1 /*****************************************************************************/
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cdk.h>
37 #include <linux/comstats.h>
38 #include <linux/istallion.h>
39 #include <linux/ioport.h>
40 #include <linux/delay.h>
41 #include <linux/init.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/device.h>
44 #include <linux/wait.h>
47 #include <asm/uaccess.h>
50 #include <linux/pci.h>
53 /*****************************************************************************/
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
63 #define BRD_STALLION 1
65 #define BRD_ONBOARD2 3
68 #define BRD_BRUMBY16 6
69 #define BRD_ONBOARDE 7
70 #define BRD_ONBOARD32 9
71 #define BRD_ONBOARD2_32 10
72 #define BRD_ONBOARDRS 11
80 #define BRD_ECH64PCI 27
81 #define BRD_EASYIOPCI 28
84 #define BRD_BRUMBY BRD_BRUMBY4
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
129 unsigned long memaddr
;
134 static stlconf_t stli_brdconf
[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
138 static int stli_nrbrds
= sizeof(stli_brdconf
) / sizeof(stlconf_t
);
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
145 #define STLI_EISAPROBE 0
147 /*****************************************************************************/
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
153 #ifndef STL_SIOMEMMAJOR
154 #define STL_SIOMEMMAJOR 28
156 #ifndef STL_SERIALMAJOR
157 #define STL_SERIALMAJOR 24
159 #ifndef STL_CALLOUTMAJOR
160 #define STL_CALLOUTMAJOR 25
163 /*****************************************************************************/
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
169 static char *stli_drvtitle
= "Stallion Intelligent Multiport Serial Driver";
170 static char *stli_drvname
= "istallion";
171 static char *stli_drvversion
= "5.6.0";
172 static char *stli_serialname
= "ttyE";
174 static struct tty_driver
*stli_serial
;
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
183 static char *stli_tmpwritebuf
;
184 static DECLARE_MUTEX(stli_tmpwritesem
);
186 #define STLI_TXBUFSIZE 4096
189 * Use a fast local buffer for cooked characters. Typically a whole
190 * bunch of cooked characters come in for a port, 1 at a time. So we
191 * save those up into a local buffer, then write out the whole lot
192 * with a large memcpy. Just use 1 buffer for all ports, since its
193 * use it is only need for short periods of time by each port.
195 static char *stli_txcookbuf
;
196 static int stli_txcooksize
;
197 static int stli_txcookrealsize
;
198 static struct tty_struct
*stli_txcooktty
;
201 * Define a local default termios struct. All ports will be created
202 * with this termios initially. Basically all it defines is a raw port
203 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
205 static struct termios stli_deftermios
= {
206 .c_cflag
= (B9600
| CS8
| CREAD
| HUPCL
| CLOCAL
),
211 * Define global stats structures. Not used often, and can be
212 * re-used for each stats call.
214 static comstats_t stli_comstats
;
215 static combrd_t stli_brdstats
;
216 static asystats_t stli_cdkstats
;
217 static stlibrd_t stli_dummybrd
;
218 static stliport_t stli_dummyport
;
220 /*****************************************************************************/
222 static stlibrd_t
*stli_brds
[STL_MAXBRDS
];
224 static int stli_shared
;
227 * Per board state flags. Used with the state field of the board struct.
228 * Not really much here... All we need to do is keep track of whether
229 * the board has been detected, and whether it is actually running a slave
232 #define BST_FOUND 0x1
233 #define BST_STARTED 0x2
236 * Define the set of port state flags. These are marked for internal
237 * state purposes only, usually to do with the state of communications
238 * with the slave. Most of them need to be updated atomically, so always
239 * use the bit setting operations (unless protected by cli/sti).
241 #define ST_INITIALIZING 1
247 #define ST_DOFLUSHRX 7
248 #define ST_DOFLUSHTX 8
251 #define ST_GETSIGS 11
254 * Define an array of board names as printable strings. Handy for
255 * referencing boards when printing trace and stuff.
257 static char *stli_brdnames
[] = {
290 /*****************************************************************************/
294 * Define some string labels for arguments passed from the module
295 * load line. These allow for easy board definitions, and easy
296 * modification of the io, memory and irq resoucres.
299 static char *board0
[8];
300 static char *board1
[8];
301 static char *board2
[8];
302 static char *board3
[8];
304 static char **stli_brdsp
[] = {
312 * Define a set of common board names, and types. This is used to
313 * parse any module arguments.
316 typedef struct stlibrdtype
{
321 static stlibrdtype_t stli_brdstr
[] = {
322 { "stallion", BRD_STALLION
},
323 { "1", BRD_STALLION
},
324 { "brumby", BRD_BRUMBY
},
325 { "brumby4", BRD_BRUMBY
},
326 { "brumby/4", BRD_BRUMBY
},
327 { "brumby-4", BRD_BRUMBY
},
328 { "brumby8", BRD_BRUMBY
},
329 { "brumby/8", BRD_BRUMBY
},
330 { "brumby-8", BRD_BRUMBY
},
331 { "brumby16", BRD_BRUMBY
},
332 { "brumby/16", BRD_BRUMBY
},
333 { "brumby-16", BRD_BRUMBY
},
335 { "onboard2", BRD_ONBOARD2
},
336 { "onboard-2", BRD_ONBOARD2
},
337 { "onboard/2", BRD_ONBOARD2
},
338 { "onboard-mc", BRD_ONBOARD2
},
339 { "onboard/mc", BRD_ONBOARD2
},
340 { "onboard-mca", BRD_ONBOARD2
},
341 { "onboard/mca", BRD_ONBOARD2
},
342 { "3", BRD_ONBOARD2
},
343 { "onboard", BRD_ONBOARD
},
344 { "onboardat", BRD_ONBOARD
},
345 { "4", BRD_ONBOARD
},
346 { "onboarde", BRD_ONBOARDE
},
347 { "onboard-e", BRD_ONBOARDE
},
348 { "onboard/e", BRD_ONBOARDE
},
349 { "onboard-ei", BRD_ONBOARDE
},
350 { "onboard/ei", BRD_ONBOARDE
},
351 { "7", BRD_ONBOARDE
},
353 { "ecpat", BRD_ECP
},
354 { "ec8/64", BRD_ECP
},
355 { "ec8/64-at", BRD_ECP
},
356 { "ec8/64-isa", BRD_ECP
},
358 { "ecpe", BRD_ECPE
},
359 { "ecpei", BRD_ECPE
},
360 { "ec8/64-e", BRD_ECPE
},
361 { "ec8/64-ei", BRD_ECPE
},
363 { "ecpmc", BRD_ECPMC
},
364 { "ec8/64-mc", BRD_ECPMC
},
365 { "ec8/64-mca", BRD_ECPMC
},
367 { "ecppci", BRD_ECPPCI
},
368 { "ec/ra", BRD_ECPPCI
},
369 { "ec/ra-pc", BRD_ECPPCI
},
370 { "ec/ra-pci", BRD_ECPPCI
},
371 { "29", BRD_ECPPCI
},
375 * Define the module agruments.
377 MODULE_AUTHOR("Greg Ungerer");
378 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
379 MODULE_LICENSE("GPL");
382 MODULE_PARM(board0
, "1-3s");
383 MODULE_PARM_DESC(board0
, "Board 0 config -> name[,ioaddr[,memaddr]");
384 MODULE_PARM(board1
, "1-3s");
385 MODULE_PARM_DESC(board1
, "Board 1 config -> name[,ioaddr[,memaddr]");
386 MODULE_PARM(board2
, "1-3s");
387 MODULE_PARM_DESC(board2
, "Board 2 config -> name[,ioaddr[,memaddr]");
388 MODULE_PARM(board3
, "1-3s");
389 MODULE_PARM_DESC(board3
, "Board 3 config -> name[,ioaddr[,memaddr]");
394 * Set up a default memory address table for EISA board probing.
395 * The default addresses are all bellow 1Mbyte, which has to be the
396 * case anyway. They should be safe, since we only read values from
397 * them, and interrupts are disabled while we do it. If the higher
398 * memory support is compiled in then we also try probing around
399 * the 1Gb, 2Gb and 3Gb areas as well...
401 static unsigned long stli_eisamemprobeaddrs
[] = {
402 0xc0000, 0xd0000, 0xe0000, 0xf0000,
403 0x80000000, 0x80010000, 0x80020000, 0x80030000,
404 0x40000000, 0x40010000, 0x40020000, 0x40030000,
405 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
406 0xff000000, 0xff010000, 0xff020000, 0xff030000,
409 static int stli_eisamempsize
= sizeof(stli_eisamemprobeaddrs
) / sizeof(unsigned long);
412 * Define the Stallion PCI vendor and device IDs.
415 #ifndef PCI_VENDOR_ID_STALLION
416 #define PCI_VENDOR_ID_STALLION 0x124d
418 #ifndef PCI_DEVICE_ID_ECRA
419 #define PCI_DEVICE_ID_ECRA 0x0004
422 static struct pci_device_id istallion_pci_tbl
[] = {
423 { PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECRA
, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0 },
426 MODULE_DEVICE_TABLE(pci
, istallion_pci_tbl
);
428 #endif /* CONFIG_PCI */
430 /*****************************************************************************/
433 * Hardware configuration info for ECP boards. These defines apply
434 * to the directly accessible io ports of the ECP. There is a set of
435 * defines for each ECP board type, ISA, EISA, MCA and PCI.
439 #define ECP_MEMSIZE (128 * 1024)
440 #define ECP_PCIMEMSIZE (256 * 1024)
442 #define ECP_ATPAGESIZE (4 * 1024)
443 #define ECP_MCPAGESIZE (4 * 1024)
444 #define ECP_EIPAGESIZE (64 * 1024)
445 #define ECP_PCIPAGESIZE (64 * 1024)
447 #define STL_EISAID 0x8c4e
450 * Important defines for the ISA class of ECP board.
453 #define ECP_ATCONFR 1
454 #define ECP_ATMEMAR 2
455 #define ECP_ATMEMPR 3
456 #define ECP_ATSTOP 0x1
457 #define ECP_ATINTENAB 0x10
458 #define ECP_ATENABLE 0x20
459 #define ECP_ATDISABLE 0x00
460 #define ECP_ATADDRMASK 0x3f000
461 #define ECP_ATADDRSHFT 12
464 * Important defines for the EISA class of ECP board.
467 #define ECP_EIMEMARL 1
468 #define ECP_EICONFR 2
469 #define ECP_EIMEMARH 3
470 #define ECP_EIENABLE 0x1
471 #define ECP_EIDISABLE 0x0
472 #define ECP_EISTOP 0x4
473 #define ECP_EIEDGE 0x00
474 #define ECP_EILEVEL 0x80
475 #define ECP_EIADDRMASKL 0x00ff0000
476 #define ECP_EIADDRSHFTL 16
477 #define ECP_EIADDRMASKH 0xff000000
478 #define ECP_EIADDRSHFTH 24
479 #define ECP_EIBRDENAB 0xc84
481 #define ECP_EISAID 0x4
484 * Important defines for the Micro-channel class of ECP board.
485 * (It has a lot in common with the ISA boards.)
488 #define ECP_MCCONFR 1
489 #define ECP_MCSTOP 0x20
490 #define ECP_MCENABLE 0x80
491 #define ECP_MCDISABLE 0x00
494 * Important defines for the PCI class of ECP board.
495 * (It has a lot in common with the other ECP boards.)
497 #define ECP_PCIIREG 0
498 #define ECP_PCICONFR 1
499 #define ECP_PCISTOP 0x01
502 * Hardware configuration info for ONboard and Brumby boards. These
503 * defines apply to the directly accessible io ports of these boards.
505 #define ONB_IOSIZE 16
506 #define ONB_MEMSIZE (64 * 1024)
507 #define ONB_ATPAGESIZE (64 * 1024)
508 #define ONB_MCPAGESIZE (64 * 1024)
509 #define ONB_EIMEMSIZE (128 * 1024)
510 #define ONB_EIPAGESIZE (64 * 1024)
513 * Important defines for the ISA class of ONboard board.
516 #define ONB_ATMEMAR 1
517 #define ONB_ATCONFR 2
518 #define ONB_ATSTOP 0x4
519 #define ONB_ATENABLE 0x01
520 #define ONB_ATDISABLE 0x00
521 #define ONB_ATADDRMASK 0xff0000
522 #define ONB_ATADDRSHFT 16
524 #define ONB_MEMENABLO 0
525 #define ONB_MEMENABHI 0x02
528 * Important defines for the EISA class of ONboard board.
531 #define ONB_EIMEMARL 1
532 #define ONB_EICONFR 2
533 #define ONB_EIMEMARH 3
534 #define ONB_EIENABLE 0x1
535 #define ONB_EIDISABLE 0x0
536 #define ONB_EISTOP 0x4
537 #define ONB_EIEDGE 0x00
538 #define ONB_EILEVEL 0x80
539 #define ONB_EIADDRMASKL 0x00ff0000
540 #define ONB_EIADDRSHFTL 16
541 #define ONB_EIADDRMASKH 0xff000000
542 #define ONB_EIADDRSHFTH 24
543 #define ONB_EIBRDENAB 0xc84
545 #define ONB_EISAID 0x1
548 * Important defines for the Brumby boards. They are pretty simple,
549 * there is not much that is programmably configurable.
551 #define BBY_IOSIZE 16
552 #define BBY_MEMSIZE (64 * 1024)
553 #define BBY_PAGESIZE (16 * 1024)
556 #define BBY_ATCONFR 1
557 #define BBY_ATSTOP 0x4
560 * Important defines for the Stallion boards. They are pretty simple,
561 * there is not much that is programmably configurable.
563 #define STAL_IOSIZE 16
564 #define STAL_MEMSIZE (64 * 1024)
565 #define STAL_PAGESIZE (64 * 1024)
568 * Define the set of status register values for EasyConnection panels.
569 * The signature will return with the status value for each panel. From
570 * this we can determine what is attached to the board - before we have
571 * actually down loaded any code to it.
573 #define ECH_PNLSTATUS 2
574 #define ECH_PNL16PORT 0x20
575 #define ECH_PNLIDMASK 0x07
576 #define ECH_PNLXPID 0x40
577 #define ECH_PNLINTRPEND 0x80
580 * Define some macros to do things to the board. Even those these boards
581 * are somewhat related there is often significantly different ways of
582 * doing some operation on it (like enable, paging, reset, etc). So each
583 * board class has a set of functions which do the commonly required
584 * operations. The macros below basically just call these functions,
585 * generally checking for a NULL function - which means that the board
586 * needs nothing done to it to achieve this operation!
588 #define EBRDINIT(brdp) \
589 if (brdp->init != NULL) \
592 #define EBRDENABLE(brdp) \
593 if (brdp->enable != NULL) \
594 (* brdp->enable)(brdp);
596 #define EBRDDISABLE(brdp) \
597 if (brdp->disable != NULL) \
598 (* brdp->disable)(brdp);
600 #define EBRDINTR(brdp) \
601 if (brdp->intr != NULL) \
602 (* brdp->intr)(brdp);
604 #define EBRDRESET(brdp) \
605 if (brdp->reset != NULL) \
606 (* brdp->reset)(brdp);
608 #define EBRDGETMEMPTR(brdp,offset) \
609 (* brdp->getmemptr)(brdp, offset, __LINE__)
612 * Define the maximal baud rate, and the default baud base for ports.
614 #define STL_MAXBAUD 460800
615 #define STL_BAUDBASE 115200
616 #define STL_CLOSEDELAY (5 * HZ / 10)
618 /*****************************************************************************/
621 * Define macros to extract a brd or port number from a minor number.
623 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
624 #define MINOR2PORT(min) ((min) & 0x3f)
627 * Define a baud rate table that converts termios baud rate selector
628 * into the actual baud rate value. All baud rate calculations are based
629 * on the actual baud rate required.
631 static unsigned int stli_baudrates
[] = {
632 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
633 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
636 /*****************************************************************************/
639 * Define some handy local macros...
642 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
645 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
647 /*****************************************************************************/
650 * Prototype all functions in this driver!
654 static void stli_argbrds(void);
655 static int stli_parsebrd(stlconf_t
*confp
, char **argp
);
657 static unsigned long stli_atol(char *str
);
661 static int stli_open(struct tty_struct
*tty
, struct file
*filp
);
662 static void stli_close(struct tty_struct
*tty
, struct file
*filp
);
663 static int stli_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
);
664 static void stli_putchar(struct tty_struct
*tty
, unsigned char ch
);
665 static void stli_flushchars(struct tty_struct
*tty
);
666 static int stli_writeroom(struct tty_struct
*tty
);
667 static int stli_charsinbuffer(struct tty_struct
*tty
);
668 static int stli_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
);
669 static void stli_settermios(struct tty_struct
*tty
, struct termios
*old
);
670 static void stli_throttle(struct tty_struct
*tty
);
671 static void stli_unthrottle(struct tty_struct
*tty
);
672 static void stli_stop(struct tty_struct
*tty
);
673 static void stli_start(struct tty_struct
*tty
);
674 static void stli_flushbuffer(struct tty_struct
*tty
);
675 static void stli_breakctl(struct tty_struct
*tty
, int state
);
676 static void stli_waituntilsent(struct tty_struct
*tty
, int timeout
);
677 static void stli_sendxchar(struct tty_struct
*tty
, char ch
);
678 static void stli_hangup(struct tty_struct
*tty
);
679 static int stli_portinfo(stlibrd_t
*brdp
, stliport_t
*portp
, int portnr
, char *pos
);
681 static int stli_brdinit(stlibrd_t
*brdp
);
682 static int stli_startbrd(stlibrd_t
*brdp
);
683 static ssize_t
stli_memread(struct file
*fp
, char __user
*buf
, size_t count
, loff_t
*offp
);
684 static ssize_t
stli_memwrite(struct file
*fp
, const char __user
*buf
, size_t count
, loff_t
*offp
);
685 static int stli_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
);
686 static void stli_brdpoll(stlibrd_t
*brdp
, volatile cdkhdr_t
*hdrp
);
687 static void stli_poll(unsigned long arg
);
688 static int stli_hostcmd(stlibrd_t
*brdp
, stliport_t
*portp
);
689 static int stli_initopen(stlibrd_t
*brdp
, stliport_t
*portp
);
690 static int stli_rawopen(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
);
691 static int stli_rawclose(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
);
692 static int stli_waitcarrier(stlibrd_t
*brdp
, stliport_t
*portp
, struct file
*filp
);
693 static void stli_dohangup(void *arg
);
694 static int stli_setport(stliport_t
*portp
);
695 static int stli_cmdwait(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
696 static void stli_sendcmd(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
697 static void stli_dodelaycmd(stliport_t
*portp
, volatile cdkctrl_t
*cp
);
698 static void stli_mkasyport(stliport_t
*portp
, asyport_t
*pp
, struct termios
*tiosp
);
699 static void stli_mkasysigs(asysigs_t
*sp
, int dtr
, int rts
);
700 static long stli_mktiocm(unsigned long sigvalue
);
701 static void stli_read(stlibrd_t
*brdp
, stliport_t
*portp
);
702 static int stli_getserial(stliport_t
*portp
, struct serial_struct __user
*sp
);
703 static int stli_setserial(stliport_t
*portp
, struct serial_struct __user
*sp
);
704 static int stli_getbrdstats(combrd_t __user
*bp
);
705 static int stli_getportstats(stliport_t
*portp
, comstats_t __user
*cp
);
706 static int stli_portcmdstats(stliport_t
*portp
);
707 static int stli_clrportstats(stliport_t
*portp
, comstats_t __user
*cp
);
708 static int stli_getportstruct(stliport_t __user
*arg
);
709 static int stli_getbrdstruct(stlibrd_t __user
*arg
);
710 static void *stli_memalloc(int len
);
711 static stlibrd_t
*stli_allocbrd(void);
713 static void stli_ecpinit(stlibrd_t
*brdp
);
714 static void stli_ecpenable(stlibrd_t
*brdp
);
715 static void stli_ecpdisable(stlibrd_t
*brdp
);
716 static char *stli_ecpgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
717 static void stli_ecpreset(stlibrd_t
*brdp
);
718 static void stli_ecpintr(stlibrd_t
*brdp
);
719 static void stli_ecpeiinit(stlibrd_t
*brdp
);
720 static void stli_ecpeienable(stlibrd_t
*brdp
);
721 static void stli_ecpeidisable(stlibrd_t
*brdp
);
722 static char *stli_ecpeigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
723 static void stli_ecpeireset(stlibrd_t
*brdp
);
724 static void stli_ecpmcenable(stlibrd_t
*brdp
);
725 static void stli_ecpmcdisable(stlibrd_t
*brdp
);
726 static char *stli_ecpmcgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
727 static void stli_ecpmcreset(stlibrd_t
*brdp
);
728 static void stli_ecppciinit(stlibrd_t
*brdp
);
729 static char *stli_ecppcigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
730 static void stli_ecppcireset(stlibrd_t
*brdp
);
732 static void stli_onbinit(stlibrd_t
*brdp
);
733 static void stli_onbenable(stlibrd_t
*brdp
);
734 static void stli_onbdisable(stlibrd_t
*brdp
);
735 static char *stli_onbgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
736 static void stli_onbreset(stlibrd_t
*brdp
);
737 static void stli_onbeinit(stlibrd_t
*brdp
);
738 static void stli_onbeenable(stlibrd_t
*brdp
);
739 static void stli_onbedisable(stlibrd_t
*brdp
);
740 static char *stli_onbegetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
741 static void stli_onbereset(stlibrd_t
*brdp
);
742 static void stli_bbyinit(stlibrd_t
*brdp
);
743 static char *stli_bbygetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
744 static void stli_bbyreset(stlibrd_t
*brdp
);
745 static void stli_stalinit(stlibrd_t
*brdp
);
746 static char *stli_stalgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
);
747 static void stli_stalreset(stlibrd_t
*brdp
);
749 static stliport_t
*stli_getport(int brdnr
, int panelnr
, int portnr
);
751 static int stli_initecp(stlibrd_t
*brdp
);
752 static int stli_initonb(stlibrd_t
*brdp
);
753 static int stli_eisamemprobe(stlibrd_t
*brdp
);
754 static int stli_initports(stlibrd_t
*brdp
);
757 static int stli_initpcibrd(int brdtype
, struct pci_dev
*devp
);
760 /*****************************************************************************/
763 * Define the driver info for a user level shared memory device. This
764 * device will work sort of like the /dev/kmem device - except that it
765 * will give access to the shared memory on the Stallion intelligent
766 * board. This is also a very useful debugging tool.
768 static struct file_operations stli_fsiomem
= {
769 .owner
= THIS_MODULE
,
770 .read
= stli_memread
,
771 .write
= stli_memwrite
,
772 .ioctl
= stli_memioctl
,
775 /*****************************************************************************/
778 * Define a timer_list entry for our poll routine. The slave board
779 * is polled every so often to see if anything needs doing. This is
780 * much cheaper on host cpu than using interrupts. It turns out to
781 * not increase character latency by much either...
783 static DEFINE_TIMER(stli_timerlist
, stli_poll
, 0, 0);
785 static int stli_timeron
;
788 * Define the calculation for the timeout routine.
790 #define STLI_TIMEOUT (jiffies + 1)
792 /*****************************************************************************/
794 static struct class *istallion_class
;
799 * Loadable module initialization stuff.
802 static int __init
istallion_module_init(void)
807 printk("init_module()\n");
813 restore_flags(flags
);
818 /*****************************************************************************/
820 static void __exit
istallion_module_exit(void)
828 printk("cleanup_module()\n");
831 printk(KERN_INFO
"Unloading %s: version %s\n", stli_drvtitle
,
838 * Free up all allocated resources used by the ports. This includes
839 * memory and interrupts.
843 del_timer(&stli_timerlist
);
846 i
= tty_unregister_driver(stli_serial
);
848 printk("STALLION: failed to un-register tty driver, "
850 restore_flags(flags
);
853 put_tty_driver(stli_serial
);
854 for (i
= 0; i
< 4; i
++) {
855 devfs_remove("staliomem/%d", i
);
856 class_device_destroy(istallion_class
, MKDEV(STL_SIOMEMMAJOR
, i
));
858 devfs_remove("staliomem");
859 class_destroy(istallion_class
);
860 if ((i
= unregister_chrdev(STL_SIOMEMMAJOR
, "staliomem")))
861 printk("STALLION: failed to un-register serial memory device, "
863 if (stli_tmpwritebuf
!= (char *) NULL
)
864 kfree(stli_tmpwritebuf
);
865 if (stli_txcookbuf
!= (char *) NULL
)
866 kfree(stli_txcookbuf
);
868 for (i
= 0; (i
< stli_nrbrds
); i
++) {
869 if ((brdp
= stli_brds
[i
]) == (stlibrd_t
*) NULL
)
871 for (j
= 0; (j
< STL_MAXPORTS
); j
++) {
872 portp
= brdp
->ports
[j
];
873 if (portp
!= (stliport_t
*) NULL
) {
874 if (portp
->tty
!= (struct tty_struct
*) NULL
)
875 tty_hangup(portp
->tty
);
880 iounmap(brdp
->membase
);
881 if (brdp
->iosize
> 0)
882 release_region(brdp
->iobase
, brdp
->iosize
);
884 stli_brds
[i
] = (stlibrd_t
*) NULL
;
887 restore_flags(flags
);
890 module_init(istallion_module_init
);
891 module_exit(istallion_module_exit
);
893 /*****************************************************************************/
896 * Check for any arguments passed in on the module load command line.
899 static void stli_argbrds(void)
906 printk("stli_argbrds()\n");
909 nrargs
= sizeof(stli_brdsp
) / sizeof(char **);
911 for (i
= stli_nrbrds
; (i
< nrargs
); i
++) {
912 memset(&conf
, 0, sizeof(conf
));
913 if (stli_parsebrd(&conf
, stli_brdsp
[i
]) == 0)
915 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
919 brdp
->brdtype
= conf
.brdtype
;
920 brdp
->iobase
= conf
.ioaddr1
;
921 brdp
->memaddr
= conf
.memaddr
;
926 /*****************************************************************************/
929 * Convert an ascii string number into an unsigned long.
932 static unsigned long stli_atol(char *str
)
940 if ((*sp
== '0') && (*(sp
+1) == 'x')) {
943 } else if (*sp
== '0') {
950 for (; (*sp
!= 0); sp
++) {
951 c
= (*sp
> '9') ? (TOLOWER(*sp
) - 'a' + 10) : (*sp
- '0');
952 if ((c
< 0) || (c
>= base
)) {
953 printk("STALLION: invalid argument %s\n", str
);
957 val
= (val
* base
) + c
;
962 /*****************************************************************************/
965 * Parse the supplied argument string, into the board conf struct.
968 static int stli_parsebrd(stlconf_t
*confp
, char **argp
)
974 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp
, (int) argp
);
977 if ((argp
[0] == (char *) NULL
) || (*argp
[0] == 0))
980 for (sp
= argp
[0], i
= 0; ((*sp
!= 0) && (i
< 25)); sp
++, i
++)
983 nrbrdnames
= sizeof(stli_brdstr
) / sizeof(stlibrdtype_t
);
984 for (i
= 0; (i
< nrbrdnames
); i
++) {
985 if (strcmp(stli_brdstr
[i
].name
, argp
[0]) == 0)
988 if (i
>= nrbrdnames
) {
989 printk("STALLION: unknown board name, %s?\n", argp
[0]);
993 confp
->brdtype
= stli_brdstr
[i
].type
;
994 if ((argp
[1] != (char *) NULL
) && (*argp
[1] != 0))
995 confp
->ioaddr1
= stli_atol(argp
[1]);
996 if ((argp
[2] != (char *) NULL
) && (*argp
[2] != 0))
997 confp
->memaddr
= stli_atol(argp
[2]);
1003 /*****************************************************************************/
1006 * Local driver kernel malloc routine.
1009 static void *stli_memalloc(int len
)
1011 return((void *) kmalloc(len
, GFP_KERNEL
));
1014 /*****************************************************************************/
1016 static int stli_open(struct tty_struct
*tty
, struct file
*filp
)
1020 unsigned int minordev
;
1021 int brdnr
, portnr
, rc
;
1024 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty
,
1025 (int) filp
, tty
->name
);
1028 minordev
= tty
->index
;
1029 brdnr
= MINOR2BRD(minordev
);
1030 if (brdnr
>= stli_nrbrds
)
1032 brdp
= stli_brds
[brdnr
];
1033 if (brdp
== (stlibrd_t
*) NULL
)
1035 if ((brdp
->state
& BST_STARTED
) == 0)
1037 portnr
= MINOR2PORT(minordev
);
1038 if ((portnr
< 0) || (portnr
> brdp
->nrports
))
1041 portp
= brdp
->ports
[portnr
];
1042 if (portp
== (stliport_t
*) NULL
)
1044 if (portp
->devnr
< 1)
1049 * Check if this port is in the middle of closing. If so then wait
1050 * until it is closed then return error status based on flag settings.
1051 * The sleep here does not need interrupt protection since the wakeup
1052 * for it is done with the same context.
1054 if (portp
->flags
& ASYNC_CLOSING
) {
1055 interruptible_sleep_on(&portp
->close_wait
);
1056 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1058 return(-ERESTARTSYS
);
1062 * On the first open of the device setup the port hardware, and
1063 * initialize the per port data structure. Since initializing the port
1064 * requires several commands to the board we will need to wait for any
1065 * other open that is already initializing the port.
1068 tty
->driver_data
= portp
;
1071 wait_event_interruptible(portp
->raw_wait
,
1072 !test_bit(ST_INITIALIZING
, &portp
->state
));
1073 if (signal_pending(current
))
1074 return(-ERESTARTSYS
);
1076 if ((portp
->flags
& ASYNC_INITIALIZED
) == 0) {
1077 set_bit(ST_INITIALIZING
, &portp
->state
);
1078 if ((rc
= stli_initopen(brdp
, portp
)) >= 0) {
1079 portp
->flags
|= ASYNC_INITIALIZED
;
1080 clear_bit(TTY_IO_ERROR
, &tty
->flags
);
1082 clear_bit(ST_INITIALIZING
, &portp
->state
);
1083 wake_up_interruptible(&portp
->raw_wait
);
1089 * Check if this port is in the middle of closing. If so then wait
1090 * until it is closed then return error status, based on flag settings.
1091 * The sleep here does not need interrupt protection since the wakeup
1092 * for it is done with the same context.
1094 if (portp
->flags
& ASYNC_CLOSING
) {
1095 interruptible_sleep_on(&portp
->close_wait
);
1096 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1098 return(-ERESTARTSYS
);
1102 * Based on type of open being done check if it can overlap with any
1103 * previous opens still in effect. If we are a normal serial device
1104 * then also we might have to wait for carrier.
1106 if (!(filp
->f_flags
& O_NONBLOCK
)) {
1107 if ((rc
= stli_waitcarrier(brdp
, portp
, filp
)) != 0)
1110 portp
->flags
|= ASYNC_NORMAL_ACTIVE
;
1114 /*****************************************************************************/
1116 static void stli_close(struct tty_struct
*tty
, struct file
*filp
)
1120 unsigned long flags
;
1123 printk("stli_close(tty=%x,filp=%x)\n", (int) tty
, (int) filp
);
1126 portp
= tty
->driver_data
;
1127 if (portp
== (stliport_t
*) NULL
)
1132 if (tty_hung_up_p(filp
)) {
1133 restore_flags(flags
);
1136 if ((tty
->count
== 1) && (portp
->refcount
!= 1))
1137 portp
->refcount
= 1;
1138 if (portp
->refcount
-- > 1) {
1139 restore_flags(flags
);
1143 portp
->flags
|= ASYNC_CLOSING
;
1146 * May want to wait for data to drain before closing. The BUSY flag
1147 * keeps track of whether we are still transmitting or not. It is
1148 * updated by messages from the slave - indicating when all chars
1149 * really have drained.
1151 if (tty
== stli_txcooktty
)
1152 stli_flushchars(tty
);
1154 if (portp
->closing_wait
!= ASYNC_CLOSING_WAIT_NONE
)
1155 tty_wait_until_sent(tty
, portp
->closing_wait
);
1157 portp
->flags
&= ~ASYNC_INITIALIZED
;
1158 brdp
= stli_brds
[portp
->brdnr
];
1159 stli_rawclose(brdp
, portp
, 0, 0);
1160 if (tty
->termios
->c_cflag
& HUPCL
) {
1161 stli_mkasysigs(&portp
->asig
, 0, 0);
1162 if (test_bit(ST_CMDING
, &portp
->state
))
1163 set_bit(ST_DOSIGS
, &portp
->state
);
1165 stli_sendcmd(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1166 sizeof(asysigs_t
), 0);
1168 clear_bit(ST_TXBUSY
, &portp
->state
);
1169 clear_bit(ST_RXSTOP
, &portp
->state
);
1170 set_bit(TTY_IO_ERROR
, &tty
->flags
);
1171 if (tty
->ldisc
.flush_buffer
)
1172 (tty
->ldisc
.flush_buffer
)(tty
);
1173 set_bit(ST_DOFLUSHRX
, &portp
->state
);
1174 stli_flushbuffer(tty
);
1177 portp
->tty
= (struct tty_struct
*) NULL
;
1179 if (portp
->openwaitcnt
) {
1180 if (portp
->close_delay
)
1181 msleep_interruptible(jiffies_to_msecs(portp
->close_delay
));
1182 wake_up_interruptible(&portp
->open_wait
);
1185 portp
->flags
&= ~(ASYNC_NORMAL_ACTIVE
|ASYNC_CLOSING
);
1186 wake_up_interruptible(&portp
->close_wait
);
1187 restore_flags(flags
);
1190 /*****************************************************************************/
1193 * Carry out first open operations on a port. This involves a number of
1194 * commands to be sent to the slave. We need to open the port, set the
1195 * notification events, set the initial port settings, get and set the
1196 * initial signal values. We sleep and wait in between each one. But
1197 * this still all happens pretty quickly.
1200 static int stli_initopen(stlibrd_t
*brdp
, stliport_t
*portp
)
1202 struct tty_struct
*tty
;
1208 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp
, (int) portp
);
1211 if ((rc
= stli_rawopen(brdp
, portp
, 0, 1)) < 0)
1214 memset(&nt
, 0, sizeof(asynotify_t
));
1215 nt
.data
= (DT_TXLOW
| DT_TXEMPTY
| DT_RXBUSY
| DT_RXBREAK
);
1217 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETNOTIFY
, &nt
,
1218 sizeof(asynotify_t
), 0)) < 0)
1222 if (tty
== (struct tty_struct
*) NULL
)
1224 stli_mkasyport(portp
, &aport
, tty
->termios
);
1225 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
,
1226 sizeof(asyport_t
), 0)) < 0)
1229 set_bit(ST_GETSIGS
, &portp
->state
);
1230 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSIGNALS
, &portp
->asig
,
1231 sizeof(asysigs_t
), 1)) < 0)
1233 if (test_and_clear_bit(ST_GETSIGS
, &portp
->state
))
1234 portp
->sigs
= stli_mktiocm(portp
->asig
.sigvalue
);
1235 stli_mkasysigs(&portp
->asig
, 1, 1);
1236 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1237 sizeof(asysigs_t
), 0)) < 0)
1243 /*****************************************************************************/
1246 * Send an open message to the slave. This will sleep waiting for the
1247 * acknowledgement, so must have user context. We need to co-ordinate
1248 * with close events here, since we don't want open and close events
1252 static int stli_rawopen(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
)
1254 volatile cdkhdr_t
*hdrp
;
1255 volatile cdkctrl_t
*cp
;
1256 volatile unsigned char *bits
;
1257 unsigned long flags
;
1261 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1262 (int) brdp
, (int) portp
, (int) arg
, wait
);
1266 * Send a message to the slave to open this port.
1272 * Slave is already closing this port. This can happen if a hangup
1273 * occurs on this port. So we must wait until it is complete. The
1274 * order of opens and closes may not be preserved across shared
1275 * memory, so we must wait until it is complete.
1277 wait_event_interruptible(portp
->raw_wait
,
1278 !test_bit(ST_CLOSING
, &portp
->state
));
1279 if (signal_pending(current
)) {
1280 restore_flags(flags
);
1281 return -ERESTARTSYS
;
1285 * Everything is ready now, so write the open message into shared
1286 * memory. Once the message is in set the service bits to say that
1287 * this port wants service.
1290 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
1293 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1294 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1296 *bits
|= portp
->portbit
;
1300 restore_flags(flags
);
1305 * Slave is in action, so now we must wait for the open acknowledgment
1309 set_bit(ST_OPENING
, &portp
->state
);
1310 wait_event_interruptible(portp
->raw_wait
,
1311 !test_bit(ST_OPENING
, &portp
->state
));
1312 if (signal_pending(current
))
1314 restore_flags(flags
);
1316 if ((rc
== 0) && (portp
->rc
!= 0))
1321 /*****************************************************************************/
1324 * Send a close message to the slave. Normally this will sleep waiting
1325 * for the acknowledgement, but if wait parameter is 0 it will not. If
1326 * wait is true then must have user context (to sleep).
1329 static int stli_rawclose(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long arg
, int wait
)
1331 volatile cdkhdr_t
*hdrp
;
1332 volatile cdkctrl_t
*cp
;
1333 volatile unsigned char *bits
;
1334 unsigned long flags
;
1338 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1339 (int) brdp
, (int) portp
, (int) arg
, wait
);
1346 * Slave is already closing this port. This can happen if a hangup
1347 * occurs on this port.
1350 wait_event_interruptible(portp
->raw_wait
,
1351 !test_bit(ST_CLOSING
, &portp
->state
));
1352 if (signal_pending(current
)) {
1353 restore_flags(flags
);
1354 return -ERESTARTSYS
;
1359 * Write the close command into shared memory.
1362 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
1365 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1366 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1368 *bits
|= portp
->portbit
;
1371 set_bit(ST_CLOSING
, &portp
->state
);
1373 restore_flags(flags
);
1378 * Slave is in action, so now we must wait for the open acknowledgment
1382 wait_event_interruptible(portp
->raw_wait
,
1383 !test_bit(ST_CLOSING
, &portp
->state
));
1384 if (signal_pending(current
))
1386 restore_flags(flags
);
1388 if ((rc
== 0) && (portp
->rc
!= 0))
1393 /*****************************************************************************/
1396 * Send a command to the slave and wait for the response. This must
1397 * have user context (it sleeps). This routine is generic in that it
1398 * can send any type of command. Its purpose is to wait for that command
1399 * to complete (as opposed to initiating the command then returning).
1402 static int stli_cmdwait(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
1404 unsigned long flags
;
1407 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1408 "copyback=%d)\n", (int) brdp
, (int) portp
, (int) cmd
,
1409 (int) arg
, size
, copyback
);
1414 wait_event_interruptible(portp
->raw_wait
,
1415 !test_bit(ST_CMDING
, &portp
->state
));
1416 if (signal_pending(current
)) {
1417 restore_flags(flags
);
1418 return -ERESTARTSYS
;
1421 stli_sendcmd(brdp
, portp
, cmd
, arg
, size
, copyback
);
1423 wait_event_interruptible(portp
->raw_wait
,
1424 !test_bit(ST_CMDING
, &portp
->state
));
1425 if (signal_pending(current
)) {
1426 restore_flags(flags
);
1427 return -ERESTARTSYS
;
1429 restore_flags(flags
);
1436 /*****************************************************************************/
1439 * Send the termios settings for this port to the slave. This sleeps
1440 * waiting for the command to complete - so must have user context.
1443 static int stli_setport(stliport_t
*portp
)
1449 printk("stli_setport(portp=%x)\n", (int) portp
);
1452 if (portp
== (stliport_t
*) NULL
)
1454 if (portp
->tty
== (struct tty_struct
*) NULL
)
1456 if ((portp
->brdnr
< 0) && (portp
->brdnr
>= stli_nrbrds
))
1458 brdp
= stli_brds
[portp
->brdnr
];
1459 if (brdp
== (stlibrd_t
*) NULL
)
1462 stli_mkasyport(portp
, &aport
, portp
->tty
->termios
);
1463 return(stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
, sizeof(asyport_t
), 0));
1466 /*****************************************************************************/
1469 * Possibly need to wait for carrier (DCD signal) to come high. Say
1470 * maybe because if we are clocal then we don't need to wait...
1473 static int stli_waitcarrier(stlibrd_t
*brdp
, stliport_t
*portp
, struct file
*filp
)
1475 unsigned long flags
;
1479 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1480 (int) brdp
, (int) portp
, (int) filp
);
1486 if (portp
->tty
->termios
->c_cflag
& CLOCAL
)
1491 portp
->openwaitcnt
++;
1492 if (! tty_hung_up_p(filp
))
1496 stli_mkasysigs(&portp
->asig
, 1, 1);
1497 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETSIGNALS
,
1498 &portp
->asig
, sizeof(asysigs_t
), 0)) < 0)
1500 if (tty_hung_up_p(filp
) ||
1501 ((portp
->flags
& ASYNC_INITIALIZED
) == 0)) {
1502 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
1508 if (((portp
->flags
& ASYNC_CLOSING
) == 0) &&
1509 (doclocal
|| (portp
->sigs
& TIOCM_CD
))) {
1512 if (signal_pending(current
)) {
1516 interruptible_sleep_on(&portp
->open_wait
);
1519 if (! tty_hung_up_p(filp
))
1521 portp
->openwaitcnt
--;
1522 restore_flags(flags
);
1527 /*****************************************************************************/
1530 * Write routine. Take the data and put it in the shared memory ring
1531 * queue. If port is not already sending chars then need to mark the
1532 * service bits for this port.
1535 static int stli_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
)
1537 volatile cdkasy_t
*ap
;
1538 volatile cdkhdr_t
*hdrp
;
1539 volatile unsigned char *bits
;
1540 unsigned char *shbuf
, *chbuf
;
1543 unsigned int len
, stlen
, head
, tail
, size
;
1544 unsigned long flags
;
1547 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1548 (int) tty
, (int) buf
, count
);
1551 if ((tty
== (struct tty_struct
*) NULL
) ||
1552 (stli_tmpwritebuf
== (char *) NULL
))
1554 if (tty
== stli_txcooktty
)
1555 stli_flushchars(tty
);
1556 portp
= tty
->driver_data
;
1557 if (portp
== (stliport_t
*) NULL
)
1559 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1561 brdp
= stli_brds
[portp
->brdnr
];
1562 if (brdp
== (stlibrd_t
*) NULL
)
1564 chbuf
= (unsigned char *) buf
;
1567 * All data is now local, shove as much as possible into shared memory.
1572 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1573 head
= (unsigned int) ap
->txq
.head
;
1574 tail
= (unsigned int) ap
->txq
.tail
;
1575 if (tail
!= ((unsigned int) ap
->txq
.tail
))
1576 tail
= (unsigned int) ap
->txq
.tail
;
1577 size
= portp
->txsize
;
1579 len
= size
- (head
- tail
) - 1;
1580 stlen
= size
- head
;
1582 len
= tail
- head
- 1;
1586 len
= MIN(len
, count
);
1588 shbuf
= (char *) EBRDGETMEMPTR(brdp
, portp
->txoffset
);
1591 stlen
= MIN(len
, stlen
);
1592 memcpy((shbuf
+ head
), chbuf
, stlen
);
1603 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1604 ap
->txq
.head
= head
;
1605 if (test_bit(ST_TXBUSY
, &portp
->state
)) {
1606 if (ap
->changed
.data
& DT_TXEMPTY
)
1607 ap
->changed
.data
&= ~DT_TXEMPTY
;
1609 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1610 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1612 *bits
|= portp
->portbit
;
1613 set_bit(ST_TXBUSY
, &portp
->state
);
1616 restore_flags(flags
);
1621 /*****************************************************************************/
1624 * Output a single character. We put it into a temporary local buffer
1625 * (for speed) then write out that buffer when the flushchars routine
1626 * is called. There is a safety catch here so that if some other port
1627 * writes chars before the current buffer has been, then we write them
1628 * first them do the new ports.
1631 static void stli_putchar(struct tty_struct
*tty
, unsigned char ch
)
1634 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty
, (int) ch
);
1637 if (tty
== (struct tty_struct
*) NULL
)
1639 if (tty
!= stli_txcooktty
) {
1640 if (stli_txcooktty
!= (struct tty_struct
*) NULL
)
1641 stli_flushchars(stli_txcooktty
);
1642 stli_txcooktty
= tty
;
1645 stli_txcookbuf
[stli_txcooksize
++] = ch
;
1648 /*****************************************************************************/
1651 * Transfer characters from the local TX cooking buffer to the board.
1652 * We sort of ignore the tty that gets passed in here. We rely on the
1653 * info stored with the TX cook buffer to tell us which port to flush
1654 * the data on. In any case we clean out the TX cook buffer, for re-use
1658 static void stli_flushchars(struct tty_struct
*tty
)
1660 volatile cdkhdr_t
*hdrp
;
1661 volatile unsigned char *bits
;
1662 volatile cdkasy_t
*ap
;
1663 struct tty_struct
*cooktty
;
1666 unsigned int len
, stlen
, head
, tail
, size
, count
, cooksize
;
1667 unsigned char *buf
, *shbuf
;
1668 unsigned long flags
;
1671 printk("stli_flushchars(tty=%x)\n", (int) tty
);
1674 cooksize
= stli_txcooksize
;
1675 cooktty
= stli_txcooktty
;
1676 stli_txcooksize
= 0;
1677 stli_txcookrealsize
= 0;
1678 stli_txcooktty
= (struct tty_struct
*) NULL
;
1680 if (tty
== (struct tty_struct
*) NULL
)
1682 if (cooktty
== (struct tty_struct
*) NULL
)
1689 portp
= tty
->driver_data
;
1690 if (portp
== (stliport_t
*) NULL
)
1692 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1694 brdp
= stli_brds
[portp
->brdnr
];
1695 if (brdp
== (stlibrd_t
*) NULL
)
1702 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1703 head
= (unsigned int) ap
->txq
.head
;
1704 tail
= (unsigned int) ap
->txq
.tail
;
1705 if (tail
!= ((unsigned int) ap
->txq
.tail
))
1706 tail
= (unsigned int) ap
->txq
.tail
;
1707 size
= portp
->txsize
;
1709 len
= size
- (head
- tail
) - 1;
1710 stlen
= size
- head
;
1712 len
= tail
- head
- 1;
1716 len
= MIN(len
, cooksize
);
1718 shbuf
= (char *) EBRDGETMEMPTR(brdp
, portp
->txoffset
);
1719 buf
= stli_txcookbuf
;
1722 stlen
= MIN(len
, stlen
);
1723 memcpy((shbuf
+ head
), buf
, stlen
);
1734 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1735 ap
->txq
.head
= head
;
1737 if (test_bit(ST_TXBUSY
, &portp
->state
)) {
1738 if (ap
->changed
.data
& DT_TXEMPTY
)
1739 ap
->changed
.data
&= ~DT_TXEMPTY
;
1741 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1742 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
1744 *bits
|= portp
->portbit
;
1745 set_bit(ST_TXBUSY
, &portp
->state
);
1748 restore_flags(flags
);
1751 /*****************************************************************************/
1753 static int stli_writeroom(struct tty_struct
*tty
)
1755 volatile cdkasyrq_t
*rp
;
1758 unsigned int head
, tail
, len
;
1759 unsigned long flags
;
1762 printk("stli_writeroom(tty=%x)\n", (int) tty
);
1765 if (tty
== (struct tty_struct
*) NULL
)
1767 if (tty
== stli_txcooktty
) {
1768 if (stli_txcookrealsize
!= 0) {
1769 len
= stli_txcookrealsize
- stli_txcooksize
;
1774 portp
= tty
->driver_data
;
1775 if (portp
== (stliport_t
*) NULL
)
1777 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1779 brdp
= stli_brds
[portp
->brdnr
];
1780 if (brdp
== (stlibrd_t
*) NULL
)
1786 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->txq
;
1787 head
= (unsigned int) rp
->head
;
1788 tail
= (unsigned int) rp
->tail
;
1789 if (tail
!= ((unsigned int) rp
->tail
))
1790 tail
= (unsigned int) rp
->tail
;
1791 len
= (head
>= tail
) ? (portp
->txsize
- (head
- tail
)) : (tail
- head
);
1794 restore_flags(flags
);
1796 if (tty
== stli_txcooktty
) {
1797 stli_txcookrealsize
= len
;
1798 len
-= stli_txcooksize
;
1803 /*****************************************************************************/
1806 * Return the number of characters in the transmit buffer. Normally we
1807 * will return the number of chars in the shared memory ring queue.
1808 * We need to kludge around the case where the shared memory buffer is
1809 * empty but not all characters have drained yet, for this case just
1810 * return that there is 1 character in the buffer!
1813 static int stli_charsinbuffer(struct tty_struct
*tty
)
1815 volatile cdkasyrq_t
*rp
;
1818 unsigned int head
, tail
, len
;
1819 unsigned long flags
;
1822 printk("stli_charsinbuffer(tty=%x)\n", (int) tty
);
1825 if (tty
== (struct tty_struct
*) NULL
)
1827 if (tty
== stli_txcooktty
)
1828 stli_flushchars(tty
);
1829 portp
= tty
->driver_data
;
1830 if (portp
== (stliport_t
*) NULL
)
1832 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1834 brdp
= stli_brds
[portp
->brdnr
];
1835 if (brdp
== (stlibrd_t
*) NULL
)
1841 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->txq
;
1842 head
= (unsigned int) rp
->head
;
1843 tail
= (unsigned int) rp
->tail
;
1844 if (tail
!= ((unsigned int) rp
->tail
))
1845 tail
= (unsigned int) rp
->tail
;
1846 len
= (head
>= tail
) ? (head
- tail
) : (portp
->txsize
- (tail
- head
));
1847 if ((len
== 0) && test_bit(ST_TXBUSY
, &portp
->state
))
1850 restore_flags(flags
);
1855 /*****************************************************************************/
1858 * Generate the serial struct info.
1861 static int stli_getserial(stliport_t
*portp
, struct serial_struct __user
*sp
)
1863 struct serial_struct sio
;
1867 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp
, (int) sp
);
1870 memset(&sio
, 0, sizeof(struct serial_struct
));
1871 sio
.type
= PORT_UNKNOWN
;
1872 sio
.line
= portp
->portnr
;
1874 sio
.flags
= portp
->flags
;
1875 sio
.baud_base
= portp
->baud_base
;
1876 sio
.close_delay
= portp
->close_delay
;
1877 sio
.closing_wait
= portp
->closing_wait
;
1878 sio
.custom_divisor
= portp
->custom_divisor
;
1879 sio
.xmit_fifo_size
= 0;
1882 brdp
= stli_brds
[portp
->brdnr
];
1883 if (brdp
!= (stlibrd_t
*) NULL
)
1884 sio
.port
= brdp
->iobase
;
1886 return copy_to_user(sp
, &sio
, sizeof(struct serial_struct
)) ?
1890 /*****************************************************************************/
1893 * Set port according to the serial struct info.
1894 * At this point we do not do any auto-configure stuff, so we will
1895 * just quietly ignore any requests to change irq, etc.
1898 static int stli_setserial(stliport_t
*portp
, struct serial_struct __user
*sp
)
1900 struct serial_struct sio
;
1904 printk("stli_setserial(portp=%p,sp=%p)\n", portp
, sp
);
1907 if (copy_from_user(&sio
, sp
, sizeof(struct serial_struct
)))
1909 if (!capable(CAP_SYS_ADMIN
)) {
1910 if ((sio
.baud_base
!= portp
->baud_base
) ||
1911 (sio
.close_delay
!= portp
->close_delay
) ||
1912 ((sio
.flags
& ~ASYNC_USR_MASK
) !=
1913 (portp
->flags
& ~ASYNC_USR_MASK
)))
1917 portp
->flags
= (portp
->flags
& ~ASYNC_USR_MASK
) |
1918 (sio
.flags
& ASYNC_USR_MASK
);
1919 portp
->baud_base
= sio
.baud_base
;
1920 portp
->close_delay
= sio
.close_delay
;
1921 portp
->closing_wait
= sio
.closing_wait
;
1922 portp
->custom_divisor
= sio
.custom_divisor
;
1924 if ((rc
= stli_setport(portp
)) < 0)
1929 /*****************************************************************************/
1931 static int stli_tiocmget(struct tty_struct
*tty
, struct file
*file
)
1933 stliport_t
*portp
= tty
->driver_data
;
1937 if (portp
== (stliport_t
*) NULL
)
1939 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1941 brdp
= stli_brds
[portp
->brdnr
];
1942 if (brdp
== (stlibrd_t
*) NULL
)
1944 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1947 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSIGNALS
,
1948 &portp
->asig
, sizeof(asysigs_t
), 1)) < 0)
1951 return stli_mktiocm(portp
->asig
.sigvalue
);
1954 static int stli_tiocmset(struct tty_struct
*tty
, struct file
*file
,
1955 unsigned int set
, unsigned int clear
)
1957 stliport_t
*portp
= tty
->driver_data
;
1959 int rts
= -1, dtr
= -1;
1961 if (portp
== (stliport_t
*) NULL
)
1963 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
1965 brdp
= stli_brds
[portp
->brdnr
];
1966 if (brdp
== (stlibrd_t
*) NULL
)
1968 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1971 if (set
& TIOCM_RTS
)
1973 if (set
& TIOCM_DTR
)
1975 if (clear
& TIOCM_RTS
)
1977 if (clear
& TIOCM_DTR
)
1980 stli_mkasysigs(&portp
->asig
, dtr
, rts
);
1982 return stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1983 sizeof(asysigs_t
), 0);
1986 static int stli_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1992 void __user
*argp
= (void __user
*)arg
;
1995 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1996 (int) tty
, (int) file
, cmd
, (int) arg
);
1999 if (tty
== (struct tty_struct
*) NULL
)
2001 portp
= tty
->driver_data
;
2002 if (portp
== (stliport_t
*) NULL
)
2004 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2006 brdp
= stli_brds
[portp
->brdnr
];
2007 if (brdp
== (stlibrd_t
*) NULL
)
2010 if ((cmd
!= TIOCGSERIAL
) && (cmd
!= TIOCSSERIAL
) &&
2011 (cmd
!= COM_GETPORTSTATS
) && (cmd
!= COM_CLRPORTSTATS
)) {
2012 if (tty
->flags
& (1 << TTY_IO_ERROR
))
2020 rc
= put_user(((tty
->termios
->c_cflag
& CLOCAL
) ? 1 : 0),
2021 (unsigned __user
*) arg
);
2024 if ((rc
= get_user(ival
, (unsigned __user
*) arg
)) == 0)
2025 tty
->termios
->c_cflag
=
2026 (tty
->termios
->c_cflag
& ~CLOCAL
) |
2027 (ival
? CLOCAL
: 0);
2030 rc
= stli_getserial(portp
, argp
);
2033 rc
= stli_setserial(portp
, argp
);
2036 rc
= put_user(portp
->pflag
, (unsigned __user
*)argp
);
2039 if ((rc
= get_user(portp
->pflag
, (unsigned __user
*)argp
)) == 0)
2040 stli_setport(portp
);
2042 case COM_GETPORTSTATS
:
2043 rc
= stli_getportstats(portp
, argp
);
2045 case COM_CLRPORTSTATS
:
2046 rc
= stli_clrportstats(portp
, argp
);
2052 case TIOCSERGSTRUCT
:
2053 case TIOCSERGETMULTI
:
2054 case TIOCSERSETMULTI
:
2063 /*****************************************************************************/
2066 * This routine assumes that we have user context and can sleep.
2067 * Looks like it is true for the current ttys implementation..!!
2070 static void stli_settermios(struct tty_struct
*tty
, struct termios
*old
)
2074 struct termios
*tiosp
;
2078 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty
, (int) old
);
2081 if (tty
== (struct tty_struct
*) NULL
)
2083 portp
= tty
->driver_data
;
2084 if (portp
== (stliport_t
*) NULL
)
2086 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2088 brdp
= stli_brds
[portp
->brdnr
];
2089 if (brdp
== (stlibrd_t
*) NULL
)
2092 tiosp
= tty
->termios
;
2093 if ((tiosp
->c_cflag
== old
->c_cflag
) &&
2094 (tiosp
->c_iflag
== old
->c_iflag
))
2097 stli_mkasyport(portp
, &aport
, tiosp
);
2098 stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
, sizeof(asyport_t
), 0);
2099 stli_mkasysigs(&portp
->asig
, ((tiosp
->c_cflag
& CBAUD
) ? 1 : 0), -1);
2100 stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
2101 sizeof(asysigs_t
), 0);
2102 if ((old
->c_cflag
& CRTSCTS
) && ((tiosp
->c_cflag
& CRTSCTS
) == 0))
2103 tty
->hw_stopped
= 0;
2104 if (((old
->c_cflag
& CLOCAL
) == 0) && (tiosp
->c_cflag
& CLOCAL
))
2105 wake_up_interruptible(&portp
->open_wait
);
2108 /*****************************************************************************/
2111 * Attempt to flow control who ever is sending us data. We won't really
2112 * do any flow control action here. We can't directly, and even if we
2113 * wanted to we would have to send a command to the slave. The slave
2114 * knows how to flow control, and will do so when its buffers reach its
2115 * internal high water marks. So what we will do is set a local state
2116 * bit that will stop us sending any RX data up from the poll routine
2117 * (which is the place where RX data from the slave is handled).
2120 static void stli_throttle(struct tty_struct
*tty
)
2125 printk("stli_throttle(tty=%x)\n", (int) tty
);
2128 if (tty
== (struct tty_struct
*) NULL
)
2130 portp
= tty
->driver_data
;
2131 if (portp
== (stliport_t
*) NULL
)
2134 set_bit(ST_RXSTOP
, &portp
->state
);
2137 /*****************************************************************************/
2140 * Unflow control the device sending us data... That means that all
2141 * we have to do is clear the RXSTOP state bit. The next poll call
2142 * will then be able to pass the RX data back up.
2145 static void stli_unthrottle(struct tty_struct
*tty
)
2150 printk("stli_unthrottle(tty=%x)\n", (int) tty
);
2153 if (tty
== (struct tty_struct
*) NULL
)
2155 portp
= tty
->driver_data
;
2156 if (portp
== (stliport_t
*) NULL
)
2159 clear_bit(ST_RXSTOP
, &portp
->state
);
2162 /*****************************************************************************/
2165 * Stop the transmitter. Basically to do this we will just turn TX
2169 static void stli_stop(struct tty_struct
*tty
)
2176 printk("stli_stop(tty=%x)\n", (int) tty
);
2179 if (tty
== (struct tty_struct
*) NULL
)
2181 portp
= tty
->driver_data
;
2182 if (portp
== (stliport_t
*) NULL
)
2184 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2186 brdp
= stli_brds
[portp
->brdnr
];
2187 if (brdp
== (stlibrd_t
*) NULL
)
2190 memset(&actrl
, 0, sizeof(asyctrl_t
));
2191 actrl
.txctrl
= CT_STOPFLOW
;
2193 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2197 /*****************************************************************************/
2200 * Start the transmitter again. Just turn TX interrupts back on.
2203 static void stli_start(struct tty_struct
*tty
)
2210 printk("stli_start(tty=%x)\n", (int) tty
);
2213 if (tty
== (struct tty_struct
*) NULL
)
2215 portp
= tty
->driver_data
;
2216 if (portp
== (stliport_t
*) NULL
)
2218 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2220 brdp
= stli_brds
[portp
->brdnr
];
2221 if (brdp
== (stlibrd_t
*) NULL
)
2224 memset(&actrl
, 0, sizeof(asyctrl_t
));
2225 actrl
.txctrl
= CT_STARTFLOW
;
2227 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2231 /*****************************************************************************/
2234 * Scheduler called hang up routine. This is called from the scheduler,
2235 * not direct from the driver "poll" routine. We can't call it there
2236 * since the real local hangup code will enable/disable the board and
2237 * other things that we can't do while handling the poll. Much easier
2238 * to deal with it some time later (don't really care when, hangups
2239 * aren't that time critical).
2242 static void stli_dohangup(void *arg
)
2247 printk(KERN_DEBUG
"stli_dohangup(portp=%x)\n", (int) arg
);
2251 * FIXME: There's a module removal race here: tty_hangup
2252 * calls schedule_work which will call into this
2255 portp
= (stliport_t
*) arg
;
2256 if (portp
!= (stliport_t
*) NULL
) {
2257 if (portp
->tty
!= (struct tty_struct
*) NULL
) {
2258 tty_hangup(portp
->tty
);
2263 /*****************************************************************************/
2266 * Hangup this port. This is pretty much like closing the port, only
2267 * a little more brutal. No waiting for data to drain. Shutdown the
2268 * port and maybe drop signals. This is rather tricky really. We want
2269 * to close the port as well.
2272 static void stli_hangup(struct tty_struct
*tty
)
2276 unsigned long flags
;
2279 printk(KERN_DEBUG
"stli_hangup(tty=%x)\n", (int) tty
);
2282 if (tty
== (struct tty_struct
*) NULL
)
2284 portp
= tty
->driver_data
;
2285 if (portp
== (stliport_t
*) NULL
)
2287 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2289 brdp
= stli_brds
[portp
->brdnr
];
2290 if (brdp
== (stlibrd_t
*) NULL
)
2293 portp
->flags
&= ~ASYNC_INITIALIZED
;
2297 if (! test_bit(ST_CLOSING
, &portp
->state
))
2298 stli_rawclose(brdp
, portp
, 0, 0);
2299 if (tty
->termios
->c_cflag
& HUPCL
) {
2300 stli_mkasysigs(&portp
->asig
, 0, 0);
2301 if (test_bit(ST_CMDING
, &portp
->state
)) {
2302 set_bit(ST_DOSIGS
, &portp
->state
);
2303 set_bit(ST_DOFLUSHTX
, &portp
->state
);
2304 set_bit(ST_DOFLUSHRX
, &portp
->state
);
2306 stli_sendcmd(brdp
, portp
, A_SETSIGNALSF
,
2307 &portp
->asig
, sizeof(asysigs_t
), 0);
2310 restore_flags(flags
);
2312 clear_bit(ST_TXBUSY
, &portp
->state
);
2313 clear_bit(ST_RXSTOP
, &portp
->state
);
2314 set_bit(TTY_IO_ERROR
, &tty
->flags
);
2315 portp
->tty
= (struct tty_struct
*) NULL
;
2316 portp
->flags
&= ~ASYNC_NORMAL_ACTIVE
;
2317 portp
->refcount
= 0;
2318 wake_up_interruptible(&portp
->open_wait
);
2321 /*****************************************************************************/
2324 * Flush characters from the lower buffer. We may not have user context
2325 * so we cannot sleep waiting for it to complete. Also we need to check
2326 * if there is chars for this port in the TX cook buffer, and flush them
2330 static void stli_flushbuffer(struct tty_struct
*tty
)
2334 unsigned long ftype
, flags
;
2337 printk(KERN_DEBUG
"stli_flushbuffer(tty=%x)\n", (int) tty
);
2340 if (tty
== (struct tty_struct
*) NULL
)
2342 portp
= tty
->driver_data
;
2343 if (portp
== (stliport_t
*) NULL
)
2345 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2347 brdp
= stli_brds
[portp
->brdnr
];
2348 if (brdp
== (stlibrd_t
*) NULL
)
2353 if (tty
== stli_txcooktty
) {
2354 stli_txcooktty
= (struct tty_struct
*) NULL
;
2355 stli_txcooksize
= 0;
2356 stli_txcookrealsize
= 0;
2358 if (test_bit(ST_CMDING
, &portp
->state
)) {
2359 set_bit(ST_DOFLUSHTX
, &portp
->state
);
2362 if (test_bit(ST_DOFLUSHRX
, &portp
->state
)) {
2364 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2366 stli_sendcmd(brdp
, portp
, A_FLUSH
, &ftype
,
2367 sizeof(unsigned long), 0);
2369 restore_flags(flags
);
2371 wake_up_interruptible(&tty
->write_wait
);
2372 if ((tty
->flags
& (1 << TTY_DO_WRITE_WAKEUP
)) &&
2373 tty
->ldisc
.write_wakeup
)
2374 (tty
->ldisc
.write_wakeup
)(tty
);
2377 /*****************************************************************************/
2379 static void stli_breakctl(struct tty_struct
*tty
, int state
)
2384 /* long savestate, savetime; */
2387 printk(KERN_DEBUG
"stli_breakctl(tty=%x,state=%d)\n", (int) tty
, state
);
2390 if (tty
== (struct tty_struct
*) NULL
)
2392 portp
= tty
->driver_data
;
2393 if (portp
== (stliport_t
*) NULL
)
2395 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2397 brdp
= stli_brds
[portp
->brdnr
];
2398 if (brdp
== (stlibrd_t
*) NULL
)
2402 * Due to a bug in the tty send_break() code we need to preserve
2403 * the current process state and timeout...
2404 savetime = current->timeout;
2405 savestate = current->state;
2408 arg
= (state
== -1) ? BREAKON
: BREAKOFF
;
2409 stli_cmdwait(brdp
, portp
, A_BREAK
, &arg
, sizeof(long), 0);
2413 current->timeout = savetime;
2414 current->state = savestate;
2418 /*****************************************************************************/
2420 static void stli_waituntilsent(struct tty_struct
*tty
, int timeout
)
2426 printk(KERN_DEBUG
"stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty
, timeout
);
2429 if (tty
== (struct tty_struct
*) NULL
)
2431 portp
= tty
->driver_data
;
2432 if (portp
== (stliport_t
*) NULL
)
2437 tend
= jiffies
+ timeout
;
2439 while (test_bit(ST_TXBUSY
, &portp
->state
)) {
2440 if (signal_pending(current
))
2442 msleep_interruptible(20);
2443 if (time_after_eq(jiffies
, tend
))
2448 /*****************************************************************************/
2450 static void stli_sendxchar(struct tty_struct
*tty
, char ch
)
2457 printk(KERN_DEBUG
"stli_sendxchar(tty=%x,ch=%x)\n", (int) tty
, ch
);
2460 if (tty
== (struct tty_struct
*) NULL
)
2462 portp
= tty
->driver_data
;
2463 if (portp
== (stliport_t
*) NULL
)
2465 if ((portp
->brdnr
< 0) || (portp
->brdnr
>= stli_nrbrds
))
2467 brdp
= stli_brds
[portp
->brdnr
];
2468 if (brdp
== (stlibrd_t
*) NULL
)
2471 memset(&actrl
, 0, sizeof(asyctrl_t
));
2472 if (ch
== STOP_CHAR(tty
)) {
2473 actrl
.rxctrl
= CT_STOPFLOW
;
2474 } else if (ch
== START_CHAR(tty
)) {
2475 actrl
.rxctrl
= CT_STARTFLOW
;
2477 actrl
.txctrl
= CT_SENDCHR
;
2481 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
2484 /*****************************************************************************/
2489 * Format info for a specified port. The line is deliberately limited
2490 * to 80 characters. (If it is too long it will be truncated, if too
2491 * short then padded with spaces).
2494 static int stli_portinfo(stlibrd_t
*brdp
, stliport_t
*portp
, int portnr
, char *pos
)
2499 rc
= stli_portcmdstats(portp
);
2502 if (brdp
->state
& BST_STARTED
) {
2503 switch (stli_comstats
.hwid
) {
2504 case 0: uart
= "2681"; break;
2505 case 1: uart
= "SC26198"; break;
2506 default: uart
= "CD1400"; break;
2511 sp
+= sprintf(sp
, "%d: uart:%s ", portnr
, uart
);
2513 if ((brdp
->state
& BST_STARTED
) && (rc
>= 0)) {
2514 sp
+= sprintf(sp
, "tx:%d rx:%d", (int) stli_comstats
.txtotal
,
2515 (int) stli_comstats
.rxtotal
);
2517 if (stli_comstats
.rxframing
)
2518 sp
+= sprintf(sp
, " fe:%d",
2519 (int) stli_comstats
.rxframing
);
2520 if (stli_comstats
.rxparity
)
2521 sp
+= sprintf(sp
, " pe:%d",
2522 (int) stli_comstats
.rxparity
);
2523 if (stli_comstats
.rxbreaks
)
2524 sp
+= sprintf(sp
, " brk:%d",
2525 (int) stli_comstats
.rxbreaks
);
2526 if (stli_comstats
.rxoverrun
)
2527 sp
+= sprintf(sp
, " oe:%d",
2528 (int) stli_comstats
.rxoverrun
);
2530 cnt
= sprintf(sp
, "%s%s%s%s%s ",
2531 (stli_comstats
.signals
& TIOCM_RTS
) ? "|RTS" : "",
2532 (stli_comstats
.signals
& TIOCM_CTS
) ? "|CTS" : "",
2533 (stli_comstats
.signals
& TIOCM_DTR
) ? "|DTR" : "",
2534 (stli_comstats
.signals
& TIOCM_CD
) ? "|DCD" : "",
2535 (stli_comstats
.signals
& TIOCM_DSR
) ? "|DSR" : "");
2540 for (cnt
= (sp
- pos
); (cnt
< (MAXLINE
- 1)); cnt
++)
2543 pos
[(MAXLINE
- 2)] = '+';
2544 pos
[(MAXLINE
- 1)] = '\n';
2549 /*****************************************************************************/
2552 * Port info, read from the /proc file system.
2555 static int stli_readproc(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
2559 int brdnr
, portnr
, totalport
;
2564 printk(KERN_DEBUG
"stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2565 "data=%x\n", (int) page
, (int) start
, (int) off
, count
,
2566 (int) eof
, (int) data
);
2574 pos
+= sprintf(pos
, "%s: version %s", stli_drvtitle
,
2576 while (pos
< (page
+ MAXLINE
- 1))
2583 * We scan through for each board, panel and port. The offset is
2584 * calculated on the fly, and irrelevant ports are skipped.
2586 for (brdnr
= 0; (brdnr
< stli_nrbrds
); brdnr
++) {
2587 brdp
= stli_brds
[brdnr
];
2588 if (brdp
== (stlibrd_t
*) NULL
)
2590 if (brdp
->state
== 0)
2593 maxoff
= curoff
+ (brdp
->nrports
* MAXLINE
);
2594 if (off
>= maxoff
) {
2599 totalport
= brdnr
* STL_MAXPORTS
;
2600 for (portnr
= 0; (portnr
< brdp
->nrports
); portnr
++,
2602 portp
= brdp
->ports
[portnr
];
2603 if (portp
== (stliport_t
*) NULL
)
2605 if (off
>= (curoff
+= MAXLINE
))
2607 if ((pos
- page
+ MAXLINE
) > count
)
2609 pos
+= stli_portinfo(brdp
, portp
, totalport
, pos
);
2620 /*****************************************************************************/
2623 * Generic send command routine. This will send a message to the slave,
2624 * of the specified type with the specified argument. Must be very
2625 * careful of data that will be copied out from shared memory -
2626 * containing command results. The command completion is all done from
2627 * a poll routine that does not have user context. Therefore you cannot
2628 * copy back directly into user space, or to the kernel stack of a
2629 * process. This routine does not sleep, so can be called from anywhere.
2632 static void stli_sendcmd(stlibrd_t
*brdp
, stliport_t
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
2634 volatile cdkhdr_t
*hdrp
;
2635 volatile cdkctrl_t
*cp
;
2636 volatile unsigned char *bits
;
2637 unsigned long flags
;
2640 printk(KERN_DEBUG
"stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2641 "copyback=%d)\n", (int) brdp
, (int) portp
, (int) cmd
,
2642 (int) arg
, size
, copyback
);
2648 if (test_bit(ST_CMDING
, &portp
->state
)) {
2649 printk(KERN_ERR
"STALLION: command already busy, cmd=%x!\n",
2651 restore_flags(flags
);
2656 cp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
2658 memcpy((void *) &(cp
->args
[0]), arg
, size
);
2661 portp
->argsize
= size
;
2666 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
2667 bits
= ((volatile unsigned char *) hdrp
) + brdp
->slaveoffset
+
2669 *bits
|= portp
->portbit
;
2670 set_bit(ST_CMDING
, &portp
->state
);
2672 restore_flags(flags
);
2675 /*****************************************************************************/
2678 * Read data from shared memory. This assumes that the shared memory
2679 * is enabled and that interrupts are off. Basically we just empty out
2680 * the shared memory buffer into the tty buffer. Must be careful to
2681 * handle the case where we fill up the tty buffer, but still have
2682 * more chars to unload.
2685 static void stli_read(stlibrd_t
*brdp
, stliport_t
*portp
)
2687 volatile cdkasyrq_t
*rp
;
2688 volatile char *shbuf
;
2689 struct tty_struct
*tty
;
2690 unsigned int head
, tail
, size
;
2691 unsigned int len
, stlen
;
2694 printk(KERN_DEBUG
"stli_read(brdp=%x,portp=%d)\n",
2695 (int) brdp
, (int) portp
);
2698 if (test_bit(ST_RXSTOP
, &portp
->state
))
2701 if (tty
== (struct tty_struct
*) NULL
)
2704 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->rxq
;
2705 head
= (unsigned int) rp
->head
;
2706 if (head
!= ((unsigned int) rp
->head
))
2707 head
= (unsigned int) rp
->head
;
2708 tail
= (unsigned int) rp
->tail
;
2709 size
= portp
->rxsize
;
2714 len
= size
- (tail
- head
);
2715 stlen
= size
- tail
;
2718 len
= MIN(len
, (TTY_FLIPBUF_SIZE
- tty
->flip
.count
));
2719 shbuf
= (volatile char *) EBRDGETMEMPTR(brdp
, portp
->rxoffset
);
2722 stlen
= MIN(len
, stlen
);
2723 memcpy(tty
->flip
.char_buf_ptr
, (char *) (shbuf
+ tail
), stlen
);
2724 memset(tty
->flip
.flag_buf_ptr
, 0, stlen
);
2725 tty
->flip
.char_buf_ptr
+= stlen
;
2726 tty
->flip
.flag_buf_ptr
+= stlen
;
2727 tty
->flip
.count
+= stlen
;
2736 rp
= &((volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->rxq
;
2740 set_bit(ST_RXING
, &portp
->state
);
2742 tty_schedule_flip(tty
);
2745 /*****************************************************************************/
2748 * Set up and carry out any delayed commands. There is only a small set
2749 * of slave commands that can be done "off-level". So it is not too
2750 * difficult to deal with them here.
2753 static void stli_dodelaycmd(stliport_t
*portp
, volatile cdkctrl_t
*cp
)
2757 if (test_bit(ST_DOSIGS
, &portp
->state
)) {
2758 if (test_bit(ST_DOFLUSHTX
, &portp
->state
) &&
2759 test_bit(ST_DOFLUSHRX
, &portp
->state
))
2760 cmd
= A_SETSIGNALSF
;
2761 else if (test_bit(ST_DOFLUSHTX
, &portp
->state
))
2762 cmd
= A_SETSIGNALSFTX
;
2763 else if (test_bit(ST_DOFLUSHRX
, &portp
->state
))
2764 cmd
= A_SETSIGNALSFRX
;
2767 clear_bit(ST_DOFLUSHTX
, &portp
->state
);
2768 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2769 clear_bit(ST_DOSIGS
, &portp
->state
);
2770 memcpy((void *) &(cp
->args
[0]), (void *) &portp
->asig
,
2774 set_bit(ST_CMDING
, &portp
->state
);
2775 } else if (test_bit(ST_DOFLUSHTX
, &portp
->state
) ||
2776 test_bit(ST_DOFLUSHRX
, &portp
->state
)) {
2777 cmd
= ((test_bit(ST_DOFLUSHTX
, &portp
->state
)) ? FLUSHTX
: 0);
2778 cmd
|= ((test_bit(ST_DOFLUSHRX
, &portp
->state
)) ? FLUSHRX
: 0);
2779 clear_bit(ST_DOFLUSHTX
, &portp
->state
);
2780 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2781 memcpy((void *) &(cp
->args
[0]), (void *) &cmd
, sizeof(int));
2784 set_bit(ST_CMDING
, &portp
->state
);
2788 /*****************************************************************************/
2791 * Host command service checking. This handles commands or messages
2792 * coming from the slave to the host. Must have board shared memory
2793 * enabled and interrupts off when called. Notice that by servicing the
2794 * read data last we don't need to change the shared memory pointer
2795 * during processing (which is a slow IO operation).
2796 * Return value indicates if this port is still awaiting actions from
2797 * the slave (like open, command, or even TX data being sent). If 0
2798 * then port is still busy, otherwise no longer busy.
2801 static int stli_hostcmd(stlibrd_t
*brdp
, stliport_t
*portp
)
2803 volatile cdkasy_t
*ap
;
2804 volatile cdkctrl_t
*cp
;
2805 struct tty_struct
*tty
;
2807 unsigned long oldsigs
;
2811 printk(KERN_DEBUG
"stli_hostcmd(brdp=%x,channr=%d)\n",
2812 (int) brdp
, channr
);
2815 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
2819 * Check if we are waiting for an open completion message.
2821 if (test_bit(ST_OPENING
, &portp
->state
)) {
2822 rc
= (int) cp
->openarg
;
2823 if ((cp
->open
== 0) && (rc
!= 0)) {
2828 clear_bit(ST_OPENING
, &portp
->state
);
2829 wake_up_interruptible(&portp
->raw_wait
);
2834 * Check if we are waiting for a close completion message.
2836 if (test_bit(ST_CLOSING
, &portp
->state
)) {
2837 rc
= (int) cp
->closearg
;
2838 if ((cp
->close
== 0) && (rc
!= 0)) {
2843 clear_bit(ST_CLOSING
, &portp
->state
);
2844 wake_up_interruptible(&portp
->raw_wait
);
2849 * Check if we are waiting for a command completion message. We may
2850 * need to copy out the command results associated with this command.
2852 if (test_bit(ST_CMDING
, &portp
->state
)) {
2854 if ((cp
->cmd
== 0) && (rc
!= 0)) {
2857 if (portp
->argp
!= (void *) NULL
) {
2858 memcpy(portp
->argp
, (void *) &(cp
->args
[0]),
2860 portp
->argp
= (void *) NULL
;
2864 clear_bit(ST_CMDING
, &portp
->state
);
2865 stli_dodelaycmd(portp
, cp
);
2866 wake_up_interruptible(&portp
->raw_wait
);
2871 * Check for any notification messages ready. This includes lots of
2872 * different types of events - RX chars ready, RX break received,
2873 * TX data low or empty in the slave, modem signals changed state.
2882 if (nt
.signal
& SG_DCD
) {
2883 oldsigs
= portp
->sigs
;
2884 portp
->sigs
= stli_mktiocm(nt
.sigvalue
);
2885 clear_bit(ST_GETSIGS
, &portp
->state
);
2886 if ((portp
->sigs
& TIOCM_CD
) &&
2887 ((oldsigs
& TIOCM_CD
) == 0))
2888 wake_up_interruptible(&portp
->open_wait
);
2889 if ((oldsigs
& TIOCM_CD
) &&
2890 ((portp
->sigs
& TIOCM_CD
) == 0)) {
2891 if (portp
->flags
& ASYNC_CHECK_CD
) {
2893 schedule_work(&portp
->tqhangup
);
2898 if (nt
.data
& DT_TXEMPTY
)
2899 clear_bit(ST_TXBUSY
, &portp
->state
);
2900 if (nt
.data
& (DT_TXEMPTY
| DT_TXLOW
)) {
2901 if (tty
!= (struct tty_struct
*) NULL
) {
2902 if ((tty
->flags
& (1 << TTY_DO_WRITE_WAKEUP
)) &&
2903 tty
->ldisc
.write_wakeup
) {
2904 (tty
->ldisc
.write_wakeup
)(tty
);
2907 wake_up_interruptible(&tty
->write_wait
);
2911 if ((nt
.data
& DT_RXBREAK
) && (portp
->rxmarkmsk
& BRKINT
)) {
2912 if (tty
!= (struct tty_struct
*) NULL
) {
2913 if (tty
->flip
.count
< TTY_FLIPBUF_SIZE
) {
2915 *tty
->flip
.flag_buf_ptr
++ = TTY_BREAK
;
2916 *tty
->flip
.char_buf_ptr
++ = 0;
2917 if (portp
->flags
& ASYNC_SAK
) {
2921 tty_schedule_flip(tty
);
2926 if (nt
.data
& DT_RXBUSY
) {
2928 stli_read(brdp
, portp
);
2933 * It might seem odd that we are checking for more RX chars here.
2934 * But, we need to handle the case where the tty buffer was previously
2935 * filled, but we had more characters to pass up. The slave will not
2936 * send any more RX notify messages until the RX buffer has been emptied.
2937 * But it will leave the service bits on (since the buffer is not empty).
2938 * So from here we can try to process more RX chars.
2940 if ((!donerx
) && test_bit(ST_RXING
, &portp
->state
)) {
2941 clear_bit(ST_RXING
, &portp
->state
);
2942 stli_read(brdp
, portp
);
2945 return((test_bit(ST_OPENING
, &portp
->state
) ||
2946 test_bit(ST_CLOSING
, &portp
->state
) ||
2947 test_bit(ST_CMDING
, &portp
->state
) ||
2948 test_bit(ST_TXBUSY
, &portp
->state
) ||
2949 test_bit(ST_RXING
, &portp
->state
)) ? 0 : 1);
2952 /*****************************************************************************/
2955 * Service all ports on a particular board. Assumes that the boards
2956 * shared memory is enabled, and that the page pointer is pointed
2957 * at the cdk header structure.
2960 static void stli_brdpoll(stlibrd_t
*brdp
, volatile cdkhdr_t
*hdrp
)
2963 unsigned char hostbits
[(STL_MAXCHANS
/ 8) + 1];
2964 unsigned char slavebits
[(STL_MAXCHANS
/ 8) + 1];
2965 unsigned char *slavep
;
2966 int bitpos
, bitat
, bitsize
;
2967 int channr
, nrdevs
, slavebitchange
;
2969 bitsize
= brdp
->bitsize
;
2970 nrdevs
= brdp
->nrdevs
;
2973 * Check if slave wants any service. Basically we try to do as
2974 * little work as possible here. There are 2 levels of service
2975 * bits. So if there is nothing to do we bail early. We check
2976 * 8 service bits at a time in the inner loop, so we can bypass
2977 * the lot if none of them want service.
2979 memcpy(&hostbits
[0], (((unsigned char *) hdrp
) + brdp
->hostoffset
),
2982 memset(&slavebits
[0], 0, bitsize
);
2985 for (bitpos
= 0; (bitpos
< bitsize
); bitpos
++) {
2986 if (hostbits
[bitpos
] == 0)
2988 channr
= bitpos
* 8;
2989 for (bitat
= 0x1; (channr
< nrdevs
); channr
++, bitat
<<= 1) {
2990 if (hostbits
[bitpos
] & bitat
) {
2991 portp
= brdp
->ports
[(channr
- 1)];
2992 if (stli_hostcmd(brdp
, portp
)) {
2994 slavebits
[bitpos
] |= bitat
;
3001 * If any of the ports are no longer busy then update them in the
3002 * slave request bits. We need to do this after, since a host port
3003 * service may initiate more slave requests.
3005 if (slavebitchange
) {
3006 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
3007 slavep
= ((unsigned char *) hdrp
) + brdp
->slaveoffset
;
3008 for (bitpos
= 0; (bitpos
< bitsize
); bitpos
++) {
3009 if (slavebits
[bitpos
])
3010 slavep
[bitpos
] &= ~slavebits
[bitpos
];
3015 /*****************************************************************************/
3018 * Driver poll routine. This routine polls the boards in use and passes
3019 * messages back up to host when necessary. This is actually very
3020 * CPU efficient, since we will always have the kernel poll clock, it
3021 * adds only a few cycles when idle (since board service can be
3022 * determined very easily), but when loaded generates no interrupts
3023 * (with their expensive associated context change).
3026 static void stli_poll(unsigned long arg
)
3028 volatile cdkhdr_t
*hdrp
;
3032 stli_timerlist
.expires
= STLI_TIMEOUT
;
3033 add_timer(&stli_timerlist
);
3036 * Check each board and do any servicing required.
3038 for (brdnr
= 0; (brdnr
< stli_nrbrds
); brdnr
++) {
3039 brdp
= stli_brds
[brdnr
];
3040 if (brdp
== (stlibrd_t
*) NULL
)
3042 if ((brdp
->state
& BST_STARTED
) == 0)
3046 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
3048 stli_brdpoll(brdp
, hdrp
);
3053 /*****************************************************************************/
3056 * Translate the termios settings into the port setting structure of
3060 static void stli_mkasyport(stliport_t
*portp
, asyport_t
*pp
, struct termios
*tiosp
)
3063 printk(KERN_DEBUG
"stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3064 (int) portp
, (int) pp
, (int) tiosp
);
3067 memset(pp
, 0, sizeof(asyport_t
));
3070 * Start of by setting the baud, char size, parity and stop bit info.
3072 pp
->baudout
= tiosp
->c_cflag
& CBAUD
;
3073 if (pp
->baudout
& CBAUDEX
) {
3074 pp
->baudout
&= ~CBAUDEX
;
3075 if ((pp
->baudout
< 1) || (pp
->baudout
> 4))
3076 tiosp
->c_cflag
&= ~CBAUDEX
;
3080 pp
->baudout
= stli_baudrates
[pp
->baudout
];
3081 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
3082 if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
3083 pp
->baudout
= 57600;
3084 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
3085 pp
->baudout
= 115200;
3086 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
3087 pp
->baudout
= 230400;
3088 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
3089 pp
->baudout
= 460800;
3090 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
3091 pp
->baudout
= (portp
->baud_base
/ portp
->custom_divisor
);
3093 if (pp
->baudout
> STL_MAXBAUD
)
3094 pp
->baudout
= STL_MAXBAUD
;
3095 pp
->baudin
= pp
->baudout
;
3097 switch (tiosp
->c_cflag
& CSIZE
) {
3112 if (tiosp
->c_cflag
& CSTOPB
)
3113 pp
->stopbs
= PT_STOP2
;
3115 pp
->stopbs
= PT_STOP1
;
3117 if (tiosp
->c_cflag
& PARENB
) {
3118 if (tiosp
->c_cflag
& PARODD
)
3119 pp
->parity
= PT_ODDPARITY
;
3121 pp
->parity
= PT_EVENPARITY
;
3123 pp
->parity
= PT_NOPARITY
;
3127 * Set up any flow control options enabled.
3129 if (tiosp
->c_iflag
& IXON
) {
3131 if (tiosp
->c_iflag
& IXANY
)
3132 pp
->flow
|= F_IXANY
;
3134 if (tiosp
->c_cflag
& CRTSCTS
)
3135 pp
->flow
|= (F_RTSFLOW
| F_CTSFLOW
);
3137 pp
->startin
= tiosp
->c_cc
[VSTART
];
3138 pp
->stopin
= tiosp
->c_cc
[VSTOP
];
3139 pp
->startout
= tiosp
->c_cc
[VSTART
];
3140 pp
->stopout
= tiosp
->c_cc
[VSTOP
];
3143 * Set up the RX char marking mask with those RX error types we must
3144 * catch. We can get the slave to help us out a little here, it will
3145 * ignore parity errors and breaks for us, and mark parity errors in
3148 if (tiosp
->c_iflag
& IGNPAR
)
3149 pp
->iflag
|= FI_IGNRXERRS
;
3150 if (tiosp
->c_iflag
& IGNBRK
)
3151 pp
->iflag
|= FI_IGNBREAK
;
3153 portp
->rxmarkmsk
= 0;
3154 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
3155 pp
->iflag
|= FI_1MARKRXERRS
;
3156 if (tiosp
->c_iflag
& BRKINT
)
3157 portp
->rxmarkmsk
|= BRKINT
;
3160 * Set up clocal processing as required.
3162 if (tiosp
->c_cflag
& CLOCAL
)
3163 portp
->flags
&= ~ASYNC_CHECK_CD
;
3165 portp
->flags
|= ASYNC_CHECK_CD
;
3168 * Transfer any persistent flags into the asyport structure.
3170 pp
->pflag
= (portp
->pflag
& 0xffff);
3171 pp
->vmin
= (portp
->pflag
& P_RXIMIN
) ? 1 : 0;
3172 pp
->vtime
= (portp
->pflag
& P_RXITIME
) ? 1 : 0;
3173 pp
->cc
[1] = (portp
->pflag
& P_RXTHOLD
) ? 1 : 0;
3176 /*****************************************************************************/
3179 * Construct a slave signals structure for setting the DTR and RTS
3180 * signals as specified.
3183 static void stli_mkasysigs(asysigs_t
*sp
, int dtr
, int rts
)
3186 printk(KERN_DEBUG
"stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3187 (int) sp
, dtr
, rts
);
3190 memset(sp
, 0, sizeof(asysigs_t
));
3192 sp
->signal
|= SG_DTR
;
3193 sp
->sigvalue
|= ((dtr
> 0) ? SG_DTR
: 0);
3196 sp
->signal
|= SG_RTS
;
3197 sp
->sigvalue
|= ((rts
> 0) ? SG_RTS
: 0);
3201 /*****************************************************************************/
3204 * Convert the signals returned from the slave into a local TIOCM type
3205 * signals value. We keep them locally in TIOCM format.
3208 static long stli_mktiocm(unsigned long sigvalue
)
3213 printk(KERN_DEBUG
"stli_mktiocm(sigvalue=%x)\n", (int) sigvalue
);
3217 tiocm
|= ((sigvalue
& SG_DCD
) ? TIOCM_CD
: 0);
3218 tiocm
|= ((sigvalue
& SG_CTS
) ? TIOCM_CTS
: 0);
3219 tiocm
|= ((sigvalue
& SG_RI
) ? TIOCM_RI
: 0);
3220 tiocm
|= ((sigvalue
& SG_DSR
) ? TIOCM_DSR
: 0);
3221 tiocm
|= ((sigvalue
& SG_DTR
) ? TIOCM_DTR
: 0);
3222 tiocm
|= ((sigvalue
& SG_RTS
) ? TIOCM_RTS
: 0);
3226 /*****************************************************************************/
3229 * All panels and ports actually attached have been worked out. All
3230 * we need to do here is set up the appropriate per port data structures.
3233 static int stli_initports(stlibrd_t
*brdp
)
3236 int i
, panelnr
, panelport
;
3239 printk(KERN_DEBUG
"stli_initports(brdp=%x)\n", (int) brdp
);
3242 for (i
= 0, panelnr
= 0, panelport
= 0; (i
< brdp
->nrports
); i
++) {
3243 portp
= (stliport_t
*) stli_memalloc(sizeof(stliport_t
));
3244 if (portp
== (stliport_t
*) NULL
) {
3245 printk("STALLION: failed to allocate port structure\n");
3249 memset(portp
, 0, sizeof(stliport_t
));
3250 portp
->magic
= STLI_PORTMAGIC
;
3252 portp
->brdnr
= brdp
->brdnr
;
3253 portp
->panelnr
= panelnr
;
3254 portp
->baud_base
= STL_BAUDBASE
;
3255 portp
->close_delay
= STL_CLOSEDELAY
;
3256 portp
->closing_wait
= 30 * HZ
;
3257 INIT_WORK(&portp
->tqhangup
, stli_dohangup
, portp
);
3258 init_waitqueue_head(&portp
->open_wait
);
3259 init_waitqueue_head(&portp
->close_wait
);
3260 init_waitqueue_head(&portp
->raw_wait
);
3262 if (panelport
>= brdp
->panels
[panelnr
]) {
3266 brdp
->ports
[i
] = portp
;
3272 /*****************************************************************************/
3275 * All the following routines are board specific hardware operations.
3278 static void stli_ecpinit(stlibrd_t
*brdp
)
3280 unsigned long memconf
;
3283 printk(KERN_DEBUG
"stli_ecpinit(brdp=%d)\n", (int) brdp
);
3286 outb(ECP_ATSTOP
, (brdp
->iobase
+ ECP_ATCONFR
));
3288 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3291 memconf
= (brdp
->memaddr
& ECP_ATADDRMASK
) >> ECP_ATADDRSHFT
;
3292 outb(memconf
, (brdp
->iobase
+ ECP_ATMEMAR
));
3295 /*****************************************************************************/
3297 static void stli_ecpenable(stlibrd_t
*brdp
)
3300 printk(KERN_DEBUG
"stli_ecpenable(brdp=%x)\n", (int) brdp
);
3302 outb(ECP_ATENABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3305 /*****************************************************************************/
3307 static void stli_ecpdisable(stlibrd_t
*brdp
)
3310 printk(KERN_DEBUG
"stli_ecpdisable(brdp=%x)\n", (int) brdp
);
3312 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3315 /*****************************************************************************/
3317 static char *stli_ecpgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3323 printk(KERN_DEBUG
"stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3327 if (offset
> brdp
->memsize
) {
3328 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3329 "range at line=%d(%d), brd=%d\n",
3330 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3334 ptr
= brdp
->membase
+ (offset
% ECP_ATPAGESIZE
);
3335 val
= (unsigned char) (offset
/ ECP_ATPAGESIZE
);
3337 outb(val
, (brdp
->iobase
+ ECP_ATMEMPR
));
3341 /*****************************************************************************/
3343 static void stli_ecpreset(stlibrd_t
*brdp
)
3346 printk(KERN_DEBUG
"stli_ecpreset(brdp=%x)\n", (int) brdp
);
3349 outb(ECP_ATSTOP
, (brdp
->iobase
+ ECP_ATCONFR
));
3351 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
3355 /*****************************************************************************/
3357 static void stli_ecpintr(stlibrd_t
*brdp
)
3360 printk(KERN_DEBUG
"stli_ecpintr(brdp=%x)\n", (int) brdp
);
3362 outb(0x1, brdp
->iobase
);
3365 /*****************************************************************************/
3368 * The following set of functions act on ECP EISA boards.
3371 static void stli_ecpeiinit(stlibrd_t
*brdp
)
3373 unsigned long memconf
;
3376 printk(KERN_DEBUG
"stli_ecpeiinit(brdp=%x)\n", (int) brdp
);
3379 outb(0x1, (brdp
->iobase
+ ECP_EIBRDENAB
));
3380 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
3382 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3385 memconf
= (brdp
->memaddr
& ECP_EIADDRMASKL
) >> ECP_EIADDRSHFTL
;
3386 outb(memconf
, (brdp
->iobase
+ ECP_EIMEMARL
));
3387 memconf
= (brdp
->memaddr
& ECP_EIADDRMASKH
) >> ECP_EIADDRSHFTH
;
3388 outb(memconf
, (brdp
->iobase
+ ECP_EIMEMARH
));
3391 /*****************************************************************************/
3393 static void stli_ecpeienable(stlibrd_t
*brdp
)
3395 outb(ECP_EIENABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3398 /*****************************************************************************/
3400 static void stli_ecpeidisable(stlibrd_t
*brdp
)
3402 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3405 /*****************************************************************************/
3407 static char *stli_ecpeigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3413 printk(KERN_DEBUG
"stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3414 (int) brdp
, (int) offset
, line
);
3417 if (offset
> brdp
->memsize
) {
3418 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3419 "range at line=%d(%d), brd=%d\n",
3420 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3424 ptr
= brdp
->membase
+ (offset
% ECP_EIPAGESIZE
);
3425 if (offset
< ECP_EIPAGESIZE
)
3428 val
= ECP_EIENABLE
| 0x40;
3430 outb(val
, (brdp
->iobase
+ ECP_EICONFR
));
3434 /*****************************************************************************/
3436 static void stli_ecpeireset(stlibrd_t
*brdp
)
3438 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
3440 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3444 /*****************************************************************************/
3447 * The following set of functions act on ECP MCA boards.
3450 static void stli_ecpmcenable(stlibrd_t
*brdp
)
3452 outb(ECP_MCENABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3455 /*****************************************************************************/
3457 static void stli_ecpmcdisable(stlibrd_t
*brdp
)
3459 outb(ECP_MCDISABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3462 /*****************************************************************************/
3464 static char *stli_ecpmcgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3469 if (offset
> brdp
->memsize
) {
3470 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3471 "range at line=%d(%d), brd=%d\n",
3472 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3476 ptr
= brdp
->membase
+ (offset
% ECP_MCPAGESIZE
);
3477 val
= ((unsigned char) (offset
/ ECP_MCPAGESIZE
)) | ECP_MCENABLE
;
3479 outb(val
, (brdp
->iobase
+ ECP_MCCONFR
));
3483 /*****************************************************************************/
3485 static void stli_ecpmcreset(stlibrd_t
*brdp
)
3487 outb(ECP_MCSTOP
, (brdp
->iobase
+ ECP_MCCONFR
));
3489 outb(ECP_MCDISABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
3493 /*****************************************************************************/
3496 * The following set of functions act on ECP PCI boards.
3499 static void stli_ecppciinit(stlibrd_t
*brdp
)
3502 printk(KERN_DEBUG
"stli_ecppciinit(brdp=%x)\n", (int) brdp
);
3505 outb(ECP_PCISTOP
, (brdp
->iobase
+ ECP_PCICONFR
));
3507 outb(0, (brdp
->iobase
+ ECP_PCICONFR
));
3511 /*****************************************************************************/
3513 static char *stli_ecppcigetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3519 printk(KERN_DEBUG
"stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3520 (int) brdp
, (int) offset
, line
);
3523 if (offset
> brdp
->memsize
) {
3524 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3525 "range at line=%d(%d), board=%d\n",
3526 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3530 ptr
= brdp
->membase
+ (offset
% ECP_PCIPAGESIZE
);
3531 val
= (offset
/ ECP_PCIPAGESIZE
) << 1;
3533 outb(val
, (brdp
->iobase
+ ECP_PCICONFR
));
3537 /*****************************************************************************/
3539 static void stli_ecppcireset(stlibrd_t
*brdp
)
3541 outb(ECP_PCISTOP
, (brdp
->iobase
+ ECP_PCICONFR
));
3543 outb(0, (brdp
->iobase
+ ECP_PCICONFR
));
3547 /*****************************************************************************/
3550 * The following routines act on ONboards.
3553 static void stli_onbinit(stlibrd_t
*brdp
)
3555 unsigned long memconf
;
3558 printk(KERN_DEBUG
"stli_onbinit(brdp=%d)\n", (int) brdp
);
3561 outb(ONB_ATSTOP
, (brdp
->iobase
+ ONB_ATCONFR
));
3563 outb(ONB_ATDISABLE
, (brdp
->iobase
+ ONB_ATCONFR
));
3566 memconf
= (brdp
->memaddr
& ONB_ATADDRMASK
) >> ONB_ATADDRSHFT
;
3567 outb(memconf
, (brdp
->iobase
+ ONB_ATMEMAR
));
3568 outb(0x1, brdp
->iobase
);
3572 /*****************************************************************************/
3574 static void stli_onbenable(stlibrd_t
*brdp
)
3577 printk(KERN_DEBUG
"stli_onbenable(brdp=%x)\n", (int) brdp
);
3579 outb((brdp
->enabval
| ONB_ATENABLE
), (brdp
->iobase
+ ONB_ATCONFR
));
3582 /*****************************************************************************/
3584 static void stli_onbdisable(stlibrd_t
*brdp
)
3587 printk(KERN_DEBUG
"stli_onbdisable(brdp=%x)\n", (int) brdp
);
3589 outb((brdp
->enabval
| ONB_ATDISABLE
), (brdp
->iobase
+ ONB_ATCONFR
));
3592 /*****************************************************************************/
3594 static char *stli_onbgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3599 printk(KERN_DEBUG
"stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3603 if (offset
> brdp
->memsize
) {
3604 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3605 "range at line=%d(%d), brd=%d\n",
3606 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3609 ptr
= brdp
->membase
+ (offset
% ONB_ATPAGESIZE
);
3614 /*****************************************************************************/
3616 static void stli_onbreset(stlibrd_t
*brdp
)
3620 printk(KERN_DEBUG
"stli_onbreset(brdp=%x)\n", (int) brdp
);
3623 outb(ONB_ATSTOP
, (brdp
->iobase
+ ONB_ATCONFR
));
3625 outb(ONB_ATDISABLE
, (brdp
->iobase
+ ONB_ATCONFR
));
3629 /*****************************************************************************/
3632 * The following routines act on ONboard EISA.
3635 static void stli_onbeinit(stlibrd_t
*brdp
)
3637 unsigned long memconf
;
3640 printk(KERN_DEBUG
"stli_onbeinit(brdp=%d)\n", (int) brdp
);
3643 outb(0x1, (brdp
->iobase
+ ONB_EIBRDENAB
));
3644 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
3646 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3649 memconf
= (brdp
->memaddr
& ONB_EIADDRMASKL
) >> ONB_EIADDRSHFTL
;
3650 outb(memconf
, (brdp
->iobase
+ ONB_EIMEMARL
));
3651 memconf
= (brdp
->memaddr
& ONB_EIADDRMASKH
) >> ONB_EIADDRSHFTH
;
3652 outb(memconf
, (brdp
->iobase
+ ONB_EIMEMARH
));
3653 outb(0x1, brdp
->iobase
);
3657 /*****************************************************************************/
3659 static void stli_onbeenable(stlibrd_t
*brdp
)
3662 printk(KERN_DEBUG
"stli_onbeenable(brdp=%x)\n", (int) brdp
);
3664 outb(ONB_EIENABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3667 /*****************************************************************************/
3669 static void stli_onbedisable(stlibrd_t
*brdp
)
3672 printk(KERN_DEBUG
"stli_onbedisable(brdp=%x)\n", (int) brdp
);
3674 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3677 /*****************************************************************************/
3679 static char *stli_onbegetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3685 printk(KERN_DEBUG
"stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3686 (int) brdp
, (int) offset
, line
);
3689 if (offset
> brdp
->memsize
) {
3690 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3691 "range at line=%d(%d), brd=%d\n",
3692 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3696 ptr
= brdp
->membase
+ (offset
% ONB_EIPAGESIZE
);
3697 if (offset
< ONB_EIPAGESIZE
)
3700 val
= ONB_EIENABLE
| 0x40;
3702 outb(val
, (brdp
->iobase
+ ONB_EICONFR
));
3706 /*****************************************************************************/
3708 static void stli_onbereset(stlibrd_t
*brdp
)
3712 printk(KERN_ERR
"stli_onbereset(brdp=%x)\n", (int) brdp
);
3715 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
3717 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3721 /*****************************************************************************/
3724 * The following routines act on Brumby boards.
3727 static void stli_bbyinit(stlibrd_t
*brdp
)
3731 printk(KERN_ERR
"stli_bbyinit(brdp=%d)\n", (int) brdp
);
3734 outb(BBY_ATSTOP
, (brdp
->iobase
+ BBY_ATCONFR
));
3736 outb(0, (brdp
->iobase
+ BBY_ATCONFR
));
3738 outb(0x1, brdp
->iobase
);
3742 /*****************************************************************************/
3744 static char *stli_bbygetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3750 printk(KERN_ERR
"stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3754 if (offset
> brdp
->memsize
) {
3755 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3756 "range at line=%d(%d), brd=%d\n",
3757 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3761 ptr
= brdp
->membase
+ (offset
% BBY_PAGESIZE
);
3762 val
= (unsigned char) (offset
/ BBY_PAGESIZE
);
3764 outb(val
, (brdp
->iobase
+ BBY_ATCONFR
));
3768 /*****************************************************************************/
3770 static void stli_bbyreset(stlibrd_t
*brdp
)
3774 printk(KERN_DEBUG
"stli_bbyreset(brdp=%x)\n", (int) brdp
);
3777 outb(BBY_ATSTOP
, (brdp
->iobase
+ BBY_ATCONFR
));
3779 outb(0, (brdp
->iobase
+ BBY_ATCONFR
));
3783 /*****************************************************************************/
3786 * The following routines act on original old Stallion boards.
3789 static void stli_stalinit(stlibrd_t
*brdp
)
3793 printk(KERN_DEBUG
"stli_stalinit(brdp=%d)\n", (int) brdp
);
3796 outb(0x1, brdp
->iobase
);
3800 /*****************************************************************************/
3802 static char *stli_stalgetmemptr(stlibrd_t
*brdp
, unsigned long offset
, int line
)
3807 printk(KERN_DEBUG
"stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp
,
3811 if (offset
> brdp
->memsize
) {
3812 printk(KERN_ERR
"STALLION: shared memory pointer=%x out of "
3813 "range at line=%d(%d), brd=%d\n",
3814 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
3817 ptr
= brdp
->membase
+ (offset
% STAL_PAGESIZE
);
3822 /*****************************************************************************/
3824 static void stli_stalreset(stlibrd_t
*brdp
)
3826 volatile unsigned long *vecp
;
3829 printk(KERN_DEBUG
"stli_stalreset(brdp=%x)\n", (int) brdp
);
3832 vecp
= (volatile unsigned long *) (brdp
->membase
+ 0x30);
3834 outb(0, brdp
->iobase
);
3838 /*****************************************************************************/
3841 * Try to find an ECP board and initialize it. This handles only ECP
3845 static int stli_initecp(stlibrd_t
*brdp
)
3849 unsigned int status
, nxtid
;
3851 int panelnr
, nrports
;
3854 printk(KERN_DEBUG
"stli_initecp(brdp=%x)\n", (int) brdp
);
3857 if (!request_region(brdp
->iobase
, brdp
->iosize
, "istallion"))
3860 if ((brdp
->iobase
== 0) || (brdp
->memaddr
== 0))
3862 release_region(brdp
->iobase
, brdp
->iosize
);
3866 brdp
->iosize
= ECP_IOSIZE
;
3869 * Based on the specific board type setup the common vars to access
3870 * and enable shared memory. Set all board specific information now
3873 switch (brdp
->brdtype
) {
3875 brdp
->membase
= (void *) brdp
->memaddr
;
3876 brdp
->memsize
= ECP_MEMSIZE
;
3877 brdp
->pagesize
= ECP_ATPAGESIZE
;
3878 brdp
->init
= stli_ecpinit
;
3879 brdp
->enable
= stli_ecpenable
;
3880 brdp
->reenable
= stli_ecpenable
;
3881 brdp
->disable
= stli_ecpdisable
;
3882 brdp
->getmemptr
= stli_ecpgetmemptr
;
3883 brdp
->intr
= stli_ecpintr
;
3884 brdp
->reset
= stli_ecpreset
;
3885 name
= "serial(EC8/64)";
3889 brdp
->membase
= (void *) brdp
->memaddr
;
3890 brdp
->memsize
= ECP_MEMSIZE
;
3891 brdp
->pagesize
= ECP_EIPAGESIZE
;
3892 brdp
->init
= stli_ecpeiinit
;
3893 brdp
->enable
= stli_ecpeienable
;
3894 brdp
->reenable
= stli_ecpeienable
;
3895 brdp
->disable
= stli_ecpeidisable
;
3896 brdp
->getmemptr
= stli_ecpeigetmemptr
;
3897 brdp
->intr
= stli_ecpintr
;
3898 brdp
->reset
= stli_ecpeireset
;
3899 name
= "serial(EC8/64-EI)";
3903 brdp
->membase
= (void *) brdp
->memaddr
;
3904 brdp
->memsize
= ECP_MEMSIZE
;
3905 brdp
->pagesize
= ECP_MCPAGESIZE
;
3907 brdp
->enable
= stli_ecpmcenable
;
3908 brdp
->reenable
= stli_ecpmcenable
;
3909 brdp
->disable
= stli_ecpmcdisable
;
3910 brdp
->getmemptr
= stli_ecpmcgetmemptr
;
3911 brdp
->intr
= stli_ecpintr
;
3912 brdp
->reset
= stli_ecpmcreset
;
3913 name
= "serial(EC8/64-MCA)";
3917 brdp
->membase
= (void *) brdp
->memaddr
;
3918 brdp
->memsize
= ECP_PCIMEMSIZE
;
3919 brdp
->pagesize
= ECP_PCIPAGESIZE
;
3920 brdp
->init
= stli_ecppciinit
;
3921 brdp
->enable
= NULL
;
3922 brdp
->reenable
= NULL
;
3923 brdp
->disable
= NULL
;
3924 brdp
->getmemptr
= stli_ecppcigetmemptr
;
3925 brdp
->intr
= stli_ecpintr
;
3926 brdp
->reset
= stli_ecppcireset
;
3927 name
= "serial(EC/RA-PCI)";
3931 release_region(brdp
->iobase
, brdp
->iosize
);
3936 * The per-board operations structure is all set up, so now let's go
3937 * and get the board operational. Firstly initialize board configuration
3938 * registers. Set the memory mapping info so we can get at the boards
3943 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
3944 if (brdp
->membase
== (void *) NULL
)
3946 release_region(brdp
->iobase
, brdp
->iosize
);
3951 * Now that all specific code is set up, enable the shared memory and
3952 * look for the a signature area that will tell us exactly what board
3953 * this is, and what it is connected to it.
3956 sigsp
= (cdkecpsig_t
*) EBRDGETMEMPTR(brdp
, CDK_SIGADDR
);
3957 memcpy(&sig
, sigsp
, sizeof(cdkecpsig_t
));
3961 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3962 __FILE__
, __LINE__
, (int) sig
.magic
, sig
.romver
, sig
.panelid
[0],
3963 (int) sig
.panelid
[1], (int) sig
.panelid
[2],
3964 (int) sig
.panelid
[3], (int) sig
.panelid
[4],
3965 (int) sig
.panelid
[5], (int) sig
.panelid
[6],
3966 (int) sig
.panelid
[7]);
3969 if (sig
.magic
!= ECP_MAGIC
)
3971 release_region(brdp
->iobase
, brdp
->iosize
);
3976 * Scan through the signature looking at the panels connected to the
3977 * board. Calculate the total number of ports as we go.
3979 for (panelnr
= 0, nxtid
= 0; (panelnr
< STL_MAXPANELS
); panelnr
++) {
3980 status
= sig
.panelid
[nxtid
];
3981 if ((status
& ECH_PNLIDMASK
) != nxtid
)
3984 brdp
->panelids
[panelnr
] = status
;
3985 nrports
= (status
& ECH_PNL16PORT
) ? 16 : 8;
3986 if ((nrports
== 16) && ((status
& ECH_PNLXPID
) == 0))
3988 brdp
->panels
[panelnr
] = nrports
;
3989 brdp
->nrports
+= nrports
;
3995 brdp
->state
|= BST_FOUND
;
3999 /*****************************************************************************/
4002 * Try to find an ONboard, Brumby or Stallion board and initialize it.
4003 * This handles only these board types.
4006 static int stli_initonb(stlibrd_t
*brdp
)
4014 printk(KERN_DEBUG
"stli_initonb(brdp=%x)\n", (int) brdp
);
4018 * Do a basic sanity check on the IO and memory addresses.
4020 if ((brdp
->iobase
== 0) || (brdp
->memaddr
== 0))
4023 brdp
->iosize
= ONB_IOSIZE
;
4025 if (!request_region(brdp
->iobase
, brdp
->iosize
, "istallion"))
4029 * Based on the specific board type setup the common vars to access
4030 * and enable shared memory. Set all board specific information now
4033 switch (brdp
->brdtype
) {
4037 case BRD_ONBOARD2_32
:
4039 brdp
->membase
= (void *) brdp
->memaddr
;
4040 brdp
->memsize
= ONB_MEMSIZE
;
4041 brdp
->pagesize
= ONB_ATPAGESIZE
;
4042 brdp
->init
= stli_onbinit
;
4043 brdp
->enable
= stli_onbenable
;
4044 brdp
->reenable
= stli_onbenable
;
4045 brdp
->disable
= stli_onbdisable
;
4046 brdp
->getmemptr
= stli_onbgetmemptr
;
4047 brdp
->intr
= stli_ecpintr
;
4048 brdp
->reset
= stli_onbreset
;
4049 if (brdp
->memaddr
> 0x100000)
4050 brdp
->enabval
= ONB_MEMENABHI
;
4052 brdp
->enabval
= ONB_MEMENABLO
;
4053 name
= "serial(ONBoard)";
4057 brdp
->membase
= (void *) brdp
->memaddr
;
4058 brdp
->memsize
= ONB_EIMEMSIZE
;
4059 brdp
->pagesize
= ONB_EIPAGESIZE
;
4060 brdp
->init
= stli_onbeinit
;
4061 brdp
->enable
= stli_onbeenable
;
4062 brdp
->reenable
= stli_onbeenable
;
4063 brdp
->disable
= stli_onbedisable
;
4064 brdp
->getmemptr
= stli_onbegetmemptr
;
4065 brdp
->intr
= stli_ecpintr
;
4066 brdp
->reset
= stli_onbereset
;
4067 name
= "serial(ONBoard/E)";
4073 brdp
->membase
= (void *) brdp
->memaddr
;
4074 brdp
->memsize
= BBY_MEMSIZE
;
4075 brdp
->pagesize
= BBY_PAGESIZE
;
4076 brdp
->init
= stli_bbyinit
;
4077 brdp
->enable
= NULL
;
4078 brdp
->reenable
= NULL
;
4079 brdp
->disable
= NULL
;
4080 brdp
->getmemptr
= stli_bbygetmemptr
;
4081 brdp
->intr
= stli_ecpintr
;
4082 brdp
->reset
= stli_bbyreset
;
4083 name
= "serial(Brumby)";
4087 brdp
->membase
= (void *) brdp
->memaddr
;
4088 brdp
->memsize
= STAL_MEMSIZE
;
4089 brdp
->pagesize
= STAL_PAGESIZE
;
4090 brdp
->init
= stli_stalinit
;
4091 brdp
->enable
= NULL
;
4092 brdp
->reenable
= NULL
;
4093 brdp
->disable
= NULL
;
4094 brdp
->getmemptr
= stli_stalgetmemptr
;
4095 brdp
->intr
= stli_ecpintr
;
4096 brdp
->reset
= stli_stalreset
;
4097 name
= "serial(Stallion)";
4101 release_region(brdp
->iobase
, brdp
->iosize
);
4106 * The per-board operations structure is all set up, so now let's go
4107 * and get the board operational. Firstly initialize board configuration
4108 * registers. Set the memory mapping info so we can get at the boards
4113 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
4114 if (brdp
->membase
== (void *) NULL
)
4116 release_region(brdp
->iobase
, brdp
->iosize
);
4121 * Now that all specific code is set up, enable the shared memory and
4122 * look for the a signature area that will tell us exactly what board
4123 * this is, and how many ports.
4126 sigsp
= (cdkonbsig_t
*) EBRDGETMEMPTR(brdp
, CDK_SIGADDR
);
4127 memcpy(&sig
, sigsp
, sizeof(cdkonbsig_t
));
4131 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4132 __FILE__
, __LINE__
, sig
.magic0
, sig
.magic1
, sig
.magic2
,
4133 sig
.magic3
, sig
.romver
, sig
.amask0
, sig
.amask1
, sig
.amask2
);
4136 if ((sig
.magic0
!= ONB_MAGIC0
) || (sig
.magic1
!= ONB_MAGIC1
) ||
4137 (sig
.magic2
!= ONB_MAGIC2
) || (sig
.magic3
!= ONB_MAGIC3
))
4139 release_region(brdp
->iobase
, brdp
->iosize
);
4144 * Scan through the signature alive mask and calculate how many ports
4145 * there are on this board.
4151 for (i
= 0; (i
< 16); i
++) {
4152 if (((sig
.amask0
<< i
) & 0x8000) == 0)
4157 brdp
->panels
[0] = brdp
->nrports
;
4160 brdp
->state
|= BST_FOUND
;
4164 /*****************************************************************************/
4167 * Start up a running board. This routine is only called after the
4168 * code has been down loaded to the board and is operational. It will
4169 * read in the memory map, and get the show on the road...
4172 static int stli_startbrd(stlibrd_t
*brdp
)
4174 volatile cdkhdr_t
*hdrp
;
4175 volatile cdkmem_t
*memp
;
4176 volatile cdkasy_t
*ap
;
4177 unsigned long flags
;
4179 int portnr
, nrdevs
, i
, rc
;
4182 printk(KERN_DEBUG
"stli_startbrd(brdp=%x)\n", (int) brdp
);
4190 hdrp
= (volatile cdkhdr_t
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
4191 nrdevs
= hdrp
->nrdevs
;
4194 printk("%s(%d): CDK version %d.%d.%d --> "
4195 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4196 __FILE__
, __LINE__
, hdrp
->ver_release
, hdrp
->ver_modification
,
4197 hdrp
->ver_fix
, nrdevs
, (int) hdrp
->memp
, (int) hdrp
->hostp
,
4198 (int) hdrp
->slavep
);
4201 if (nrdevs
< (brdp
->nrports
+ 1)) {
4202 printk(KERN_ERR
"STALLION: slave failed to allocate memory for "
4203 "all devices, devices=%d\n", nrdevs
);
4204 brdp
->nrports
= nrdevs
- 1;
4206 brdp
->nrdevs
= nrdevs
;
4207 brdp
->hostoffset
= hdrp
->hostp
- CDK_CDKADDR
;
4208 brdp
->slaveoffset
= hdrp
->slavep
- CDK_CDKADDR
;
4209 brdp
->bitsize
= (nrdevs
+ 7) / 8;
4210 memp
= (volatile cdkmem_t
*) hdrp
->memp
;
4211 if (((unsigned long) memp
) > brdp
->memsize
) {
4212 printk(KERN_ERR
"STALLION: corrupted shared memory region?\n");
4214 goto stli_donestartup
;
4216 memp
= (volatile cdkmem_t
*) EBRDGETMEMPTR(brdp
, (unsigned long) memp
);
4217 if (memp
->dtype
!= TYP_ASYNCTRL
) {
4218 printk(KERN_ERR
"STALLION: no slave control device found\n");
4219 goto stli_donestartup
;
4224 * Cycle through memory allocation of each port. We are guaranteed to
4225 * have all ports inside the first page of slave window, so no need to
4226 * change pages while reading memory map.
4228 for (i
= 1, portnr
= 0; (i
< nrdevs
); i
++, portnr
++, memp
++) {
4229 if (memp
->dtype
!= TYP_ASYNC
)
4231 portp
= brdp
->ports
[portnr
];
4232 if (portp
== (stliport_t
*) NULL
)
4235 portp
->addr
= memp
->offset
;
4236 portp
->reqbit
= (unsigned char) (0x1 << (i
* 8 / nrdevs
));
4237 portp
->portidx
= (unsigned char) (i
/ 8);
4238 portp
->portbit
= (unsigned char) (0x1 << (i
% 8));
4241 hdrp
->slavereq
= 0xff;
4244 * For each port setup a local copy of the RX and TX buffer offsets
4245 * and sizes. We do this separate from the above, because we need to
4246 * move the shared memory page...
4248 for (i
= 1, portnr
= 0; (i
< nrdevs
); i
++, portnr
++) {
4249 portp
= brdp
->ports
[portnr
];
4250 if (portp
== (stliport_t
*) NULL
)
4252 if (portp
->addr
== 0)
4254 ap
= (volatile cdkasy_t
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
4255 if (ap
!= (volatile cdkasy_t
*) NULL
) {
4256 portp
->rxsize
= ap
->rxq
.size
;
4257 portp
->txsize
= ap
->txq
.size
;
4258 portp
->rxoffset
= ap
->rxq
.offset
;
4259 portp
->txoffset
= ap
->txq
.offset
;
4265 restore_flags(flags
);
4268 brdp
->state
|= BST_STARTED
;
4270 if (! stli_timeron
) {
4272 stli_timerlist
.expires
= STLI_TIMEOUT
;
4273 add_timer(&stli_timerlist
);
4279 /*****************************************************************************/
4282 * Probe and initialize the specified board.
4285 static int __init
stli_brdinit(stlibrd_t
*brdp
)
4288 printk(KERN_DEBUG
"stli_brdinit(brdp=%x)\n", (int) brdp
);
4291 stli_brds
[brdp
->brdnr
] = brdp
;
4293 switch (brdp
->brdtype
) {
4304 case BRD_ONBOARD2_32
:
4316 printk(KERN_ERR
"STALLION: %s board type not supported in "
4317 "this driver\n", stli_brdnames
[brdp
->brdtype
]);
4320 printk(KERN_ERR
"STALLION: board=%d is unknown board "
4321 "type=%d\n", brdp
->brdnr
, brdp
->brdtype
);
4325 if ((brdp
->state
& BST_FOUND
) == 0) {
4326 printk(KERN_ERR
"STALLION: %s board not found, board=%d "
4328 stli_brdnames
[brdp
->brdtype
], brdp
->brdnr
,
4329 brdp
->iobase
, (int) brdp
->memaddr
);
4333 stli_initports(brdp
);
4334 printk(KERN_INFO
"STALLION: %s found, board=%d io=%x mem=%x "
4335 "nrpanels=%d nrports=%d\n", stli_brdnames
[brdp
->brdtype
],
4336 brdp
->brdnr
, brdp
->iobase
, (int) brdp
->memaddr
,
4337 brdp
->nrpanels
, brdp
->nrports
);
4341 /*****************************************************************************/
4344 * Probe around trying to find where the EISA boards shared memory
4345 * might be. This is a bit if hack, but it is the best we can do.
4348 static int stli_eisamemprobe(stlibrd_t
*brdp
)
4350 cdkecpsig_t ecpsig
, *ecpsigp
;
4351 cdkonbsig_t onbsig
, *onbsigp
;
4355 printk(KERN_DEBUG
"stli_eisamemprobe(brdp=%x)\n", (int) brdp
);
4359 * First up we reset the board, to get it into a known state. There
4360 * is only 2 board types here we need to worry about. Don;t use the
4361 * standard board init routine here, it programs up the shared
4362 * memory address, and we don't know it yet...
4364 if (brdp
->brdtype
== BRD_ECPE
) {
4365 outb(0x1, (brdp
->iobase
+ ECP_EIBRDENAB
));
4366 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
4368 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
4370 stli_ecpeienable(brdp
);
4371 } else if (brdp
->brdtype
== BRD_ONBOARDE
) {
4372 outb(0x1, (brdp
->iobase
+ ONB_EIBRDENAB
));
4373 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
4375 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
4377 outb(0x1, brdp
->iobase
);
4379 stli_onbeenable(brdp
);
4385 brdp
->memsize
= ECP_MEMSIZE
;
4388 * Board shared memory is enabled, so now we have a poke around and
4389 * see if we can find it.
4391 for (i
= 0; (i
< stli_eisamempsize
); i
++) {
4392 brdp
->memaddr
= stli_eisamemprobeaddrs
[i
];
4393 brdp
->membase
= (void *) brdp
->memaddr
;
4394 brdp
->membase
= ioremap(brdp
->memaddr
, brdp
->memsize
);
4395 if (brdp
->membase
== (void *) NULL
)
4398 if (brdp
->brdtype
== BRD_ECPE
) {
4399 ecpsigp
= (cdkecpsig_t
*) stli_ecpeigetmemptr(brdp
,
4400 CDK_SIGADDR
, __LINE__
);
4401 memcpy(&ecpsig
, ecpsigp
, sizeof(cdkecpsig_t
));
4402 if (ecpsig
.magic
== ECP_MAGIC
)
4405 onbsigp
= (cdkonbsig_t
*) stli_onbegetmemptr(brdp
,
4406 CDK_SIGADDR
, __LINE__
);
4407 memcpy(&onbsig
, onbsigp
, sizeof(cdkonbsig_t
));
4408 if ((onbsig
.magic0
== ONB_MAGIC0
) &&
4409 (onbsig
.magic1
== ONB_MAGIC1
) &&
4410 (onbsig
.magic2
== ONB_MAGIC2
) &&
4411 (onbsig
.magic3
== ONB_MAGIC3
))
4415 iounmap(brdp
->membase
);
4421 * Regardless of whether we found the shared memory or not we must
4422 * disable the region. After that return success or failure.
4424 if (brdp
->brdtype
== BRD_ECPE
)
4425 stli_ecpeidisable(brdp
);
4427 stli_onbedisable(brdp
);
4431 brdp
->membase
= NULL
;
4432 printk(KERN_ERR
"STALLION: failed to probe shared memory "
4433 "region for %s in EISA slot=%d\n",
4434 stli_brdnames
[brdp
->brdtype
], (brdp
->iobase
>> 12));
4440 static int stli_getbrdnr(void)
4444 for (i
= 0; i
< STL_MAXBRDS
; i
++) {
4445 if (!stli_brds
[i
]) {
4446 if (i
>= stli_nrbrds
)
4447 stli_nrbrds
= i
+ 1;
4454 /*****************************************************************************/
4457 * Probe around and try to find any EISA boards in system. The biggest
4458 * problem here is finding out what memory address is associated with
4459 * an EISA board after it is found. The registers of the ECPE and
4460 * ONboardE are not readable - so we can't read them from there. We
4461 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4462 * actually have any way to find out the real value. The best we can
4463 * do is go probing around in the usual places hoping we can find it.
4466 static int stli_findeisabrds(void)
4469 unsigned int iobase
, eid
;
4473 printk(KERN_DEBUG
"stli_findeisabrds()\n");
4477 * Firstly check if this is an EISA system. Do this by probing for
4478 * the system board EISA ID. If this is not an EISA system then
4479 * don't bother going any further!
4482 if (inb(0xc80) == 0xff)
4486 * Looks like an EISA system, so go searching for EISA boards.
4488 for (iobase
= 0x1000; (iobase
<= 0xc000); iobase
+= 0x1000) {
4489 outb(0xff, (iobase
+ 0xc80));
4490 eid
= inb(iobase
+ 0xc80);
4491 eid
|= inb(iobase
+ 0xc81) << 8;
4492 if (eid
!= STL_EISAID
)
4496 * We have found a board. Need to check if this board was
4497 * statically configured already (just in case!).
4499 for (i
= 0; (i
< STL_MAXBRDS
); i
++) {
4500 brdp
= stli_brds
[i
];
4501 if (brdp
== (stlibrd_t
*) NULL
)
4503 if (brdp
->iobase
== iobase
)
4506 if (i
< STL_MAXBRDS
)
4510 * We have found a Stallion board and it is not configured already.
4511 * Allocate a board structure and initialize it.
4513 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4515 if ((brdp
->brdnr
= stli_getbrdnr()) < 0)
4517 eid
= inb(iobase
+ 0xc82);
4518 if (eid
== ECP_EISAID
)
4519 brdp
->brdtype
= BRD_ECPE
;
4520 else if (eid
== ONB_EISAID
)
4521 brdp
->brdtype
= BRD_ONBOARDE
;
4523 brdp
->brdtype
= BRD_UNKNOWN
;
4524 brdp
->iobase
= iobase
;
4525 outb(0x1, (iobase
+ 0xc84));
4526 if (stli_eisamemprobe(brdp
))
4527 outb(0, (iobase
+ 0xc84));
4534 /*****************************************************************************/
4537 * Find the next available board number that is free.
4540 /*****************************************************************************/
4545 * We have a Stallion board. Allocate a board structure and
4546 * initialize it. Read its IO and MEMORY resources from PCI
4547 * configuration space.
4550 static int stli_initpcibrd(int brdtype
, struct pci_dev
*devp
)
4555 printk(KERN_DEBUG
"stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4556 brdtype
, dev
->bus
->number
, dev
->devfn
);
4559 if (pci_enable_device(devp
))
4561 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4563 if ((brdp
->brdnr
= stli_getbrdnr()) < 0) {
4564 printk(KERN_INFO
"STALLION: too many boards found, "
4565 "maximum supported %d\n", STL_MAXBRDS
);
4568 brdp
->brdtype
= brdtype
;
4571 printk(KERN_DEBUG
"%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__
, __LINE__
,
4572 pci_resource_start(devp
, 0),
4573 pci_resource_start(devp
, 1),
4574 pci_resource_start(devp
, 2),
4575 pci_resource_start(devp
, 3));
4579 * We have all resources from the board, so lets setup the actual
4580 * board structure now.
4582 brdp
->iobase
= pci_resource_start(devp
, 3);
4583 brdp
->memaddr
= pci_resource_start(devp
, 2);
4589 /*****************************************************************************/
4592 * Find all Stallion PCI boards that might be installed. Initialize each
4593 * one as it is found.
4596 static int stli_findpcibrds(void)
4598 struct pci_dev
*dev
= NULL
;
4602 printk("stli_findpcibrds()\n");
4605 while ((dev
= pci_find_device(PCI_VENDOR_ID_STALLION
,
4606 PCI_DEVICE_ID_ECRA
, dev
))) {
4607 if ((rc
= stli_initpcibrd(BRD_ECPPCI
, dev
)))
4616 /*****************************************************************************/
4619 * Allocate a new board structure. Fill out the basic info in it.
4622 static stlibrd_t
*stli_allocbrd(void)
4626 brdp
= (stlibrd_t
*) stli_memalloc(sizeof(stlibrd_t
));
4627 if (brdp
== (stlibrd_t
*) NULL
) {
4628 printk(KERN_ERR
"STALLION: failed to allocate memory "
4629 "(size=%d)\n", sizeof(stlibrd_t
));
4630 return((stlibrd_t
*) NULL
);
4633 memset(brdp
, 0, sizeof(stlibrd_t
));
4634 brdp
->magic
= STLI_BOARDMAGIC
;
4638 /*****************************************************************************/
4641 * Scan through all the boards in the configuration and see what we
4645 static int stli_initbrds(void)
4647 stlibrd_t
*brdp
, *nxtbrdp
;
4652 printk(KERN_DEBUG
"stli_initbrds()\n");
4655 if (stli_nrbrds
> STL_MAXBRDS
) {
4656 printk(KERN_INFO
"STALLION: too many boards in configuration "
4657 "table, truncating to %d\n", STL_MAXBRDS
);
4658 stli_nrbrds
= STL_MAXBRDS
;
4662 * Firstly scan the list of static boards configured. Allocate
4663 * resources and initialize the boards as found. If this is a
4664 * module then let the module args override static configuration.
4666 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4667 confp
= &stli_brdconf
[i
];
4669 stli_parsebrd(confp
, stli_brdsp
[i
]);
4671 if ((brdp
= stli_allocbrd()) == (stlibrd_t
*) NULL
)
4674 brdp
->brdtype
= confp
->brdtype
;
4675 brdp
->iobase
= confp
->ioaddr1
;
4676 brdp
->memaddr
= confp
->memaddr
;
4681 * Static configuration table done, so now use dynamic methods to
4682 * see if any more boards should be configured.
4688 stli_findeisabrds();
4694 * All found boards are initialized. Now for a little optimization, if
4695 * no boards are sharing the "shared memory" regions then we can just
4696 * leave them all enabled. This is in fact the usual case.
4699 if (stli_nrbrds
> 1) {
4700 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4701 brdp
= stli_brds
[i
];
4702 if (brdp
== (stlibrd_t
*) NULL
)
4704 for (j
= i
+ 1; (j
< stli_nrbrds
); j
++) {
4705 nxtbrdp
= stli_brds
[j
];
4706 if (nxtbrdp
== (stlibrd_t
*) NULL
)
4708 if ((brdp
->membase
>= nxtbrdp
->membase
) &&
4709 (brdp
->membase
<= (nxtbrdp
->membase
+
4710 nxtbrdp
->memsize
- 1))) {
4718 if (stli_shared
== 0) {
4719 for (i
= 0; (i
< stli_nrbrds
); i
++) {
4720 brdp
= stli_brds
[i
];
4721 if (brdp
== (stlibrd_t
*) NULL
)
4723 if (brdp
->state
& BST_FOUND
) {
4725 brdp
->enable
= NULL
;
4726 brdp
->disable
= NULL
;
4734 /*****************************************************************************/
4737 * Code to handle an "staliomem" read operation. This device is the
4738 * contents of the board shared memory. It is used for down loading
4739 * the slave image (and debugging :-)
4742 static ssize_t
stli_memread(struct file
*fp
, char __user
*buf
, size_t count
, loff_t
*offp
)
4744 unsigned long flags
;
4750 printk(KERN_DEBUG
"stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4751 (int) fp
, (int) buf
, count
, (int) offp
);
4754 brdnr
= iminor(fp
->f_dentry
->d_inode
);
4755 if (brdnr
>= stli_nrbrds
)
4757 brdp
= stli_brds
[brdnr
];
4758 if (brdp
== (stlibrd_t
*) NULL
)
4760 if (brdp
->state
== 0)
4762 if (fp
->f_pos
>= brdp
->memsize
)
4765 size
= MIN(count
, (brdp
->memsize
- fp
->f_pos
));
4771 memptr
= (void *) EBRDGETMEMPTR(brdp
, fp
->f_pos
);
4772 n
= MIN(size
, (brdp
->pagesize
- (((unsigned long) fp
->f_pos
) % brdp
->pagesize
)));
4773 if (copy_to_user(buf
, memptr
, n
)) {
4783 restore_flags(flags
);
4788 /*****************************************************************************/
4791 * Code to handle an "staliomem" write operation. This device is the
4792 * contents of the board shared memory. It is used for down loading
4793 * the slave image (and debugging :-)
4796 static ssize_t
stli_memwrite(struct file
*fp
, const char __user
*buf
, size_t count
, loff_t
*offp
)
4798 unsigned long flags
;
4805 printk(KERN_DEBUG
"stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4806 (int) fp
, (int) buf
, count
, (int) offp
);
4809 brdnr
= iminor(fp
->f_dentry
->d_inode
);
4810 if (brdnr
>= stli_nrbrds
)
4812 brdp
= stli_brds
[brdnr
];
4813 if (brdp
== (stlibrd_t
*) NULL
)
4815 if (brdp
->state
== 0)
4817 if (fp
->f_pos
>= brdp
->memsize
)
4820 chbuf
= (char __user
*) buf
;
4821 size
= MIN(count
, (brdp
->memsize
- fp
->f_pos
));
4827 memptr
= (void *) EBRDGETMEMPTR(brdp
, fp
->f_pos
);
4828 n
= MIN(size
, (brdp
->pagesize
- (((unsigned long) fp
->f_pos
) % brdp
->pagesize
)));
4829 if (copy_from_user(memptr
, chbuf
, n
)) {
4839 restore_flags(flags
);
4844 /*****************************************************************************/
4847 * Return the board stats structure to user app.
4850 static int stli_getbrdstats(combrd_t __user
*bp
)
4855 if (copy_from_user(&stli_brdstats
, bp
, sizeof(combrd_t
)))
4857 if (stli_brdstats
.brd
>= STL_MAXBRDS
)
4859 brdp
= stli_brds
[stli_brdstats
.brd
];
4860 if (brdp
== (stlibrd_t
*) NULL
)
4863 memset(&stli_brdstats
, 0, sizeof(combrd_t
));
4864 stli_brdstats
.brd
= brdp
->brdnr
;
4865 stli_brdstats
.type
= brdp
->brdtype
;
4866 stli_brdstats
.hwid
= 0;
4867 stli_brdstats
.state
= brdp
->state
;
4868 stli_brdstats
.ioaddr
= brdp
->iobase
;
4869 stli_brdstats
.memaddr
= brdp
->memaddr
;
4870 stli_brdstats
.nrpanels
= brdp
->nrpanels
;
4871 stli_brdstats
.nrports
= brdp
->nrports
;
4872 for (i
= 0; (i
< brdp
->nrpanels
); i
++) {
4873 stli_brdstats
.panels
[i
].panel
= i
;
4874 stli_brdstats
.panels
[i
].hwid
= brdp
->panelids
[i
];
4875 stli_brdstats
.panels
[i
].nrports
= brdp
->panels
[i
];
4878 if (copy_to_user(bp
, &stli_brdstats
, sizeof(combrd_t
)))
4883 /*****************************************************************************/
4886 * Resolve the referenced port number into a port struct pointer.
4889 static stliport_t
*stli_getport(int brdnr
, int panelnr
, int portnr
)
4894 if ((brdnr
< 0) || (brdnr
>= STL_MAXBRDS
))
4895 return((stliport_t
*) NULL
);
4896 brdp
= stli_brds
[brdnr
];
4897 if (brdp
== (stlibrd_t
*) NULL
)
4898 return((stliport_t
*) NULL
);
4899 for (i
= 0; (i
< panelnr
); i
++)
4900 portnr
+= brdp
->panels
[i
];
4901 if ((portnr
< 0) || (portnr
>= brdp
->nrports
))
4902 return((stliport_t
*) NULL
);
4903 return(brdp
->ports
[portnr
]);
4906 /*****************************************************************************/
4909 * Return the port stats structure to user app. A NULL port struct
4910 * pointer passed in means that we need to find out from the app
4911 * what port to get stats for (used through board control device).
4914 static int stli_portcmdstats(stliport_t
*portp
)
4916 unsigned long flags
;
4920 memset(&stli_comstats
, 0, sizeof(comstats_t
));
4922 if (portp
== (stliport_t
*) NULL
)
4924 brdp
= stli_brds
[portp
->brdnr
];
4925 if (brdp
== (stlibrd_t
*) NULL
)
4928 if (brdp
->state
& BST_STARTED
) {
4929 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSTATS
,
4930 &stli_cdkstats
, sizeof(asystats_t
), 1)) < 0)
4933 memset(&stli_cdkstats
, 0, sizeof(asystats_t
));
4936 stli_comstats
.brd
= portp
->brdnr
;
4937 stli_comstats
.panel
= portp
->panelnr
;
4938 stli_comstats
.port
= portp
->portnr
;
4939 stli_comstats
.state
= portp
->state
;
4940 stli_comstats
.flags
= portp
->flags
;
4944 if (portp
->tty
!= (struct tty_struct
*) NULL
) {
4945 if (portp
->tty
->driver_data
== portp
) {
4946 stli_comstats
.ttystate
= portp
->tty
->flags
;
4947 stli_comstats
.rxbuffered
= portp
->tty
->flip
.count
;
4948 if (portp
->tty
->termios
!= (struct termios
*) NULL
) {
4949 stli_comstats
.cflags
= portp
->tty
->termios
->c_cflag
;
4950 stli_comstats
.iflags
= portp
->tty
->termios
->c_iflag
;
4951 stli_comstats
.oflags
= portp
->tty
->termios
->c_oflag
;
4952 stli_comstats
.lflags
= portp
->tty
->termios
->c_lflag
;
4956 restore_flags(flags
);
4958 stli_comstats
.txtotal
= stli_cdkstats
.txchars
;
4959 stli_comstats
.rxtotal
= stli_cdkstats
.rxchars
+ stli_cdkstats
.ringover
;
4960 stli_comstats
.txbuffered
= stli_cdkstats
.txringq
;
4961 stli_comstats
.rxbuffered
+= stli_cdkstats
.rxringq
;
4962 stli_comstats
.rxoverrun
= stli_cdkstats
.overruns
;
4963 stli_comstats
.rxparity
= stli_cdkstats
.parity
;
4964 stli_comstats
.rxframing
= stli_cdkstats
.framing
;
4965 stli_comstats
.rxlost
= stli_cdkstats
.ringover
;
4966 stli_comstats
.rxbreaks
= stli_cdkstats
.rxbreaks
;
4967 stli_comstats
.txbreaks
= stli_cdkstats
.txbreaks
;
4968 stli_comstats
.txxon
= stli_cdkstats
.txstart
;
4969 stli_comstats
.txxoff
= stli_cdkstats
.txstop
;
4970 stli_comstats
.rxxon
= stli_cdkstats
.rxstart
;
4971 stli_comstats
.rxxoff
= stli_cdkstats
.rxstop
;
4972 stli_comstats
.rxrtsoff
= stli_cdkstats
.rtscnt
/ 2;
4973 stli_comstats
.rxrtson
= stli_cdkstats
.rtscnt
- stli_comstats
.rxrtsoff
;
4974 stli_comstats
.modem
= stli_cdkstats
.dcdcnt
;
4975 stli_comstats
.hwid
= stli_cdkstats
.hwid
;
4976 stli_comstats
.signals
= stli_mktiocm(stli_cdkstats
.signals
);
4981 /*****************************************************************************/
4984 * Return the port stats structure to user app. A NULL port struct
4985 * pointer passed in means that we need to find out from the app
4986 * what port to get stats for (used through board control device).
4989 static int stli_getportstats(stliport_t
*portp
, comstats_t __user
*cp
)
4995 if (copy_from_user(&stli_comstats
, cp
, sizeof(comstats_t
)))
4997 portp
= stli_getport(stli_comstats
.brd
, stli_comstats
.panel
,
4998 stli_comstats
.port
);
5003 brdp
= stli_brds
[portp
->brdnr
];
5007 if ((rc
= stli_portcmdstats(portp
)) < 0)
5010 return copy_to_user(cp
, &stli_comstats
, sizeof(comstats_t
)) ?
5014 /*****************************************************************************/
5017 * Clear the port stats structure. We also return it zeroed out...
5020 static int stli_clrportstats(stliport_t
*portp
, comstats_t __user
*cp
)
5026 if (copy_from_user(&stli_comstats
, cp
, sizeof(comstats_t
)))
5028 portp
= stli_getport(stli_comstats
.brd
, stli_comstats
.panel
,
5029 stli_comstats
.port
);
5034 brdp
= stli_brds
[portp
->brdnr
];
5038 if (brdp
->state
& BST_STARTED
) {
5039 if ((rc
= stli_cmdwait(brdp
, portp
, A_CLEARSTATS
, NULL
, 0, 0)) < 0)
5043 memset(&stli_comstats
, 0, sizeof(comstats_t
));
5044 stli_comstats
.brd
= portp
->brdnr
;
5045 stli_comstats
.panel
= portp
->panelnr
;
5046 stli_comstats
.port
= portp
->portnr
;
5048 if (copy_to_user(cp
, &stli_comstats
, sizeof(comstats_t
)))
5053 /*****************************************************************************/
5056 * Return the entire driver ports structure to a user app.
5059 static int stli_getportstruct(stliport_t __user
*arg
)
5063 if (copy_from_user(&stli_dummyport
, arg
, sizeof(stliport_t
)))
5065 portp
= stli_getport(stli_dummyport
.brdnr
, stli_dummyport
.panelnr
,
5066 stli_dummyport
.portnr
);
5069 if (copy_to_user(arg
, portp
, sizeof(stliport_t
)))
5074 /*****************************************************************************/
5077 * Return the entire driver board structure to a user app.
5080 static int stli_getbrdstruct(stlibrd_t __user
*arg
)
5084 if (copy_from_user(&stli_dummybrd
, arg
, sizeof(stlibrd_t
)))
5086 if ((stli_dummybrd
.brdnr
< 0) || (stli_dummybrd
.brdnr
>= STL_MAXBRDS
))
5088 brdp
= stli_brds
[stli_dummybrd
.brdnr
];
5091 if (copy_to_user(arg
, brdp
, sizeof(stlibrd_t
)))
5096 /*****************************************************************************/
5099 * The "staliomem" device is also required to do some special operations on
5100 * the board. We need to be able to send an interrupt to the board,
5101 * reset it, and start/stop it.
5104 static int stli_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
)
5107 int brdnr
, rc
, done
;
5108 void __user
*argp
= (void __user
*)arg
;
5111 printk(KERN_DEBUG
"stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5112 (int) ip
, (int) fp
, cmd
, (int) arg
);
5116 * First up handle the board independent ioctls.
5122 case COM_GETPORTSTATS
:
5123 rc
= stli_getportstats(NULL
, argp
);
5126 case COM_CLRPORTSTATS
:
5127 rc
= stli_clrportstats(NULL
, argp
);
5130 case COM_GETBRDSTATS
:
5131 rc
= stli_getbrdstats(argp
);
5135 rc
= stli_getportstruct(argp
);
5139 rc
= stli_getbrdstruct(argp
);
5148 * Now handle the board specific ioctls. These all depend on the
5149 * minor number of the device they were called from.
5152 if (brdnr
>= STL_MAXBRDS
)
5154 brdp
= stli_brds
[brdnr
];
5157 if (brdp
->state
== 0)
5165 rc
= stli_startbrd(brdp
);
5168 brdp
->state
&= ~BST_STARTED
;
5171 brdp
->state
&= ~BST_STARTED
;
5173 if (stli_shared
== 0) {
5174 if (brdp
->reenable
!= NULL
)
5175 (* brdp
->reenable
)(brdp
);
5186 static struct tty_operations stli_ops
= {
5188 .close
= stli_close
,
5189 .write
= stli_write
,
5190 .put_char
= stli_putchar
,
5191 .flush_chars
= stli_flushchars
,
5192 .write_room
= stli_writeroom
,
5193 .chars_in_buffer
= stli_charsinbuffer
,
5194 .ioctl
= stli_ioctl
,
5195 .set_termios
= stli_settermios
,
5196 .throttle
= stli_throttle
,
5197 .unthrottle
= stli_unthrottle
,
5199 .start
= stli_start
,
5200 .hangup
= stli_hangup
,
5201 .flush_buffer
= stli_flushbuffer
,
5202 .break_ctl
= stli_breakctl
,
5203 .wait_until_sent
= stli_waituntilsent
,
5204 .send_xchar
= stli_sendxchar
,
5205 .read_proc
= stli_readproc
,
5206 .tiocmget
= stli_tiocmget
,
5207 .tiocmset
= stli_tiocmset
,
5210 /*****************************************************************************/
5212 int __init
stli_init(void)
5215 printk(KERN_INFO
"%s: version %s\n", stli_drvtitle
, stli_drvversion
);
5219 stli_serial
= alloc_tty_driver(STL_MAXBRDS
* STL_MAXPORTS
);
5224 * Allocate a temporary write buffer.
5226 stli_tmpwritebuf
= (char *) stli_memalloc(STLI_TXBUFSIZE
);
5227 if (stli_tmpwritebuf
== (char *) NULL
)
5228 printk(KERN_ERR
"STALLION: failed to allocate memory "
5229 "(size=%d)\n", STLI_TXBUFSIZE
);
5230 stli_txcookbuf
= stli_memalloc(STLI_TXBUFSIZE
);
5231 if (stli_txcookbuf
== (char *) NULL
)
5232 printk(KERN_ERR
"STALLION: failed to allocate memory "
5233 "(size=%d)\n", STLI_TXBUFSIZE
);
5236 * Set up a character driver for the shared memory region. We need this
5237 * to down load the slave code image. Also it is a useful debugging tool.
5239 if (register_chrdev(STL_SIOMEMMAJOR
, "staliomem", &stli_fsiomem
))
5240 printk(KERN_ERR
"STALLION: failed to register serial memory "
5243 devfs_mk_dir("staliomem");
5244 istallion_class
= class_create(THIS_MODULE
, "staliomem");
5245 for (i
= 0; i
< 4; i
++) {
5246 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR
, i
),
5247 S_IFCHR
| S_IRUSR
| S_IWUSR
,
5249 class_device_create(istallion_class
, MKDEV(STL_SIOMEMMAJOR
, i
),
5250 NULL
, "staliomem%d", i
);
5254 * Set up the tty driver structure and register us as a driver.
5256 stli_serial
->owner
= THIS_MODULE
;
5257 stli_serial
->driver_name
= stli_drvname
;
5258 stli_serial
->name
= stli_serialname
;
5259 stli_serial
->major
= STL_SERIALMAJOR
;
5260 stli_serial
->minor_start
= 0;
5261 stli_serial
->type
= TTY_DRIVER_TYPE_SERIAL
;
5262 stli_serial
->subtype
= SERIAL_TYPE_NORMAL
;
5263 stli_serial
->init_termios
= stli_deftermios
;
5264 stli_serial
->flags
= TTY_DRIVER_REAL_RAW
;
5265 tty_set_operations(stli_serial
, &stli_ops
);
5267 if (tty_register_driver(stli_serial
)) {
5268 put_tty_driver(stli_serial
);
5269 printk(KERN_ERR
"STALLION: failed to register serial driver\n");
5275 /*****************************************************************************/