2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/module.h>
21 #include <linux/kernel.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
29 #include "segment_descriptor.h"
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
34 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
35 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
43 static struct vmcs_descriptor
{
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
57 static struct kvm_vmx_segment_field
{
62 } kvm_vmx_segment_fields
[] = {
63 VMX_SEGMENT_FIELD(CS
),
64 VMX_SEGMENT_FIELD(DS
),
65 VMX_SEGMENT_FIELD(ES
),
66 VMX_SEGMENT_FIELD(FS
),
67 VMX_SEGMENT_FIELD(GS
),
68 VMX_SEGMENT_FIELD(SS
),
69 VMX_SEGMENT_FIELD(TR
),
70 VMX_SEGMENT_FIELD(LDTR
),
74 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
75 * away by decrementing the array size.
77 static const u32 vmx_msr_index
[] = {
79 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
81 MSR_EFER
, MSR_K6_STAR
,
83 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
86 static unsigned msr_offset_kernel_gs_base
;
87 #define NR_64BIT_MSRS 4
89 * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
90 * mechanism (cpu bug AA24)
94 #define NR_64BIT_MSRS 0
98 static inline int is_page_fault(u32 intr_info
)
100 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
101 INTR_INFO_VALID_MASK
)) ==
102 (INTR_TYPE_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
105 static inline int is_no_device(u32 intr_info
)
107 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
108 INTR_INFO_VALID_MASK
)) ==
109 (INTR_TYPE_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
112 static inline int is_external_interrupt(u32 intr_info
)
114 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
115 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
118 static struct vmx_msr_entry
*find_msr_entry(struct kvm_vcpu
*vcpu
, u32 msr
)
122 for (i
= 0; i
< vcpu
->nmsrs
; ++i
)
123 if (vcpu
->guest_msrs
[i
].index
== msr
)
124 return &vcpu
->guest_msrs
[i
];
128 static void vmcs_clear(struct vmcs
*vmcs
)
130 u64 phys_addr
= __pa(vmcs
);
133 asm volatile (ASM_VMX_VMCLEAR_RAX
"; setna %0"
134 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
137 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
141 static void __vcpu_clear(void *arg
)
143 struct kvm_vcpu
*vcpu
= arg
;
144 int cpu
= raw_smp_processor_id();
146 if (vcpu
->cpu
== cpu
)
147 vmcs_clear(vcpu
->vmcs
);
148 if (per_cpu(current_vmcs
, cpu
) == vcpu
->vmcs
)
149 per_cpu(current_vmcs
, cpu
) = NULL
;
152 static void vcpu_clear(struct kvm_vcpu
*vcpu
)
154 if (vcpu
->cpu
!= raw_smp_processor_id() && vcpu
->cpu
!= -1)
155 smp_call_function_single(vcpu
->cpu
, __vcpu_clear
, vcpu
, 0, 1);
161 static unsigned long vmcs_readl(unsigned long field
)
165 asm volatile (ASM_VMX_VMREAD_RDX_RAX
166 : "=a"(value
) : "d"(field
) : "cc");
170 static u16
vmcs_read16(unsigned long field
)
172 return vmcs_readl(field
);
175 static u32
vmcs_read32(unsigned long field
)
177 return vmcs_readl(field
);
180 static u64
vmcs_read64(unsigned long field
)
183 return vmcs_readl(field
);
185 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
189 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
191 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
192 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
196 static void vmcs_writel(unsigned long field
, unsigned long value
)
200 asm volatile (ASM_VMX_VMWRITE_RAX_RDX
"; setna %0"
201 : "=q"(error
) : "a"(value
), "d"(field
) : "cc" );
203 vmwrite_error(field
, value
);
206 static void vmcs_write16(unsigned long field
, u16 value
)
208 vmcs_writel(field
, value
);
211 static void vmcs_write32(unsigned long field
, u32 value
)
213 vmcs_writel(field
, value
);
216 static void vmcs_write64(unsigned long field
, u64 value
)
219 vmcs_writel(field
, value
);
221 vmcs_writel(field
, value
);
223 vmcs_writel(field
+1, value
>> 32);
227 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
229 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
232 static void vmcs_set_bits(unsigned long field
, u32 mask
)
234 vmcs_writel(field
, vmcs_readl(field
) | mask
);
238 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
239 * vcpu mutex is already taken.
241 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
)
243 u64 phys_addr
= __pa(vcpu
->vmcs
);
248 if (vcpu
->cpu
!= cpu
)
251 if (per_cpu(current_vmcs
, cpu
) != vcpu
->vmcs
) {
254 per_cpu(current_vmcs
, cpu
) = vcpu
->vmcs
;
255 asm volatile (ASM_VMX_VMPTRLD_RAX
"; setna %0"
256 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
259 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
260 vcpu
->vmcs
, phys_addr
);
263 if (vcpu
->cpu
!= cpu
) {
264 struct descriptor_table dt
;
265 unsigned long sysenter_esp
;
269 * Linux uses per-cpu TSS and GDT, so set these when switching
272 vmcs_writel(HOST_TR_BASE
, read_tr_base()); /* 22.2.4 */
274 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
276 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
277 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
281 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
283 kvm_put_guest_fpu(vcpu
);
287 static void vmx_vcpu_decache(struct kvm_vcpu
*vcpu
)
292 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
294 return vmcs_readl(GUEST_RFLAGS
);
297 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
299 vmcs_writel(GUEST_RFLAGS
, rflags
);
302 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
305 u32 interruptibility
;
307 rip
= vmcs_readl(GUEST_RIP
);
308 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
309 vmcs_writel(GUEST_RIP
, rip
);
312 * We emulated an instruction, so temporary interrupt blocking
313 * should be removed, if set.
315 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
316 if (interruptibility
& 3)
317 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
318 interruptibility
& ~3);
319 vcpu
->interrupt_window_open
= 1;
322 static void vmx_inject_gp(struct kvm_vcpu
*vcpu
, unsigned error_code
)
324 printk(KERN_DEBUG
"inject_general_protection: rip 0x%lx\n",
325 vmcs_readl(GUEST_RIP
));
326 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
327 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
329 INTR_TYPE_EXCEPTION
|
330 INTR_INFO_DELIEVER_CODE_MASK
|
331 INTR_INFO_VALID_MASK
);
335 * Set up the vmcs to automatically save and restore system
336 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
337 * mode, as fiddling with msrs is very expensive.
339 static void setup_msrs(struct kvm_vcpu
*vcpu
)
341 int nr_skip
, nr_good_msrs
;
343 if (is_long_mode(vcpu
))
344 nr_skip
= NR_BAD_MSRS
;
346 nr_skip
= NR_64BIT_MSRS
;
347 nr_good_msrs
= vcpu
->nmsrs
- nr_skip
;
350 * MSR_K6_STAR is only needed on long mode guests, and only
351 * if efer.sce is enabled.
353 if (find_msr_entry(vcpu
, MSR_K6_STAR
)) {
356 if (is_long_mode(vcpu
) && (vcpu
->shadow_efer
& EFER_SCE
))
361 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR
,
362 virt_to_phys(vcpu
->guest_msrs
+ nr_skip
));
363 vmcs_writel(VM_EXIT_MSR_STORE_ADDR
,
364 virt_to_phys(vcpu
->guest_msrs
+ nr_skip
));
365 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR
,
366 virt_to_phys(vcpu
->host_msrs
+ nr_skip
));
367 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, nr_good_msrs
); /* 22.2.2 */
368 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, nr_good_msrs
); /* 22.2.2 */
369 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, nr_good_msrs
); /* 22.2.2 */
373 * reads and returns guest's timestamp counter "register"
374 * guest_tsc = host_tsc + tsc_offset -- 21.3
376 static u64
guest_read_tsc(void)
378 u64 host_tsc
, tsc_offset
;
381 tsc_offset
= vmcs_read64(TSC_OFFSET
);
382 return host_tsc
+ tsc_offset
;
386 * writes 'guest_tsc' into guest's timestamp counter "register"
387 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
389 static void guest_write_tsc(u64 guest_tsc
)
394 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
397 static void reload_tss(void)
399 #ifndef CONFIG_X86_64
402 * VT restores TR but not its size. Useless.
404 struct descriptor_table gdt
;
405 struct segment_descriptor
*descs
;
408 descs
= (void *)gdt
.base
;
409 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
415 * Reads an msr value (of 'msr_index') into 'pdata'.
416 * Returns 0 on success, non-0 otherwise.
417 * Assumes vcpu_load() was already called.
419 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
422 struct vmx_msr_entry
*msr
;
425 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
432 data
= vmcs_readl(GUEST_FS_BASE
);
435 data
= vmcs_readl(GUEST_GS_BASE
);
438 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
440 case MSR_IA32_TIME_STAMP_COUNTER
:
441 data
= guest_read_tsc();
443 case MSR_IA32_SYSENTER_CS
:
444 data
= vmcs_read32(GUEST_SYSENTER_CS
);
446 case MSR_IA32_SYSENTER_EIP
:
447 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
449 case MSR_IA32_SYSENTER_ESP
:
450 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
453 msr
= find_msr_entry(vcpu
, msr_index
);
458 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
466 * Writes msr value into into the appropriate "register".
467 * Returns 0 on success, non-0 otherwise.
468 * Assumes vcpu_load() was already called.
470 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
472 struct vmx_msr_entry
*msr
;
476 return kvm_set_msr_common(vcpu
, msr_index
, data
);
478 vmcs_writel(GUEST_FS_BASE
, data
);
481 vmcs_writel(GUEST_GS_BASE
, data
);
484 case MSR_IA32_SYSENTER_CS
:
485 vmcs_write32(GUEST_SYSENTER_CS
, data
);
487 case MSR_IA32_SYSENTER_EIP
:
488 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
490 case MSR_IA32_SYSENTER_ESP
:
491 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
493 case MSR_IA32_TIME_STAMP_COUNTER
:
494 guest_write_tsc(data
);
497 msr
= find_msr_entry(vcpu
, msr_index
);
502 return kvm_set_msr_common(vcpu
, msr_index
, data
);
511 * Sync the rsp and rip registers into the vcpu structure. This allows
512 * registers to be accessed by indexing vcpu->regs.
514 static void vcpu_load_rsp_rip(struct kvm_vcpu
*vcpu
)
516 vcpu
->regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
517 vcpu
->rip
= vmcs_readl(GUEST_RIP
);
521 * Syncs rsp and rip back into the vmcs. Should be called after possible
524 static void vcpu_put_rsp_rip(struct kvm_vcpu
*vcpu
)
526 vmcs_writel(GUEST_RSP
, vcpu
->regs
[VCPU_REGS_RSP
]);
527 vmcs_writel(GUEST_RIP
, vcpu
->rip
);
530 static int set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_debug_guest
*dbg
)
532 unsigned long dr7
= 0x400;
533 u32 exception_bitmap
;
536 exception_bitmap
= vmcs_read32(EXCEPTION_BITMAP
);
537 old_singlestep
= vcpu
->guest_debug
.singlestep
;
539 vcpu
->guest_debug
.enabled
= dbg
->enabled
;
540 if (vcpu
->guest_debug
.enabled
) {
543 dr7
|= 0x200; /* exact */
544 for (i
= 0; i
< 4; ++i
) {
545 if (!dbg
->breakpoints
[i
].enabled
)
547 vcpu
->guest_debug
.bp
[i
] = dbg
->breakpoints
[i
].address
;
548 dr7
|= 2 << (i
*2); /* global enable */
549 dr7
|= 0 << (i
*4+16); /* execution breakpoint */
552 exception_bitmap
|= (1u << 1); /* Trap debug exceptions */
554 vcpu
->guest_debug
.singlestep
= dbg
->singlestep
;
556 exception_bitmap
&= ~(1u << 1); /* Ignore debug exceptions */
557 vcpu
->guest_debug
.singlestep
= 0;
560 if (old_singlestep
&& !vcpu
->guest_debug
.singlestep
) {
563 flags
= vmcs_readl(GUEST_RFLAGS
);
564 flags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
565 vmcs_writel(GUEST_RFLAGS
, flags
);
568 vmcs_write32(EXCEPTION_BITMAP
, exception_bitmap
);
569 vmcs_writel(GUEST_DR7
, dr7
);
574 static __init
int cpu_has_kvm_support(void)
576 unsigned long ecx
= cpuid_ecx(1);
577 return test_bit(5, &ecx
); /* CPUID.1:ECX.VMX[bit 5] -> VT */
580 static __init
int vmx_disabled_by_bios(void)
584 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
585 return (msr
& 5) == 1; /* locked but not enabled */
588 static void hardware_enable(void *garbage
)
590 int cpu
= raw_smp_processor_id();
591 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
594 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
596 /* enable and lock */
597 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| 5);
598 write_cr4(read_cr4() | CR4_VMXE
); /* FIXME: not cpu hotplug safe */
599 asm volatile (ASM_VMX_VMXON_RAX
: : "a"(&phys_addr
), "m"(phys_addr
)
603 static void hardware_disable(void *garbage
)
605 asm volatile (ASM_VMX_VMXOFF
: : : "cc");
608 static __init
void setup_vmcs_descriptor(void)
610 u32 vmx_msr_low
, vmx_msr_high
;
612 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
613 vmcs_descriptor
.size
= vmx_msr_high
& 0x1fff;
614 vmcs_descriptor
.order
= get_order(vmcs_descriptor
.size
);
615 vmcs_descriptor
.revision_id
= vmx_msr_low
;
618 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
620 int node
= cpu_to_node(cpu
);
624 pages
= alloc_pages_node(node
, GFP_KERNEL
, vmcs_descriptor
.order
);
627 vmcs
= page_address(pages
);
628 memset(vmcs
, 0, vmcs_descriptor
.size
);
629 vmcs
->revision_id
= vmcs_descriptor
.revision_id
; /* vmcs revision id */
633 static struct vmcs
*alloc_vmcs(void)
635 return alloc_vmcs_cpu(raw_smp_processor_id());
638 static void free_vmcs(struct vmcs
*vmcs
)
640 free_pages((unsigned long)vmcs
, vmcs_descriptor
.order
);
643 static void free_kvm_area(void)
647 for_each_online_cpu(cpu
)
648 free_vmcs(per_cpu(vmxarea
, cpu
));
651 extern struct vmcs
*alloc_vmcs_cpu(int cpu
);
653 static __init
int alloc_kvm_area(void)
657 for_each_online_cpu(cpu
) {
660 vmcs
= alloc_vmcs_cpu(cpu
);
666 per_cpu(vmxarea
, cpu
) = vmcs
;
671 static __init
int hardware_setup(void)
673 setup_vmcs_descriptor();
674 return alloc_kvm_area();
677 static __exit
void hardware_unsetup(void)
682 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
684 if (vcpu
->rmode
.active
)
685 vmcs_write32(EXCEPTION_BITMAP
, ~0);
687 vmcs_write32(EXCEPTION_BITMAP
, 1 << PF_VECTOR
);
690 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
692 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
694 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
695 vmcs_write16(sf
->selector
, save
->selector
);
696 vmcs_writel(sf
->base
, save
->base
);
697 vmcs_write32(sf
->limit
, save
->limit
);
698 vmcs_write32(sf
->ar_bytes
, save
->ar
);
700 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
702 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
706 static void enter_pmode(struct kvm_vcpu
*vcpu
)
710 vcpu
->rmode
.active
= 0;
712 vmcs_writel(GUEST_TR_BASE
, vcpu
->rmode
.tr
.base
);
713 vmcs_write32(GUEST_TR_LIMIT
, vcpu
->rmode
.tr
.limit
);
714 vmcs_write32(GUEST_TR_AR_BYTES
, vcpu
->rmode
.tr
.ar
);
716 flags
= vmcs_readl(GUEST_RFLAGS
);
717 flags
&= ~(IOPL_MASK
| X86_EFLAGS_VM
);
718 flags
|= (vcpu
->rmode
.save_iopl
<< IOPL_SHIFT
);
719 vmcs_writel(GUEST_RFLAGS
, flags
);
721 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~CR4_VME_MASK
) |
722 (vmcs_readl(CR4_READ_SHADOW
) & CR4_VME_MASK
));
724 update_exception_bitmap(vcpu
);
726 fix_pmode_dataseg(VCPU_SREG_ES
, &vcpu
->rmode
.es
);
727 fix_pmode_dataseg(VCPU_SREG_DS
, &vcpu
->rmode
.ds
);
728 fix_pmode_dataseg(VCPU_SREG_GS
, &vcpu
->rmode
.gs
);
729 fix_pmode_dataseg(VCPU_SREG_FS
, &vcpu
->rmode
.fs
);
731 vmcs_write16(GUEST_SS_SELECTOR
, 0);
732 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
734 vmcs_write16(GUEST_CS_SELECTOR
,
735 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
736 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
739 static int rmode_tss_base(struct kvm
* kvm
)
741 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+ kvm
->memslots
[0].npages
- 3;
742 return base_gfn
<< PAGE_SHIFT
;
745 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
747 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
749 save
->selector
= vmcs_read16(sf
->selector
);
750 save
->base
= vmcs_readl(sf
->base
);
751 save
->limit
= vmcs_read32(sf
->limit
);
752 save
->ar
= vmcs_read32(sf
->ar_bytes
);
753 vmcs_write16(sf
->selector
, vmcs_readl(sf
->base
) >> 4);
754 vmcs_write32(sf
->limit
, 0xffff);
755 vmcs_write32(sf
->ar_bytes
, 0xf3);
758 static void enter_rmode(struct kvm_vcpu
*vcpu
)
762 vcpu
->rmode
.active
= 1;
764 vcpu
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
765 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
767 vcpu
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
768 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
770 vcpu
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
771 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
773 flags
= vmcs_readl(GUEST_RFLAGS
);
774 vcpu
->rmode
.save_iopl
= (flags
& IOPL_MASK
) >> IOPL_SHIFT
;
776 flags
|= IOPL_MASK
| X86_EFLAGS_VM
;
778 vmcs_writel(GUEST_RFLAGS
, flags
);
779 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | CR4_VME_MASK
);
780 update_exception_bitmap(vcpu
);
782 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
783 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
784 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
786 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
787 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
788 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
789 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
790 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
792 fix_rmode_seg(VCPU_SREG_ES
, &vcpu
->rmode
.es
);
793 fix_rmode_seg(VCPU_SREG_DS
, &vcpu
->rmode
.ds
);
794 fix_rmode_seg(VCPU_SREG_GS
, &vcpu
->rmode
.gs
);
795 fix_rmode_seg(VCPU_SREG_FS
, &vcpu
->rmode
.fs
);
800 static void enter_lmode(struct kvm_vcpu
*vcpu
)
804 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
805 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
806 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
808 vmcs_write32(GUEST_TR_AR_BYTES
,
809 (guest_tr_ar
& ~AR_TYPE_MASK
)
810 | AR_TYPE_BUSY_64_TSS
);
813 vcpu
->shadow_efer
|= EFER_LMA
;
815 find_msr_entry(vcpu
, MSR_EFER
)->data
|= EFER_LMA
| EFER_LME
;
816 vmcs_write32(VM_ENTRY_CONTROLS
,
817 vmcs_read32(VM_ENTRY_CONTROLS
)
818 | VM_ENTRY_CONTROLS_IA32E_MASK
);
821 static void exit_lmode(struct kvm_vcpu
*vcpu
)
823 vcpu
->shadow_efer
&= ~EFER_LMA
;
825 vmcs_write32(VM_ENTRY_CONTROLS
,
826 vmcs_read32(VM_ENTRY_CONTROLS
)
827 & ~VM_ENTRY_CONTROLS_IA32E_MASK
);
832 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
834 vcpu
->cr4
&= KVM_GUEST_CR4_MASK
;
835 vcpu
->cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
838 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
840 if (vcpu
->rmode
.active
&& (cr0
& CR0_PE_MASK
))
843 if (!vcpu
->rmode
.active
&& !(cr0
& CR0_PE_MASK
))
847 if (vcpu
->shadow_efer
& EFER_LME
) {
848 if (!is_paging(vcpu
) && (cr0
& CR0_PG_MASK
))
850 if (is_paging(vcpu
) && !(cr0
& CR0_PG_MASK
))
855 if (!(cr0
& CR0_TS_MASK
)) {
856 vcpu
->fpu_active
= 1;
857 vmcs_clear_bits(EXCEPTION_BITMAP
, CR0_TS_MASK
);
860 vmcs_writel(CR0_READ_SHADOW
, cr0
);
861 vmcs_writel(GUEST_CR0
,
862 (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
);
866 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
868 vmcs_writel(GUEST_CR3
, cr3
);
870 if (!(vcpu
->cr0
& CR0_TS_MASK
)) {
871 vcpu
->fpu_active
= 0;
872 vmcs_set_bits(GUEST_CR0
, CR0_TS_MASK
);
873 vmcs_set_bits(EXCEPTION_BITMAP
, 1 << NM_VECTOR
);
877 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
879 vmcs_writel(CR4_READ_SHADOW
, cr4
);
880 vmcs_writel(GUEST_CR4
, cr4
| (vcpu
->rmode
.active
?
881 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
));
887 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
889 struct vmx_msr_entry
*msr
= find_msr_entry(vcpu
, MSR_EFER
);
891 vcpu
->shadow_efer
= efer
;
892 if (efer
& EFER_LMA
) {
893 vmcs_write32(VM_ENTRY_CONTROLS
,
894 vmcs_read32(VM_ENTRY_CONTROLS
) |
895 VM_ENTRY_CONTROLS_IA32E_MASK
);
899 vmcs_write32(VM_ENTRY_CONTROLS
,
900 vmcs_read32(VM_ENTRY_CONTROLS
) &
901 ~VM_ENTRY_CONTROLS_IA32E_MASK
);
903 msr
->data
= efer
& ~EFER_LME
;
910 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
912 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
914 return vmcs_readl(sf
->base
);
917 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
918 struct kvm_segment
*var
, int seg
)
920 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
923 var
->base
= vmcs_readl(sf
->base
);
924 var
->limit
= vmcs_read32(sf
->limit
);
925 var
->selector
= vmcs_read16(sf
->selector
);
926 ar
= vmcs_read32(sf
->ar_bytes
);
927 if (ar
& AR_UNUSABLE_MASK
)
930 var
->s
= (ar
>> 4) & 1;
931 var
->dpl
= (ar
>> 5) & 3;
932 var
->present
= (ar
>> 7) & 1;
933 var
->avl
= (ar
>> 12) & 1;
934 var
->l
= (ar
>> 13) & 1;
935 var
->db
= (ar
>> 14) & 1;
936 var
->g
= (ar
>> 15) & 1;
937 var
->unusable
= (ar
>> 16) & 1;
940 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
941 struct kvm_segment
*var
, int seg
)
943 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
946 vmcs_writel(sf
->base
, var
->base
);
947 vmcs_write32(sf
->limit
, var
->limit
);
948 vmcs_write16(sf
->selector
, var
->selector
);
949 if (vcpu
->rmode
.active
&& var
->s
) {
951 * Hack real-mode segments into vm86 compatibility.
953 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
954 vmcs_writel(sf
->base
, 0xf0000);
956 } else if (var
->unusable
)
960 ar
|= (var
->s
& 1) << 4;
961 ar
|= (var
->dpl
& 3) << 5;
962 ar
|= (var
->present
& 1) << 7;
963 ar
|= (var
->avl
& 1) << 12;
964 ar
|= (var
->l
& 1) << 13;
965 ar
|= (var
->db
& 1) << 14;
966 ar
|= (var
->g
& 1) << 15;
968 if (ar
== 0) /* a 0 value means unusable */
969 ar
= AR_UNUSABLE_MASK
;
970 vmcs_write32(sf
->ar_bytes
, ar
);
973 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
975 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
977 *db
= (ar
>> 14) & 1;
981 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
983 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
984 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
987 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
989 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
990 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
993 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
995 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
996 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
999 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1001 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1002 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1005 static int init_rmode_tss(struct kvm
* kvm
)
1007 struct page
*p1
, *p2
, *p3
;
1008 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
1011 p1
= gfn_to_page(kvm
, fn
++);
1012 p2
= gfn_to_page(kvm
, fn
++);
1013 p3
= gfn_to_page(kvm
, fn
);
1015 if (!p1
|| !p2
|| !p3
) {
1016 kvm_printf(kvm
,"%s: gfn_to_page failed\n", __FUNCTION__
);
1020 page
= kmap_atomic(p1
, KM_USER0
);
1021 memset(page
, 0, PAGE_SIZE
);
1022 *(u16
*)(page
+ 0x66) = TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
1023 kunmap_atomic(page
, KM_USER0
);
1025 page
= kmap_atomic(p2
, KM_USER0
);
1026 memset(page
, 0, PAGE_SIZE
);
1027 kunmap_atomic(page
, KM_USER0
);
1029 page
= kmap_atomic(p3
, KM_USER0
);
1030 memset(page
, 0, PAGE_SIZE
);
1031 *(page
+ RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1) = ~0;
1032 kunmap_atomic(page
, KM_USER0
);
1037 static void vmcs_write32_fixedbits(u32 msr
, u32 vmcs_field
, u32 val
)
1039 u32 msr_high
, msr_low
;
1041 rdmsr(msr
, msr_low
, msr_high
);
1045 vmcs_write32(vmcs_field
, val
);
1048 static void seg_setup(int seg
)
1050 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1052 vmcs_write16(sf
->selector
, 0);
1053 vmcs_writel(sf
->base
, 0);
1054 vmcs_write32(sf
->limit
, 0xffff);
1055 vmcs_write32(sf
->ar_bytes
, 0x93);
1059 * Sets up the vmcs for emulated real mode.
1061 static int vmx_vcpu_setup(struct kvm_vcpu
*vcpu
)
1063 u32 host_sysenter_cs
;
1066 struct descriptor_table dt
;
1069 extern asmlinkage
void kvm_vmx_return(void);
1071 if (!init_rmode_tss(vcpu
->kvm
)) {
1076 memset(vcpu
->regs
, 0, sizeof(vcpu
->regs
));
1077 vcpu
->regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
1079 vcpu
->apic_base
= 0xfee00000 |
1080 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP
|
1081 MSR_IA32_APICBASE_ENABLE
;
1086 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1087 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1089 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
1090 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
1091 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1092 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1094 seg_setup(VCPU_SREG_DS
);
1095 seg_setup(VCPU_SREG_ES
);
1096 seg_setup(VCPU_SREG_FS
);
1097 seg_setup(VCPU_SREG_GS
);
1098 seg_setup(VCPU_SREG_SS
);
1100 vmcs_write16(GUEST_TR_SELECTOR
, 0);
1101 vmcs_writel(GUEST_TR_BASE
, 0);
1102 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
1103 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1105 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
1106 vmcs_writel(GUEST_LDTR_BASE
, 0);
1107 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
1108 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
1110 vmcs_write32(GUEST_SYSENTER_CS
, 0);
1111 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
1112 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
1114 vmcs_writel(GUEST_RFLAGS
, 0x02);
1115 vmcs_writel(GUEST_RIP
, 0xfff0);
1116 vmcs_writel(GUEST_RSP
, 0);
1118 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1119 vmcs_writel(GUEST_DR7
, 0x400);
1121 vmcs_writel(GUEST_GDTR_BASE
, 0);
1122 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
1124 vmcs_writel(GUEST_IDTR_BASE
, 0);
1125 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
1127 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
1128 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
1129 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
1132 vmcs_write64(IO_BITMAP_A
, 0);
1133 vmcs_write64(IO_BITMAP_B
, 0);
1137 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
1139 /* Special registers */
1140 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
1143 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS
,
1144 PIN_BASED_VM_EXEC_CONTROL
,
1145 PIN_BASED_EXT_INTR_MASK
/* 20.6.1 */
1146 | PIN_BASED_NMI_EXITING
/* 20.6.1 */
1148 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS
,
1149 CPU_BASED_VM_EXEC_CONTROL
,
1150 CPU_BASED_HLT_EXITING
/* 20.6.2 */
1151 | CPU_BASED_CR8_LOAD_EXITING
/* 20.6.2 */
1152 | CPU_BASED_CR8_STORE_EXITING
/* 20.6.2 */
1153 | CPU_BASED_UNCOND_IO_EXITING
/* 20.6.2 */
1154 | CPU_BASED_MOV_DR_EXITING
1155 | CPU_BASED_USE_TSC_OFFSETING
/* 21.3 */
1158 vmcs_write32(EXCEPTION_BITMAP
, 1 << PF_VECTOR
);
1159 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
1160 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
1161 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
1163 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
1164 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
1165 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1167 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
1168 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1169 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1170 vmcs_write16(HOST_FS_SELECTOR
, read_fs()); /* 22.2.4 */
1171 vmcs_write16(HOST_GS_SELECTOR
, read_gs()); /* 22.2.4 */
1172 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1173 #ifdef CONFIG_X86_64
1174 rdmsrl(MSR_FS_BASE
, a
);
1175 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
1176 rdmsrl(MSR_GS_BASE
, a
);
1177 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
1179 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
1180 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
1183 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
1186 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
1189 vmcs_writel(HOST_RIP
, (unsigned long)kvm_vmx_return
); /* 22.2.5 */
1191 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
1192 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
1193 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
1194 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
1195 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
1196 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
1198 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
1199 u32 index
= vmx_msr_index
[i
];
1200 u32 data_low
, data_high
;
1202 int j
= vcpu
->nmsrs
;
1204 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
1206 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
1208 data
= data_low
| ((u64
)data_high
<< 32);
1209 vcpu
->host_msrs
[j
].index
= index
;
1210 vcpu
->host_msrs
[j
].reserved
= 0;
1211 vcpu
->host_msrs
[j
].data
= data
;
1212 vcpu
->guest_msrs
[j
] = vcpu
->host_msrs
[j
];
1213 #ifdef CONFIG_X86_64
1214 if (index
== MSR_KERNEL_GS_BASE
)
1215 msr_offset_kernel_gs_base
= j
;
1222 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS
, VM_EXIT_CONTROLS
,
1223 (HOST_IS_64
<< 9)); /* 22.2,1, 20.7.1 */
1225 /* 22.2.1, 20.8.1 */
1226 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS
,
1227 VM_ENTRY_CONTROLS
, 0);
1228 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
1230 #ifdef CONFIG_X86_64
1231 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR
, 0);
1232 vmcs_writel(TPR_THRESHOLD
, 0);
1235 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
1236 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
1238 vcpu
->cr0
= 0x60000010;
1239 vmx_set_cr0(vcpu
, vcpu
->cr0
); // enter rmode
1240 vmx_set_cr4(vcpu
, 0);
1241 #ifdef CONFIG_X86_64
1242 vmx_set_efer(vcpu
, 0);
1251 static void inject_rmode_irq(struct kvm_vcpu
*vcpu
, int irq
)
1256 unsigned long flags
;
1257 unsigned long ss_base
= vmcs_readl(GUEST_SS_BASE
);
1258 u16 sp
= vmcs_readl(GUEST_RSP
);
1259 u32 ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
1261 if (sp
> ss_limit
|| sp
< 6 ) {
1262 vcpu_printf(vcpu
, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1264 vmcs_readl(GUEST_RSP
),
1265 vmcs_readl(GUEST_SS_BASE
),
1266 vmcs_read32(GUEST_SS_LIMIT
));
1270 if (kvm_read_guest(vcpu
, irq
* sizeof(ent
), sizeof(ent
), &ent
) !=
1272 vcpu_printf(vcpu
, "%s: read guest err\n", __FUNCTION__
);
1276 flags
= vmcs_readl(GUEST_RFLAGS
);
1277 cs
= vmcs_readl(GUEST_CS_BASE
) >> 4;
1278 ip
= vmcs_readl(GUEST_RIP
);
1281 if (kvm_write_guest(vcpu
, ss_base
+ sp
- 2, 2, &flags
) != 2 ||
1282 kvm_write_guest(vcpu
, ss_base
+ sp
- 4, 2, &cs
) != 2 ||
1283 kvm_write_guest(vcpu
, ss_base
+ sp
- 6, 2, &ip
) != 2) {
1284 vcpu_printf(vcpu
, "%s: write guest err\n", __FUNCTION__
);
1288 vmcs_writel(GUEST_RFLAGS
, flags
&
1289 ~( X86_EFLAGS_IF
| X86_EFLAGS_AC
| X86_EFLAGS_TF
));
1290 vmcs_write16(GUEST_CS_SELECTOR
, ent
[1]) ;
1291 vmcs_writel(GUEST_CS_BASE
, ent
[1] << 4);
1292 vmcs_writel(GUEST_RIP
, ent
[0]);
1293 vmcs_writel(GUEST_RSP
, (vmcs_readl(GUEST_RSP
) & ~0xffff) | (sp
- 6));
1296 static void kvm_do_inject_irq(struct kvm_vcpu
*vcpu
)
1298 int word_index
= __ffs(vcpu
->irq_summary
);
1299 int bit_index
= __ffs(vcpu
->irq_pending
[word_index
]);
1300 int irq
= word_index
* BITS_PER_LONG
+ bit_index
;
1302 clear_bit(bit_index
, &vcpu
->irq_pending
[word_index
]);
1303 if (!vcpu
->irq_pending
[word_index
])
1304 clear_bit(word_index
, &vcpu
->irq_summary
);
1306 if (vcpu
->rmode
.active
) {
1307 inject_rmode_irq(vcpu
, irq
);
1310 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
1311 irq
| INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1315 static void do_interrupt_requests(struct kvm_vcpu
*vcpu
,
1316 struct kvm_run
*kvm_run
)
1318 u32 cpu_based_vm_exec_control
;
1320 vcpu
->interrupt_window_open
=
1321 ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
1322 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0);
1324 if (vcpu
->interrupt_window_open
&&
1325 vcpu
->irq_summary
&&
1326 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
) & INTR_INFO_VALID_MASK
))
1328 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1330 kvm_do_inject_irq(vcpu
);
1332 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
1333 if (!vcpu
->interrupt_window_open
&&
1334 (vcpu
->irq_summary
|| kvm_run
->request_interrupt_window
))
1336 * Interrupts blocked. Wait for unblock.
1338 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
1340 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
1341 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
1344 static void kvm_guest_debug_pre(struct kvm_vcpu
*vcpu
)
1346 struct kvm_guest_debug
*dbg
= &vcpu
->guest_debug
;
1348 set_debugreg(dbg
->bp
[0], 0);
1349 set_debugreg(dbg
->bp
[1], 1);
1350 set_debugreg(dbg
->bp
[2], 2);
1351 set_debugreg(dbg
->bp
[3], 3);
1353 if (dbg
->singlestep
) {
1354 unsigned long flags
;
1356 flags
= vmcs_readl(GUEST_RFLAGS
);
1357 flags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1358 vmcs_writel(GUEST_RFLAGS
, flags
);
1362 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
1363 int vec
, u32 err_code
)
1365 if (!vcpu
->rmode
.active
)
1368 if (vec
== GP_VECTOR
&& err_code
== 0)
1369 if (emulate_instruction(vcpu
, NULL
, 0, 0) == EMULATE_DONE
)
1374 static int handle_exception(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1376 u32 intr_info
, error_code
;
1377 unsigned long cr2
, rip
;
1379 enum emulation_result er
;
1382 vect_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
1383 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
1385 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
1386 !is_page_fault(intr_info
)) {
1387 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
1388 "intr info 0x%x\n", __FUNCTION__
, vect_info
, intr_info
);
1391 if (is_external_interrupt(vect_info
)) {
1392 int irq
= vect_info
& VECTORING_INFO_VECTOR_MASK
;
1393 set_bit(irq
, vcpu
->irq_pending
);
1394 set_bit(irq
/ BITS_PER_LONG
, &vcpu
->irq_summary
);
1397 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == 0x200) { /* nmi */
1402 if (is_no_device(intr_info
)) {
1403 vcpu
->fpu_active
= 1;
1404 vmcs_clear_bits(EXCEPTION_BITMAP
, 1 << NM_VECTOR
);
1405 if (!(vcpu
->cr0
& CR0_TS_MASK
))
1406 vmcs_clear_bits(GUEST_CR0
, CR0_TS_MASK
);
1411 rip
= vmcs_readl(GUEST_RIP
);
1412 if (intr_info
& INTR_INFO_DELIEVER_CODE_MASK
)
1413 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
1414 if (is_page_fault(intr_info
)) {
1415 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
1417 spin_lock(&vcpu
->kvm
->lock
);
1418 r
= kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
1420 spin_unlock(&vcpu
->kvm
->lock
);
1424 spin_unlock(&vcpu
->kvm
->lock
);
1428 er
= emulate_instruction(vcpu
, kvm_run
, cr2
, error_code
);
1429 spin_unlock(&vcpu
->kvm
->lock
);
1434 case EMULATE_DO_MMIO
:
1435 ++vcpu
->stat
.mmio_exits
;
1436 kvm_run
->exit_reason
= KVM_EXIT_MMIO
;
1439 vcpu_printf(vcpu
, "%s: emulate fail\n", __FUNCTION__
);
1446 if (vcpu
->rmode
.active
&&
1447 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
1451 if ((intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
)) == (INTR_TYPE_EXCEPTION
| 1)) {
1452 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1455 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
1456 kvm_run
->ex
.exception
= intr_info
& INTR_INFO_VECTOR_MASK
;
1457 kvm_run
->ex
.error_code
= error_code
;
1461 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
,
1462 struct kvm_run
*kvm_run
)
1464 ++vcpu
->stat
.irq_exits
;
1468 static int handle_triple_fault(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1470 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1474 static int get_io_count(struct kvm_vcpu
*vcpu
, unsigned long *count
)
1481 if ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_VM
)) {
1484 u32 cs_ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1486 countr_size
= (cs_ar
& AR_L_MASK
) ? 8:
1487 (cs_ar
& AR_DB_MASK
) ? 4: 2;
1490 rip
= vmcs_readl(GUEST_RIP
);
1491 if (countr_size
!= 8)
1492 rip
+= vmcs_readl(GUEST_CS_BASE
);
1494 n
= kvm_read_guest(vcpu
, rip
, sizeof(inst
), &inst
);
1496 for (i
= 0; i
< n
; i
++) {
1497 switch (((u8
*)&inst
)[i
]) {
1510 countr_size
= (countr_size
== 2) ? 4: (countr_size
>> 1);
1518 *count
= vcpu
->regs
[VCPU_REGS_RCX
] & (~0ULL >> (64 - countr_size
));
1519 //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1523 static int handle_io(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1525 u64 exit_qualification
;
1526 int size
, down
, in
, string
, rep
;
1528 unsigned long count
;
1531 ++vcpu
->stat
.io_exits
;
1532 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
1533 in
= (exit_qualification
& 8) != 0;
1534 size
= (exit_qualification
& 7) + 1;
1535 string
= (exit_qualification
& 16) != 0;
1536 down
= (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_DF
) != 0;
1538 rep
= (exit_qualification
& 32) != 0;
1539 port
= exit_qualification
>> 16;
1542 if (rep
&& !get_io_count(vcpu
, &count
))
1544 address
= vmcs_readl(GUEST_LINEAR_ADDRESS
);
1546 return kvm_setup_pio(vcpu
, kvm_run
, in
, size
, count
, string
, down
,
1547 address
, rep
, port
);
1551 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
1554 * Patch in the VMCALL instruction:
1556 hypercall
[0] = 0x0f;
1557 hypercall
[1] = 0x01;
1558 hypercall
[2] = 0xc1;
1559 hypercall
[3] = 0xc3;
1562 static int handle_cr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1564 u64 exit_qualification
;
1568 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
1569 cr
= exit_qualification
& 15;
1570 reg
= (exit_qualification
>> 8) & 15;
1571 switch ((exit_qualification
>> 4) & 3) {
1572 case 0: /* mov to cr */
1575 vcpu_load_rsp_rip(vcpu
);
1576 set_cr0(vcpu
, vcpu
->regs
[reg
]);
1577 skip_emulated_instruction(vcpu
);
1580 vcpu_load_rsp_rip(vcpu
);
1581 set_cr3(vcpu
, vcpu
->regs
[reg
]);
1582 skip_emulated_instruction(vcpu
);
1585 vcpu_load_rsp_rip(vcpu
);
1586 set_cr4(vcpu
, vcpu
->regs
[reg
]);
1587 skip_emulated_instruction(vcpu
);
1590 vcpu_load_rsp_rip(vcpu
);
1591 set_cr8(vcpu
, vcpu
->regs
[reg
]);
1592 skip_emulated_instruction(vcpu
);
1597 vcpu_load_rsp_rip(vcpu
);
1598 vcpu
->fpu_active
= 1;
1599 vmcs_clear_bits(EXCEPTION_BITMAP
, 1 << NM_VECTOR
);
1600 vmcs_clear_bits(GUEST_CR0
, CR0_TS_MASK
);
1601 vcpu
->cr0
&= ~CR0_TS_MASK
;
1602 vmcs_writel(CR0_READ_SHADOW
, vcpu
->cr0
);
1603 skip_emulated_instruction(vcpu
);
1605 case 1: /*mov from cr*/
1608 vcpu_load_rsp_rip(vcpu
);
1609 vcpu
->regs
[reg
] = vcpu
->cr3
;
1610 vcpu_put_rsp_rip(vcpu
);
1611 skip_emulated_instruction(vcpu
);
1614 vcpu_load_rsp_rip(vcpu
);
1615 vcpu
->regs
[reg
] = vcpu
->cr8
;
1616 vcpu_put_rsp_rip(vcpu
);
1617 skip_emulated_instruction(vcpu
);
1622 lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
1624 skip_emulated_instruction(vcpu
);
1629 kvm_run
->exit_reason
= 0;
1630 printk(KERN_ERR
"kvm: unhandled control register: op %d cr %d\n",
1631 (int)(exit_qualification
>> 4) & 3, cr
);
1635 static int handle_dr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1637 u64 exit_qualification
;
1642 * FIXME: this code assumes the host is debugging the guest.
1643 * need to deal with guest debugging itself too.
1645 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
1646 dr
= exit_qualification
& 7;
1647 reg
= (exit_qualification
>> 8) & 15;
1648 vcpu_load_rsp_rip(vcpu
);
1649 if (exit_qualification
& 16) {
1661 vcpu
->regs
[reg
] = val
;
1665 vcpu_put_rsp_rip(vcpu
);
1666 skip_emulated_instruction(vcpu
);
1670 static int handle_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1672 kvm_emulate_cpuid(vcpu
);
1676 static int handle_rdmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1678 u32 ecx
= vcpu
->regs
[VCPU_REGS_RCX
];
1681 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
1682 vmx_inject_gp(vcpu
, 0);
1686 /* FIXME: handling of bits 32:63 of rax, rdx */
1687 vcpu
->regs
[VCPU_REGS_RAX
] = data
& -1u;
1688 vcpu
->regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
1689 skip_emulated_instruction(vcpu
);
1693 static int handle_wrmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1695 u32 ecx
= vcpu
->regs
[VCPU_REGS_RCX
];
1696 u64 data
= (vcpu
->regs
[VCPU_REGS_RAX
] & -1u)
1697 | ((u64
)(vcpu
->regs
[VCPU_REGS_RDX
] & -1u) << 32);
1699 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
1700 vmx_inject_gp(vcpu
, 0);
1704 skip_emulated_instruction(vcpu
);
1708 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
1709 struct kvm_run
*kvm_run
)
1711 kvm_run
->if_flag
= (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) != 0;
1712 kvm_run
->cr8
= vcpu
->cr8
;
1713 kvm_run
->apic_base
= vcpu
->apic_base
;
1714 kvm_run
->ready_for_interrupt_injection
= (vcpu
->interrupt_window_open
&&
1715 vcpu
->irq_summary
== 0);
1718 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
,
1719 struct kvm_run
*kvm_run
)
1722 * If the user space waits to inject interrupts, exit as soon as
1725 if (kvm_run
->request_interrupt_window
&&
1726 !vcpu
->irq_summary
) {
1727 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
1728 ++vcpu
->stat
.irq_window_exits
;
1734 static int handle_halt(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1736 skip_emulated_instruction(vcpu
);
1737 if (vcpu
->irq_summary
)
1740 kvm_run
->exit_reason
= KVM_EXIT_HLT
;
1741 ++vcpu
->stat
.halt_exits
;
1745 static int handle_vmcall(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1747 skip_emulated_instruction(vcpu
);
1748 return kvm_hypercall(vcpu
, kvm_run
);
1752 * The exit handlers return 1 if the exit was handled fully and guest execution
1753 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1754 * to be done to userspace and return 0.
1756 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
,
1757 struct kvm_run
*kvm_run
) = {
1758 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
1759 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
1760 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
1761 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
1762 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
1763 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
1764 [EXIT_REASON_CPUID
] = handle_cpuid
,
1765 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
1766 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
1767 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
1768 [EXIT_REASON_HLT
] = handle_halt
,
1769 [EXIT_REASON_VMCALL
] = handle_vmcall
,
1772 static const int kvm_vmx_max_exit_handlers
=
1773 sizeof(kvm_vmx_exit_handlers
) / sizeof(*kvm_vmx_exit_handlers
);
1776 * The guest has exited. See if we can fix it or if we need userspace
1779 static int kvm_handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
1781 u32 vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
1782 u32 exit_reason
= vmcs_read32(VM_EXIT_REASON
);
1784 if ( (vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
1785 exit_reason
!= EXIT_REASON_EXCEPTION_NMI
)
1786 printk(KERN_WARNING
"%s: unexpected, valid vectoring info and "
1787 "exit reason is 0x%x\n", __FUNCTION__
, exit_reason
);
1788 if (exit_reason
< kvm_vmx_max_exit_handlers
1789 && kvm_vmx_exit_handlers
[exit_reason
])
1790 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
, kvm_run
);
1792 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
1793 kvm_run
->hw
.hardware_exit_reason
= exit_reason
;
1799 * Check if userspace requested an interrupt window, and that the
1800 * interrupt window is open.
1802 * No need to exit to userspace if we already have an interrupt queued.
1804 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
1805 struct kvm_run
*kvm_run
)
1807 return (!vcpu
->irq_summary
&&
1808 kvm_run
->request_interrupt_window
&&
1809 vcpu
->interrupt_window_open
&&
1810 (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
));
1813 static int vmx_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1816 u16 fs_sel
, gs_sel
, ldt_sel
;
1817 int fs_gs_ldt_reload_needed
;
1822 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1823 * allow segment selectors with cpl > 0 or ti == 1.
1827 ldt_sel
= read_ldt();
1828 fs_gs_ldt_reload_needed
= (fs_sel
& 7) | (gs_sel
& 7) | ldt_sel
;
1829 if (!fs_gs_ldt_reload_needed
) {
1830 vmcs_write16(HOST_FS_SELECTOR
, fs_sel
);
1831 vmcs_write16(HOST_GS_SELECTOR
, gs_sel
);
1833 vmcs_write16(HOST_FS_SELECTOR
, 0);
1834 vmcs_write16(HOST_GS_SELECTOR
, 0);
1837 #ifdef CONFIG_X86_64
1838 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
1839 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
1841 vmcs_writel(HOST_FS_BASE
, segment_base(fs_sel
));
1842 vmcs_writel(HOST_GS_BASE
, segment_base(gs_sel
));
1845 if (!vcpu
->mmio_read_completed
)
1846 do_interrupt_requests(vcpu
, kvm_run
);
1848 if (vcpu
->guest_debug
.enabled
)
1849 kvm_guest_debug_pre(vcpu
);
1851 kvm_load_guest_fpu(vcpu
);
1854 * Loading guest fpu may have cleared host cr0.ts
1856 vmcs_writel(HOST_CR0
, read_cr0());
1858 #ifdef CONFIG_X86_64
1859 if (is_long_mode(vcpu
)) {
1860 save_msrs(vcpu
->host_msrs
+ msr_offset_kernel_gs_base
, 1);
1861 load_msrs(vcpu
->guest_msrs
, NR_BAD_MSRS
);
1866 /* Store host registers */
1868 #ifdef CONFIG_X86_64
1869 "push %%rax; push %%rbx; push %%rdx;"
1870 "push %%rsi; push %%rdi; push %%rbp;"
1871 "push %%r8; push %%r9; push %%r10; push %%r11;"
1872 "push %%r12; push %%r13; push %%r14; push %%r15;"
1874 ASM_VMX_VMWRITE_RSP_RDX
"\n\t"
1876 "pusha; push %%ecx \n\t"
1877 ASM_VMX_VMWRITE_RSP_RDX
"\n\t"
1879 /* Check if vmlaunch of vmresume is needed */
1881 /* Load guest registers. Don't clobber flags. */
1882 #ifdef CONFIG_X86_64
1883 "mov %c[cr2](%3), %%rax \n\t"
1884 "mov %%rax, %%cr2 \n\t"
1885 "mov %c[rax](%3), %%rax \n\t"
1886 "mov %c[rbx](%3), %%rbx \n\t"
1887 "mov %c[rdx](%3), %%rdx \n\t"
1888 "mov %c[rsi](%3), %%rsi \n\t"
1889 "mov %c[rdi](%3), %%rdi \n\t"
1890 "mov %c[rbp](%3), %%rbp \n\t"
1891 "mov %c[r8](%3), %%r8 \n\t"
1892 "mov %c[r9](%3), %%r9 \n\t"
1893 "mov %c[r10](%3), %%r10 \n\t"
1894 "mov %c[r11](%3), %%r11 \n\t"
1895 "mov %c[r12](%3), %%r12 \n\t"
1896 "mov %c[r13](%3), %%r13 \n\t"
1897 "mov %c[r14](%3), %%r14 \n\t"
1898 "mov %c[r15](%3), %%r15 \n\t"
1899 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1901 "mov %c[cr2](%3), %%eax \n\t"
1902 "mov %%eax, %%cr2 \n\t"
1903 "mov %c[rax](%3), %%eax \n\t"
1904 "mov %c[rbx](%3), %%ebx \n\t"
1905 "mov %c[rdx](%3), %%edx \n\t"
1906 "mov %c[rsi](%3), %%esi \n\t"
1907 "mov %c[rdi](%3), %%edi \n\t"
1908 "mov %c[rbp](%3), %%ebp \n\t"
1909 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1911 /* Enter guest mode */
1913 ASM_VMX_VMLAUNCH
"\n\t"
1914 "jmp kvm_vmx_return \n\t"
1915 "launched: " ASM_VMX_VMRESUME
"\n\t"
1916 ".globl kvm_vmx_return \n\t"
1918 /* Save guest registers, load host registers, keep flags */
1919 #ifdef CONFIG_X86_64
1920 "xchg %3, (%%rsp) \n\t"
1921 "mov %%rax, %c[rax](%3) \n\t"
1922 "mov %%rbx, %c[rbx](%3) \n\t"
1923 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1924 "mov %%rdx, %c[rdx](%3) \n\t"
1925 "mov %%rsi, %c[rsi](%3) \n\t"
1926 "mov %%rdi, %c[rdi](%3) \n\t"
1927 "mov %%rbp, %c[rbp](%3) \n\t"
1928 "mov %%r8, %c[r8](%3) \n\t"
1929 "mov %%r9, %c[r9](%3) \n\t"
1930 "mov %%r10, %c[r10](%3) \n\t"
1931 "mov %%r11, %c[r11](%3) \n\t"
1932 "mov %%r12, %c[r12](%3) \n\t"
1933 "mov %%r13, %c[r13](%3) \n\t"
1934 "mov %%r14, %c[r14](%3) \n\t"
1935 "mov %%r15, %c[r15](%3) \n\t"
1936 "mov %%cr2, %%rax \n\t"
1937 "mov %%rax, %c[cr2](%3) \n\t"
1938 "mov (%%rsp), %3 \n\t"
1940 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1941 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1942 "pop %%rbp; pop %%rdi; pop %%rsi;"
1943 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1945 "xchg %3, (%%esp) \n\t"
1946 "mov %%eax, %c[rax](%3) \n\t"
1947 "mov %%ebx, %c[rbx](%3) \n\t"
1948 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1949 "mov %%edx, %c[rdx](%3) \n\t"
1950 "mov %%esi, %c[rsi](%3) \n\t"
1951 "mov %%edi, %c[rdi](%3) \n\t"
1952 "mov %%ebp, %c[rbp](%3) \n\t"
1953 "mov %%cr2, %%eax \n\t"
1954 "mov %%eax, %c[cr2](%3) \n\t"
1955 "mov (%%esp), %3 \n\t"
1957 "pop %%ecx; popa \n\t"
1962 : "r"(vcpu
->launched
), "d"((unsigned long)HOST_RSP
),
1964 [rax
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RAX
])),
1965 [rbx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RBX
])),
1966 [rcx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RCX
])),
1967 [rdx
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RDX
])),
1968 [rsi
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RSI
])),
1969 [rdi
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RDI
])),
1970 [rbp
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_RBP
])),
1971 #ifdef CONFIG_X86_64
1972 [r8
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R8
])),
1973 [r9
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R9
])),
1974 [r10
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R10
])),
1975 [r11
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R11
])),
1976 [r12
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R12
])),
1977 [r13
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R13
])),
1978 [r14
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R14
])),
1979 [r15
]"i"(offsetof(struct kvm_vcpu
, regs
[VCPU_REGS_R15
])),
1981 [cr2
]"i"(offsetof(struct kvm_vcpu
, cr2
))
1985 * Reload segment selectors ASAP. (it's needed for a functional
1986 * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
1987 * relies on having 0 in %gs for the CPU PDA to work.)
1989 if (fs_gs_ldt_reload_needed
) {
1993 * If we have to reload gs, we must take care to
1994 * preserve our gs base.
1996 local_irq_disable();
1998 #ifdef CONFIG_X86_64
1999 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
2007 #ifdef CONFIG_X86_64
2008 if (is_long_mode(vcpu
)) {
2009 save_msrs(vcpu
->guest_msrs
, NR_BAD_MSRS
);
2010 load_msrs(vcpu
->host_msrs
, NR_BAD_MSRS
);
2014 vcpu
->interrupt_window_open
= (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0;
2016 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
2019 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2020 kvm_run
->fail_entry
.hardware_entry_failure_reason
2021 = vmcs_read32(VM_INSTRUCTION_ERROR
);
2025 * Profile KVM exit RIPs:
2027 if (unlikely(prof_on
== KVM_PROFILING
))
2028 profile_hit(KVM_PROFILING
, (void *)vmcs_readl(GUEST_RIP
));
2031 r
= kvm_handle_exit(kvm_run
, vcpu
);
2033 /* Give scheduler a change to reschedule. */
2034 if (signal_pending(current
)) {
2035 ++vcpu
->stat
.signal_exits
;
2036 post_kvm_run_save(vcpu
, kvm_run
);
2037 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2041 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
2042 ++vcpu
->stat
.request_irq_exits
;
2043 post_kvm_run_save(vcpu
, kvm_run
);
2044 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2053 post_kvm_run_save(vcpu
, kvm_run
);
2057 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
2059 vmcs_writel(GUEST_CR3
, vmcs_readl(GUEST_CR3
));
2062 static void vmx_inject_page_fault(struct kvm_vcpu
*vcpu
,
2066 u32 vect_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
2068 ++vcpu
->stat
.pf_guest
;
2070 if (is_page_fault(vect_info
)) {
2071 printk(KERN_DEBUG
"inject_page_fault: "
2072 "double fault 0x%lx @ 0x%lx\n",
2073 addr
, vmcs_readl(GUEST_RIP
));
2074 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, 0);
2075 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2077 INTR_TYPE_EXCEPTION
|
2078 INTR_INFO_DELIEVER_CODE_MASK
|
2079 INTR_INFO_VALID_MASK
);
2083 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, err_code
);
2084 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2086 INTR_TYPE_EXCEPTION
|
2087 INTR_INFO_DELIEVER_CODE_MASK
|
2088 INTR_INFO_VALID_MASK
);
2092 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
2095 on_each_cpu(__vcpu_clear
, vcpu
, 0, 1);
2096 free_vmcs(vcpu
->vmcs
);
2101 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
2103 vmx_free_vmcs(vcpu
);
2106 static int vmx_create_vcpu(struct kvm_vcpu
*vcpu
)
2110 vcpu
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2111 if (!vcpu
->guest_msrs
)
2114 vcpu
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2115 if (!vcpu
->host_msrs
)
2116 goto out_free_guest_msrs
;
2118 vmcs
= alloc_vmcs();
2125 vcpu
->fpu_active
= 1;
2130 kfree(vcpu
->host_msrs
);
2131 vcpu
->host_msrs
= NULL
;
2133 out_free_guest_msrs
:
2134 kfree(vcpu
->guest_msrs
);
2135 vcpu
->guest_msrs
= NULL
;
2140 static struct kvm_arch_ops vmx_arch_ops
= {
2141 .cpu_has_kvm_support
= cpu_has_kvm_support
,
2142 .disabled_by_bios
= vmx_disabled_by_bios
,
2143 .hardware_setup
= hardware_setup
,
2144 .hardware_unsetup
= hardware_unsetup
,
2145 .hardware_enable
= hardware_enable
,
2146 .hardware_disable
= hardware_disable
,
2148 .vcpu_create
= vmx_create_vcpu
,
2149 .vcpu_free
= vmx_free_vcpu
,
2151 .vcpu_load
= vmx_vcpu_load
,
2152 .vcpu_put
= vmx_vcpu_put
,
2153 .vcpu_decache
= vmx_vcpu_decache
,
2155 .set_guest_debug
= set_guest_debug
,
2156 .get_msr
= vmx_get_msr
,
2157 .set_msr
= vmx_set_msr
,
2158 .get_segment_base
= vmx_get_segment_base
,
2159 .get_segment
= vmx_get_segment
,
2160 .set_segment
= vmx_set_segment
,
2161 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
2162 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
2163 .set_cr0
= vmx_set_cr0
,
2164 .set_cr3
= vmx_set_cr3
,
2165 .set_cr4
= vmx_set_cr4
,
2166 #ifdef CONFIG_X86_64
2167 .set_efer
= vmx_set_efer
,
2169 .get_idt
= vmx_get_idt
,
2170 .set_idt
= vmx_set_idt
,
2171 .get_gdt
= vmx_get_gdt
,
2172 .set_gdt
= vmx_set_gdt
,
2173 .cache_regs
= vcpu_load_rsp_rip
,
2174 .decache_regs
= vcpu_put_rsp_rip
,
2175 .get_rflags
= vmx_get_rflags
,
2176 .set_rflags
= vmx_set_rflags
,
2178 .tlb_flush
= vmx_flush_tlb
,
2179 .inject_page_fault
= vmx_inject_page_fault
,
2181 .inject_gp
= vmx_inject_gp
,
2183 .run
= vmx_vcpu_run
,
2184 .skip_emulated_instruction
= skip_emulated_instruction
,
2185 .vcpu_setup
= vmx_vcpu_setup
,
2186 .patch_hypercall
= vmx_patch_hypercall
,
2189 static int __init
vmx_init(void)
2191 return kvm_init_arch(&vmx_arch_ops
, THIS_MODULE
);
2194 static void __exit
vmx_exit(void)
2199 module_init(vmx_init
)
2200 module_exit(vmx_exit
)