors
<< 9;
69 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
78 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
81 if (!end_that_request_chunk(rq
, uptodate
, nr_bytes
)) {
82 add_disk_randomness(rq
->rq_disk
);
84 if (!list_empty(&rq
->queuelist
))
85 blkdev_dequeue_request(rq
);
86 HWGROUP(drive
)->rq
= NULL
;
88 end_that_request_last(rq
, uptodate
);
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
108 unsigned int nr_bytes
= nr_sectors
<< 9;
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
117 spin_lock_irqsave(&ide_lock
, flags
);
118 rq
= HWGROUP(drive
)->rq
;
121 if (blk_pc_request(rq
))
122 nr_bytes
= rq
->data_len
;
124 nr_bytes
= rq
->hard_cur_sectors
<< 9;
127 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
129 spin_unlock_irqrestore(&ide_lock
, flags
);
132 EXPORT_SYMBOL(ide_end_request
);
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
141 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
144 idedisk_pm_restore_pio
= ide_pm_state_start_resume
,
149 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
151 struct request_pm_state
*pm
= rq
->data
;
153 if (drive
->media
!= ide_disk
)
156 switch (pm
->pm_step
) {
157 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
158 if (pm
->pm_state
== PM_EVENT_FREEZE
)
159 pm
->pm_step
= ide_pm_state_completed
;
161 pm
->pm_step
= idedisk_pm_standby
;
163 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
164 pm
->pm_step
= ide_pm_state_completed
;
166 case idedisk_pm_restore_pio
: /* Resume step 1 complete */
167 pm
->pm_step
= idedisk_pm_idle
;
169 case idedisk_pm_idle
: /* Resume step 2 (idle) complete */
170 pm
->pm_step
= ide_pm_restore_dma
;
175 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
177 struct request_pm_state
*pm
= rq
->data
;
178 ide_task_t
*args
= rq
->special
;
180 memset(args
, 0, sizeof(*args
));
182 switch (pm
->pm_step
) {
183 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
184 if (drive
->media
!= ide_disk
)
186 /* Not supported? Switch to next step now. */
187 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
188 ide_complete_power_step(drive
, rq
, 0, 0);
191 if (ide_id_has_flush_cache_ext(drive
->id
))
192 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE_EXT
;
194 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE
;
195 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
196 args
->handler
= &task_no_data_intr
;
197 return do_rw_taskfile(drive
, args
);
199 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
200 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_STANDBYNOW1
;
201 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
202 args
->handler
= &task_no_data_intr
;
203 return do_rw_taskfile(drive
, args
);
205 case idedisk_pm_restore_pio
: /* Resume step 1 (restore PIO) */
206 ide_set_max_pio(drive
);
208 * skip idedisk_pm_idle for ATAPI devices
210 if (drive
->media
!= ide_disk
)
211 pm
->pm_step
= ide_pm_restore_dma
;
213 ide_complete_power_step(drive
, rq
, 0, 0);
216 case idedisk_pm_idle
: /* Resume step 2 (idle) */
217 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_IDLEIMMEDIATE
;
218 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
219 args
->handler
= task_no_data_intr
;
220 return do_rw_taskfile(drive
, args
);
222 case ide_pm_restore_dma
: /* Resume step 3 (restore DMA) */
224 * Right now, all we do is call ide_set_dma(drive),
225 * we could be smarter and check for current xfer_speed
226 * in struct drive etc...
228 if (drive
->hwif
->ide_dma_on
== NULL
)
230 drive
->hwif
->dma_off_quietly(drive
);
232 * TODO: respect ->using_dma setting
237 pm
->pm_step
= ide_pm_state_completed
;
242 * ide_end_dequeued_request - complete an IDE I/O
243 * @drive: IDE device for the I/O
245 * @nr_sectors: number of sectors completed
247 * Complete an I/O that is no longer on the request queue. This
248 * typically occurs when we pull the request and issue a REQUEST_SENSE.
249 * We must still finish the old request but we must not tamper with the
250 * queue in the meantime.
252 * NOTE: This path does not handle barrier, but barrier is not supported
256 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
257 int uptodate
, int nr_sectors
)
262 spin_lock_irqsave(&ide_lock
, flags
);
263 BUG_ON(!blk_rq_started(rq
));
264 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
265 spin_unlock_irqrestore(&ide_lock
, flags
);
269 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
273 * ide_complete_pm_request - end the current Power Management request
274 * @drive: target drive
277 * This function cleans up the current PM request and stops the queue
280 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
285 printk("%s: completing PM request, %s\n", drive
->name
,
286 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
288 spin_lock_irqsave(&ide_lock
, flags
);
289 if (blk_pm_suspend_request(rq
)) {
290 blk_stop_queue(drive
->queue
);
293 blk_start_queue(drive
->queue
);
295 blkdev_dequeue_request(rq
);
296 HWGROUP(drive
)->rq
= NULL
;
297 end_that_request_last(rq
, 1);
298 spin_unlock_irqrestore(&ide_lock
, flags
);
302 * ide_end_drive_cmd - end an explicit drive command
307 * Clean up after success/failure of an explicit drive command.
308 * These get thrown onto the queue so they are synchronized with
309 * real I/O operations on the drive.
311 * In LBA48 mode we have to read the register set twice to get
312 * all the extra information out.
315 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
317 ide_hwif_t
*hwif
= HWIF(drive
);
321 spin_lock_irqsave(&ide_lock
, flags
);
322 rq
= HWGROUP(drive
)->rq
;
323 spin_unlock_irqrestore(&ide_lock
, flags
);
325 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
326 u8
*args
= (u8
*) rq
->buffer
;
328 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
333 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
335 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASK
) {
336 u8
*args
= (u8
*) rq
->buffer
;
338 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
343 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
344 args
[3] = hwif
->INB(IDE_SECTOR_REG
);
345 args
[4] = hwif
->INB(IDE_LCYL_REG
);
346 args
[5] = hwif
->INB(IDE_HCYL_REG
);
347 args
[6] = hwif
->INB(IDE_SELECT_REG
);
349 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
350 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
352 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
355 if (args
->tf_in_flags
.b
.data
) {
356 u16 data
= hwif
->INW(IDE_DATA_REG
);
357 args
->tfRegister
[IDE_DATA_OFFSET
] = (data
) & 0xFF;
358 args
->hobRegister
[IDE_DATA_OFFSET
] = (data
>> 8) & 0xFF;
360 args
->tfRegister
[IDE_ERROR_OFFSET
] = err
;
361 /* be sure we're looking at the low order bits */
362 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
363 args
->tfRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
364 args
->tfRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
365 args
->tfRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
366 args
->tfRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
367 args
->tfRegister
[IDE_SELECT_OFFSET
] = hwif
->INB(IDE_SELECT_REG
);
368 args
->tfRegister
[IDE_STATUS_OFFSET
] = stat
;
370 if (drive
->addressing
== 1) {
371 hwif
->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
372 args
->hobRegister
[IDE_FEATURE_OFFSET
] = hwif
->INB(IDE_FEATURE_REG
);
373 args
->hobRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
374 args
->hobRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
375 args
->hobRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
376 args
->hobRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
379 } else if (blk_pm_request(rq
)) {
380 struct request_pm_state
*pm
= rq
->data
;
382 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
383 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
385 ide_complete_power_step(drive
, rq
, stat
, err
);
386 if (pm
->pm_step
== ide_pm_state_completed
)
387 ide_complete_pm_request(drive
, rq
);
391 spin_lock_irqsave(&ide_lock
, flags
);
392 blkdev_dequeue_request(rq
);
393 HWGROUP(drive
)->rq
= NULL
;
395 end_that_request_last(rq
, !rq
->errors
);
396 spin_unlock_irqrestore(&ide_lock
, flags
);
399 EXPORT_SYMBOL(ide_end_drive_cmd
);
402 * try_to_flush_leftover_data - flush junk
403 * @drive: drive to flush
405 * try_to_flush_leftover_data() is invoked in response to a drive
406 * unexpectedly having its DRQ_STAT bit set. As an alternative to
407 * resetting the drive, this routine tries to clear the condition
408 * by read a sector's worth of data from the drive. Of course,
409 * this may not help if the drive is *waiting* for data from *us*.
411 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
413 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
415 if (drive
->media
!= ide_disk
)
419 u32 wcount
= (i
> 16) ? 16 : i
;
422 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
426 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
431 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
432 drv
->end_request(drive
, 0, 0);
434 ide_end_request(drive
, 0, 0);
437 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
439 ide_hwif_t
*hwif
= drive
->hwif
;
441 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
442 /* other bits are useless when BUSY */
443 rq
->errors
|= ERROR_RESET
;
444 } else if (stat
& ERR_STAT
) {
445 /* err has different meaning on cdrom and tape */
446 if (err
== ABRT_ERR
) {
447 if (drive
->select
.b
.lba
&&
448 /* some newer drives don't support WIN_SPECIFY */
449 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
451 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
452 /* UDMA crc error, just retry the operation */
454 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
455 /* retries won't help these */
456 rq
->errors
= ERROR_MAX
;
457 } else if (err
& TRK0_ERR
) {
458 /* help it find track zero */
459 rq
->errors
|= ERROR_RECAL
;
463 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&&
464 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0)
465 try_to_flush_leftover_data(drive
);
467 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
468 ide_kill_rq(drive
, rq
);
472 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
473 rq
->errors
|= ERROR_RESET
;
475 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
477 return ide_do_reset(drive
);
480 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
481 drive
->special
.b
.recalibrate
= 1;
488 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
490 ide_hwif_t
*hwif
= drive
->hwif
;
492 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
493 /* other bits are useless when BUSY */
494 rq
->errors
|= ERROR_RESET
;
496 /* add decoding error stuff */
499 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
501 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
503 if (rq
->errors
>= ERROR_MAX
) {
504 ide_kill_rq(drive
, rq
);
506 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
508 return ide_do_reset(drive
);
517 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
519 if (drive
->media
== ide_disk
)
520 return ide_ata_error(drive
, rq
, stat
, err
);
521 return ide_atapi_error(drive
, rq
, stat
, err
);
524 EXPORT_SYMBOL_GPL(__ide_error
);
527 * ide_error - handle an error on the IDE
528 * @drive: drive the error occurred on
529 * @msg: message to report
532 * ide_error() takes action based on the error returned by the drive.
533 * For normal I/O that may well include retries. We deal with
534 * both new-style (taskfile) and old style command handling here.
535 * In the case of taskfile command handling there is work left to
539 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
544 err
= ide_dump_status(drive
, msg
, stat
);
546 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
549 /* retry only "normal" I/O: */
550 if (!blk_fs_request(rq
)) {
552 ide_end_drive_cmd(drive
, stat
, err
);
559 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
560 return drv
->error(drive
, rq
, stat
, err
);
562 return __ide_error(drive
, rq
, stat
, err
);
565 EXPORT_SYMBOL_GPL(ide_error
);
567 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
569 if (drive
->media
!= ide_disk
)
570 rq
->errors
|= ERROR_RESET
;
572 ide_kill_rq(drive
, rq
);
577 EXPORT_SYMBOL_GPL(__ide_abort
);
580 * ide_abort - abort pending IDE operations
581 * @drive: drive the error occurred on
582 * @msg: message to report
584 * ide_abort kills and cleans up when we are about to do a
585 * host initiated reset on active commands. Longer term we
586 * want handlers to have sensible abort handling themselves
588 * This differs fundamentally from ide_error because in
589 * this case the command is doing just fine when we
593 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
597 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
600 /* retry only "normal" I/O: */
601 if (!blk_fs_request(rq
)) {
603 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
610 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
611 return drv
->abort(drive
, rq
);
613 return __ide_abort(drive
, rq
);
617 * ide_cmd - issue a simple drive command
618 * @drive: drive the command is for
620 * @nsect: sector byte
621 * @handler: handler for the command completion
623 * Issue a simple drive command with interrupts.
624 * The drive must be selected beforehand.
627 static void ide_cmd (ide_drive_t
*drive
, u8 cmd
, u8 nsect
,
628 ide_handler_t
*handler
)
630 ide_hwif_t
*hwif
= HWIF(drive
);
632 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
); /* clear nIEN */
633 SELECT_MASK(drive
,0);
634 hwif
->OUTB(nsect
,IDE_NSECTOR_REG
);
635 ide_execute_command(drive
, cmd
, handler
, WAIT_CMD
, NULL
);
639 * drive_cmd_intr - drive command completion interrupt
640 * @drive: drive the completion interrupt occurred on
642 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
643 * We do any necessary data reading and then wait for the drive to
644 * go non busy. At that point we may read the error data and complete
648 static ide_startstop_t
drive_cmd_intr (ide_drive_t
*drive
)
650 struct request
*rq
= HWGROUP(drive
)->rq
;
651 ide_hwif_t
*hwif
= HWIF(drive
);
652 u8
*args
= (u8
*) rq
->buffer
;
653 u8 stat
= hwif
->INB(IDE_STATUS_REG
);
656 local_irq_enable_in_hardirq();
657 if ((stat
& DRQ_STAT
) && args
&& args
[3]) {
658 u8 io_32bit
= drive
->io_32bit
;
660 hwif
->ata_input_data(drive
, &args
[4], args
[3] * SECTOR_WORDS
);
661 drive
->io_32bit
= io_32bit
;
662 while (((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) && retries
--)
666 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
))
667 return ide_error(drive
, "drive_cmd", stat
);
668 /* calls ide_end_drive_cmd */
669 ide_end_drive_cmd(drive
, stat
, hwif
->INB(IDE_ERROR_REG
));
673 static void ide_init_specify_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
675 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
676 task
->tfRegister
[IDE_SECTOR_OFFSET
] = drive
->sect
;
677 task
->tfRegister
[IDE_LCYL_OFFSET
] = drive
->cyl
;
678 task
->tfRegister
[IDE_HCYL_OFFSET
] = drive
->cyl
>>8;
679 task
->tfRegister
[IDE_SELECT_OFFSET
] = ((drive
->head
-1)|drive
->select
.all
)&0xBF;
680 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SPECIFY
;
682 task
->handler
= &set_geometry_intr
;
685 static void ide_init_restore_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
687 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
688 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_RESTORE
;
690 task
->handler
= &recal_intr
;
693 static void ide_init_setmult_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
695 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->mult_req
;
696 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SETMULT
;
698 task
->handler
= &set_multmode_intr
;
701 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
703 special_t
*s
= &drive
->special
;
706 memset(&args
, 0, sizeof(ide_task_t
));
707 args
.command_type
= IDE_DRIVE_TASK_NO_DATA
;
709 if (s
->b
.set_geometry
) {
710 s
->b
.set_geometry
= 0;
711 ide_init_specify_cmd(drive
, &args
);
712 } else if (s
->b
.recalibrate
) {
713 s
->b
.recalibrate
= 0;
714 ide_init_restore_cmd(drive
, &args
);
715 } else if (s
->b
.set_multmode
) {
716 s
->b
.set_multmode
= 0;
717 if (drive
->mult_req
> drive
->id
->max_multsect
)
718 drive
->mult_req
= drive
->id
->max_multsect
;
719 ide_init_setmult_cmd(drive
, &args
);
721 int special
= s
->all
;
723 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
727 do_rw_taskfile(drive
, &args
);
733 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
735 static int set_pio_mode_abuse(ide_hwif_t
*hwif
, u8 req_pio
)
744 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_DMA_MODES
) ? 1 : 0;
747 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_PREFETCH
) ? 1 : 0;
750 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_FAST_DEVSEL
) ? 1 : 0;
757 * do_special - issue some special commands
758 * @drive: drive the command is for
760 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
761 * commands to a drive. It used to do much more, but has been scaled
765 static ide_startstop_t
do_special (ide_drive_t
*drive
)
767 special_t
*s
= &drive
->special
;
770 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
773 ide_hwif_t
*hwif
= drive
->hwif
;
774 u8 req_pio
= drive
->tune_req
;
778 if (set_pio_mode_abuse(drive
->hwif
, req_pio
)) {
780 if (hwif
->set_pio_mode
== NULL
)
784 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
786 if (req_pio
== 8 || req_pio
== 9) {
789 spin_lock_irqsave(&ide_lock
, flags
);
790 hwif
->set_pio_mode(drive
, req_pio
);
791 spin_unlock_irqrestore(&ide_lock
, flags
);
793 hwif
->set_pio_mode(drive
, req_pio
);
795 int keep_dma
= drive
->using_dma
;
797 ide_set_pio(drive
, req_pio
);
799 if (hwif
->host_flags
& IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
) {
801 hwif
->ide_dma_on(drive
);
807 if (drive
->media
== ide_disk
)
808 return ide_disk_special(drive
);
816 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
818 ide_hwif_t
*hwif
= drive
->hwif
;
819 struct scatterlist
*sg
= hwif
->sg_table
;
821 if (hwif
->sg_mapped
) /* needed by ide-scsi */
824 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
825 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
827 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
832 EXPORT_SYMBOL_GPL(ide_map_sg
);
834 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
836 ide_hwif_t
*hwif
= drive
->hwif
;
838 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
843 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
846 * execute_drive_command - issue special drive command
847 * @drive: the drive to issue the command on
848 * @rq: the request structure holding the command
850 * execute_drive_cmd() issues a special drive command, usually
851 * initiated by ioctl() from the external hdparm program. The
852 * command can be a drive command, drive task or taskfile
853 * operation. Weirdly you can call it with NULL to wait for
854 * all commands to finish. Don't do this as that is due to change
857 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
860 ide_hwif_t
*hwif
= HWIF(drive
);
861 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
862 ide_task_t
*args
= rq
->special
;
867 hwif
->data_phase
= args
->data_phase
;
869 switch (hwif
->data_phase
) {
870 case TASKFILE_MULTI_OUT
:
872 case TASKFILE_MULTI_IN
:
874 ide_init_sg_cmd(drive
, rq
);
875 ide_map_sg(drive
, rq
);
880 if (args
->tf_out_flags
.all
!= 0)
881 return flagged_taskfile(drive
, args
);
882 return do_rw_taskfile(drive
, args
);
883 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASK
) {
884 u8
*args
= rq
->buffer
;
890 printk("%s: DRIVE_TASK_CMD ", drive
->name
);
891 printk("cmd=0x%02x ", args
[0]);
892 printk("fr=0x%02x ", args
[1]);
893 printk("ns=0x%02x ", args
[2]);
894 printk("sc=0x%02x ", args
[3]);
895 printk("lcyl=0x%02x ", args
[4]);
896 printk("hcyl=0x%02x ", args
[5]);
897 printk("sel=0x%02x\n", args
[6]);
899 hwif
->OUTB(args
[1], IDE_FEATURE_REG
);
900 hwif
->OUTB(args
[3], IDE_SECTOR_REG
);
901 hwif
->OUTB(args
[4], IDE_LCYL_REG
);
902 hwif
->OUTB(args
[5], IDE_HCYL_REG
);
903 sel
= (args
[6] & ~0x10);
904 if (drive
->select
.b
.unit
)
906 hwif
->OUTB(sel
, IDE_SELECT_REG
);
907 ide_cmd(drive
, args
[0], args
[2], &drive_cmd_intr
);
909 } else if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
910 u8
*args
= rq
->buffer
;
915 printk("%s: DRIVE_CMD ", drive
->name
);
916 printk("cmd=0x%02x ", args
[0]);
917 printk("sc=0x%02x ", args
[1]);
918 printk("fr=0x%02x ", args
[2]);
919 printk("xx=0x%02x\n", args
[3]);
921 if (args
[0] == WIN_SMART
) {
922 hwif
->OUTB(0x4f, IDE_LCYL_REG
);
923 hwif
->OUTB(0xc2, IDE_HCYL_REG
);
924 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
925 hwif
->OUTB(args
[1],IDE_SECTOR_REG
);
926 ide_cmd(drive
, args
[0], args
[3], &drive_cmd_intr
);
929 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
930 ide_cmd(drive
, args
[0], args
[1], &drive_cmd_intr
);
936 * NULL is actually a valid way of waiting for
937 * all current requests to be flushed from the queue.
940 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
942 ide_end_drive_cmd(drive
,
943 hwif
->INB(IDE_STATUS_REG
),
944 hwif
->INB(IDE_ERROR_REG
));
948 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
950 struct request_pm_state
*pm
= rq
->data
;
952 if (blk_pm_suspend_request(rq
) &&
953 pm
->pm_step
== ide_pm_state_start_suspend
)
954 /* Mark drive blocked when starting the suspend sequence. */
956 else if (blk_pm_resume_request(rq
) &&
957 pm
->pm_step
== ide_pm_state_start_resume
) {
959 * The first thing we do on wakeup is to wait for BSY bit to
960 * go away (with a looong timeout) as a drive on this hwif may
961 * just be POSTing itself.
962 * We do that before even selecting as the "other" device on
963 * the bus may be broken enough to walk on our toes at this
968 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
970 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
972 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
974 HWIF(drive
)->OUTB(8, HWIF(drive
)->io_ports
[IDE_CONTROL_OFFSET
]);
975 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
977 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
982 * start_request - start of I/O and command issuing for IDE
984 * start_request() initiates handling of a new I/O request. It
985 * accepts commands and I/O (read/write) requests. It also does
986 * the final remapping for weird stuff like EZDrive. Once
987 * device mapper can work sector level the EZDrive stuff can go away
989 * FIXME: this function needs a rename
992 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
994 ide_startstop_t startstop
;
997 BUG_ON(!blk_rq_started(rq
));
1000 printk("%s: start_request: current=0x%08lx\n",
1001 HWIF(drive
)->name
, (unsigned long) rq
);
1004 /* bail early if we've exceeded max_failures */
1005 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
1010 if (blk_fs_request(rq
) &&
1011 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
1012 block
+= drive
->sect0
;
1014 /* Yecch - this will shift the entire interval,
1015 possibly killing some innocent following sector */
1016 if (block
== 0 && drive
->remap_0_to_1
== 1)
1017 block
= 1; /* redirect MBR access to EZ-Drive partn table */
1019 if (blk_pm_request(rq
))
1020 ide_check_pm_state(drive
, rq
);
1022 SELECT_DRIVE(drive
);
1023 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
1024 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
1027 if (!drive
->special
.all
) {
1031 * We reset the drive so we need to issue a SETFEATURES.
1032 * Do it _after_ do_special() restored device parameters.
1034 if (drive
->current_speed
== 0xff)
1035 ide_config_drive_speed(drive
, drive
->desired_speed
);
1037 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
||
1038 rq
->cmd_type
== REQ_TYPE_ATA_TASK
||
1039 rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
1040 return execute_drive_cmd(drive
, rq
);
1041 else if (blk_pm_request(rq
)) {
1042 struct request_pm_state
*pm
= rq
->data
;
1044 printk("%s: start_power_step(step: %d)\n",
1045 drive
->name
, rq
->pm
->pm_step
);
1047 startstop
= ide_start_power_step(drive
, rq
);
1048 if (startstop
== ide_stopped
&&
1049 pm
->pm_step
== ide_pm_state_completed
)
1050 ide_complete_pm_request(drive
, rq
);
1054 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
1055 return drv
->do_request(drive
, rq
, block
);
1057 return do_special(drive
);
1059 ide_kill_rq(drive
, rq
);
1064 * ide_stall_queue - pause an IDE device
1065 * @drive: drive to stall
1066 * @timeout: time to stall for (jiffies)
1068 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1069 * to the hwgroup by sleeping for timeout jiffies.
1072 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
1074 if (timeout
> WAIT_WORSTCASE
)
1075 timeout
= WAIT_WORSTCASE
;
1076 drive
->sleep
= timeout
+ jiffies
;
1077 drive
->sleeping
= 1;
1080 EXPORT_SYMBOL(ide_stall_queue
);
1082 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1085 * choose_drive - select a drive to service
1086 * @hwgroup: hardware group to select on
1088 * choose_drive() selects the next drive which will be serviced.
1089 * This is necessary because the IDE layer can't issue commands
1090 * to both drives on the same cable, unlike SCSI.
1093 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
1095 ide_drive_t
*drive
, *best
;
1099 drive
= hwgroup
->drive
;
1102 * drive is doing pre-flush, ordered write, post-flush sequence. even
1103 * though that is 3 requests, it must be seen as a single transaction.
1104 * we must not preempt this drive until that is complete
1106 if (blk_queue_flushing(drive
->queue
)) {
1108 * small race where queue could get replugged during
1109 * the 3-request flush cycle, just yank the plug since
1110 * we want it to finish asap
1112 blk_remove_plug(drive
->queue
);
1117 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1118 && !elv_queue_empty(drive
->queue
)) {
1120 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1121 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1123 if (!blk_queue_plugged(drive
->queue
))
1127 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1128 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1129 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1130 if (t
>= WAIT_MIN_SLEEP
) {
1132 * We *may* have some time to spare, but first let's see if
1133 * someone can potentially benefit from our nice mood today..
1137 if (!drive
->sleeping
1138 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1139 && time_before(WAKEUP(drive
), jiffies
+ t
))
1141 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1144 } while ((drive
= drive
->next
) != best
);
1151 * Issue a new request to a drive from hwgroup
1152 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1154 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1155 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1156 * may have both interfaces in a single hwgroup to "serialize" access.
1157 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1158 * together into one hwgroup for serialized access.
1160 * Note also that several hwgroups can end up sharing a single IRQ,
1161 * possibly along with many other devices. This is especially common in
1162 * PCI-based systems with off-board IDE controller cards.
1164 * The IDE driver uses the single global ide_lock spinlock to protect
1165 * access to the request queues, and to protect the hwgroup->busy flag.
1167 * The first thread into the driver for a particular hwgroup sets the
1168 * hwgroup->busy flag to indicate that this hwgroup is now active,
1169 * and then initiates processing of the top request from the request queue.
1171 * Other threads attempting entry notice the busy setting, and will simply
1172 * queue their new requests and exit immediately. Note that hwgroup->busy
1173 * remains set even when the driver is merely awaiting the next interrupt.
1174 * Thus, the meaning is "this hwgroup is busy processing a request".
1176 * When processing of a request completes, the completing thread or IRQ-handler
1177 * will start the next request from the queue. If no more work remains,
1178 * the driver will clear the hwgroup->busy flag and exit.
1180 * The ide_lock (spinlock) is used to protect all access to the
1181 * hwgroup->busy flag, but is otherwise not needed for most processing in
1182 * the driver. This makes the driver much more friendlier to shared IRQs
1183 * than previous designs, while remaining 100% (?) SMP safe and capable.
1185 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1190 ide_startstop_t startstop
;
1193 /* for atari only: POSSIBLY BROKEN HERE(?) */
1194 ide_get_lock(ide_intr
, hwgroup
);
1196 /* caller must own ide_lock */
1197 BUG_ON(!irqs_disabled());
1199 while (!hwgroup
->busy
) {
1201 drive
= choose_drive(hwgroup
);
1202 if (drive
== NULL
) {
1204 unsigned long sleep
= 0; /* shut up, gcc */
1206 drive
= hwgroup
->drive
;
1208 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1210 sleep
= drive
->sleep
;
1212 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1215 * Take a short snooze, and then wake up this hwgroup again.
1216 * This gives other hwgroups on the same a chance to
1217 * play fairly with us, just in case there are big differences
1218 * in relative throughputs.. don't want to hog the cpu too much.
1220 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1221 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1223 if (timer_pending(&hwgroup
->timer
))
1224 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1226 /* so that ide_timer_expiry knows what to do */
1227 hwgroup
->sleeping
= 1;
1228 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1229 mod_timer(&hwgroup
->timer
, sleep
);
1230 /* we purposely leave hwgroup->busy==1
1233 /* Ugly, but how can we sleep for the lock
1234 * otherwise? perhaps from tq_disk?
1237 /* for atari only */
1242 /* no more work for this hwgroup (for now) */
1247 if (hwgroup
->hwif
->sharing_irq
&&
1248 hwif
!= hwgroup
->hwif
&&
1249 hwif
->io_ports
[IDE_CONTROL_OFFSET
]) {
1250 /* set nIEN for previous hwif */
1251 SELECT_INTERRUPT(drive
);
1253 hwgroup
->hwif
= hwif
;
1254 hwgroup
->drive
= drive
;
1255 drive
->sleeping
= 0;
1256 drive
->service_start
= jiffies
;
1258 if (blk_queue_plugged(drive
->queue
)) {
1259 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1264 * we know that the queue isn't empty, but this can happen
1265 * if the q->prep_rq_fn() decides to kill a request
1267 rq
= elv_next_request(drive
->queue
);
1274 * Sanity: don't accept a request that isn't a PM request
1275 * if we are currently power managed. This is very important as
1276 * blk_stop_queue() doesn't prevent the elv_next_request()
1277 * above to return us whatever is in the queue. Since we call
1278 * ide_do_request() ourselves, we end up taking requests while
1279 * the queue is blocked...
1281 * We let requests forced at head of queue with ide-preempt
1282 * though. I hope that doesn't happen too much, hopefully not
1283 * unless the subdriver triggers such a thing in its own PM
1286 * We count how many times we loop here to make sure we service
1287 * all drives in the hwgroup without looping for ever
1289 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1290 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1291 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1293 /* We clear busy, there should be no pending ATA command at this point. */
1301 * Some systems have trouble with IDE IRQs arriving while
1302 * the driver is still setting things up. So, here we disable
1303 * the IRQ used by this interface while the request is being started.
1304 * This may look bad at first, but pretty much the same thing
1305 * happens anyway when any interrupt comes in, IDE or otherwise
1306 * -- the kernel masks the IRQ while it is being handled.
1308 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1309 disable_irq_nosync(hwif
->irq
);
1310 spin_unlock(&ide_lock
);
1311 local_irq_enable_in_hardirq();
1312 /* allow other IRQs while we start this request */
1313 startstop
= start_request(drive
, rq
);
1314 spin_lock_irq(&ide_lock
);
1315 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1316 enable_irq(hwif
->irq
);
1317 if (startstop
== ide_stopped
)
1323 * Passes the stuff to ide_do_request
1325 void do_ide_request(struct request_queue
*q
)
1327 ide_drive_t
*drive
= q
->queuedata
;
1329 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1333 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1334 * retry the current request in pio mode instead of risking tossing it
1337 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1339 ide_hwif_t
*hwif
= HWIF(drive
);
1341 ide_startstop_t ret
= ide_stopped
;
1344 * end current dma transaction
1348 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1349 (void)HWIF(drive
)->ide_dma_end(drive
);
1350 ret
= ide_error(drive
, "dma timeout error",
1351 hwif
->INB(IDE_STATUS_REG
));
1353 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1354 hwif
->dma_timeout(drive
);
1358 * disable dma for now, but remember that we did so because of
1359 * a timeout -- we'll reenable after we finish this next request
1360 * (or rather the first chunk of it) in pio.
1363 drive
->state
= DMA_PIO_RETRY
;
1364 hwif
->dma_off_quietly(drive
);
1367 * un-busy drive etc (hwgroup->busy is cleared on return) and
1368 * make sure request is sane
1370 rq
= HWGROUP(drive
)->rq
;
1375 HWGROUP(drive
)->rq
= NULL
;
1382 rq
->sector
= rq
->bio
->bi_sector
;
1383 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1384 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1385 rq
->buffer
= bio_data(rq
->bio
);
1391 * ide_timer_expiry - handle lack of an IDE interrupt
1392 * @data: timer callback magic (hwgroup)
1394 * An IDE command has timed out before the expected drive return
1395 * occurred. At this point we attempt to clean up the current
1396 * mess. If the current handler includes an expiry handler then
1397 * we invoke the expiry handler, and providing it is happy the
1398 * work is done. If that fails we apply generic recovery rules
1399 * invoking the handler and checking the drive DMA status. We
1400 * have an excessively incestuous relationship with the DMA
1401 * logic that wants cleaning up.
1404 void ide_timer_expiry (unsigned long data
)
1406 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1407 ide_handler_t
*handler
;
1408 ide_expiry_t
*expiry
;
1409 unsigned long flags
;
1410 unsigned long wait
= -1;
1412 spin_lock_irqsave(&ide_lock
, flags
);
1414 if (((handler
= hwgroup
->handler
) == NULL
) ||
1415 (hwgroup
->req_gen
!= hwgroup
->req_gen_timer
)) {
1417 * Either a marginal timeout occurred
1418 * (got the interrupt just as timer expired),
1419 * or we were "sleeping" to give other devices a chance.
1420 * Either way, we don't really want to complain about anything.
1422 if (hwgroup
->sleeping
) {
1423 hwgroup
->sleeping
= 0;
1427 ide_drive_t
*drive
= hwgroup
->drive
;
1429 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1430 hwgroup
->handler
= NULL
;
1433 ide_startstop_t startstop
= ide_stopped
;
1434 if (!hwgroup
->busy
) {
1435 hwgroup
->busy
= 1; /* paranoia */
1436 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1438 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1440 if ((wait
= expiry(drive
)) > 0) {
1442 hwgroup
->timer
.expires
= jiffies
+ wait
;
1443 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1444 add_timer(&hwgroup
->timer
);
1445 spin_unlock_irqrestore(&ide_lock
, flags
);
1449 hwgroup
->handler
= NULL
;
1451 * We need to simulate a real interrupt when invoking
1452 * the handler() function, which means we need to
1453 * globally mask the specific IRQ:
1455 spin_unlock(&ide_lock
);
1457 #if DISABLE_IRQ_NOSYNC
1458 disable_irq_nosync(hwif
->irq
);
1460 /* disable_irq_nosync ?? */
1461 disable_irq(hwif
->irq
);
1462 #endif /* DISABLE_IRQ_NOSYNC */
1464 * as if we were handling an interrupt */
1465 local_irq_disable();
1466 if (hwgroup
->polling
) {
1467 startstop
= handler(drive
);
1468 } else if (drive_is_ready(drive
)) {
1469 if (drive
->waiting_for_dma
)
1470 hwgroup
->hwif
->dma_lost_irq(drive
);
1471 (void)ide_ack_intr(hwif
);
1472 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1473 startstop
= handler(drive
);
1475 if (drive
->waiting_for_dma
) {
1476 startstop
= ide_dma_timeout_retry(drive
, wait
);
1479 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1481 drive
->service_time
= jiffies
- drive
->service_start
;
1482 spin_lock_irq(&ide_lock
);
1483 enable_irq(hwif
->irq
);
1484 if (startstop
== ide_stopped
)
1488 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1489 spin_unlock_irqrestore(&ide_lock
, flags
);
1493 * unexpected_intr - handle an unexpected IDE interrupt
1494 * @irq: interrupt line
1495 * @hwgroup: hwgroup being processed
1497 * There's nothing really useful we can do with an unexpected interrupt,
1498 * other than reading the status register (to clear it), and logging it.
1499 * There should be no way that an irq can happen before we're ready for it,
1500 * so we needn't worry much about losing an "important" interrupt here.
1502 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1503 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1504 * looks "good", we just ignore the interrupt completely.
1506 * This routine assumes __cli() is in effect when called.
1508 * If an unexpected interrupt happens on irq15 while we are handling irq14
1509 * and if the two interfaces are "serialized" (CMD640), then it looks like
1510 * we could screw up by interfering with a new request being set up for
1513 * In reality, this is a non-issue. The new command is not sent unless
1514 * the drive is ready to accept one, in which case we know the drive is
1515 * not trying to interrupt us. And ide_set_handler() is always invoked
1516 * before completing the issuance of any new drive command, so we will not
1517 * be accidentally invoked as a result of any valid command completion
1520 * Note that we must walk the entire hwgroup here. We know which hwif
1521 * is doing the current command, but we don't know which hwif burped
1525 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1528 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1531 * handle the unexpected interrupt
1534 if (hwif
->irq
== irq
) {
1535 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1536 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1537 /* Try to not flood the console with msgs */
1538 static unsigned long last_msgtime
, count
;
1540 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1541 last_msgtime
= jiffies
;
1542 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1543 "status=0x%02x, count=%ld\n",
1545 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1549 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1553 * ide_intr - default IDE interrupt handler
1554 * @irq: interrupt number
1555 * @dev_id: hwif group
1556 * @regs: unused weirdness from the kernel irq layer
1558 * This is the default IRQ handler for the IDE layer. You should
1559 * not need to override it. If you do be aware it is subtle in
1562 * hwgroup->hwif is the interface in the group currently performing
1563 * a command. hwgroup->drive is the drive and hwgroup->handler is
1564 * the IRQ handler to call. As we issue a command the handlers
1565 * step through multiple states, reassigning the handler to the
1566 * next step in the process. Unlike a smart SCSI controller IDE
1567 * expects the main processor to sequence the various transfer
1568 * stages. We also manage a poll timer to catch up with most
1569 * timeout situations. There are still a few where the handlers
1570 * don't ever decide to give up.
1572 * The handler eventually returns ide_stopped to indicate the
1573 * request completed. At this point we issue the next request
1574 * on the hwgroup and the process begins again.
1577 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1579 unsigned long flags
;
1580 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1583 ide_handler_t
*handler
;
1584 ide_startstop_t startstop
;
1586 spin_lock_irqsave(&ide_lock
, flags
);
1587 hwif
= hwgroup
->hwif
;
1589 if (!ide_ack_intr(hwif
)) {
1590 spin_unlock_irqrestore(&ide_lock
, flags
);
1594 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1596 * Not expecting an interrupt from this drive.
1597 * That means this could be:
1598 * (1) an interrupt from another PCI device
1599 * sharing the same PCI INT# as us.
1600 * or (2) a drive just entered sleep or standby mode,
1601 * and is interrupting to let us know.
1602 * or (3) a spurious interrupt of unknown origin.
1604 * For PCI, we cannot tell the difference,
1605 * so in that case we just ignore it and hope it goes away.
1607 * FIXME: unexpected_intr should be hwif-> then we can
1608 * remove all the ifdef PCI crap
1610 #ifdef CONFIG_BLK_DEV_IDEPCI
1611 if (hwif
->pci_dev
&& !hwif
->pci_dev
->vendor
)
1612 #endif /* CONFIG_BLK_DEV_IDEPCI */
1615 * Probably not a shared PCI interrupt,
1616 * so we can safely try to do something about it:
1618 unexpected_intr(irq
, hwgroup
);
1619 #ifdef CONFIG_BLK_DEV_IDEPCI
1622 * Whack the status register, just in case
1623 * we have a leftover pending IRQ.
1625 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1626 #endif /* CONFIG_BLK_DEV_IDEPCI */
1628 spin_unlock_irqrestore(&ide_lock
, flags
);
1631 drive
= hwgroup
->drive
;
1634 * This should NEVER happen, and there isn't much
1635 * we could do about it here.
1637 * [Note - this can occur if the drive is hot unplugged]
1639 spin_unlock_irqrestore(&ide_lock
, flags
);
1642 if (!drive_is_ready(drive
)) {
1644 * This happens regularly when we share a PCI IRQ with
1645 * another device. Unfortunately, it can also happen
1646 * with some buggy drives that trigger the IRQ before
1647 * their status register is up to date. Hopefully we have
1648 * enough advance overhead that the latter isn't a problem.
1650 spin_unlock_irqrestore(&ide_lock
, flags
);
1653 if (!hwgroup
->busy
) {
1654 hwgroup
->busy
= 1; /* paranoia */
1655 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1657 hwgroup
->handler
= NULL
;
1659 del_timer(&hwgroup
->timer
);
1660 spin_unlock(&ide_lock
);
1662 /* Some controllers might set DMA INTR no matter DMA or PIO;
1663 * bmdma status might need to be cleared even for
1664 * PIO interrupts to prevent spurious/lost irq.
1666 if (hwif
->ide_dma_clear_irq
&& !(drive
->waiting_for_dma
))
1667 /* ide_dma_end() needs bmdma status for error checking.
1668 * So, skip clearing bmdma status here and leave it
1669 * to ide_dma_end() if this is dma interrupt.
1671 hwif
->ide_dma_clear_irq(drive
);
1674 local_irq_enable_in_hardirq();
1675 /* service this interrupt, may set handler for next interrupt */
1676 startstop
= handler(drive
);
1677 spin_lock_irq(&ide_lock
);
1680 * Note that handler() may have set things up for another
1681 * interrupt to occur soon, but it cannot happen until
1682 * we exit from this routine, because it will be the
1683 * same irq as is currently being serviced here, and Linux
1684 * won't allow another of the same (on any CPU) until we return.
1686 drive
->service_time
= jiffies
- drive
->service_start
;
1687 if (startstop
== ide_stopped
) {
1688 if (hwgroup
->handler
== NULL
) { /* paranoia */
1690 ide_do_request(hwgroup
, hwif
->irq
);
1692 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1693 "on exit\n", drive
->name
);
1696 spin_unlock_irqrestore(&ide_lock
, flags
);
1701 * ide_init_drive_cmd - initialize a drive command request
1702 * @rq: request object
1704 * Initialize a request before we fill it in and send it down to
1705 * ide_do_drive_cmd. Commands must be set up by this function. Right
1706 * now it doesn't do a lot, but if that changes abusers will have a
1710 void ide_init_drive_cmd (struct request
*rq
)
1712 memset(rq
, 0, sizeof(*rq
));
1713 rq
->cmd_type
= REQ_TYPE_ATA_CMD
;
1717 EXPORT_SYMBOL(ide_init_drive_cmd
);
1720 * ide_do_drive_cmd - issue IDE special command
1721 * @drive: device to issue command
1722 * @rq: request to issue
1723 * @action: action for processing
1725 * This function issues a special IDE device request
1726 * onto the request queue.
1728 * If action is ide_wait, then the rq is queued at the end of the
1729 * request queue, and the function sleeps until it has been processed.
1730 * This is for use when invoked from an ioctl handler.
1732 * If action is ide_preempt, then the rq is queued at the head of
1733 * the request queue, displacing the currently-being-processed
1734 * request and this function returns immediately without waiting
1735 * for the new rq to be completed. This is VERY DANGEROUS, and is
1736 * intended for careful use by the ATAPI tape/cdrom driver code.
1738 * If action is ide_end, then the rq is queued at the end of the
1739 * request queue, and the function returns immediately without waiting
1740 * for the new rq to be completed. This is again intended for careful
1741 * use by the ATAPI tape/cdrom driver code.
1744 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1746 unsigned long flags
;
1747 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1748 DECLARE_COMPLETION_ONSTACK(wait
);
1749 int where
= ELEVATOR_INSERT_BACK
, err
;
1750 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1755 * we need to hold an extra reference to request for safe inspection
1760 rq
->end_io_data
= &wait
;
1761 rq
->end_io
= blk_end_sync_rq
;
1764 spin_lock_irqsave(&ide_lock
, flags
);
1765 if (action
== ide_preempt
)
1767 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1768 where
= ELEVATOR_INSERT_FRONT
;
1769 rq
->cmd_flags
|= REQ_PREEMPT
;
1771 __elv_add_request(drive
->queue
, rq
, where
, 0);
1772 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1773 spin_unlock_irqrestore(&ide_lock
, flags
);
1777 wait_for_completion(&wait
);
1781 blk_put_request(rq
);
1787 EXPORT_SYMBOL(ide_do_drive_cmd
);