2 * Implementation of the policy database.
4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
10 * Support for enhanced MLS infrastructure.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation, version 2.
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/errno.h>
31 #include "conditional.h"
37 static char *symtab_name
[SYM_NUM
] = {
49 int selinux_mls_enabled
= 0;
51 static unsigned int symtab_sizes
[SYM_NUM
] = {
62 struct policydb_compat_info
{
68 /* These need to be updated if SYM_NUM or OCON_NUM changes */
69 static struct policydb_compat_info policydb_compat
[] = {
71 .version
= POLICYDB_VERSION_BASE
,
72 .sym_num
= SYM_NUM
- 3,
73 .ocon_num
= OCON_NUM
- 1,
76 .version
= POLICYDB_VERSION_BOOL
,
77 .sym_num
= SYM_NUM
- 2,
78 .ocon_num
= OCON_NUM
- 1,
81 .version
= POLICYDB_VERSION_IPV6
,
82 .sym_num
= SYM_NUM
- 2,
86 .version
= POLICYDB_VERSION_NLCLASS
,
87 .sym_num
= SYM_NUM
- 2,
91 .version
= POLICYDB_VERSION_MLS
,
96 .version
= POLICYDB_VERSION_AVTAB
,
101 .version
= POLICYDB_VERSION_RANGETRANS
,
103 .ocon_num
= OCON_NUM
,
107 static struct policydb_compat_info
*policydb_lookup_compat(int version
)
110 struct policydb_compat_info
*info
= NULL
;
112 for (i
= 0; i
< ARRAY_SIZE(policydb_compat
); i
++) {
113 if (policydb_compat
[i
].version
== version
) {
114 info
= &policydb_compat
[i
];
122 * Initialize the role table.
124 static int roles_init(struct policydb
*p
)
128 struct role_datum
*role
;
130 role
= kzalloc(sizeof(*role
), GFP_KERNEL
);
135 role
->value
= ++p
->p_roles
.nprim
;
136 if (role
->value
!= OBJECT_R_VAL
) {
140 key
= kmalloc(strlen(OBJECT_R
)+1,GFP_KERNEL
);
145 strcpy(key
, OBJECT_R
);
146 rc
= hashtab_insert(p
->p_roles
.table
, key
, role
);
160 * Initialize a policy database structure.
162 static int policydb_init(struct policydb
*p
)
166 memset(p
, 0, sizeof(*p
));
168 for (i
= 0; i
< SYM_NUM
; i
++) {
169 rc
= symtab_init(&p
->symtab
[i
], symtab_sizes
[i
]);
171 goto out_free_symtab
;
174 rc
= avtab_init(&p
->te_avtab
);
176 goto out_free_symtab
;
180 goto out_free_symtab
;
182 rc
= cond_policydb_init(p
);
184 goto out_free_symtab
;
190 for (i
= 0; i
< SYM_NUM
; i
++)
191 hashtab_destroy(p
->symtab
[i
].table
);
196 * The following *_index functions are used to
197 * define the val_to_name and val_to_struct arrays
198 * in a policy database structure. The val_to_name
199 * arrays are used when converting security context
200 * structures into string representations. The
201 * val_to_struct arrays are used when the attributes
202 * of a class, role, or user are needed.
205 static int common_index(void *key
, void *datum
, void *datap
)
208 struct common_datum
*comdatum
;
212 if (!comdatum
->value
|| comdatum
->value
> p
->p_commons
.nprim
)
214 p
->p_common_val_to_name
[comdatum
->value
- 1] = key
;
218 static int class_index(void *key
, void *datum
, void *datap
)
221 struct class_datum
*cladatum
;
225 if (!cladatum
->value
|| cladatum
->value
> p
->p_classes
.nprim
)
227 p
->p_class_val_to_name
[cladatum
->value
- 1] = key
;
228 p
->class_val_to_struct
[cladatum
->value
- 1] = cladatum
;
232 static int role_index(void *key
, void *datum
, void *datap
)
235 struct role_datum
*role
;
239 if (!role
->value
|| role
->value
> p
->p_roles
.nprim
)
241 p
->p_role_val_to_name
[role
->value
- 1] = key
;
242 p
->role_val_to_struct
[role
->value
- 1] = role
;
246 static int type_index(void *key
, void *datum
, void *datap
)
249 struct type_datum
*typdatum
;
254 if (typdatum
->primary
) {
255 if (!typdatum
->value
|| typdatum
->value
> p
->p_types
.nprim
)
257 p
->p_type_val_to_name
[typdatum
->value
- 1] = key
;
263 static int user_index(void *key
, void *datum
, void *datap
)
266 struct user_datum
*usrdatum
;
270 if (!usrdatum
->value
|| usrdatum
->value
> p
->p_users
.nprim
)
272 p
->p_user_val_to_name
[usrdatum
->value
- 1] = key
;
273 p
->user_val_to_struct
[usrdatum
->value
- 1] = usrdatum
;
277 static int sens_index(void *key
, void *datum
, void *datap
)
280 struct level_datum
*levdatum
;
285 if (!levdatum
->isalias
) {
286 if (!levdatum
->level
->sens
||
287 levdatum
->level
->sens
> p
->p_levels
.nprim
)
289 p
->p_sens_val_to_name
[levdatum
->level
->sens
- 1] = key
;
295 static int cat_index(void *key
, void *datum
, void *datap
)
298 struct cat_datum
*catdatum
;
303 if (!catdatum
->isalias
) {
304 if (!catdatum
->value
|| catdatum
->value
> p
->p_cats
.nprim
)
306 p
->p_cat_val_to_name
[catdatum
->value
- 1] = key
;
312 static int (*index_f
[SYM_NUM
]) (void *key
, void *datum
, void *datap
) =
325 * Define the common val_to_name array and the class
326 * val_to_name and val_to_struct arrays in a policy
327 * database structure.
329 * Caller must clean up upon failure.
331 static int policydb_index_classes(struct policydb
*p
)
335 p
->p_common_val_to_name
=
336 kmalloc(p
->p_commons
.nprim
* sizeof(char *), GFP_KERNEL
);
337 if (!p
->p_common_val_to_name
) {
342 rc
= hashtab_map(p
->p_commons
.table
, common_index
, p
);
346 p
->class_val_to_struct
=
347 kmalloc(p
->p_classes
.nprim
* sizeof(*(p
->class_val_to_struct
)), GFP_KERNEL
);
348 if (!p
->class_val_to_struct
) {
353 p
->p_class_val_to_name
=
354 kmalloc(p
->p_classes
.nprim
* sizeof(char *), GFP_KERNEL
);
355 if (!p
->p_class_val_to_name
) {
360 rc
= hashtab_map(p
->p_classes
.table
, class_index
, p
);
366 static void symtab_hash_eval(struct symtab
*s
)
370 for (i
= 0; i
< SYM_NUM
; i
++) {
371 struct hashtab
*h
= s
[i
].table
;
372 struct hashtab_info info
;
374 hashtab_stat(h
, &info
);
375 printk(KERN_DEBUG
"%s: %d entries and %d/%d buckets used, "
376 "longest chain length %d\n", symtab_name
[i
], h
->nel
,
377 info
.slots_used
, h
->size
, info
.max_chain_len
);
383 * Define the other val_to_name and val_to_struct arrays
384 * in a policy database structure.
386 * Caller must clean up on failure.
388 static int policydb_index_others(struct policydb
*p
)
392 printk(KERN_DEBUG
"security: %d users, %d roles, %d types, %d bools",
393 p
->p_users
.nprim
, p
->p_roles
.nprim
, p
->p_types
.nprim
, p
->p_bools
.nprim
);
394 if (selinux_mls_enabled
)
395 printk(", %d sens, %d cats", p
->p_levels
.nprim
,
399 printk(KERN_DEBUG
"security: %d classes, %d rules\n",
400 p
->p_classes
.nprim
, p
->te_avtab
.nel
);
403 avtab_hash_eval(&p
->te_avtab
, "rules");
404 symtab_hash_eval(p
->symtab
);
407 p
->role_val_to_struct
=
408 kmalloc(p
->p_roles
.nprim
* sizeof(*(p
->role_val_to_struct
)),
410 if (!p
->role_val_to_struct
) {
415 p
->user_val_to_struct
=
416 kmalloc(p
->p_users
.nprim
* sizeof(*(p
->user_val_to_struct
)),
418 if (!p
->user_val_to_struct
) {
423 if (cond_init_bool_indexes(p
)) {
428 for (i
= SYM_ROLES
; i
< SYM_NUM
; i
++) {
429 p
->sym_val_to_name
[i
] =
430 kmalloc(p
->symtab
[i
].nprim
* sizeof(char *), GFP_KERNEL
);
431 if (!p
->sym_val_to_name
[i
]) {
435 rc
= hashtab_map(p
->symtab
[i
].table
, index_f
[i
], p
);
445 * The following *_destroy functions are used to
446 * free any memory allocated for each kind of
447 * symbol data in the policy database.
450 static int perm_destroy(void *key
, void *datum
, void *p
)
457 static int common_destroy(void *key
, void *datum
, void *p
)
459 struct common_datum
*comdatum
;
463 hashtab_map(comdatum
->permissions
.table
, perm_destroy
, NULL
);
464 hashtab_destroy(comdatum
->permissions
.table
);
469 static int cls_destroy(void *key
, void *datum
, void *p
)
471 struct class_datum
*cladatum
;
472 struct constraint_node
*constraint
, *ctemp
;
473 struct constraint_expr
*e
, *etmp
;
477 hashtab_map(cladatum
->permissions
.table
, perm_destroy
, NULL
);
478 hashtab_destroy(cladatum
->permissions
.table
);
479 constraint
= cladatum
->constraints
;
481 e
= constraint
->expr
;
483 ebitmap_destroy(&e
->names
);
489 constraint
= constraint
->next
;
493 constraint
= cladatum
->validatetrans
;
495 e
= constraint
->expr
;
497 ebitmap_destroy(&e
->names
);
503 constraint
= constraint
->next
;
507 kfree(cladatum
->comkey
);
512 static int role_destroy(void *key
, void *datum
, void *p
)
514 struct role_datum
*role
;
518 ebitmap_destroy(&role
->dominates
);
519 ebitmap_destroy(&role
->types
);
524 static int type_destroy(void *key
, void *datum
, void *p
)
531 static int user_destroy(void *key
, void *datum
, void *p
)
533 struct user_datum
*usrdatum
;
537 ebitmap_destroy(&usrdatum
->roles
);
538 ebitmap_destroy(&usrdatum
->range
.level
[0].cat
);
539 ebitmap_destroy(&usrdatum
->range
.level
[1].cat
);
540 ebitmap_destroy(&usrdatum
->dfltlevel
.cat
);
545 static int sens_destroy(void *key
, void *datum
, void *p
)
547 struct level_datum
*levdatum
;
551 ebitmap_destroy(&levdatum
->level
->cat
);
552 kfree(levdatum
->level
);
557 static int cat_destroy(void *key
, void *datum
, void *p
)
564 static int (*destroy_f
[SYM_NUM
]) (void *key
, void *datum
, void *datap
) =
576 static void ocontext_destroy(struct ocontext
*c
, int i
)
578 context_destroy(&c
->context
[0]);
579 context_destroy(&c
->context
[1]);
580 if (i
== OCON_ISID
|| i
== OCON_FS
||
581 i
== OCON_NETIF
|| i
== OCON_FSUSE
)
587 * Free any memory allocated by a policy database structure.
589 void policydb_destroy(struct policydb
*p
)
591 struct ocontext
*c
, *ctmp
;
592 struct genfs
*g
, *gtmp
;
594 struct role_allow
*ra
, *lra
= NULL
;
595 struct role_trans
*tr
, *ltr
= NULL
;
596 struct range_trans
*rt
, *lrt
= NULL
;
598 for (i
= 0; i
< SYM_NUM
; i
++) {
600 hashtab_map(p
->symtab
[i
].table
, destroy_f
[i
], NULL
);
601 hashtab_destroy(p
->symtab
[i
].table
);
604 for (i
= 0; i
< SYM_NUM
; i
++)
605 kfree(p
->sym_val_to_name
[i
]);
607 kfree(p
->class_val_to_struct
);
608 kfree(p
->role_val_to_struct
);
609 kfree(p
->user_val_to_struct
);
611 avtab_destroy(&p
->te_avtab
);
613 for (i
= 0; i
< OCON_NUM
; i
++) {
619 ocontext_destroy(ctmp
,i
);
621 p
->ocontexts
[i
] = NULL
;
632 ocontext_destroy(ctmp
,OCON_FSUSE
);
640 cond_policydb_destroy(p
);
642 for (tr
= p
->role_tr
; tr
; tr
= tr
->next
) {
649 for (ra
= p
->role_allow
; ra
; ra
= ra
-> next
) {
656 for (rt
= p
->range_tr
; rt
; rt
= rt
-> next
) {
659 ebitmap_destroy(&lrt
->target_range
.level
[0].cat
);
660 ebitmap_destroy(&lrt
->target_range
.level
[1].cat
);
666 ebitmap_destroy(&lrt
->target_range
.level
[0].cat
);
667 ebitmap_destroy(&lrt
->target_range
.level
[1].cat
);
671 if (p
->type_attr_map
) {
672 for (i
= 0; i
< p
->p_types
.nprim
; i
++)
673 ebitmap_destroy(&p
->type_attr_map
[i
]);
675 kfree(p
->type_attr_map
);
677 kfree(p
->undefined_perms
);
683 * Load the initial SIDs specified in a policy database
684 * structure into a SID table.
686 int policydb_load_isids(struct policydb
*p
, struct sidtab
*s
)
688 struct ocontext
*head
, *c
;
693 printk(KERN_ERR
"security: out of memory on SID table init\n");
697 head
= p
->ocontexts
[OCON_ISID
];
698 for (c
= head
; c
; c
= c
->next
) {
699 if (!c
->context
[0].user
) {
700 printk(KERN_ERR
"security: SID %s was never "
701 "defined.\n", c
->u
.name
);
705 if (sidtab_insert(s
, c
->sid
[0], &c
->context
[0])) {
706 printk(KERN_ERR
"security: unable to load initial "
707 "SID %s.\n", c
->u
.name
);
717 * Return 1 if the fields in the security context
718 * structure `c' are valid. Return 0 otherwise.
720 int policydb_context_isvalid(struct policydb
*p
, struct context
*c
)
722 struct role_datum
*role
;
723 struct user_datum
*usrdatum
;
725 if (!c
->role
|| c
->role
> p
->p_roles
.nprim
)
728 if (!c
->user
|| c
->user
> p
->p_users
.nprim
)
731 if (!c
->type
|| c
->type
> p
->p_types
.nprim
)
734 if (c
->role
!= OBJECT_R_VAL
) {
736 * Role must be authorized for the type.
738 role
= p
->role_val_to_struct
[c
->role
- 1];
739 if (!ebitmap_get_bit(&role
->types
,
741 /* role may not be associated with type */
745 * User must be authorized for the role.
747 usrdatum
= p
->user_val_to_struct
[c
->user
- 1];
751 if (!ebitmap_get_bit(&usrdatum
->roles
,
753 /* user may not be associated with role */
757 if (!mls_context_isvalid(p
, c
))
764 * Read a MLS range structure from a policydb binary
765 * representation file.
767 static int mls_read_range_helper(struct mls_range
*r
, void *fp
)
773 rc
= next_entry(buf
, fp
, sizeof(u32
));
777 items
= le32_to_cpu(buf
[0]);
778 if (items
> ARRAY_SIZE(buf
)) {
779 printk(KERN_ERR
"security: mls: range overflow\n");
783 rc
= next_entry(buf
, fp
, sizeof(u32
) * items
);
785 printk(KERN_ERR
"security: mls: truncated range\n");
788 r
->level
[0].sens
= le32_to_cpu(buf
[0]);
790 r
->level
[1].sens
= le32_to_cpu(buf
[1]);
792 r
->level
[1].sens
= r
->level
[0].sens
;
794 rc
= ebitmap_read(&r
->level
[0].cat
, fp
);
796 printk(KERN_ERR
"security: mls: error reading low "
801 rc
= ebitmap_read(&r
->level
[1].cat
, fp
);
803 printk(KERN_ERR
"security: mls: error reading high "
808 rc
= ebitmap_cpy(&r
->level
[1].cat
, &r
->level
[0].cat
);
810 printk(KERN_ERR
"security: mls: out of memory\n");
819 ebitmap_destroy(&r
->level
[0].cat
);
824 * Read and validate a security context structure
825 * from a policydb binary representation file.
827 static int context_read_and_validate(struct context
*c
,
834 rc
= next_entry(buf
, fp
, sizeof buf
);
836 printk(KERN_ERR
"security: context truncated\n");
839 c
->user
= le32_to_cpu(buf
[0]);
840 c
->role
= le32_to_cpu(buf
[1]);
841 c
->type
= le32_to_cpu(buf
[2]);
842 if (p
->policyvers
>= POLICYDB_VERSION_MLS
) {
843 if (mls_read_range_helper(&c
->range
, fp
)) {
844 printk(KERN_ERR
"security: error reading MLS range of "
851 if (!policydb_context_isvalid(p
, c
)) {
852 printk(KERN_ERR
"security: invalid security context\n");
861 * The following *_read functions are used to
862 * read the symbol data from a policy database
863 * binary representation file.
866 static int perm_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
869 struct perm_datum
*perdatum
;
874 perdatum
= kzalloc(sizeof(*perdatum
), GFP_KERNEL
);
880 rc
= next_entry(buf
, fp
, sizeof buf
);
884 len
= le32_to_cpu(buf
[0]);
885 perdatum
->value
= le32_to_cpu(buf
[1]);
887 key
= kmalloc(len
+ 1,GFP_KERNEL
);
892 rc
= next_entry(key
, fp
, len
);
897 rc
= hashtab_insert(h
, key
, perdatum
);
903 perm_destroy(key
, perdatum
, NULL
);
907 static int common_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
910 struct common_datum
*comdatum
;
915 comdatum
= kzalloc(sizeof(*comdatum
), GFP_KERNEL
);
921 rc
= next_entry(buf
, fp
, sizeof buf
);
925 len
= le32_to_cpu(buf
[0]);
926 comdatum
->value
= le32_to_cpu(buf
[1]);
928 rc
= symtab_init(&comdatum
->permissions
, PERM_SYMTAB_SIZE
);
931 comdatum
->permissions
.nprim
= le32_to_cpu(buf
[2]);
932 nel
= le32_to_cpu(buf
[3]);
934 key
= kmalloc(len
+ 1,GFP_KERNEL
);
939 rc
= next_entry(key
, fp
, len
);
944 for (i
= 0; i
< nel
; i
++) {
945 rc
= perm_read(p
, comdatum
->permissions
.table
, fp
);
950 rc
= hashtab_insert(h
, key
, comdatum
);
956 common_destroy(key
, comdatum
, NULL
);
960 static int read_cons_helper(struct constraint_node
**nodep
, int ncons
,
961 int allowxtarget
, void *fp
)
963 struct constraint_node
*c
, *lc
;
964 struct constraint_expr
*e
, *le
;
970 for (i
= 0; i
< ncons
; i
++) {
971 c
= kzalloc(sizeof(*c
), GFP_KERNEL
);
981 rc
= next_entry(buf
, fp
, (sizeof(u32
) * 2));
984 c
->permissions
= le32_to_cpu(buf
[0]);
985 nexpr
= le32_to_cpu(buf
[1]);
988 for (j
= 0; j
< nexpr
; j
++) {
989 e
= kzalloc(sizeof(*e
), GFP_KERNEL
);
999 rc
= next_entry(buf
, fp
, (sizeof(u32
) * 3));
1002 e
->expr_type
= le32_to_cpu(buf
[0]);
1003 e
->attr
= le32_to_cpu(buf
[1]);
1004 e
->op
= le32_to_cpu(buf
[2]);
1006 switch (e
->expr_type
) {
1018 if (depth
== (CEXPR_MAXDEPTH
- 1))
1023 if (!allowxtarget
&& (e
->attr
& CEXPR_XTARGET
))
1025 if (depth
== (CEXPR_MAXDEPTH
- 1))
1028 if (ebitmap_read(&e
->names
, fp
))
1044 static int class_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1047 struct class_datum
*cladatum
;
1049 u32 len
, len2
, ncons
, nel
;
1052 cladatum
= kzalloc(sizeof(*cladatum
), GFP_KERNEL
);
1058 rc
= next_entry(buf
, fp
, sizeof(u32
)*6);
1062 len
= le32_to_cpu(buf
[0]);
1063 len2
= le32_to_cpu(buf
[1]);
1064 cladatum
->value
= le32_to_cpu(buf
[2]);
1066 rc
= symtab_init(&cladatum
->permissions
, PERM_SYMTAB_SIZE
);
1069 cladatum
->permissions
.nprim
= le32_to_cpu(buf
[3]);
1070 nel
= le32_to_cpu(buf
[4]);
1072 ncons
= le32_to_cpu(buf
[5]);
1074 key
= kmalloc(len
+ 1,GFP_KERNEL
);
1079 rc
= next_entry(key
, fp
, len
);
1085 cladatum
->comkey
= kmalloc(len2
+ 1,GFP_KERNEL
);
1086 if (!cladatum
->comkey
) {
1090 rc
= next_entry(cladatum
->comkey
, fp
, len2
);
1093 cladatum
->comkey
[len2
] = 0;
1095 cladatum
->comdatum
= hashtab_search(p
->p_commons
.table
,
1097 if (!cladatum
->comdatum
) {
1098 printk(KERN_ERR
"security: unknown common %s\n",
1104 for (i
= 0; i
< nel
; i
++) {
1105 rc
= perm_read(p
, cladatum
->permissions
.table
, fp
);
1110 rc
= read_cons_helper(&cladatum
->constraints
, ncons
, 0, fp
);
1114 if (p
->policyvers
>= POLICYDB_VERSION_VALIDATETRANS
) {
1115 /* grab the validatetrans rules */
1116 rc
= next_entry(buf
, fp
, sizeof(u32
));
1119 ncons
= le32_to_cpu(buf
[0]);
1120 rc
= read_cons_helper(&cladatum
->validatetrans
, ncons
, 1, fp
);
1125 rc
= hashtab_insert(h
, key
, cladatum
);
1133 cls_destroy(key
, cladatum
, NULL
);
1137 static int role_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1140 struct role_datum
*role
;
1145 role
= kzalloc(sizeof(*role
), GFP_KERNEL
);
1151 rc
= next_entry(buf
, fp
, sizeof buf
);
1155 len
= le32_to_cpu(buf
[0]);
1156 role
->value
= le32_to_cpu(buf
[1]);
1158 key
= kmalloc(len
+ 1,GFP_KERNEL
);
1163 rc
= next_entry(key
, fp
, len
);
1168 rc
= ebitmap_read(&role
->dominates
, fp
);
1172 rc
= ebitmap_read(&role
->types
, fp
);
1176 if (strcmp(key
, OBJECT_R
) == 0) {
1177 if (role
->value
!= OBJECT_R_VAL
) {
1178 printk(KERN_ERR
"Role %s has wrong value %d\n",
1179 OBJECT_R
, role
->value
);
1187 rc
= hashtab_insert(h
, key
, role
);
1193 role_destroy(key
, role
, NULL
);
1197 static int type_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1200 struct type_datum
*typdatum
;
1205 typdatum
= kzalloc(sizeof(*typdatum
),GFP_KERNEL
);
1211 rc
= next_entry(buf
, fp
, sizeof buf
);
1215 len
= le32_to_cpu(buf
[0]);
1216 typdatum
->value
= le32_to_cpu(buf
[1]);
1217 typdatum
->primary
= le32_to_cpu(buf
[2]);
1219 key
= kmalloc(len
+ 1,GFP_KERNEL
);
1224 rc
= next_entry(key
, fp
, len
);
1229 rc
= hashtab_insert(h
, key
, typdatum
);
1235 type_destroy(key
, typdatum
, NULL
);
1241 * Read a MLS level structure from a policydb binary
1242 * representation file.
1244 static int mls_read_level(struct mls_level
*lp
, void *fp
)
1249 memset(lp
, 0, sizeof(*lp
));
1251 rc
= next_entry(buf
, fp
, sizeof buf
);
1253 printk(KERN_ERR
"security: mls: truncated level\n");
1256 lp
->sens
= le32_to_cpu(buf
[0]);
1258 if (ebitmap_read(&lp
->cat
, fp
)) {
1259 printk(KERN_ERR
"security: mls: error reading level "
1269 static int user_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1272 struct user_datum
*usrdatum
;
1277 usrdatum
= kzalloc(sizeof(*usrdatum
), GFP_KERNEL
);
1283 rc
= next_entry(buf
, fp
, sizeof buf
);
1287 len
= le32_to_cpu(buf
[0]);
1288 usrdatum
->value
= le32_to_cpu(buf
[1]);
1290 key
= kmalloc(len
+ 1,GFP_KERNEL
);
1295 rc
= next_entry(key
, fp
, len
);
1300 rc
= ebitmap_read(&usrdatum
->roles
, fp
);
1304 if (p
->policyvers
>= POLICYDB_VERSION_MLS
) {
1305 rc
= mls_read_range_helper(&usrdatum
->range
, fp
);
1308 rc
= mls_read_level(&usrdatum
->dfltlevel
, fp
);
1313 rc
= hashtab_insert(h
, key
, usrdatum
);
1319 user_destroy(key
, usrdatum
, NULL
);
1323 static int sens_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1326 struct level_datum
*levdatum
;
1331 levdatum
= kzalloc(sizeof(*levdatum
), GFP_ATOMIC
);
1337 rc
= next_entry(buf
, fp
, sizeof buf
);
1341 len
= le32_to_cpu(buf
[0]);
1342 levdatum
->isalias
= le32_to_cpu(buf
[1]);
1344 key
= kmalloc(len
+ 1,GFP_ATOMIC
);
1349 rc
= next_entry(key
, fp
, len
);
1354 levdatum
->level
= kmalloc(sizeof(struct mls_level
), GFP_ATOMIC
);
1355 if (!levdatum
->level
) {
1359 if (mls_read_level(levdatum
->level
, fp
)) {
1364 rc
= hashtab_insert(h
, key
, levdatum
);
1370 sens_destroy(key
, levdatum
, NULL
);
1374 static int cat_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1377 struct cat_datum
*catdatum
;
1382 catdatum
= kzalloc(sizeof(*catdatum
), GFP_ATOMIC
);
1388 rc
= next_entry(buf
, fp
, sizeof buf
);
1392 len
= le32_to_cpu(buf
[0]);
1393 catdatum
->value
= le32_to_cpu(buf
[1]);
1394 catdatum
->isalias
= le32_to_cpu(buf
[2]);
1396 key
= kmalloc(len
+ 1,GFP_ATOMIC
);
1401 rc
= next_entry(key
, fp
, len
);
1406 rc
= hashtab_insert(h
, key
, catdatum
);
1413 cat_destroy(key
, catdatum
, NULL
);
1417 static int (*read_f
[SYM_NUM
]) (struct policydb
*p
, struct hashtab
*h
, void *fp
) =
1429 extern int ss_initialized
;
1432 * Read the configuration data from a policy database binary
1433 * representation file into a policy database structure.
1435 int policydb_read(struct policydb
*p
, void *fp
)
1437 struct role_allow
*ra
, *lra
;
1438 struct role_trans
*tr
, *ltr
;
1439 struct ocontext
*l
, *c
, *newc
;
1440 struct genfs
*genfs_p
, *genfs
, *newgenfs
;
1443 u32 len
, len2
, config
, nprim
, nel
, nel2
;
1445 struct policydb_compat_info
*info
;
1446 struct range_trans
*rt
, *lrt
;
1450 rc
= policydb_init(p
);
1454 /* Read the magic number and string length. */
1455 rc
= next_entry(buf
, fp
, sizeof(u32
)* 2);
1459 if (le32_to_cpu(buf
[0]) != POLICYDB_MAGIC
) {
1460 printk(KERN_ERR
"security: policydb magic number 0x%x does "
1461 "not match expected magic number 0x%x\n",
1462 le32_to_cpu(buf
[0]), POLICYDB_MAGIC
);
1466 len
= le32_to_cpu(buf
[1]);
1467 if (len
!= strlen(POLICYDB_STRING
)) {
1468 printk(KERN_ERR
"security: policydb string length %d does not "
1469 "match expected length %Zu\n",
1470 len
, strlen(POLICYDB_STRING
));
1473 policydb_str
= kmalloc(len
+ 1,GFP_KERNEL
);
1474 if (!policydb_str
) {
1475 printk(KERN_ERR
"security: unable to allocate memory for policydb "
1476 "string of length %d\n", len
);
1480 rc
= next_entry(policydb_str
, fp
, len
);
1482 printk(KERN_ERR
"security: truncated policydb string identifier\n");
1483 kfree(policydb_str
);
1486 policydb_str
[len
] = 0;
1487 if (strcmp(policydb_str
, POLICYDB_STRING
)) {
1488 printk(KERN_ERR
"security: policydb string %s does not match "
1489 "my string %s\n", policydb_str
, POLICYDB_STRING
);
1490 kfree(policydb_str
);
1493 /* Done with policydb_str. */
1494 kfree(policydb_str
);
1495 policydb_str
= NULL
;
1497 /* Read the version, config, and table sizes. */
1498 rc
= next_entry(buf
, fp
, sizeof(u32
)*4);
1502 p
->policyvers
= le32_to_cpu(buf
[0]);
1503 if (p
->policyvers
< POLICYDB_VERSION_MIN
||
1504 p
->policyvers
> POLICYDB_VERSION_MAX
) {
1505 printk(KERN_ERR
"security: policydb version %d does not match "
1506 "my version range %d-%d\n",
1507 le32_to_cpu(buf
[0]), POLICYDB_VERSION_MIN
, POLICYDB_VERSION_MAX
);
1511 if ((le32_to_cpu(buf
[1]) & POLICYDB_CONFIG_MLS
)) {
1512 if (ss_initialized
&& !selinux_mls_enabled
) {
1513 printk(KERN_ERR
"Cannot switch between non-MLS and MLS "
1517 selinux_mls_enabled
= 1;
1518 config
|= POLICYDB_CONFIG_MLS
;
1520 if (p
->policyvers
< POLICYDB_VERSION_MLS
) {
1521 printk(KERN_ERR
"security policydb version %d (MLS) "
1522 "not backwards compatible\n", p
->policyvers
);
1526 if (ss_initialized
&& selinux_mls_enabled
) {
1527 printk(KERN_ERR
"Cannot switch between MLS and non-MLS "
1532 p
->reject_unknown
= !!(le32_to_cpu(buf
[1]) & REJECT_UNKNOWN
);
1533 p
->allow_unknown
= !!(le32_to_cpu(buf
[1]) & ALLOW_UNKNOWN
);
1535 info
= policydb_lookup_compat(p
->policyvers
);
1537 printk(KERN_ERR
"security: unable to find policy compat info "
1538 "for version %d\n", p
->policyvers
);
1542 if (le32_to_cpu(buf
[2]) != info
->sym_num
||
1543 le32_to_cpu(buf
[3]) != info
->ocon_num
) {
1544 printk(KERN_ERR
"security: policydb table sizes (%d,%d) do "
1545 "not match mine (%d,%d)\n", le32_to_cpu(buf
[2]),
1546 le32_to_cpu(buf
[3]),
1547 info
->sym_num
, info
->ocon_num
);
1551 for (i
= 0; i
< info
->sym_num
; i
++) {
1552 rc
= next_entry(buf
, fp
, sizeof(u32
)*2);
1555 nprim
= le32_to_cpu(buf
[0]);
1556 nel
= le32_to_cpu(buf
[1]);
1557 for (j
= 0; j
< nel
; j
++) {
1558 rc
= read_f
[i
](p
, p
->symtab
[i
].table
, fp
);
1563 p
->symtab
[i
].nprim
= nprim
;
1566 rc
= avtab_read(&p
->te_avtab
, fp
, p
->policyvers
);
1570 if (p
->policyvers
>= POLICYDB_VERSION_BOOL
) {
1571 rc
= cond_read_list(p
, fp
);
1576 rc
= next_entry(buf
, fp
, sizeof(u32
));
1579 nel
= le32_to_cpu(buf
[0]);
1581 for (i
= 0; i
< nel
; i
++) {
1582 tr
= kzalloc(sizeof(*tr
), GFP_KERNEL
);
1592 rc
= next_entry(buf
, fp
, sizeof(u32
)*3);
1595 tr
->role
= le32_to_cpu(buf
[0]);
1596 tr
->type
= le32_to_cpu(buf
[1]);
1597 tr
->new_role
= le32_to_cpu(buf
[2]);
1601 rc
= next_entry(buf
, fp
, sizeof(u32
));
1604 nel
= le32_to_cpu(buf
[0]);
1606 for (i
= 0; i
< nel
; i
++) {
1607 ra
= kzalloc(sizeof(*ra
), GFP_KERNEL
);
1617 rc
= next_entry(buf
, fp
, sizeof(u32
)*2);
1620 ra
->role
= le32_to_cpu(buf
[0]);
1621 ra
->new_role
= le32_to_cpu(buf
[1]);
1625 rc
= policydb_index_classes(p
);
1629 rc
= policydb_index_others(p
);
1633 for (i
= 0; i
< info
->ocon_num
; i
++) {
1634 rc
= next_entry(buf
, fp
, sizeof(u32
));
1637 nel
= le32_to_cpu(buf
[0]);
1639 for (j
= 0; j
< nel
; j
++) {
1640 c
= kzalloc(sizeof(*c
), GFP_KERNEL
);
1648 p
->ocontexts
[i
] = c
;
1654 rc
= next_entry(buf
, fp
, sizeof(u32
));
1657 c
->sid
[0] = le32_to_cpu(buf
[0]);
1658 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1664 rc
= next_entry(buf
, fp
, sizeof(u32
));
1667 len
= le32_to_cpu(buf
[0]);
1668 c
->u
.name
= kmalloc(len
+ 1,GFP_KERNEL
);
1673 rc
= next_entry(c
->u
.name
, fp
, len
);
1677 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1680 rc
= context_read_and_validate(&c
->context
[1], p
, fp
);
1685 rc
= next_entry(buf
, fp
, sizeof(u32
)*3);
1688 c
->u
.port
.protocol
= le32_to_cpu(buf
[0]);
1689 c
->u
.port
.low_port
= le32_to_cpu(buf
[1]);
1690 c
->u
.port
.high_port
= le32_to_cpu(buf
[2]);
1691 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1696 rc
= next_entry(buf
, fp
, sizeof(u32
)* 2);
1699 c
->u
.node
.addr
= le32_to_cpu(buf
[0]);
1700 c
->u
.node
.mask
= le32_to_cpu(buf
[1]);
1701 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1706 rc
= next_entry(buf
, fp
, sizeof(u32
)*2);
1709 c
->v
.behavior
= le32_to_cpu(buf
[0]);
1710 if (c
->v
.behavior
> SECURITY_FS_USE_NONE
)
1712 len
= le32_to_cpu(buf
[1]);
1713 c
->u
.name
= kmalloc(len
+ 1,GFP_KERNEL
);
1718 rc
= next_entry(c
->u
.name
, fp
, len
);
1722 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1729 rc
= next_entry(buf
, fp
, sizeof(u32
) * 8);
1732 for (k
= 0; k
< 4; k
++)
1733 c
->u
.node6
.addr
[k
] = le32_to_cpu(buf
[k
]);
1734 for (k
= 0; k
< 4; k
++)
1735 c
->u
.node6
.mask
[k
] = le32_to_cpu(buf
[k
+4]);
1736 if (context_read_and_validate(&c
->context
[0], p
, fp
))
1744 rc
= next_entry(buf
, fp
, sizeof(u32
));
1747 nel
= le32_to_cpu(buf
[0]);
1750 for (i
= 0; i
< nel
; i
++) {
1751 rc
= next_entry(buf
, fp
, sizeof(u32
));
1754 len
= le32_to_cpu(buf
[0]);
1755 newgenfs
= kzalloc(sizeof(*newgenfs
), GFP_KERNEL
);
1761 newgenfs
->fstype
= kmalloc(len
+ 1,GFP_KERNEL
);
1762 if (!newgenfs
->fstype
) {
1767 rc
= next_entry(newgenfs
->fstype
, fp
, len
);
1769 kfree(newgenfs
->fstype
);
1773 newgenfs
->fstype
[len
] = 0;
1774 for (genfs_p
= NULL
, genfs
= p
->genfs
; genfs
;
1775 genfs_p
= genfs
, genfs
= genfs
->next
) {
1776 if (strcmp(newgenfs
->fstype
, genfs
->fstype
) == 0) {
1777 printk(KERN_ERR
"security: dup genfs "
1778 "fstype %s\n", newgenfs
->fstype
);
1779 kfree(newgenfs
->fstype
);
1783 if (strcmp(newgenfs
->fstype
, genfs
->fstype
) < 0)
1786 newgenfs
->next
= genfs
;
1788 genfs_p
->next
= newgenfs
;
1790 p
->genfs
= newgenfs
;
1791 rc
= next_entry(buf
, fp
, sizeof(u32
));
1794 nel2
= le32_to_cpu(buf
[0]);
1795 for (j
= 0; j
< nel2
; j
++) {
1796 rc
= next_entry(buf
, fp
, sizeof(u32
));
1799 len
= le32_to_cpu(buf
[0]);
1801 newc
= kzalloc(sizeof(*newc
), GFP_KERNEL
);
1807 newc
->u
.name
= kmalloc(len
+ 1,GFP_KERNEL
);
1808 if (!newc
->u
.name
) {
1812 rc
= next_entry(newc
->u
.name
, fp
, len
);
1815 newc
->u
.name
[len
] = 0;
1816 rc
= next_entry(buf
, fp
, sizeof(u32
));
1819 newc
->v
.sclass
= le32_to_cpu(buf
[0]);
1820 if (context_read_and_validate(&newc
->context
[0], p
, fp
))
1822 for (l
= NULL
, c
= newgenfs
->head
; c
;
1823 l
= c
, c
= c
->next
) {
1824 if (!strcmp(newc
->u
.name
, c
->u
.name
) &&
1825 (!c
->v
.sclass
|| !newc
->v
.sclass
||
1826 newc
->v
.sclass
== c
->v
.sclass
)) {
1827 printk(KERN_ERR
"security: dup genfs "
1829 newgenfs
->fstype
, c
->u
.name
);
1832 len
= strlen(newc
->u
.name
);
1833 len2
= strlen(c
->u
.name
);
1842 newgenfs
->head
= newc
;
1846 if (p
->policyvers
>= POLICYDB_VERSION_MLS
) {
1847 int new_rangetr
= p
->policyvers
>= POLICYDB_VERSION_RANGETRANS
;
1848 rc
= next_entry(buf
, fp
, sizeof(u32
));
1851 nel
= le32_to_cpu(buf
[0]);
1853 for (i
= 0; i
< nel
; i
++) {
1854 rt
= kzalloc(sizeof(*rt
), GFP_KERNEL
);
1863 rc
= next_entry(buf
, fp
, (sizeof(u32
) * 2));
1866 rt
->source_type
= le32_to_cpu(buf
[0]);
1867 rt
->target_type
= le32_to_cpu(buf
[1]);
1869 rc
= next_entry(buf
, fp
, sizeof(u32
));
1872 rt
->target_class
= le32_to_cpu(buf
[0]);
1874 rt
->target_class
= SECCLASS_PROCESS
;
1875 rc
= mls_read_range_helper(&rt
->target_range
, fp
);
1882 p
->type_attr_map
= kmalloc(p
->p_types
.nprim
*sizeof(struct ebitmap
), GFP_KERNEL
);
1883 if (!p
->type_attr_map
)
1886 for (i
= 0; i
< p
->p_types
.nprim
; i
++) {
1887 ebitmap_init(&p
->type_attr_map
[i
]);
1888 if (p
->policyvers
>= POLICYDB_VERSION_AVTAB
) {
1889 if (ebitmap_read(&p
->type_attr_map
[i
], fp
))
1892 /* add the type itself as the degenerate case */
1893 if (ebitmap_set_bit(&p
->type_attr_map
[i
], i
, 1))
1901 ocontext_destroy(newc
,OCON_FSUSE
);
1905 policydb_destroy(p
);