2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
52 #define RTC_VERSION "1.12"
54 #define RTC_IO_EXTENT 0x8
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
64 #include <linux/config.h>
65 #include <linux/interrupt.h>
66 #include <linux/module.h>
67 #include <linux/kernel.h>
68 #include <linux/types.h>
69 #include <linux/miscdevice.h>
70 #include <linux/ioport.h>
71 #include <linux/fcntl.h>
72 #include <linux/mc146818rtc.h>
73 #include <linux/init.h>
74 #include <linux/poll.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/spinlock.h>
78 #include <linux/sysctl.h>
79 #include <linux/wait.h>
80 #include <linux/bcd.h>
81 #include <linux/delay.h>
83 #include <asm/current.h>
84 #include <asm/uaccess.h>
85 #include <asm/system.h>
92 #include <linux/pci.h>
98 static unsigned long rtc_port
;
99 static int rtc_irq
= PCI_IRQ_NONE
;
102 #ifdef CONFIG_HPET_RTC_IRQ
107 static int rtc_has_irq
= 1;
110 #ifndef CONFIG_HPET_EMULATE_RTC
111 #define is_hpet_enabled() 0
112 #define hpet_set_alarm_time(hrs, min, sec) 0
113 #define hpet_set_periodic_freq(arg) 0
114 #define hpet_mask_rtc_irq_bit(arg) 0
115 #define hpet_set_rtc_irq_bit(arg) 0
116 #define hpet_rtc_timer_init() do { } while (0)
117 #define hpet_rtc_dropped_irq() 0
118 static inline irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
) {return 0;}
120 extern irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
124 * We sponge a minor off of the misc major. No need slurping
125 * up another valuable major dev number for this. If you add
126 * an ioctl, make sure you don't conflict with SPARC's RTC
130 static struct fasync_struct
*rtc_async_queue
;
132 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait
);
135 static struct timer_list rtc_irq_timer
;
138 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
139 size_t count
, loff_t
*ppos
);
141 static int rtc_ioctl(struct inode
*inode
, struct file
*file
,
142 unsigned int cmd
, unsigned long arg
);
145 static unsigned int rtc_poll(struct file
*file
, poll_table
*wait
);
148 static void get_rtc_alm_time (struct rtc_time
*alm_tm
);
150 static void rtc_dropped_irq(unsigned long data
);
152 static void set_rtc_irq_bit(unsigned char bit
);
153 static void mask_rtc_irq_bit(unsigned char bit
);
156 static int rtc_proc_open(struct inode
*inode
, struct file
*file
);
159 * Bits in rtc_status. (6 bits of room for future expansion)
162 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
163 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
166 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
167 * protected by the big kernel lock. However, ioctl can still disable the timer
168 * in rtc_status and then with del_timer after the interrupt has read
169 * rtc_status but before mod_timer is called, which would then reenable the
170 * timer (but you would need to have an awful timing before you'd trip on it)
172 static unsigned long rtc_status
= 0; /* bitmapped status byte. */
173 static unsigned long rtc_freq
= 0; /* Current periodic IRQ rate */
174 static unsigned long rtc_irq_data
= 0; /* our output to the world */
175 static unsigned long rtc_max_user_freq
= 64; /* > this, need CAP_SYS_RESOURCE */
179 * rtc_task_lock nests inside rtc_lock.
181 static DEFINE_SPINLOCK(rtc_task_lock
);
182 static rtc_task_t
*rtc_callback
= NULL
;
186 * If this driver ever becomes modularised, it will be really nice
187 * to make the epoch retain its value across module reload...
190 static unsigned long epoch
= 1900; /* year corresponding to 0x00 */
192 static const unsigned char days_in_mo
[] =
193 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
196 * Returns true if a clock update is in progress
198 static inline unsigned char rtc_is_updating(void)
202 spin_lock_irq(&rtc_lock
);
203 uip
= (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
204 spin_unlock_irq(&rtc_lock
);
210 * A very tiny interrupt handler. It runs with SA_INTERRUPT set,
211 * but there is possibility of conflicting with the set_rtc_mmss()
212 * call (the rtc irq and the timer irq can easily run at the same
213 * time in two different CPUs). So we need to serialize
214 * accesses to the chip with the rtc_lock spinlock that each
215 * architecture should implement in the timer code.
216 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
219 irqreturn_t
rtc_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
222 * Can be an alarm interrupt, update complete interrupt,
223 * or a periodic interrupt. We store the status in the
224 * low byte and the number of interrupts received since
225 * the last read in the remainder of rtc_irq_data.
228 spin_lock (&rtc_lock
);
229 rtc_irq_data
+= 0x100;
230 rtc_irq_data
&= ~0xff;
231 if (is_hpet_enabled()) {
233 * In this case it is HPET RTC interrupt handler
234 * calling us, with the interrupt information
235 * passed as arg1, instead of irq.
237 rtc_irq_data
|= (unsigned long)irq
& 0xF0;
239 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0);
242 if (rtc_status
& RTC_TIMER_ON
)
243 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
245 spin_unlock (&rtc_lock
);
247 /* Now do the rest of the actions */
248 spin_lock(&rtc_task_lock
);
250 rtc_callback
->func(rtc_callback
->private_data
);
251 spin_unlock(&rtc_task_lock
);
252 wake_up_interruptible(&rtc_wait
);
254 kill_fasync (&rtc_async_queue
, SIGIO
, POLL_IN
);
261 * sysctl-tuning infrastructure.
263 static ctl_table rtc_table
[] = {
266 .procname
= "max-user-freq",
267 .data
= &rtc_max_user_freq
,
268 .maxlen
= sizeof(int),
270 .proc_handler
= &proc_dointvec
,
275 static ctl_table rtc_root
[] = {
286 static ctl_table dev_root
[] = {
297 static struct ctl_table_header
*sysctl_header
;
299 static int __init
init_sysctl(void)
301 sysctl_header
= register_sysctl_table(dev_root
, 0);
305 static void __exit
cleanup_sysctl(void)
307 unregister_sysctl_table(sysctl_header
);
311 * Now all the various file operations that we export.
314 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
315 size_t count
, loff_t
*ppos
)
320 DECLARE_WAITQUEUE(wait
, current
);
324 if (rtc_has_irq
== 0)
327 if (count
< sizeof(unsigned))
330 add_wait_queue(&rtc_wait
, &wait
);
333 /* First make it right. Then make it fast. Putting this whole
334 * block within the parentheses of a while would be too
335 * confusing. And no, xchg() is not the answer. */
337 __set_current_state(TASK_INTERRUPTIBLE
);
339 spin_lock_irq (&rtc_lock
);
342 spin_unlock_irq (&rtc_lock
);
347 if (file
->f_flags
& O_NONBLOCK
) {
351 if (signal_pending(current
)) {
352 retval
= -ERESTARTSYS
;
358 if (count
< sizeof(unsigned long))
359 retval
= put_user(data
, (unsigned int __user
*)buf
) ?: sizeof(int);
361 retval
= put_user(data
, (unsigned long __user
*)buf
) ?: sizeof(long);
363 current
->state
= TASK_RUNNING
;
364 remove_wait_queue(&rtc_wait
, &wait
);
370 static int rtc_do_ioctl(unsigned int cmd
, unsigned long arg
, int kernel
)
372 struct rtc_time wtime
;
375 if (rtc_has_irq
== 0) {
392 case RTC_AIE_OFF
: /* Mask alarm int. enab. bit */
394 mask_rtc_irq_bit(RTC_AIE
);
397 case RTC_AIE_ON
: /* Allow alarm interrupts. */
399 set_rtc_irq_bit(RTC_AIE
);
402 case RTC_PIE_OFF
: /* Mask periodic int. enab. bit */
404 mask_rtc_irq_bit(RTC_PIE
);
405 if (rtc_status
& RTC_TIMER_ON
) {
406 spin_lock_irq (&rtc_lock
);
407 rtc_status
&= ~RTC_TIMER_ON
;
408 del_timer(&rtc_irq_timer
);
409 spin_unlock_irq (&rtc_lock
);
413 case RTC_PIE_ON
: /* Allow periodic ints */
417 * We don't really want Joe User enabling more
418 * than 64Hz of interrupts on a multi-user machine.
420 if (!kernel
&& (rtc_freq
> rtc_max_user_freq
) &&
421 (!capable(CAP_SYS_RESOURCE
)))
424 if (!(rtc_status
& RTC_TIMER_ON
)) {
425 spin_lock_irq (&rtc_lock
);
426 rtc_irq_timer
.expires
= jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100;
427 add_timer(&rtc_irq_timer
);
428 rtc_status
|= RTC_TIMER_ON
;
429 spin_unlock_irq (&rtc_lock
);
431 set_rtc_irq_bit(RTC_PIE
);
434 case RTC_UIE_OFF
: /* Mask ints from RTC updates. */
436 mask_rtc_irq_bit(RTC_UIE
);
439 case RTC_UIE_ON
: /* Allow ints for RTC updates. */
441 set_rtc_irq_bit(RTC_UIE
);
445 case RTC_ALM_READ
: /* Read the present alarm time */
448 * This returns a struct rtc_time. Reading >= 0xc0
449 * means "don't care" or "match all". Only the tm_hour,
450 * tm_min, and tm_sec values are filled in.
452 memset(&wtime
, 0, sizeof(struct rtc_time
));
453 get_rtc_alm_time(&wtime
);
456 case RTC_ALM_SET
: /* Store a time into the alarm */
459 * This expects a struct rtc_time. Writing 0xff means
460 * "don't care" or "match all". Only the tm_hour,
461 * tm_min and tm_sec are used.
463 unsigned char hrs
, min
, sec
;
464 struct rtc_time alm_tm
;
466 if (copy_from_user(&alm_tm
, (struct rtc_time __user
*)arg
,
467 sizeof(struct rtc_time
)))
470 hrs
= alm_tm
.tm_hour
;
474 spin_lock_irq(&rtc_lock
);
475 if (hpet_set_alarm_time(hrs
, min
, sec
)) {
477 * Fallthru and set alarm time in CMOS too,
478 * so that we will get proper value in RTC_ALM_READ
481 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) ||
484 if (sec
< 60) BIN_TO_BCD(sec
);
487 if (min
< 60) BIN_TO_BCD(min
);
490 if (hrs
< 24) BIN_TO_BCD(hrs
);
493 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
494 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
495 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
496 spin_unlock_irq(&rtc_lock
);
500 case RTC_RD_TIME
: /* Read the time/date from RTC */
502 memset(&wtime
, 0, sizeof(struct rtc_time
));
503 rtc_get_rtc_time(&wtime
);
506 case RTC_SET_TIME
: /* Set the RTC */
508 struct rtc_time rtc_tm
;
509 unsigned char mon
, day
, hrs
, min
, sec
, leap_yr
;
510 unsigned char save_control
, save_freq_select
;
512 #ifdef CONFIG_MACH_DECSTATION
513 unsigned int real_yrs
;
516 if (!capable(CAP_SYS_TIME
))
519 if (copy_from_user(&rtc_tm
, (struct rtc_time __user
*)arg
,
520 sizeof(struct rtc_time
)))
523 yrs
= rtc_tm
.tm_year
+ 1900;
524 mon
= rtc_tm
.tm_mon
+ 1; /* tm_mon starts at zero */
525 day
= rtc_tm
.tm_mday
;
526 hrs
= rtc_tm
.tm_hour
;
533 leap_yr
= ((!(yrs
% 4) && (yrs
% 100)) || !(yrs
% 400));
535 if ((mon
> 12) || (day
== 0))
538 if (day
> (days_in_mo
[mon
] + ((mon
== 2) && leap_yr
)))
541 if ((hrs
>= 24) || (min
>= 60) || (sec
>= 60))
544 if ((yrs
-= epoch
) > 255) /* They are unsigned */
547 spin_lock_irq(&rtc_lock
);
548 #ifdef CONFIG_MACH_DECSTATION
553 * We want to keep the year set to 73 until March
554 * for non-leap years, so that Feb, 29th is handled
557 if (!leap_yr
&& mon
< 3) {
562 /* These limits and adjustments are independent of
563 * whether the chip is in binary mode or not.
566 spin_unlock_irq(&rtc_lock
);
572 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
)
582 save_control
= CMOS_READ(RTC_CONTROL
);
583 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
584 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
585 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
587 #ifdef CONFIG_MACH_DECSTATION
588 CMOS_WRITE(real_yrs
, RTC_DEC_YEAR
);
590 CMOS_WRITE(yrs
, RTC_YEAR
);
591 CMOS_WRITE(mon
, RTC_MONTH
);
592 CMOS_WRITE(day
, RTC_DAY_OF_MONTH
);
593 CMOS_WRITE(hrs
, RTC_HOURS
);
594 CMOS_WRITE(min
, RTC_MINUTES
);
595 CMOS_WRITE(sec
, RTC_SECONDS
);
597 CMOS_WRITE(save_control
, RTC_CONTROL
);
598 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
600 spin_unlock_irq(&rtc_lock
);
604 case RTC_IRQP_READ
: /* Read the periodic IRQ rate. */
606 return put_user(rtc_freq
, (unsigned long __user
*)arg
);
608 case RTC_IRQP_SET
: /* Set periodic IRQ rate. */
614 * The max we can do is 8192Hz.
616 if ((arg
< 2) || (arg
> 8192))
619 * We don't really want Joe User generating more
620 * than 64Hz of interrupts on a multi-user machine.
622 if (!kernel
&& (arg
> rtc_max_user_freq
) && (!capable(CAP_SYS_RESOURCE
)))
625 while (arg
> (1<<tmp
))
629 * Check that the input was really a power of 2.
634 spin_lock_irq(&rtc_lock
);
635 if (hpet_set_periodic_freq(arg
)) {
636 spin_unlock_irq(&rtc_lock
);
641 val
= CMOS_READ(RTC_FREQ_SELECT
) & 0xf0;
643 CMOS_WRITE(val
, RTC_FREQ_SELECT
);
644 spin_unlock_irq(&rtc_lock
);
648 case RTC_EPOCH_READ
: /* Read the epoch. */
650 return put_user (epoch
, (unsigned long __user
*)arg
);
652 case RTC_EPOCH_SET
: /* Set the epoch. */
655 * There were no RTC clocks before 1900.
660 if (!capable(CAP_SYS_TIME
))
669 return copy_to_user((void __user
*)arg
, &wtime
, sizeof wtime
) ? -EFAULT
: 0;
672 static int rtc_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
,
675 return rtc_do_ioctl(cmd
, arg
, 0);
679 * We enforce only one user at a time here with the open/close.
680 * Also clear the previous interrupt data on an open, and clean
681 * up things on a close.
684 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
685 * needed here. Or anywhere else in this driver. */
686 static int rtc_open(struct inode
*inode
, struct file
*file
)
688 spin_lock_irq (&rtc_lock
);
690 if(rtc_status
& RTC_IS_OPEN
)
693 rtc_status
|= RTC_IS_OPEN
;
696 spin_unlock_irq (&rtc_lock
);
700 spin_unlock_irq (&rtc_lock
);
704 static int rtc_fasync (int fd
, struct file
*filp
, int on
)
707 return fasync_helper (fd
, filp
, on
, &rtc_async_queue
);
710 static int rtc_release(struct inode
*inode
, struct file
*file
)
715 if (rtc_has_irq
== 0)
719 * Turn off all interrupts once the device is no longer
720 * in use, and clear the data.
723 spin_lock_irq(&rtc_lock
);
724 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
725 tmp
= CMOS_READ(RTC_CONTROL
);
729 CMOS_WRITE(tmp
, RTC_CONTROL
);
730 CMOS_READ(RTC_INTR_FLAGS
);
732 if (rtc_status
& RTC_TIMER_ON
) {
733 rtc_status
&= ~RTC_TIMER_ON
;
734 del_timer(&rtc_irq_timer
);
736 spin_unlock_irq(&rtc_lock
);
738 if (file
->f_flags
& FASYNC
) {
739 rtc_fasync (-1, file
, 0);
744 spin_lock_irq (&rtc_lock
);
746 rtc_status
&= ~RTC_IS_OPEN
;
747 spin_unlock_irq (&rtc_lock
);
752 /* Called without the kernel lock - fine */
753 static unsigned int rtc_poll(struct file
*file
, poll_table
*wait
)
757 if (rtc_has_irq
== 0)
760 poll_wait(file
, &rtc_wait
, wait
);
762 spin_lock_irq (&rtc_lock
);
764 spin_unlock_irq (&rtc_lock
);
767 return POLLIN
| POLLRDNORM
;
776 EXPORT_SYMBOL(rtc_register
);
777 EXPORT_SYMBOL(rtc_unregister
);
778 EXPORT_SYMBOL(rtc_control
);
780 int rtc_register(rtc_task_t
*task
)
785 if (task
== NULL
|| task
->func
== NULL
)
787 spin_lock_irq(&rtc_lock
);
788 if (rtc_status
& RTC_IS_OPEN
) {
789 spin_unlock_irq(&rtc_lock
);
792 spin_lock(&rtc_task_lock
);
794 spin_unlock(&rtc_task_lock
);
795 spin_unlock_irq(&rtc_lock
);
798 rtc_status
|= RTC_IS_OPEN
;
800 spin_unlock(&rtc_task_lock
);
801 spin_unlock_irq(&rtc_lock
);
806 int rtc_unregister(rtc_task_t
*task
)
813 spin_lock_irq(&rtc_lock
);
814 spin_lock(&rtc_task_lock
);
815 if (rtc_callback
!= task
) {
816 spin_unlock(&rtc_task_lock
);
817 spin_unlock_irq(&rtc_lock
);
822 /* disable controls */
823 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
824 tmp
= CMOS_READ(RTC_CONTROL
);
828 CMOS_WRITE(tmp
, RTC_CONTROL
);
829 CMOS_READ(RTC_INTR_FLAGS
);
831 if (rtc_status
& RTC_TIMER_ON
) {
832 rtc_status
&= ~RTC_TIMER_ON
;
833 del_timer(&rtc_irq_timer
);
835 rtc_status
&= ~RTC_IS_OPEN
;
836 spin_unlock(&rtc_task_lock
);
837 spin_unlock_irq(&rtc_lock
);
842 int rtc_control(rtc_task_t
*task
, unsigned int cmd
, unsigned long arg
)
847 spin_lock_irq(&rtc_task_lock
);
848 if (rtc_callback
!= task
) {
849 spin_unlock_irq(&rtc_task_lock
);
852 spin_unlock_irq(&rtc_task_lock
);
853 return rtc_do_ioctl(cmd
, arg
, 1);
859 * The various file operations we support.
862 static struct file_operations rtc_fops
= {
863 .owner
= THIS_MODULE
,
871 .release
= rtc_release
,
872 .fasync
= rtc_fasync
,
875 static struct miscdevice rtc_dev
= {
881 static struct file_operations rtc_proc_fops
= {
882 .owner
= THIS_MODULE
,
883 .open
= rtc_proc_open
,
886 .release
= single_release
,
889 #if defined(RTC_IRQ) && !defined(__sparc__)
890 static irqreturn_t (*rtc_int_handler_ptr
)(int irq
, void *dev_id
, struct pt_regs
*regs
);
893 static int __init
rtc_init(void)
895 struct proc_dir_entry
*ent
;
896 #if defined(__alpha__) || defined(__mips__)
897 unsigned int year
, ctrl
;
901 struct linux_ebus
*ebus
;
902 struct linux_ebus_device
*edev
;
904 struct sparc_isa_bridge
*isa_br
;
905 struct sparc_isa_device
*isa_dev
;
910 for_each_ebus(ebus
) {
911 for_each_ebusdev(edev
, ebus
) {
912 if(strcmp(edev
->prom_name
, "rtc") == 0) {
913 rtc_port
= edev
->resource
[0].start
;
914 rtc_irq
= edev
->irqs
[0];
920 for_each_isa(isa_br
) {
921 for_each_isadev(isa_dev
, isa_br
) {
922 if (strcmp(isa_dev
->prom_name
, "rtc") == 0) {
923 rtc_port
= isa_dev
->resource
.start
;
924 rtc_irq
= isa_dev
->irq
;
930 printk(KERN_ERR
"rtc_init: no PC rtc found\n");
934 if (rtc_irq
== PCI_IRQ_NONE
) {
940 * XXX Interrupt pin #7 in Espresso is shared between RTC and
941 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
943 if (request_irq(rtc_irq
, rtc_interrupt
, SA_SHIRQ
, "rtc", (void *)&rtc_port
)) {
945 * Standard way for sparc to print irq's is to use
946 * __irq_itoa(). I think for EBus it's ok to use %d.
948 printk(KERN_ERR
"rtc: cannot register IRQ %d\n", rtc_irq
);
953 if (!request_region(RTC_PORT(0), RTC_IO_EXTENT
, "rtc")) {
954 printk(KERN_ERR
"rtc: I/O port %d is not free.\n", RTC_PORT (0));
959 if (is_hpet_enabled()) {
960 rtc_int_handler_ptr
= hpet_rtc_interrupt
;
962 rtc_int_handler_ptr
= rtc_interrupt
;
965 if(request_irq(RTC_IRQ
, rtc_int_handler_ptr
, SA_INTERRUPT
, "rtc", NULL
)) {
966 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
967 printk(KERN_ERR
"rtc: IRQ %d is not free.\n", RTC_IRQ
);
968 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
971 hpet_rtc_timer_init();
975 #endif /* __sparc__ vs. others */
977 if (misc_register(&rtc_dev
)) {
979 free_irq(RTC_IRQ
, NULL
);
981 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
985 ent
= create_proc_entry("driver/rtc", 0, NULL
);
988 free_irq(RTC_IRQ
, NULL
);
990 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
991 misc_deregister(&rtc_dev
);
994 ent
->proc_fops
= &rtc_proc_fops
;
996 #if defined(__alpha__) || defined(__mips__)
999 /* Each operating system on an Alpha uses its own epoch.
1000 Let's try to guess which one we are using now. */
1002 if (rtc_is_updating() != 0)
1005 spin_lock_irq(&rtc_lock
);
1006 year
= CMOS_READ(RTC_YEAR
);
1007 ctrl
= CMOS_READ(RTC_CONTROL
);
1008 spin_unlock_irq(&rtc_lock
);
1010 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1011 BCD_TO_BIN(year
); /* This should never happen... */
1015 guess
= "SRM (post-2000)";
1016 } else if (year
>= 20 && year
< 48) {
1018 guess
= "ARC console";
1019 } else if (year
>= 48 && year
< 72) {
1021 guess
= "Digital UNIX";
1022 #if defined(__mips__)
1023 } else if (year
>= 72 && year
< 74) {
1025 guess
= "Digital DECstation";
1027 } else if (year
>= 70) {
1029 guess
= "Standard PC (1900)";
1033 printk(KERN_INFO
"rtc: %s epoch (%lu) detected\n", guess
, epoch
);
1036 if (rtc_has_irq
== 0)
1039 init_timer(&rtc_irq_timer
);
1040 rtc_irq_timer
.function
= rtc_dropped_irq
;
1041 spin_lock_irq(&rtc_lock
);
1043 if (!hpet_set_periodic_freq(rtc_freq
)) {
1044 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1045 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT
) & 0xF0) | 0x06), RTC_FREQ_SELECT
);
1047 spin_unlock_irq(&rtc_lock
);
1051 (void) init_sysctl();
1053 printk(KERN_INFO
"Real Time Clock Driver v" RTC_VERSION
"\n");
1058 static void __exit
rtc_exit (void)
1061 remove_proc_entry ("driver/rtc", NULL
);
1062 misc_deregister(&rtc_dev
);
1066 free_irq (rtc_irq
, &rtc_port
);
1068 release_region (RTC_PORT (0), RTC_IO_EXTENT
);
1071 free_irq (RTC_IRQ
, NULL
);
1073 #endif /* __sparc__ */
1076 module_init(rtc_init
);
1077 module_exit(rtc_exit
);
1081 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1082 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1083 * Since the interrupt handler doesn't get called, the IRQ status
1084 * byte doesn't get read, and the RTC stops generating interrupts.
1085 * A timer is set, and will call this function if/when that happens.
1086 * To get it out of this stalled state, we just read the status.
1087 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1088 * (You *really* shouldn't be trying to use a non-realtime system
1089 * for something that requires a steady > 1KHz signal anyways.)
1092 static void rtc_dropped_irq(unsigned long data
)
1096 spin_lock_irq (&rtc_lock
);
1098 if (hpet_rtc_dropped_irq()) {
1099 spin_unlock_irq(&rtc_lock
);
1103 /* Just in case someone disabled the timer from behind our back... */
1104 if (rtc_status
& RTC_TIMER_ON
)
1105 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
1107 rtc_irq_data
+= ((rtc_freq
/HZ
)<<8);
1108 rtc_irq_data
&= ~0xff;
1109 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0); /* restart */
1113 spin_unlock_irq(&rtc_lock
);
1115 printk(KERN_WARNING
"rtc: lost some interrupts at %ldHz.\n", freq
);
1117 /* Now we have new data */
1118 wake_up_interruptible(&rtc_wait
);
1120 kill_fasync (&rtc_async_queue
, SIGIO
, POLL_IN
);
1125 * Info exported via "/proc/driver/rtc".
1128 static int rtc_proc_show(struct seq_file
*seq
, void *v
)
1130 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1131 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1133 unsigned char batt
, ctrl
;
1136 spin_lock_irq(&rtc_lock
);
1137 batt
= CMOS_READ(RTC_VALID
) & RTC_VRT
;
1138 ctrl
= CMOS_READ(RTC_CONTROL
);
1140 spin_unlock_irq(&rtc_lock
);
1143 rtc_get_rtc_time(&tm
);
1146 * There is no way to tell if the luser has the RTC set for local
1147 * time or for Universal Standard Time (GMT). Probably local though.
1150 "rtc_time\t: %02d:%02d:%02d\n"
1151 "rtc_date\t: %04d-%02d-%02d\n"
1152 "rtc_epoch\t: %04lu\n",
1153 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
,
1154 tm
.tm_year
+ 1900, tm
.tm_mon
+ 1, tm
.tm_mday
, epoch
);
1156 get_rtc_alm_time(&tm
);
1159 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1160 * match any value for that particular field. Values that are
1161 * greater than a valid time, but less than 0xc0 shouldn't appear.
1163 seq_puts(seq
, "alarm\t\t: ");
1164 if (tm
.tm_hour
<= 24)
1165 seq_printf(seq
, "%02d:", tm
.tm_hour
);
1167 seq_puts(seq
, "**:");
1169 if (tm
.tm_min
<= 59)
1170 seq_printf(seq
, "%02d:", tm
.tm_min
);
1172 seq_puts(seq
, "**:");
1174 if (tm
.tm_sec
<= 59)
1175 seq_printf(seq
, "%02d\n", tm
.tm_sec
);
1177 seq_puts(seq
, "**\n");
1180 "DST_enable\t: %s\n"
1183 "square_wave\t: %s\n"
1185 "update_IRQ\t: %s\n"
1186 "periodic_IRQ\t: %s\n"
1187 "periodic_freq\t: %ld\n"
1188 "batt_status\t: %s\n",
1197 batt
? "okay" : "dead");
1204 static int rtc_proc_open(struct inode
*inode
, struct file
*file
)
1206 return single_open(file
, rtc_proc_show
, NULL
);
1209 void rtc_get_rtc_time(struct rtc_time
*rtc_tm
)
1211 unsigned long uip_watchdog
= jiffies
;
1213 #ifdef CONFIG_MACH_DECSTATION
1214 unsigned int real_year
;
1218 * read RTC once any update in progress is done. The update
1219 * can take just over 2ms. We wait 20ms. There is no need to
1220 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1221 * If you need to know *exactly* when a second has started, enable
1222 * periodic update complete interrupts, (via ioctl) and then
1223 * immediately read /dev/rtc which will block until you get the IRQ.
1224 * Once the read clears, read the RTC time (again via ioctl). Easy.
1227 while (rtc_is_updating() != 0 && jiffies
- uip_watchdog
< 2*HZ
/100) {
1233 * Only the values that we read from the RTC are set. We leave
1234 * tm_wday, tm_yday and tm_isdst untouched. Even though the
1235 * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
1236 * by the RTC when initially set to a non-zero value.
1238 spin_lock_irq(&rtc_lock
);
1239 rtc_tm
->tm_sec
= CMOS_READ(RTC_SECONDS
);
1240 rtc_tm
->tm_min
= CMOS_READ(RTC_MINUTES
);
1241 rtc_tm
->tm_hour
= CMOS_READ(RTC_HOURS
);
1242 rtc_tm
->tm_mday
= CMOS_READ(RTC_DAY_OF_MONTH
);
1243 rtc_tm
->tm_mon
= CMOS_READ(RTC_MONTH
);
1244 rtc_tm
->tm_year
= CMOS_READ(RTC_YEAR
);
1245 #ifdef CONFIG_MACH_DECSTATION
1246 real_year
= CMOS_READ(RTC_DEC_YEAR
);
1248 ctrl
= CMOS_READ(RTC_CONTROL
);
1249 spin_unlock_irq(&rtc_lock
);
1251 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1253 BCD_TO_BIN(rtc_tm
->tm_sec
);
1254 BCD_TO_BIN(rtc_tm
->tm_min
);
1255 BCD_TO_BIN(rtc_tm
->tm_hour
);
1256 BCD_TO_BIN(rtc_tm
->tm_mday
);
1257 BCD_TO_BIN(rtc_tm
->tm_mon
);
1258 BCD_TO_BIN(rtc_tm
->tm_year
);
1261 #ifdef CONFIG_MACH_DECSTATION
1262 rtc_tm
->tm_year
+= real_year
- 72;
1266 * Account for differences between how the RTC uses the values
1267 * and how they are defined in a struct rtc_time;
1269 if ((rtc_tm
->tm_year
+= (epoch
- 1900)) <= 69)
1270 rtc_tm
->tm_year
+= 100;
1275 static void get_rtc_alm_time(struct rtc_time
*alm_tm
)
1280 * Only the values that we read from the RTC are set. That
1281 * means only tm_hour, tm_min, and tm_sec.
1283 spin_lock_irq(&rtc_lock
);
1284 alm_tm
->tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
1285 alm_tm
->tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
1286 alm_tm
->tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
1287 ctrl
= CMOS_READ(RTC_CONTROL
);
1288 spin_unlock_irq(&rtc_lock
);
1290 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1292 BCD_TO_BIN(alm_tm
->tm_sec
);
1293 BCD_TO_BIN(alm_tm
->tm_min
);
1294 BCD_TO_BIN(alm_tm
->tm_hour
);
1300 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1301 * Rumour has it that if you frob the interrupt enable/disable
1302 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1303 * ensure you actually start getting interrupts. Probably for
1304 * compatibility with older/broken chipset RTC implementations.
1305 * We also clear out any old irq data after an ioctl() that
1306 * meddles with the interrupt enable/disable bits.
1309 static void mask_rtc_irq_bit(unsigned char bit
)
1313 spin_lock_irq(&rtc_lock
);
1314 if (hpet_mask_rtc_irq_bit(bit
)) {
1315 spin_unlock_irq(&rtc_lock
);
1318 val
= CMOS_READ(RTC_CONTROL
);
1320 CMOS_WRITE(val
, RTC_CONTROL
);
1321 CMOS_READ(RTC_INTR_FLAGS
);
1324 spin_unlock_irq(&rtc_lock
);
1327 static void set_rtc_irq_bit(unsigned char bit
)
1331 spin_lock_irq(&rtc_lock
);
1332 if (hpet_set_rtc_irq_bit(bit
)) {
1333 spin_unlock_irq(&rtc_lock
);
1336 val
= CMOS_READ(RTC_CONTROL
);
1338 CMOS_WRITE(val
, RTC_CONTROL
);
1339 CMOS_READ(RTC_INTR_FLAGS
);
1342 spin_unlock_irq(&rtc_lock
);
1346 MODULE_AUTHOR("Paul Gortmaker");
1347 MODULE_LICENSE("GPL");
1348 MODULE_ALIAS_MISCDEV(RTC_MINOR
);