[NETFILTER]: nf_conntrack: export hash allocation/destruction functions
[linux-2.6/verdex.git] / kernel / workqueue.c
blob3bebf73be976592cab56a218e93b7449a5de7df4
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
37 * The per-CPU workqueue (if single thread, we always use the first
38 * possible cpu).
40 struct cpu_workqueue_struct {
42 spinlock_t lock;
44 struct list_head worklist;
45 wait_queue_head_t more_work;
46 struct work_struct *current_work;
48 struct workqueue_struct *wq;
49 struct task_struct *thread;
51 int run_depth; /* Detect run_workqueue() recursion depth */
52 } ____cacheline_aligned;
55 * The externally visible workqueue abstraction is an array of
56 * per-CPU workqueues:
58 struct workqueue_struct {
59 struct cpu_workqueue_struct *cpu_wq;
60 struct list_head list;
61 const char *name;
62 int singlethread;
63 int freezeable; /* Freeze threads during suspend */
66 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
67 threads to each one as cpus come/go. */
68 static DEFINE_MUTEX(workqueue_mutex);
69 static LIST_HEAD(workqueues);
71 static int singlethread_cpu __read_mostly;
72 static cpumask_t cpu_singlethread_map __read_mostly;
74 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
75 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
76 * which comes in between can't use for_each_online_cpu(). We could
77 * use cpu_possible_map, the cpumask below is more a documentation
78 * than optimization.
80 static cpumask_t cpu_populated_map __read_mostly;
82 /* If it's single threaded, it isn't in the list of workqueues. */
83 static inline int is_single_threaded(struct workqueue_struct *wq)
85 return wq->singlethread;
88 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
90 return is_single_threaded(wq)
91 ? &cpu_singlethread_map : &cpu_populated_map;
94 static
95 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
97 if (unlikely(is_single_threaded(wq)))
98 cpu = singlethread_cpu;
99 return per_cpu_ptr(wq->cpu_wq, cpu);
103 * Set the workqueue on which a work item is to be run
104 * - Must *only* be called if the pending flag is set
106 static inline void set_wq_data(struct work_struct *work,
107 struct cpu_workqueue_struct *cwq)
109 unsigned long new;
111 BUG_ON(!work_pending(work));
113 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
114 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
115 atomic_long_set(&work->data, new);
118 static inline
119 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
121 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
124 static void insert_work(struct cpu_workqueue_struct *cwq,
125 struct work_struct *work, int tail)
127 set_wq_data(work, cwq);
129 * Ensure that we get the right work->data if we see the
130 * result of list_add() below, see try_to_grab_pending().
132 smp_wmb();
133 if (tail)
134 list_add_tail(&work->entry, &cwq->worklist);
135 else
136 list_add(&work->entry, &cwq->worklist);
137 wake_up(&cwq->more_work);
140 /* Preempt must be disabled. */
141 static void __queue_work(struct cpu_workqueue_struct *cwq,
142 struct work_struct *work)
144 unsigned long flags;
146 spin_lock_irqsave(&cwq->lock, flags);
147 insert_work(cwq, work, 1);
148 spin_unlock_irqrestore(&cwq->lock, flags);
152 * queue_work - queue work on a workqueue
153 * @wq: workqueue to use
154 * @work: work to queue
156 * Returns 0 if @work was already on a queue, non-zero otherwise.
158 * We queue the work to the CPU it was submitted, but there is no
159 * guarantee that it will be processed by that CPU.
161 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
163 int ret = 0;
165 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
166 BUG_ON(!list_empty(&work->entry));
167 __queue_work(wq_per_cpu(wq, get_cpu()), work);
168 put_cpu();
169 ret = 1;
171 return ret;
173 EXPORT_SYMBOL_GPL(queue_work);
175 void delayed_work_timer_fn(unsigned long __data)
177 struct delayed_work *dwork = (struct delayed_work *)__data;
178 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
179 struct workqueue_struct *wq = cwq->wq;
181 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
185 * queue_delayed_work - queue work on a workqueue after delay
186 * @wq: workqueue to use
187 * @dwork: delayable work to queue
188 * @delay: number of jiffies to wait before queueing
190 * Returns 0 if @work was already on a queue, non-zero otherwise.
192 int fastcall queue_delayed_work(struct workqueue_struct *wq,
193 struct delayed_work *dwork, unsigned long delay)
195 timer_stats_timer_set_start_info(&dwork->timer);
196 if (delay == 0)
197 return queue_work(wq, &dwork->work);
199 return queue_delayed_work_on(-1, wq, dwork, delay);
201 EXPORT_SYMBOL_GPL(queue_delayed_work);
204 * queue_delayed_work_on - queue work on specific CPU after delay
205 * @cpu: CPU number to execute work on
206 * @wq: workqueue to use
207 * @dwork: work to queue
208 * @delay: number of jiffies to wait before queueing
210 * Returns 0 if @work was already on a queue, non-zero otherwise.
212 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
213 struct delayed_work *dwork, unsigned long delay)
215 int ret = 0;
216 struct timer_list *timer = &dwork->timer;
217 struct work_struct *work = &dwork->work;
219 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
220 BUG_ON(timer_pending(timer));
221 BUG_ON(!list_empty(&work->entry));
223 /* This stores cwq for the moment, for the timer_fn */
224 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
225 timer->expires = jiffies + delay;
226 timer->data = (unsigned long)dwork;
227 timer->function = delayed_work_timer_fn;
229 if (unlikely(cpu >= 0))
230 add_timer_on(timer, cpu);
231 else
232 add_timer(timer);
233 ret = 1;
235 return ret;
237 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
239 static void run_workqueue(struct cpu_workqueue_struct *cwq)
241 spin_lock_irq(&cwq->lock);
242 cwq->run_depth++;
243 if (cwq->run_depth > 3) {
244 /* morton gets to eat his hat */
245 printk("%s: recursion depth exceeded: %d\n",
246 __FUNCTION__, cwq->run_depth);
247 dump_stack();
249 while (!list_empty(&cwq->worklist)) {
250 struct work_struct *work = list_entry(cwq->worklist.next,
251 struct work_struct, entry);
252 work_func_t f = work->func;
254 cwq->current_work = work;
255 list_del_init(cwq->worklist.next);
256 spin_unlock_irq(&cwq->lock);
258 BUG_ON(get_wq_data(work) != cwq);
259 work_clear_pending(work);
260 f(work);
262 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
263 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
264 "%s/0x%08x/%d\n",
265 current->comm, preempt_count(),
266 current->pid);
267 printk(KERN_ERR " last function: ");
268 print_symbol("%s\n", (unsigned long)f);
269 debug_show_held_locks(current);
270 dump_stack();
273 spin_lock_irq(&cwq->lock);
274 cwq->current_work = NULL;
276 cwq->run_depth--;
277 spin_unlock_irq(&cwq->lock);
280 static int worker_thread(void *__cwq)
282 struct cpu_workqueue_struct *cwq = __cwq;
283 DEFINE_WAIT(wait);
285 if (!cwq->wq->freezeable)
286 current->flags |= PF_NOFREEZE;
288 set_user_nice(current, -5);
290 for (;;) {
291 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
292 if (!freezing(current) &&
293 !kthread_should_stop() &&
294 list_empty(&cwq->worklist))
295 schedule();
296 finish_wait(&cwq->more_work, &wait);
298 try_to_freeze();
300 if (kthread_should_stop())
301 break;
303 run_workqueue(cwq);
306 return 0;
309 struct wq_barrier {
310 struct work_struct work;
311 struct completion done;
314 static void wq_barrier_func(struct work_struct *work)
316 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
317 complete(&barr->done);
320 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
321 struct wq_barrier *barr, int tail)
323 INIT_WORK(&barr->work, wq_barrier_func);
324 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
326 init_completion(&barr->done);
328 insert_work(cwq, &barr->work, tail);
331 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
333 int active;
335 if (cwq->thread == current) {
337 * Probably keventd trying to flush its own queue. So simply run
338 * it by hand rather than deadlocking.
340 run_workqueue(cwq);
341 active = 1;
342 } else {
343 struct wq_barrier barr;
345 active = 0;
346 spin_lock_irq(&cwq->lock);
347 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
348 insert_wq_barrier(cwq, &barr, 1);
349 active = 1;
351 spin_unlock_irq(&cwq->lock);
353 if (active)
354 wait_for_completion(&barr.done);
357 return active;
361 * flush_workqueue - ensure that any scheduled work has run to completion.
362 * @wq: workqueue to flush
364 * Forces execution of the workqueue and blocks until its completion.
365 * This is typically used in driver shutdown handlers.
367 * We sleep until all works which were queued on entry have been handled,
368 * but we are not livelocked by new incoming ones.
370 * This function used to run the workqueues itself. Now we just wait for the
371 * helper threads to do it.
373 void fastcall flush_workqueue(struct workqueue_struct *wq)
375 const cpumask_t *cpu_map = wq_cpu_map(wq);
376 int cpu;
378 might_sleep();
379 for_each_cpu_mask(cpu, *cpu_map)
380 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
382 EXPORT_SYMBOL_GPL(flush_workqueue);
385 * Upon a successful return, the caller "owns" WORK_STRUCT_PENDING bit,
386 * so this work can't be re-armed in any way.
388 static int try_to_grab_pending(struct work_struct *work)
390 struct cpu_workqueue_struct *cwq;
391 int ret = 0;
393 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
394 return 1;
397 * The queueing is in progress, or it is already queued. Try to
398 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
401 cwq = get_wq_data(work);
402 if (!cwq)
403 return ret;
405 spin_lock_irq(&cwq->lock);
406 if (!list_empty(&work->entry)) {
408 * This work is queued, but perhaps we locked the wrong cwq.
409 * In that case we must see the new value after rmb(), see
410 * insert_work()->wmb().
412 smp_rmb();
413 if (cwq == get_wq_data(work)) {
414 list_del_init(&work->entry);
415 ret = 1;
418 spin_unlock_irq(&cwq->lock);
420 return ret;
423 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
424 struct work_struct *work)
426 struct wq_barrier barr;
427 int running = 0;
429 spin_lock_irq(&cwq->lock);
430 if (unlikely(cwq->current_work == work)) {
431 insert_wq_barrier(cwq, &barr, 0);
432 running = 1;
434 spin_unlock_irq(&cwq->lock);
436 if (unlikely(running))
437 wait_for_completion(&barr.done);
440 static void wait_on_work(struct work_struct *work)
442 struct cpu_workqueue_struct *cwq;
443 struct workqueue_struct *wq;
444 const cpumask_t *cpu_map;
445 int cpu;
447 might_sleep();
449 cwq = get_wq_data(work);
450 if (!cwq)
451 return;
453 wq = cwq->wq;
454 cpu_map = wq_cpu_map(wq);
456 for_each_cpu_mask(cpu, *cpu_map)
457 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
461 * cancel_work_sync - block until a work_struct's callback has terminated
462 * @work: the work which is to be flushed
464 * cancel_work_sync() will cancel the work if it is queued. If the work's
465 * callback appears to be running, cancel_work_sync() will block until it
466 * has completed.
468 * It is possible to use this function if the work re-queues itself. It can
469 * cancel the work even if it migrates to another workqueue, however in that
470 * case it only guarantees that work->func() has completed on the last queued
471 * workqueue.
473 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
474 * pending, otherwise it goes into a busy-wait loop until the timer expires.
476 * The caller must ensure that workqueue_struct on which this work was last
477 * queued can't be destroyed before this function returns.
479 void cancel_work_sync(struct work_struct *work)
481 while (!try_to_grab_pending(work))
482 cpu_relax();
483 wait_on_work(work);
484 work_clear_pending(work);
486 EXPORT_SYMBOL_GPL(cancel_work_sync);
489 * cancel_rearming_delayed_work - reliably kill off a delayed work.
490 * @dwork: the delayed work struct
492 * It is possible to use this function if @dwork rearms itself via queue_work()
493 * or queue_delayed_work(). See also the comment for cancel_work_sync().
495 void cancel_rearming_delayed_work(struct delayed_work *dwork)
497 while (!del_timer(&dwork->timer) &&
498 !try_to_grab_pending(&dwork->work))
499 cpu_relax();
500 wait_on_work(&dwork->work);
501 work_clear_pending(&dwork->work);
503 EXPORT_SYMBOL(cancel_rearming_delayed_work);
505 static struct workqueue_struct *keventd_wq __read_mostly;
508 * schedule_work - put work task in global workqueue
509 * @work: job to be done
511 * This puts a job in the kernel-global workqueue.
513 int fastcall schedule_work(struct work_struct *work)
515 return queue_work(keventd_wq, work);
517 EXPORT_SYMBOL(schedule_work);
520 * schedule_delayed_work - put work task in global workqueue after delay
521 * @dwork: job to be done
522 * @delay: number of jiffies to wait or 0 for immediate execution
524 * After waiting for a given time this puts a job in the kernel-global
525 * workqueue.
527 int fastcall schedule_delayed_work(struct delayed_work *dwork,
528 unsigned long delay)
530 timer_stats_timer_set_start_info(&dwork->timer);
531 return queue_delayed_work(keventd_wq, dwork, delay);
533 EXPORT_SYMBOL(schedule_delayed_work);
536 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
537 * @cpu: cpu to use
538 * @dwork: job to be done
539 * @delay: number of jiffies to wait
541 * After waiting for a given time this puts a job in the kernel-global
542 * workqueue on the specified CPU.
544 int schedule_delayed_work_on(int cpu,
545 struct delayed_work *dwork, unsigned long delay)
547 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
549 EXPORT_SYMBOL(schedule_delayed_work_on);
552 * schedule_on_each_cpu - call a function on each online CPU from keventd
553 * @func: the function to call
555 * Returns zero on success.
556 * Returns -ve errno on failure.
558 * Appears to be racy against CPU hotplug.
560 * schedule_on_each_cpu() is very slow.
562 int schedule_on_each_cpu(work_func_t func)
564 int cpu;
565 struct work_struct *works;
567 works = alloc_percpu(struct work_struct);
568 if (!works)
569 return -ENOMEM;
571 preempt_disable(); /* CPU hotplug */
572 for_each_online_cpu(cpu) {
573 struct work_struct *work = per_cpu_ptr(works, cpu);
575 INIT_WORK(work, func);
576 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
577 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
579 preempt_enable();
580 flush_workqueue(keventd_wq);
581 free_percpu(works);
582 return 0;
585 void flush_scheduled_work(void)
587 flush_workqueue(keventd_wq);
589 EXPORT_SYMBOL(flush_scheduled_work);
592 * execute_in_process_context - reliably execute the routine with user context
593 * @fn: the function to execute
594 * @ew: guaranteed storage for the execute work structure (must
595 * be available when the work executes)
597 * Executes the function immediately if process context is available,
598 * otherwise schedules the function for delayed execution.
600 * Returns: 0 - function was executed
601 * 1 - function was scheduled for execution
603 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
605 if (!in_interrupt()) {
606 fn(&ew->work);
607 return 0;
610 INIT_WORK(&ew->work, fn);
611 schedule_work(&ew->work);
613 return 1;
615 EXPORT_SYMBOL_GPL(execute_in_process_context);
617 int keventd_up(void)
619 return keventd_wq != NULL;
622 int current_is_keventd(void)
624 struct cpu_workqueue_struct *cwq;
625 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
626 int ret = 0;
628 BUG_ON(!keventd_wq);
630 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
631 if (current == cwq->thread)
632 ret = 1;
634 return ret;
638 static struct cpu_workqueue_struct *
639 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
641 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
643 cwq->wq = wq;
644 spin_lock_init(&cwq->lock);
645 INIT_LIST_HEAD(&cwq->worklist);
646 init_waitqueue_head(&cwq->more_work);
648 return cwq;
651 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
653 struct workqueue_struct *wq = cwq->wq;
654 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
655 struct task_struct *p;
657 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
659 * Nobody can add the work_struct to this cwq,
660 * if (caller is __create_workqueue)
661 * nobody should see this wq
662 * else // caller is CPU_UP_PREPARE
663 * cpu is not on cpu_online_map
664 * so we can abort safely.
666 if (IS_ERR(p))
667 return PTR_ERR(p);
669 cwq->thread = p;
671 return 0;
674 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
676 struct task_struct *p = cwq->thread;
678 if (p != NULL) {
679 if (cpu >= 0)
680 kthread_bind(p, cpu);
681 wake_up_process(p);
685 struct workqueue_struct *__create_workqueue(const char *name,
686 int singlethread, int freezeable)
688 struct workqueue_struct *wq;
689 struct cpu_workqueue_struct *cwq;
690 int err = 0, cpu;
692 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
693 if (!wq)
694 return NULL;
696 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
697 if (!wq->cpu_wq) {
698 kfree(wq);
699 return NULL;
702 wq->name = name;
703 wq->singlethread = singlethread;
704 wq->freezeable = freezeable;
705 INIT_LIST_HEAD(&wq->list);
707 if (singlethread) {
708 cwq = init_cpu_workqueue(wq, singlethread_cpu);
709 err = create_workqueue_thread(cwq, singlethread_cpu);
710 start_workqueue_thread(cwq, -1);
711 } else {
712 mutex_lock(&workqueue_mutex);
713 list_add(&wq->list, &workqueues);
715 for_each_possible_cpu(cpu) {
716 cwq = init_cpu_workqueue(wq, cpu);
717 if (err || !cpu_online(cpu))
718 continue;
719 err = create_workqueue_thread(cwq, cpu);
720 start_workqueue_thread(cwq, cpu);
722 mutex_unlock(&workqueue_mutex);
725 if (err) {
726 destroy_workqueue(wq);
727 wq = NULL;
729 return wq;
731 EXPORT_SYMBOL_GPL(__create_workqueue);
733 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
736 * Our caller is either destroy_workqueue() or CPU_DEAD,
737 * workqueue_mutex protects cwq->thread
739 if (cwq->thread == NULL)
740 return;
743 * If the caller is CPU_DEAD the single flush_cpu_workqueue()
744 * is not enough, a concurrent flush_workqueue() can insert a
745 * barrier after us.
746 * When ->worklist becomes empty it is safe to exit because no
747 * more work_structs can be queued on this cwq: flush_workqueue
748 * checks list_empty(), and a "normal" queue_work() can't use
749 * a dead CPU.
751 while (flush_cpu_workqueue(cwq))
754 kthread_stop(cwq->thread);
755 cwq->thread = NULL;
759 * destroy_workqueue - safely terminate a workqueue
760 * @wq: target workqueue
762 * Safely destroy a workqueue. All work currently pending will be done first.
764 void destroy_workqueue(struct workqueue_struct *wq)
766 const cpumask_t *cpu_map = wq_cpu_map(wq);
767 struct cpu_workqueue_struct *cwq;
768 int cpu;
770 mutex_lock(&workqueue_mutex);
771 list_del(&wq->list);
772 mutex_unlock(&workqueue_mutex);
774 for_each_cpu_mask(cpu, *cpu_map) {
775 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
776 cleanup_workqueue_thread(cwq, cpu);
779 free_percpu(wq->cpu_wq);
780 kfree(wq);
782 EXPORT_SYMBOL_GPL(destroy_workqueue);
784 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
785 unsigned long action,
786 void *hcpu)
788 unsigned int cpu = (unsigned long)hcpu;
789 struct cpu_workqueue_struct *cwq;
790 struct workqueue_struct *wq;
792 action &= ~CPU_TASKS_FROZEN;
794 switch (action) {
795 case CPU_LOCK_ACQUIRE:
796 mutex_lock(&workqueue_mutex);
797 return NOTIFY_OK;
799 case CPU_LOCK_RELEASE:
800 mutex_unlock(&workqueue_mutex);
801 return NOTIFY_OK;
803 case CPU_UP_PREPARE:
804 cpu_set(cpu, cpu_populated_map);
807 list_for_each_entry(wq, &workqueues, list) {
808 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
810 switch (action) {
811 case CPU_UP_PREPARE:
812 if (!create_workqueue_thread(cwq, cpu))
813 break;
814 printk(KERN_ERR "workqueue for %i failed\n", cpu);
815 return NOTIFY_BAD;
817 case CPU_ONLINE:
818 start_workqueue_thread(cwq, cpu);
819 break;
821 case CPU_UP_CANCELED:
822 start_workqueue_thread(cwq, -1);
823 case CPU_DEAD:
824 cleanup_workqueue_thread(cwq, cpu);
825 break;
829 return NOTIFY_OK;
832 void __init init_workqueues(void)
834 cpu_populated_map = cpu_online_map;
835 singlethread_cpu = first_cpu(cpu_possible_map);
836 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
837 hotcpu_notifier(workqueue_cpu_callback, 0);
838 keventd_wq = create_workqueue("events");
839 BUG_ON(!keventd_wq);