[CONNECTOR]: async connector mode.
[linux-2.6/verdex.git] / drivers / char / rtc.c
blob63fff7c1244a29941dba32b1047ad63a31644831
1 /*
2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
52 #define RTC_VERSION "1.12"
54 #define RTC_IO_EXTENT 0x8
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 * this driver.)
64 #include <linux/config.h>
65 #include <linux/interrupt.h>
66 #include <linux/module.h>
67 #include <linux/kernel.h>
68 #include <linux/types.h>
69 #include <linux/miscdevice.h>
70 #include <linux/ioport.h>
71 #include <linux/fcntl.h>
72 #include <linux/mc146818rtc.h>
73 #include <linux/init.h>
74 #include <linux/poll.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/spinlock.h>
78 #include <linux/sysctl.h>
79 #include <linux/wait.h>
80 #include <linux/bcd.h>
81 #include <linux/delay.h>
83 #include <asm/current.h>
84 #include <asm/uaccess.h>
85 #include <asm/system.h>
87 #if defined(__i386__)
88 #include <asm/hpet.h>
89 #endif
91 #ifdef __sparc__
92 #include <linux/pci.h>
93 #include <asm/ebus.h>
94 #ifdef __sparc_v9__
95 #include <asm/isa.h>
96 #endif
98 static unsigned long rtc_port;
99 static int rtc_irq = PCI_IRQ_NONE;
100 #endif
102 #ifdef CONFIG_HPET_RTC_IRQ
103 #undef RTC_IRQ
104 #endif
106 #ifdef RTC_IRQ
107 static int rtc_has_irq = 1;
108 #endif
110 #ifndef CONFIG_HPET_EMULATE_RTC
111 #define is_hpet_enabled() 0
112 #define hpet_set_alarm_time(hrs, min, sec) 0
113 #define hpet_set_periodic_freq(arg) 0
114 #define hpet_mask_rtc_irq_bit(arg) 0
115 #define hpet_set_rtc_irq_bit(arg) 0
116 #define hpet_rtc_timer_init() do { } while (0)
117 #define hpet_rtc_dropped_irq() 0
118 static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;}
119 #else
120 extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
121 #endif
124 * We sponge a minor off of the misc major. No need slurping
125 * up another valuable major dev number for this. If you add
126 * an ioctl, make sure you don't conflict with SPARC's RTC
127 * ioctls.
130 static struct fasync_struct *rtc_async_queue;
132 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
134 #ifdef RTC_IRQ
135 static struct timer_list rtc_irq_timer;
136 #endif
138 static ssize_t rtc_read(struct file *file, char __user *buf,
139 size_t count, loff_t *ppos);
141 static int rtc_ioctl(struct inode *inode, struct file *file,
142 unsigned int cmd, unsigned long arg);
144 #ifdef RTC_IRQ
145 static unsigned int rtc_poll(struct file *file, poll_table *wait);
146 #endif
148 static void get_rtc_alm_time (struct rtc_time *alm_tm);
149 #ifdef RTC_IRQ
150 static void rtc_dropped_irq(unsigned long data);
152 static void set_rtc_irq_bit(unsigned char bit);
153 static void mask_rtc_irq_bit(unsigned char bit);
154 #endif
156 static int rtc_proc_open(struct inode *inode, struct file *file);
159 * Bits in rtc_status. (6 bits of room for future expansion)
162 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
163 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
166 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
167 * protected by the big kernel lock. However, ioctl can still disable the timer
168 * in rtc_status and then with del_timer after the interrupt has read
169 * rtc_status but before mod_timer is called, which would then reenable the
170 * timer (but you would need to have an awful timing before you'd trip on it)
172 static unsigned long rtc_status = 0; /* bitmapped status byte. */
173 static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
174 static unsigned long rtc_irq_data = 0; /* our output to the world */
175 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
177 #ifdef RTC_IRQ
179 * rtc_task_lock nests inside rtc_lock.
181 static DEFINE_SPINLOCK(rtc_task_lock);
182 static rtc_task_t *rtc_callback = NULL;
183 #endif
186 * If this driver ever becomes modularised, it will be really nice
187 * to make the epoch retain its value across module reload...
190 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
192 static const unsigned char days_in_mo[] =
193 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
196 * Returns true if a clock update is in progress
198 static inline unsigned char rtc_is_updating(void)
200 unsigned char uip;
202 spin_lock_irq(&rtc_lock);
203 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
204 spin_unlock_irq(&rtc_lock);
205 return uip;
208 #ifdef RTC_IRQ
210 * A very tiny interrupt handler. It runs with SA_INTERRUPT set,
211 * but there is possibility of conflicting with the set_rtc_mmss()
212 * call (the rtc irq and the timer irq can easily run at the same
213 * time in two different CPUs). So we need to serialize
214 * accesses to the chip with the rtc_lock spinlock that each
215 * architecture should implement in the timer code.
216 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
219 irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
222 * Can be an alarm interrupt, update complete interrupt,
223 * or a periodic interrupt. We store the status in the
224 * low byte and the number of interrupts received since
225 * the last read in the remainder of rtc_irq_data.
228 spin_lock (&rtc_lock);
229 rtc_irq_data += 0x100;
230 rtc_irq_data &= ~0xff;
231 if (is_hpet_enabled()) {
233 * In this case it is HPET RTC interrupt handler
234 * calling us, with the interrupt information
235 * passed as arg1, instead of irq.
237 rtc_irq_data |= (unsigned long)irq & 0xF0;
238 } else {
239 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
242 if (rtc_status & RTC_TIMER_ON)
243 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
245 spin_unlock (&rtc_lock);
247 /* Now do the rest of the actions */
248 spin_lock(&rtc_task_lock);
249 if (rtc_callback)
250 rtc_callback->func(rtc_callback->private_data);
251 spin_unlock(&rtc_task_lock);
252 wake_up_interruptible(&rtc_wait);
254 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
256 return IRQ_HANDLED;
258 #endif
261 * sysctl-tuning infrastructure.
263 static ctl_table rtc_table[] = {
265 .ctl_name = 1,
266 .procname = "max-user-freq",
267 .data = &rtc_max_user_freq,
268 .maxlen = sizeof(int),
269 .mode = 0644,
270 .proc_handler = &proc_dointvec,
272 { .ctl_name = 0 }
275 static ctl_table rtc_root[] = {
277 .ctl_name = 1,
278 .procname = "rtc",
279 .maxlen = 0,
280 .mode = 0555,
281 .child = rtc_table,
283 { .ctl_name = 0 }
286 static ctl_table dev_root[] = {
288 .ctl_name = CTL_DEV,
289 .procname = "dev",
290 .maxlen = 0,
291 .mode = 0555,
292 .child = rtc_root,
294 { .ctl_name = 0 }
297 static struct ctl_table_header *sysctl_header;
299 static int __init init_sysctl(void)
301 sysctl_header = register_sysctl_table(dev_root, 0);
302 return 0;
305 static void __exit cleanup_sysctl(void)
307 unregister_sysctl_table(sysctl_header);
311 * Now all the various file operations that we export.
314 static ssize_t rtc_read(struct file *file, char __user *buf,
315 size_t count, loff_t *ppos)
317 #ifndef RTC_IRQ
318 return -EIO;
319 #else
320 DECLARE_WAITQUEUE(wait, current);
321 unsigned long data;
322 ssize_t retval;
324 if (rtc_has_irq == 0)
325 return -EIO;
327 if (count < sizeof(unsigned))
328 return -EINVAL;
330 add_wait_queue(&rtc_wait, &wait);
332 do {
333 /* First make it right. Then make it fast. Putting this whole
334 * block within the parentheses of a while would be too
335 * confusing. And no, xchg() is not the answer. */
337 __set_current_state(TASK_INTERRUPTIBLE);
339 spin_lock_irq (&rtc_lock);
340 data = rtc_irq_data;
341 rtc_irq_data = 0;
342 spin_unlock_irq (&rtc_lock);
344 if (data != 0)
345 break;
347 if (file->f_flags & O_NONBLOCK) {
348 retval = -EAGAIN;
349 goto out;
351 if (signal_pending(current)) {
352 retval = -ERESTARTSYS;
353 goto out;
355 schedule();
356 } while (1);
358 if (count < sizeof(unsigned long))
359 retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
360 else
361 retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
362 out:
363 current->state = TASK_RUNNING;
364 remove_wait_queue(&rtc_wait, &wait);
366 return retval;
367 #endif
370 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
372 struct rtc_time wtime;
374 #ifdef RTC_IRQ
375 if (rtc_has_irq == 0) {
376 switch (cmd) {
377 case RTC_AIE_OFF:
378 case RTC_AIE_ON:
379 case RTC_PIE_OFF:
380 case RTC_PIE_ON:
381 case RTC_UIE_OFF:
382 case RTC_UIE_ON:
383 case RTC_IRQP_READ:
384 case RTC_IRQP_SET:
385 return -EINVAL;
388 #endif
390 switch (cmd) {
391 #ifdef RTC_IRQ
392 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
394 mask_rtc_irq_bit(RTC_AIE);
395 return 0;
397 case RTC_AIE_ON: /* Allow alarm interrupts. */
399 set_rtc_irq_bit(RTC_AIE);
400 return 0;
402 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
404 mask_rtc_irq_bit(RTC_PIE);
405 if (rtc_status & RTC_TIMER_ON) {
406 spin_lock_irq (&rtc_lock);
407 rtc_status &= ~RTC_TIMER_ON;
408 del_timer(&rtc_irq_timer);
409 spin_unlock_irq (&rtc_lock);
411 return 0;
413 case RTC_PIE_ON: /* Allow periodic ints */
417 * We don't really want Joe User enabling more
418 * than 64Hz of interrupts on a multi-user machine.
420 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
421 (!capable(CAP_SYS_RESOURCE)))
422 return -EACCES;
424 if (!(rtc_status & RTC_TIMER_ON)) {
425 spin_lock_irq (&rtc_lock);
426 rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
427 add_timer(&rtc_irq_timer);
428 rtc_status |= RTC_TIMER_ON;
429 spin_unlock_irq (&rtc_lock);
431 set_rtc_irq_bit(RTC_PIE);
432 return 0;
434 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
436 mask_rtc_irq_bit(RTC_UIE);
437 return 0;
439 case RTC_UIE_ON: /* Allow ints for RTC updates. */
441 set_rtc_irq_bit(RTC_UIE);
442 return 0;
444 #endif
445 case RTC_ALM_READ: /* Read the present alarm time */
448 * This returns a struct rtc_time. Reading >= 0xc0
449 * means "don't care" or "match all". Only the tm_hour,
450 * tm_min, and tm_sec values are filled in.
452 memset(&wtime, 0, sizeof(struct rtc_time));
453 get_rtc_alm_time(&wtime);
454 break;
456 case RTC_ALM_SET: /* Store a time into the alarm */
459 * This expects a struct rtc_time. Writing 0xff means
460 * "don't care" or "match all". Only the tm_hour,
461 * tm_min and tm_sec are used.
463 unsigned char hrs, min, sec;
464 struct rtc_time alm_tm;
466 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
467 sizeof(struct rtc_time)))
468 return -EFAULT;
470 hrs = alm_tm.tm_hour;
471 min = alm_tm.tm_min;
472 sec = alm_tm.tm_sec;
474 spin_lock_irq(&rtc_lock);
475 if (hpet_set_alarm_time(hrs, min, sec)) {
477 * Fallthru and set alarm time in CMOS too,
478 * so that we will get proper value in RTC_ALM_READ
481 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
482 RTC_ALWAYS_BCD)
484 if (sec < 60) BIN_TO_BCD(sec);
485 else sec = 0xff;
487 if (min < 60) BIN_TO_BCD(min);
488 else min = 0xff;
490 if (hrs < 24) BIN_TO_BCD(hrs);
491 else hrs = 0xff;
493 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
494 CMOS_WRITE(min, RTC_MINUTES_ALARM);
495 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
496 spin_unlock_irq(&rtc_lock);
498 return 0;
500 case RTC_RD_TIME: /* Read the time/date from RTC */
502 memset(&wtime, 0, sizeof(struct rtc_time));
503 rtc_get_rtc_time(&wtime);
504 break;
506 case RTC_SET_TIME: /* Set the RTC */
508 struct rtc_time rtc_tm;
509 unsigned char mon, day, hrs, min, sec, leap_yr;
510 unsigned char save_control, save_freq_select;
511 unsigned int yrs;
512 #ifdef CONFIG_MACH_DECSTATION
513 unsigned int real_yrs;
514 #endif
516 if (!capable(CAP_SYS_TIME))
517 return -EACCES;
519 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
520 sizeof(struct rtc_time)))
521 return -EFAULT;
523 yrs = rtc_tm.tm_year + 1900;
524 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
525 day = rtc_tm.tm_mday;
526 hrs = rtc_tm.tm_hour;
527 min = rtc_tm.tm_min;
528 sec = rtc_tm.tm_sec;
530 if (yrs < 1970)
531 return -EINVAL;
533 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
535 if ((mon > 12) || (day == 0))
536 return -EINVAL;
538 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
539 return -EINVAL;
541 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
542 return -EINVAL;
544 if ((yrs -= epoch) > 255) /* They are unsigned */
545 return -EINVAL;
547 spin_lock_irq(&rtc_lock);
548 #ifdef CONFIG_MACH_DECSTATION
549 real_yrs = yrs;
550 yrs = 72;
553 * We want to keep the year set to 73 until March
554 * for non-leap years, so that Feb, 29th is handled
555 * correctly.
557 if (!leap_yr && mon < 3) {
558 real_yrs--;
559 yrs = 73;
561 #endif
562 /* These limits and adjustments are independent of
563 * whether the chip is in binary mode or not.
565 if (yrs > 169) {
566 spin_unlock_irq(&rtc_lock);
567 return -EINVAL;
569 if (yrs >= 100)
570 yrs -= 100;
572 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
573 || RTC_ALWAYS_BCD) {
574 BIN_TO_BCD(sec);
575 BIN_TO_BCD(min);
576 BIN_TO_BCD(hrs);
577 BIN_TO_BCD(day);
578 BIN_TO_BCD(mon);
579 BIN_TO_BCD(yrs);
582 save_control = CMOS_READ(RTC_CONTROL);
583 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
584 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
585 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
587 #ifdef CONFIG_MACH_DECSTATION
588 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
589 #endif
590 CMOS_WRITE(yrs, RTC_YEAR);
591 CMOS_WRITE(mon, RTC_MONTH);
592 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
593 CMOS_WRITE(hrs, RTC_HOURS);
594 CMOS_WRITE(min, RTC_MINUTES);
595 CMOS_WRITE(sec, RTC_SECONDS);
597 CMOS_WRITE(save_control, RTC_CONTROL);
598 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
600 spin_unlock_irq(&rtc_lock);
601 return 0;
603 #ifdef RTC_IRQ
604 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
606 return put_user(rtc_freq, (unsigned long __user *)arg);
608 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
610 int tmp = 0;
611 unsigned char val;
614 * The max we can do is 8192Hz.
616 if ((arg < 2) || (arg > 8192))
617 return -EINVAL;
619 * We don't really want Joe User generating more
620 * than 64Hz of interrupts on a multi-user machine.
622 if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
623 return -EACCES;
625 while (arg > (1<<tmp))
626 tmp++;
629 * Check that the input was really a power of 2.
631 if (arg != (1<<tmp))
632 return -EINVAL;
634 spin_lock_irq(&rtc_lock);
635 if (hpet_set_periodic_freq(arg)) {
636 spin_unlock_irq(&rtc_lock);
637 return 0;
639 rtc_freq = arg;
641 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
642 val |= (16 - tmp);
643 CMOS_WRITE(val, RTC_FREQ_SELECT);
644 spin_unlock_irq(&rtc_lock);
645 return 0;
647 #endif
648 case RTC_EPOCH_READ: /* Read the epoch. */
650 return put_user (epoch, (unsigned long __user *)arg);
652 case RTC_EPOCH_SET: /* Set the epoch. */
655 * There were no RTC clocks before 1900.
657 if (arg < 1900)
658 return -EINVAL;
660 if (!capable(CAP_SYS_TIME))
661 return -EACCES;
663 epoch = arg;
664 return 0;
666 default:
667 return -ENOTTY;
669 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
672 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
673 unsigned long arg)
675 return rtc_do_ioctl(cmd, arg, 0);
679 * We enforce only one user at a time here with the open/close.
680 * Also clear the previous interrupt data on an open, and clean
681 * up things on a close.
684 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
685 * needed here. Or anywhere else in this driver. */
686 static int rtc_open(struct inode *inode, struct file *file)
688 spin_lock_irq (&rtc_lock);
690 if(rtc_status & RTC_IS_OPEN)
691 goto out_busy;
693 rtc_status |= RTC_IS_OPEN;
695 rtc_irq_data = 0;
696 spin_unlock_irq (&rtc_lock);
697 return 0;
699 out_busy:
700 spin_unlock_irq (&rtc_lock);
701 return -EBUSY;
704 static int rtc_fasync (int fd, struct file *filp, int on)
707 return fasync_helper (fd, filp, on, &rtc_async_queue);
710 static int rtc_release(struct inode *inode, struct file *file)
712 #ifdef RTC_IRQ
713 unsigned char tmp;
715 if (rtc_has_irq == 0)
716 goto no_irq;
719 * Turn off all interrupts once the device is no longer
720 * in use, and clear the data.
723 spin_lock_irq(&rtc_lock);
724 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
725 tmp = CMOS_READ(RTC_CONTROL);
726 tmp &= ~RTC_PIE;
727 tmp &= ~RTC_AIE;
728 tmp &= ~RTC_UIE;
729 CMOS_WRITE(tmp, RTC_CONTROL);
730 CMOS_READ(RTC_INTR_FLAGS);
732 if (rtc_status & RTC_TIMER_ON) {
733 rtc_status &= ~RTC_TIMER_ON;
734 del_timer(&rtc_irq_timer);
736 spin_unlock_irq(&rtc_lock);
738 if (file->f_flags & FASYNC) {
739 rtc_fasync (-1, file, 0);
741 no_irq:
742 #endif
744 spin_lock_irq (&rtc_lock);
745 rtc_irq_data = 0;
746 rtc_status &= ~RTC_IS_OPEN;
747 spin_unlock_irq (&rtc_lock);
748 return 0;
751 #ifdef RTC_IRQ
752 /* Called without the kernel lock - fine */
753 static unsigned int rtc_poll(struct file *file, poll_table *wait)
755 unsigned long l;
757 if (rtc_has_irq == 0)
758 return 0;
760 poll_wait(file, &rtc_wait, wait);
762 spin_lock_irq (&rtc_lock);
763 l = rtc_irq_data;
764 spin_unlock_irq (&rtc_lock);
766 if (l != 0)
767 return POLLIN | POLLRDNORM;
768 return 0;
770 #endif
773 * exported stuffs
776 EXPORT_SYMBOL(rtc_register);
777 EXPORT_SYMBOL(rtc_unregister);
778 EXPORT_SYMBOL(rtc_control);
780 int rtc_register(rtc_task_t *task)
782 #ifndef RTC_IRQ
783 return -EIO;
784 #else
785 if (task == NULL || task->func == NULL)
786 return -EINVAL;
787 spin_lock_irq(&rtc_lock);
788 if (rtc_status & RTC_IS_OPEN) {
789 spin_unlock_irq(&rtc_lock);
790 return -EBUSY;
792 spin_lock(&rtc_task_lock);
793 if (rtc_callback) {
794 spin_unlock(&rtc_task_lock);
795 spin_unlock_irq(&rtc_lock);
796 return -EBUSY;
798 rtc_status |= RTC_IS_OPEN;
799 rtc_callback = task;
800 spin_unlock(&rtc_task_lock);
801 spin_unlock_irq(&rtc_lock);
802 return 0;
803 #endif
806 int rtc_unregister(rtc_task_t *task)
808 #ifndef RTC_IRQ
809 return -EIO;
810 #else
811 unsigned char tmp;
813 spin_lock_irq(&rtc_lock);
814 spin_lock(&rtc_task_lock);
815 if (rtc_callback != task) {
816 spin_unlock(&rtc_task_lock);
817 spin_unlock_irq(&rtc_lock);
818 return -ENXIO;
820 rtc_callback = NULL;
822 /* disable controls */
823 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
824 tmp = CMOS_READ(RTC_CONTROL);
825 tmp &= ~RTC_PIE;
826 tmp &= ~RTC_AIE;
827 tmp &= ~RTC_UIE;
828 CMOS_WRITE(tmp, RTC_CONTROL);
829 CMOS_READ(RTC_INTR_FLAGS);
831 if (rtc_status & RTC_TIMER_ON) {
832 rtc_status &= ~RTC_TIMER_ON;
833 del_timer(&rtc_irq_timer);
835 rtc_status &= ~RTC_IS_OPEN;
836 spin_unlock(&rtc_task_lock);
837 spin_unlock_irq(&rtc_lock);
838 return 0;
839 #endif
842 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
844 #ifndef RTC_IRQ
845 return -EIO;
846 #else
847 spin_lock_irq(&rtc_task_lock);
848 if (rtc_callback != task) {
849 spin_unlock_irq(&rtc_task_lock);
850 return -ENXIO;
852 spin_unlock_irq(&rtc_task_lock);
853 return rtc_do_ioctl(cmd, arg, 1);
854 #endif
859 * The various file operations we support.
862 static struct file_operations rtc_fops = {
863 .owner = THIS_MODULE,
864 .llseek = no_llseek,
865 .read = rtc_read,
866 #ifdef RTC_IRQ
867 .poll = rtc_poll,
868 #endif
869 .ioctl = rtc_ioctl,
870 .open = rtc_open,
871 .release = rtc_release,
872 .fasync = rtc_fasync,
875 static struct miscdevice rtc_dev = {
876 .minor = RTC_MINOR,
877 .name = "rtc",
878 .fops = &rtc_fops,
881 static struct file_operations rtc_proc_fops = {
882 .owner = THIS_MODULE,
883 .open = rtc_proc_open,
884 .read = seq_read,
885 .llseek = seq_lseek,
886 .release = single_release,
889 #if defined(RTC_IRQ) && !defined(__sparc__)
890 static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs);
891 #endif
893 static int __init rtc_init(void)
895 struct proc_dir_entry *ent;
896 #if defined(__alpha__) || defined(__mips__)
897 unsigned int year, ctrl;
898 char *guess = NULL;
899 #endif
900 #ifdef __sparc__
901 struct linux_ebus *ebus;
902 struct linux_ebus_device *edev;
903 #ifdef __sparc_v9__
904 struct sparc_isa_bridge *isa_br;
905 struct sparc_isa_device *isa_dev;
906 #endif
907 #endif
909 #ifdef __sparc__
910 for_each_ebus(ebus) {
911 for_each_ebusdev(edev, ebus) {
912 if(strcmp(edev->prom_name, "rtc") == 0) {
913 rtc_port = edev->resource[0].start;
914 rtc_irq = edev->irqs[0];
915 goto found;
919 #ifdef __sparc_v9__
920 for_each_isa(isa_br) {
921 for_each_isadev(isa_dev, isa_br) {
922 if (strcmp(isa_dev->prom_name, "rtc") == 0) {
923 rtc_port = isa_dev->resource.start;
924 rtc_irq = isa_dev->irq;
925 goto found;
929 #endif
930 printk(KERN_ERR "rtc_init: no PC rtc found\n");
931 return -EIO;
933 found:
934 if (rtc_irq == PCI_IRQ_NONE) {
935 rtc_has_irq = 0;
936 goto no_irq;
940 * XXX Interrupt pin #7 in Espresso is shared between RTC and
941 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
943 if (request_irq(rtc_irq, rtc_interrupt, SA_SHIRQ, "rtc", (void *)&rtc_port)) {
945 * Standard way for sparc to print irq's is to use
946 * __irq_itoa(). I think for EBus it's ok to use %d.
948 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
949 return -EIO;
951 no_irq:
952 #else
953 if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc")) {
954 printk(KERN_ERR "rtc: I/O port %d is not free.\n", RTC_PORT (0));
955 return -EIO;
958 #ifdef RTC_IRQ
959 if (is_hpet_enabled()) {
960 rtc_int_handler_ptr = hpet_rtc_interrupt;
961 } else {
962 rtc_int_handler_ptr = rtc_interrupt;
965 if(request_irq(RTC_IRQ, rtc_int_handler_ptr, SA_INTERRUPT, "rtc", NULL)) {
966 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
967 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
968 release_region(RTC_PORT(0), RTC_IO_EXTENT);
969 return -EIO;
971 hpet_rtc_timer_init();
973 #endif
975 #endif /* __sparc__ vs. others */
977 if (misc_register(&rtc_dev)) {
978 #ifdef RTC_IRQ
979 free_irq(RTC_IRQ, NULL);
980 #endif
981 release_region(RTC_PORT(0), RTC_IO_EXTENT);
982 return -ENODEV;
985 ent = create_proc_entry("driver/rtc", 0, NULL);
986 if (!ent) {
987 #ifdef RTC_IRQ
988 free_irq(RTC_IRQ, NULL);
989 #endif
990 release_region(RTC_PORT(0), RTC_IO_EXTENT);
991 misc_deregister(&rtc_dev);
992 return -ENOMEM;
994 ent->proc_fops = &rtc_proc_fops;
996 #if defined(__alpha__) || defined(__mips__)
997 rtc_freq = HZ;
999 /* Each operating system on an Alpha uses its own epoch.
1000 Let's try to guess which one we are using now. */
1002 if (rtc_is_updating() != 0)
1003 msleep(20);
1005 spin_lock_irq(&rtc_lock);
1006 year = CMOS_READ(RTC_YEAR);
1007 ctrl = CMOS_READ(RTC_CONTROL);
1008 spin_unlock_irq(&rtc_lock);
1010 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1011 BCD_TO_BIN(year); /* This should never happen... */
1013 if (year < 20) {
1014 epoch = 2000;
1015 guess = "SRM (post-2000)";
1016 } else if (year >= 20 && year < 48) {
1017 epoch = 1980;
1018 guess = "ARC console";
1019 } else if (year >= 48 && year < 72) {
1020 epoch = 1952;
1021 guess = "Digital UNIX";
1022 #if defined(__mips__)
1023 } else if (year >= 72 && year < 74) {
1024 epoch = 2000;
1025 guess = "Digital DECstation";
1026 #else
1027 } else if (year >= 70) {
1028 epoch = 1900;
1029 guess = "Standard PC (1900)";
1030 #endif
1032 if (guess)
1033 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1034 #endif
1035 #ifdef RTC_IRQ
1036 if (rtc_has_irq == 0)
1037 goto no_irq2;
1039 init_timer(&rtc_irq_timer);
1040 rtc_irq_timer.function = rtc_dropped_irq;
1041 spin_lock_irq(&rtc_lock);
1042 rtc_freq = 1024;
1043 if (!hpet_set_periodic_freq(rtc_freq)) {
1044 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1045 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1047 spin_unlock_irq(&rtc_lock);
1048 no_irq2:
1049 #endif
1051 (void) init_sysctl();
1053 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1055 return 0;
1058 static void __exit rtc_exit (void)
1060 cleanup_sysctl();
1061 remove_proc_entry ("driver/rtc", NULL);
1062 misc_deregister(&rtc_dev);
1064 #ifdef __sparc__
1065 if (rtc_has_irq)
1066 free_irq (rtc_irq, &rtc_port);
1067 #else
1068 release_region (RTC_PORT (0), RTC_IO_EXTENT);
1069 #ifdef RTC_IRQ
1070 if (rtc_has_irq)
1071 free_irq (RTC_IRQ, NULL);
1072 #endif
1073 #endif /* __sparc__ */
1076 module_init(rtc_init);
1077 module_exit(rtc_exit);
1079 #ifdef RTC_IRQ
1081 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1082 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1083 * Since the interrupt handler doesn't get called, the IRQ status
1084 * byte doesn't get read, and the RTC stops generating interrupts.
1085 * A timer is set, and will call this function if/when that happens.
1086 * To get it out of this stalled state, we just read the status.
1087 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1088 * (You *really* shouldn't be trying to use a non-realtime system
1089 * for something that requires a steady > 1KHz signal anyways.)
1092 static void rtc_dropped_irq(unsigned long data)
1094 unsigned long freq;
1096 spin_lock_irq (&rtc_lock);
1098 if (hpet_rtc_dropped_irq()) {
1099 spin_unlock_irq(&rtc_lock);
1100 return;
1103 /* Just in case someone disabled the timer from behind our back... */
1104 if (rtc_status & RTC_TIMER_ON)
1105 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1107 rtc_irq_data += ((rtc_freq/HZ)<<8);
1108 rtc_irq_data &= ~0xff;
1109 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1111 freq = rtc_freq;
1113 spin_unlock_irq(&rtc_lock);
1115 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1117 /* Now we have new data */
1118 wake_up_interruptible(&rtc_wait);
1120 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1122 #endif
1125 * Info exported via "/proc/driver/rtc".
1128 static int rtc_proc_show(struct seq_file *seq, void *v)
1130 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1131 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1132 struct rtc_time tm;
1133 unsigned char batt, ctrl;
1134 unsigned long freq;
1136 spin_lock_irq(&rtc_lock);
1137 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1138 ctrl = CMOS_READ(RTC_CONTROL);
1139 freq = rtc_freq;
1140 spin_unlock_irq(&rtc_lock);
1143 rtc_get_rtc_time(&tm);
1146 * There is no way to tell if the luser has the RTC set for local
1147 * time or for Universal Standard Time (GMT). Probably local though.
1149 seq_printf(seq,
1150 "rtc_time\t: %02d:%02d:%02d\n"
1151 "rtc_date\t: %04d-%02d-%02d\n"
1152 "rtc_epoch\t: %04lu\n",
1153 tm.tm_hour, tm.tm_min, tm.tm_sec,
1154 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1156 get_rtc_alm_time(&tm);
1159 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1160 * match any value for that particular field. Values that are
1161 * greater than a valid time, but less than 0xc0 shouldn't appear.
1163 seq_puts(seq, "alarm\t\t: ");
1164 if (tm.tm_hour <= 24)
1165 seq_printf(seq, "%02d:", tm.tm_hour);
1166 else
1167 seq_puts(seq, "**:");
1169 if (tm.tm_min <= 59)
1170 seq_printf(seq, "%02d:", tm.tm_min);
1171 else
1172 seq_puts(seq, "**:");
1174 if (tm.tm_sec <= 59)
1175 seq_printf(seq, "%02d\n", tm.tm_sec);
1176 else
1177 seq_puts(seq, "**\n");
1179 seq_printf(seq,
1180 "DST_enable\t: %s\n"
1181 "BCD\t\t: %s\n"
1182 "24hr\t\t: %s\n"
1183 "square_wave\t: %s\n"
1184 "alarm_IRQ\t: %s\n"
1185 "update_IRQ\t: %s\n"
1186 "periodic_IRQ\t: %s\n"
1187 "periodic_freq\t: %ld\n"
1188 "batt_status\t: %s\n",
1189 YN(RTC_DST_EN),
1190 NY(RTC_DM_BINARY),
1191 YN(RTC_24H),
1192 YN(RTC_SQWE),
1193 YN(RTC_AIE),
1194 YN(RTC_UIE),
1195 YN(RTC_PIE),
1196 freq,
1197 batt ? "okay" : "dead");
1199 return 0;
1200 #undef YN
1201 #undef NY
1204 static int rtc_proc_open(struct inode *inode, struct file *file)
1206 return single_open(file, rtc_proc_show, NULL);
1209 void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1211 unsigned long uip_watchdog = jiffies;
1212 unsigned char ctrl;
1213 #ifdef CONFIG_MACH_DECSTATION
1214 unsigned int real_year;
1215 #endif
1218 * read RTC once any update in progress is done. The update
1219 * can take just over 2ms. We wait 20ms. There is no need to
1220 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1221 * If you need to know *exactly* when a second has started, enable
1222 * periodic update complete interrupts, (via ioctl) and then
1223 * immediately read /dev/rtc which will block until you get the IRQ.
1224 * Once the read clears, read the RTC time (again via ioctl). Easy.
1227 while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100) {
1228 barrier();
1229 cpu_relax();
1233 * Only the values that we read from the RTC are set. We leave
1234 * tm_wday, tm_yday and tm_isdst untouched. Even though the
1235 * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
1236 * by the RTC when initially set to a non-zero value.
1238 spin_lock_irq(&rtc_lock);
1239 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1240 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1241 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1242 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1243 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1244 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1245 #ifdef CONFIG_MACH_DECSTATION
1246 real_year = CMOS_READ(RTC_DEC_YEAR);
1247 #endif
1248 ctrl = CMOS_READ(RTC_CONTROL);
1249 spin_unlock_irq(&rtc_lock);
1251 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1253 BCD_TO_BIN(rtc_tm->tm_sec);
1254 BCD_TO_BIN(rtc_tm->tm_min);
1255 BCD_TO_BIN(rtc_tm->tm_hour);
1256 BCD_TO_BIN(rtc_tm->tm_mday);
1257 BCD_TO_BIN(rtc_tm->tm_mon);
1258 BCD_TO_BIN(rtc_tm->tm_year);
1261 #ifdef CONFIG_MACH_DECSTATION
1262 rtc_tm->tm_year += real_year - 72;
1263 #endif
1266 * Account for differences between how the RTC uses the values
1267 * and how they are defined in a struct rtc_time;
1269 if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1270 rtc_tm->tm_year += 100;
1272 rtc_tm->tm_mon--;
1275 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1277 unsigned char ctrl;
1280 * Only the values that we read from the RTC are set. That
1281 * means only tm_hour, tm_min, and tm_sec.
1283 spin_lock_irq(&rtc_lock);
1284 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1285 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1286 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1287 ctrl = CMOS_READ(RTC_CONTROL);
1288 spin_unlock_irq(&rtc_lock);
1290 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1292 BCD_TO_BIN(alm_tm->tm_sec);
1293 BCD_TO_BIN(alm_tm->tm_min);
1294 BCD_TO_BIN(alm_tm->tm_hour);
1298 #ifdef RTC_IRQ
1300 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1301 * Rumour has it that if you frob the interrupt enable/disable
1302 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1303 * ensure you actually start getting interrupts. Probably for
1304 * compatibility with older/broken chipset RTC implementations.
1305 * We also clear out any old irq data after an ioctl() that
1306 * meddles with the interrupt enable/disable bits.
1309 static void mask_rtc_irq_bit(unsigned char bit)
1311 unsigned char val;
1313 spin_lock_irq(&rtc_lock);
1314 if (hpet_mask_rtc_irq_bit(bit)) {
1315 spin_unlock_irq(&rtc_lock);
1316 return;
1318 val = CMOS_READ(RTC_CONTROL);
1319 val &= ~bit;
1320 CMOS_WRITE(val, RTC_CONTROL);
1321 CMOS_READ(RTC_INTR_FLAGS);
1323 rtc_irq_data = 0;
1324 spin_unlock_irq(&rtc_lock);
1327 static void set_rtc_irq_bit(unsigned char bit)
1329 unsigned char val;
1331 spin_lock_irq(&rtc_lock);
1332 if (hpet_set_rtc_irq_bit(bit)) {
1333 spin_unlock_irq(&rtc_lock);
1334 return;
1336 val = CMOS_READ(RTC_CONTROL);
1337 val |= bit;
1338 CMOS_WRITE(val, RTC_CONTROL);
1339 CMOS_READ(RTC_INTR_FLAGS);
1341 rtc_irq_data = 0;
1342 spin_unlock_irq(&rtc_lock);
1344 #endif
1346 MODULE_AUTHOR("Paul Gortmaker");
1347 MODULE_LICENSE("GPL");
1348 MODULE_ALIAS_MISCDEV(RTC_MINOR);