2 * raid6main.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-6 management functions. This code is derived from raid5.c.
8 * Last merge from raid5.c bkcvs version 1.79 (kernel 2.6.1).
10 * Thanks to Penguin Computing for making the RAID-6 development possible
11 * by donating a test server!
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * You should have received a copy of the GNU General Public License
19 * (for example /usr/src/linux/COPYING); if not, write to the Free
20 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/highmem.h>
28 #include <linux/bitops.h>
29 #include <asm/atomic.h>
32 #include <linux/raid/bitmap.h>
38 #define NR_STRIPES 256
39 #define STRIPE_SIZE PAGE_SIZE
40 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
41 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
42 #define IO_THRESHOLD 1
44 #define HASH_PAGES_ORDER 0
45 #define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *))
46 #define HASH_MASK (NR_HASH - 1)
48 #define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])
50 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
51 * order without overlap. There may be several bio's per stripe+device, and
52 * a bio could span several devices.
53 * When walking this list for a particular stripe+device, we must never proceed
54 * beyond a bio that extends past this device, as the next bio might no longer
56 * This macro is used to determine the 'next' bio in the list, given the sector
57 * of the current stripe+device
59 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
61 * The following can be used to debug the driver
63 #define RAID6_DEBUG 0 /* Extremely verbose printk */
64 #define RAID6_PARANOIA 1 /* Check spinlocks */
65 #define RAID6_DUMPSTATE 0 /* Include stripe cache state in /proc/mdstat */
66 #if RAID6_PARANOIA && defined(CONFIG_SMP)
67 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
69 # define CHECK_DEVLOCK()
72 #define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x)))
80 #if !RAID6_USE_EMPTY_ZERO_PAGE
81 /* In .bss so it's zeroed */
82 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
85 static inline int raid6_next_disk(int disk
, int raid_disks
)
88 return (disk
< raid_disks
) ? disk
: 0;
91 static void print_raid6_conf (raid6_conf_t
*conf
);
93 static inline void __release_stripe(raid6_conf_t
*conf
, struct stripe_head
*sh
)
95 if (atomic_dec_and_test(&sh
->count
)) {
96 if (!list_empty(&sh
->lru
))
98 if (atomic_read(&conf
->active_stripes
)==0)
100 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
101 if (test_bit(STRIPE_DELAYED
, &sh
->state
))
102 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
103 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
104 conf
->seq_write
== sh
->bm_seq
)
105 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
107 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
108 list_add_tail(&sh
->lru
, &conf
->handle_list
);
110 md_wakeup_thread(conf
->mddev
->thread
);
112 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
113 atomic_dec(&conf
->preread_active_stripes
);
114 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
115 md_wakeup_thread(conf
->mddev
->thread
);
117 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
118 atomic_dec(&conf
->active_stripes
);
119 if (!conf
->inactive_blocked
||
120 atomic_read(&conf
->active_stripes
) < (NR_STRIPES
*3/4))
121 wake_up(&conf
->wait_for_stripe
);
125 static void release_stripe(struct stripe_head
*sh
)
127 raid6_conf_t
*conf
= sh
->raid_conf
;
130 spin_lock_irqsave(&conf
->device_lock
, flags
);
131 __release_stripe(conf
, sh
);
132 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
135 static void remove_hash(struct stripe_head
*sh
)
137 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
139 if (sh
->hash_pprev
) {
141 sh
->hash_next
->hash_pprev
= sh
->hash_pprev
;
142 *sh
->hash_pprev
= sh
->hash_next
;
143 sh
->hash_pprev
= NULL
;
147 static __inline__
void insert_hash(raid6_conf_t
*conf
, struct stripe_head
*sh
)
149 struct stripe_head
**shp
= &stripe_hash(conf
, sh
->sector
);
151 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
154 if ((sh
->hash_next
= *shp
) != NULL
)
155 (*shp
)->hash_pprev
= &sh
->hash_next
;
157 sh
->hash_pprev
= shp
;
161 /* find an idle stripe, make sure it is unhashed, and return it. */
162 static struct stripe_head
*get_free_stripe(raid6_conf_t
*conf
)
164 struct stripe_head
*sh
= NULL
;
165 struct list_head
*first
;
168 if (list_empty(&conf
->inactive_list
))
170 first
= conf
->inactive_list
.next
;
171 sh
= list_entry(first
, struct stripe_head
, lru
);
172 list_del_init(first
);
174 atomic_inc(&conf
->active_stripes
);
179 static void shrink_buffers(struct stripe_head
*sh
, int num
)
184 for (i
=0; i
<num
; i
++) {
188 sh
->dev
[i
].page
= NULL
;
189 page_cache_release(p
);
193 static int grow_buffers(struct stripe_head
*sh
, int num
)
197 for (i
=0; i
<num
; i
++) {
200 if (!(page
= alloc_page(GFP_KERNEL
))) {
203 sh
->dev
[i
].page
= page
;
208 static void raid6_build_block (struct stripe_head
*sh
, int i
);
210 static inline void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
)
212 raid6_conf_t
*conf
= sh
->raid_conf
;
213 int disks
= conf
->raid_disks
, i
;
215 if (atomic_read(&sh
->count
) != 0)
217 if (test_bit(STRIPE_HANDLE
, &sh
->state
))
221 PRINTK("init_stripe called, stripe %llu\n",
222 (unsigned long long)sh
->sector
);
230 for (i
=disks
; i
--; ) {
231 struct r5dev
*dev
= &sh
->dev
[i
];
233 if (dev
->toread
|| dev
->towrite
|| dev
->written
||
234 test_bit(R5_LOCKED
, &dev
->flags
)) {
235 PRINTK("sector=%llx i=%d %p %p %p %d\n",
236 (unsigned long long)sh
->sector
, i
, dev
->toread
,
237 dev
->towrite
, dev
->written
,
238 test_bit(R5_LOCKED
, &dev
->flags
));
242 raid6_build_block(sh
, i
);
244 insert_hash(conf
, sh
);
247 static struct stripe_head
*__find_stripe(raid6_conf_t
*conf
, sector_t sector
)
249 struct stripe_head
*sh
;
252 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector
);
253 for (sh
= stripe_hash(conf
, sector
); sh
; sh
= sh
->hash_next
)
254 if (sh
->sector
== sector
)
256 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector
);
260 static void unplug_slaves(mddev_t
*mddev
);
262 static struct stripe_head
*get_active_stripe(raid6_conf_t
*conf
, sector_t sector
,
263 int pd_idx
, int noblock
)
265 struct stripe_head
*sh
;
267 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector
);
269 spin_lock_irq(&conf
->device_lock
);
272 wait_event_lock_irq(conf
->wait_for_stripe
,
274 conf
->device_lock
, /* nothing */);
275 sh
= __find_stripe(conf
, sector
);
277 if (!conf
->inactive_blocked
)
278 sh
= get_free_stripe(conf
);
279 if (noblock
&& sh
== NULL
)
282 conf
->inactive_blocked
= 1;
283 wait_event_lock_irq(conf
->wait_for_stripe
,
284 !list_empty(&conf
->inactive_list
) &&
285 (atomic_read(&conf
->active_stripes
) < (NR_STRIPES
*3/4)
286 || !conf
->inactive_blocked
),
288 unplug_slaves(conf
->mddev
);
290 conf
->inactive_blocked
= 0;
292 init_stripe(sh
, sector
, pd_idx
);
294 if (atomic_read(&sh
->count
)) {
295 if (!list_empty(&sh
->lru
))
298 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
299 atomic_inc(&conf
->active_stripes
);
300 if (list_empty(&sh
->lru
))
302 list_del_init(&sh
->lru
);
305 } while (sh
== NULL
);
308 atomic_inc(&sh
->count
);
310 spin_unlock_irq(&conf
->device_lock
);
314 static int grow_stripes(raid6_conf_t
*conf
, int num
)
316 struct stripe_head
*sh
;
318 int devs
= conf
->raid_disks
;
320 sprintf(conf
->cache_name
, "raid6/%s", mdname(conf
->mddev
));
322 sc
= kmem_cache_create(conf
->cache_name
,
323 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
327 conf
->slab_cache
= sc
;
329 sh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
332 memset(sh
, 0, sizeof(*sh
) + (devs
-1)*sizeof(struct r5dev
));
333 sh
->raid_conf
= conf
;
334 spin_lock_init(&sh
->lock
);
336 if (grow_buffers(sh
, conf
->raid_disks
)) {
337 shrink_buffers(sh
, conf
->raid_disks
);
338 kmem_cache_free(sc
, sh
);
341 /* we just created an active stripe so... */
342 atomic_set(&sh
->count
, 1);
343 atomic_inc(&conf
->active_stripes
);
344 INIT_LIST_HEAD(&sh
->lru
);
350 static void shrink_stripes(raid6_conf_t
*conf
)
352 struct stripe_head
*sh
;
355 spin_lock_irq(&conf
->device_lock
);
356 sh
= get_free_stripe(conf
);
357 spin_unlock_irq(&conf
->device_lock
);
360 if (atomic_read(&sh
->count
))
362 shrink_buffers(sh
, conf
->raid_disks
);
363 kmem_cache_free(conf
->slab_cache
, sh
);
364 atomic_dec(&conf
->active_stripes
);
366 kmem_cache_destroy(conf
->slab_cache
);
367 conf
->slab_cache
= NULL
;
370 static int raid6_end_read_request (struct bio
* bi
, unsigned int bytes_done
,
373 struct stripe_head
*sh
= bi
->bi_private
;
374 raid6_conf_t
*conf
= sh
->raid_conf
;
375 int disks
= conf
->raid_disks
, i
;
376 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
381 for (i
=0 ; i
<disks
; i
++)
382 if (bi
== &sh
->dev
[i
].req
)
385 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
386 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
397 spin_lock_irqsave(&conf
->device_lock
, flags
);
398 /* we can return a buffer if we bypassed the cache or
399 * if the top buffer is not in highmem. If there are
400 * multiple buffers, leave the extra work to
403 buffer
= sh
->bh_read
[i
];
405 (!PageHighMem(buffer
->b_page
)
406 || buffer
->b_page
== bh
->b_page
)
408 sh
->bh_read
[i
] = buffer
->b_reqnext
;
409 buffer
->b_reqnext
= NULL
;
412 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
413 if (sh
->bh_page
[i
]==bh
->b_page
)
414 set_buffer_uptodate(bh
);
416 if (buffer
->b_page
!= bh
->b_page
)
417 memcpy(buffer
->b_data
, bh
->b_data
, bh
->b_size
);
418 buffer
->b_end_io(buffer
, 1);
421 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
424 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
425 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
427 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
429 /* must restore b_page before unlocking buffer... */
430 if (sh
->bh_page
[i
] != bh
->b_page
) {
431 bh
->b_page
= sh
->bh_page
[i
];
432 bh
->b_data
= page_address(bh
->b_page
);
433 clear_buffer_uptodate(bh
);
436 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
437 set_bit(STRIPE_HANDLE
, &sh
->state
);
442 static int raid6_end_write_request (struct bio
*bi
, unsigned int bytes_done
,
445 struct stripe_head
*sh
= bi
->bi_private
;
446 raid6_conf_t
*conf
= sh
->raid_conf
;
447 int disks
= conf
->raid_disks
, i
;
449 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
454 for (i
=0 ; i
<disks
; i
++)
455 if (bi
== &sh
->dev
[i
].req
)
458 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
459 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
466 spin_lock_irqsave(&conf
->device_lock
, flags
);
468 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
470 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
472 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
473 set_bit(STRIPE_HANDLE
, &sh
->state
);
474 __release_stripe(conf
, sh
);
475 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
480 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
482 static void raid6_build_block (struct stripe_head
*sh
, int i
)
484 struct r5dev
*dev
= &sh
->dev
[i
];
485 int pd_idx
= sh
->pd_idx
;
486 int qd_idx
= raid6_next_disk(pd_idx
, sh
->raid_conf
->raid_disks
);
489 dev
->req
.bi_io_vec
= &dev
->vec
;
491 dev
->req
.bi_max_vecs
++;
492 dev
->vec
.bv_page
= dev
->page
;
493 dev
->vec
.bv_len
= STRIPE_SIZE
;
494 dev
->vec
.bv_offset
= 0;
496 dev
->req
.bi_sector
= sh
->sector
;
497 dev
->req
.bi_private
= sh
;
500 if (i
!= pd_idx
&& i
!= qd_idx
)
501 dev
->sector
= compute_blocknr(sh
, i
);
504 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
506 char b
[BDEVNAME_SIZE
];
507 raid6_conf_t
*conf
= (raid6_conf_t
*) mddev
->private;
508 PRINTK("raid6: error called\n");
513 conf
->working_disks
--;
515 conf
->failed_disks
++;
518 * if recovery was running, make sure it aborts.
520 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
524 "raid6: Disk failure on %s, disabling device."
525 " Operation continuing on %d devices\n",
526 bdevname(rdev
->bdev
,b
), conf
->working_disks
);
531 * Input: a 'big' sector number,
532 * Output: index of the data and parity disk, and the sector # in them.
534 static sector_t
raid6_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
535 unsigned int data_disks
, unsigned int * dd_idx
,
536 unsigned int * pd_idx
, raid6_conf_t
*conf
)
539 unsigned long chunk_number
;
540 unsigned int chunk_offset
;
542 int sectors_per_chunk
= conf
->chunk_size
>> 9;
544 /* First compute the information on this sector */
547 * Compute the chunk number and the sector offset inside the chunk
549 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
550 chunk_number
= r_sector
;
551 if ( r_sector
!= chunk_number
) {
552 printk(KERN_CRIT
"raid6: ERROR: r_sector = %llu, chunk_number = %lu\n",
553 (unsigned long long)r_sector
, (unsigned long)chunk_number
);
558 * Compute the stripe number
560 stripe
= chunk_number
/ data_disks
;
563 * Compute the data disk and parity disk indexes inside the stripe
565 *dd_idx
= chunk_number
% data_disks
;
568 * Select the parity disk based on the user selected algorithm.
572 switch (conf
->algorithm
) {
573 case ALGORITHM_LEFT_ASYMMETRIC
:
574 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
575 if (*pd_idx
== raid_disks
-1)
576 (*dd_idx
)++; /* Q D D D P */
577 else if (*dd_idx
>= *pd_idx
)
578 (*dd_idx
) += 2; /* D D P Q D */
580 case ALGORITHM_RIGHT_ASYMMETRIC
:
581 *pd_idx
= stripe
% raid_disks
;
582 if (*pd_idx
== raid_disks
-1)
583 (*dd_idx
)++; /* Q D D D P */
584 else if (*dd_idx
>= *pd_idx
)
585 (*dd_idx
) += 2; /* D D P Q D */
587 case ALGORITHM_LEFT_SYMMETRIC
:
588 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
589 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
591 case ALGORITHM_RIGHT_SYMMETRIC
:
592 *pd_idx
= stripe
% raid_disks
;
593 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
596 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
600 PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n",
601 chunk_number
, *pd_idx
, *dd_idx
);
604 * Finally, compute the new sector number
606 new_sector
= (sector_t
) stripe
* sectors_per_chunk
+ chunk_offset
;
611 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
613 raid6_conf_t
*conf
= sh
->raid_conf
;
614 int raid_disks
= conf
->raid_disks
, data_disks
= raid_disks
- 2;
615 sector_t new_sector
= sh
->sector
, check
;
616 int sectors_per_chunk
= conf
->chunk_size
>> 9;
619 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
623 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
625 if ( new_sector
!= stripe
) {
626 printk(KERN_CRIT
"raid6: ERROR: new_sector = %llu, stripe = %lu\n",
627 (unsigned long long)new_sector
, (unsigned long)stripe
);
631 switch (conf
->algorithm
) {
632 case ALGORITHM_LEFT_ASYMMETRIC
:
633 case ALGORITHM_RIGHT_ASYMMETRIC
:
634 if (sh
->pd_idx
== raid_disks
-1)
636 else if (i
> sh
->pd_idx
)
637 i
-= 2; /* D D P Q D */
639 case ALGORITHM_LEFT_SYMMETRIC
:
640 case ALGORITHM_RIGHT_SYMMETRIC
:
641 if (sh
->pd_idx
== raid_disks
-1)
647 i
-= (sh
->pd_idx
+ 2);
651 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
655 PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh
->pd_idx
, i0
, i
);
657 chunk_number
= stripe
* data_disks
+ i
;
658 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
660 check
= raid6_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
661 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
662 printk(KERN_CRIT
"raid6: compute_blocknr: map not correct\n");
671 * Copy data between a page in the stripe cache, and one or more bion
672 * The page could align with the middle of the bio, or there could be
673 * several bion, each with several bio_vecs, which cover part of the page
674 * Multiple bion are linked together on bi_next. There may be extras
675 * at the end of this list. We ignore them.
677 static void copy_data(int frombio
, struct bio
*bio
,
681 char *pa
= page_address(page
);
686 if (bio
->bi_sector
>= sector
)
687 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
689 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
690 bio_for_each_segment(bvl
, bio
, i
) {
691 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
695 if (page_offset
< 0) {
696 b_offset
= -page_offset
;
697 page_offset
+= b_offset
;
701 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
702 clen
= STRIPE_SIZE
- page_offset
;
706 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
708 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
710 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
711 __bio_kunmap_atomic(ba
, KM_USER0
);
713 if (clen
< len
) /* hit end of page */
719 #define check_xor() do { \
720 if (count == MAX_XOR_BLOCKS) { \
721 xor_block(count, STRIPE_SIZE, ptr); \
726 /* Compute P and Q syndromes */
727 static void compute_parity(struct stripe_head
*sh
, int method
)
729 raid6_conf_t
*conf
= sh
->raid_conf
;
730 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= conf
->raid_disks
, count
;
732 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
735 qd_idx
= raid6_next_disk(pd_idx
, disks
);
736 d0_idx
= raid6_next_disk(qd_idx
, disks
);
738 PRINTK("compute_parity, stripe %llu, method %d\n",
739 (unsigned long long)sh
->sector
, method
);
742 case READ_MODIFY_WRITE
:
743 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
744 case RECONSTRUCT_WRITE
:
745 for (i
= disks
; i
-- ;)
746 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
747 chosen
= sh
->dev
[i
].towrite
;
748 sh
->dev
[i
].towrite
= NULL
;
750 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
751 wake_up(&conf
->wait_for_overlap
);
753 if (sh
->dev
[i
].written
) BUG();
754 sh
->dev
[i
].written
= chosen
;
758 BUG(); /* Not implemented yet */
761 for (i
= disks
; i
--;)
762 if (sh
->dev
[i
].written
) {
763 sector_t sector
= sh
->dev
[i
].sector
;
764 struct bio
*wbi
= sh
->dev
[i
].written
;
765 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
766 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
767 wbi
= r5_next_bio(wbi
, sector
);
770 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
771 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
775 // case RECONSTRUCT_WRITE:
776 // case CHECK_PARITY:
777 // case UPDATE_PARITY:
778 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
779 /* FIX: Is this ordering of drives even remotely optimal? */
783 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
784 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
785 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
786 i
= raid6_next_disk(i
, disks
);
787 } while ( i
!= d0_idx
);
791 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
794 case RECONSTRUCT_WRITE
:
795 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
796 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
797 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
798 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
801 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
802 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
807 /* Compute one missing block */
808 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
)
810 raid6_conf_t
*conf
= sh
->raid_conf
;
811 int i
, count
, disks
= conf
->raid_disks
;
812 void *ptr
[MAX_XOR_BLOCKS
], *p
;
813 int pd_idx
= sh
->pd_idx
;
814 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
816 PRINTK("compute_block_1, stripe %llu, idx %d\n",
817 (unsigned long long)sh
->sector
, dd_idx
);
819 if ( dd_idx
== qd_idx
) {
820 /* We're actually computing the Q drive */
821 compute_parity(sh
, UPDATE_PARITY
);
823 ptr
[0] = page_address(sh
->dev
[dd_idx
].page
);
824 memset(ptr
[0], 0, STRIPE_SIZE
);
826 for (i
= disks
; i
--; ) {
827 if (i
== dd_idx
|| i
== qd_idx
)
829 p
= page_address(sh
->dev
[i
].page
);
830 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
833 printk("compute_block() %d, stripe %llu, %d"
834 " not present\n", dd_idx
,
835 (unsigned long long)sh
->sector
, i
);
840 xor_block(count
, STRIPE_SIZE
, ptr
);
841 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
845 /* Compute two missing blocks */
846 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
848 raid6_conf_t
*conf
= sh
->raid_conf
;
849 int i
, count
, disks
= conf
->raid_disks
;
850 int pd_idx
= sh
->pd_idx
;
851 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
852 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
855 /* faila and failb are disk numbers relative to d0_idx */
856 /* pd_idx become disks-2 and qd_idx become disks-1 */
857 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
858 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
860 BUG_ON(faila
== failb
);
861 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
863 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
864 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
866 if ( failb
== disks
-1 ) {
867 /* Q disk is one of the missing disks */
868 if ( faila
== disks
-2 ) {
869 /* Missing P+Q, just recompute */
870 compute_parity(sh
, UPDATE_PARITY
);
873 /* We're missing D+Q; recompute D from P */
874 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
);
875 compute_parity(sh
, UPDATE_PARITY
); /* Is this necessary? */
880 /* We're missing D+P or D+D; build pointer table */
882 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
888 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
889 i
= raid6_next_disk(i
, disks
);
890 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
891 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
892 printk("compute_2 with missing block %d/%d\n", count
, i
);
893 } while ( i
!= d0_idx
);
895 if ( failb
== disks
-2 ) {
896 /* We're missing D+P. */
897 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
899 /* We're missing D+D. */
900 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
903 /* Both the above update both missing blocks */
904 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
905 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
911 * Each stripe/dev can have one or more bion attached.
912 * toread/towrite point to the first in a chain.
913 * The bi_next chain must be in order.
915 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
918 raid6_conf_t
*conf
= sh
->raid_conf
;
921 PRINTK("adding bh b#%llu to stripe s#%llu\n",
922 (unsigned long long)bi
->bi_sector
,
923 (unsigned long long)sh
->sector
);
926 spin_lock(&sh
->lock
);
927 spin_lock_irq(&conf
->device_lock
);
929 bip
= &sh
->dev
[dd_idx
].towrite
;
930 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
933 bip
= &sh
->dev
[dd_idx
].toread
;
934 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
935 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
937 bip
= &(*bip
)->bi_next
;
939 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
942 if (*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
)
947 bi
->bi_phys_segments
++;
948 spin_unlock_irq(&conf
->device_lock
);
949 spin_unlock(&sh
->lock
);
951 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
952 (unsigned long long)bi
->bi_sector
,
953 (unsigned long long)sh
->sector
, dd_idx
);
955 if (conf
->mddev
->bitmap
&& firstwrite
) {
956 sh
->bm_seq
= conf
->seq_write
;
957 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
959 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
963 /* check if page is covered */
964 sector_t sector
= sh
->dev
[dd_idx
].sector
;
965 for (bi
=sh
->dev
[dd_idx
].towrite
;
966 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
967 bi
&& bi
->bi_sector
<= sector
;
968 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
969 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
970 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
972 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
973 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
978 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
979 spin_unlock_irq(&conf
->device_lock
);
980 spin_unlock(&sh
->lock
);
986 * handle_stripe - do things to a stripe.
988 * We lock the stripe and then examine the state of various bits
989 * to see what needs to be done.
991 * return some read request which now have data
992 * return some write requests which are safely on disc
993 * schedule a read on some buffers
994 * schedule a write of some buffers
995 * return confirmation of parity correctness
997 * Parity calculations are done inside the stripe lock
998 * buffers are taken off read_list or write_list, and bh_cache buffers
999 * get BH_Lock set before the stripe lock is released.
1003 static void handle_stripe(struct stripe_head
*sh
)
1005 raid6_conf_t
*conf
= sh
->raid_conf
;
1006 int disks
= conf
->raid_disks
;
1007 struct bio
*return_bi
= NULL
;
1011 int locked
=0, uptodate
=0, to_read
=0, to_write
=0, failed
=0, written
=0;
1012 int non_overwrite
= 0;
1013 int failed_num
[2] = {0, 0};
1014 struct r5dev
*dev
, *pdev
, *qdev
;
1015 int pd_idx
= sh
->pd_idx
;
1016 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1017 int p_failed
, q_failed
;
1019 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1020 (unsigned long long)sh
->sector
, sh
->state
, atomic_read(&sh
->count
),
1023 spin_lock(&sh
->lock
);
1024 clear_bit(STRIPE_HANDLE
, &sh
->state
);
1025 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1027 syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
1028 /* Now to look around and see what can be done */
1030 for (i
=disks
; i
--; ) {
1033 clear_bit(R5_Insync
, &dev
->flags
);
1034 clear_bit(R5_Syncio
, &dev
->flags
);
1036 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1037 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
1038 /* maybe we can reply to a read */
1039 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
1040 struct bio
*rbi
, *rbi2
;
1041 PRINTK("Return read for disc %d\n", i
);
1042 spin_lock_irq(&conf
->device_lock
);
1045 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1046 wake_up(&conf
->wait_for_overlap
);
1047 spin_unlock_irq(&conf
->device_lock
);
1048 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1049 copy_data(0, rbi
, dev
->page
, dev
->sector
);
1050 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1051 spin_lock_irq(&conf
->device_lock
);
1052 if (--rbi
->bi_phys_segments
== 0) {
1053 rbi
->bi_next
= return_bi
;
1056 spin_unlock_irq(&conf
->device_lock
);
1061 /* now count some things */
1062 if (test_bit(R5_LOCKED
, &dev
->flags
)) locked
++;
1063 if (test_bit(R5_UPTODATE
, &dev
->flags
)) uptodate
++;
1066 if (dev
->toread
) to_read
++;
1069 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
1072 if (dev
->written
) written
++;
1073 rdev
= conf
->disks
[i
].rdev
; /* FIXME, should I be looking rdev */
1074 if (!rdev
|| !rdev
->in_sync
) {
1076 failed_num
[failed
] = i
;
1079 set_bit(R5_Insync
, &dev
->flags
);
1081 PRINTK("locked=%d uptodate=%d to_read=%d"
1082 " to_write=%d failed=%d failed_num=%d,%d\n",
1083 locked
, uptodate
, to_read
, to_write
, failed
,
1084 failed_num
[0], failed_num
[1]);
1085 /* check if the array has lost >2 devices and, if so, some requests might
1088 if (failed
> 2 && to_read
+to_write
+written
) {
1089 for (i
=disks
; i
--; ) {
1091 spin_lock_irq(&conf
->device_lock
);
1092 /* fail all writes first */
1093 bi
= sh
->dev
[i
].towrite
;
1094 sh
->dev
[i
].towrite
= NULL
;
1095 if (bi
) { to_write
--; bitmap_end
= 1; }
1097 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1098 wake_up(&conf
->wait_for_overlap
);
1100 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1101 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1102 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1103 if (--bi
->bi_phys_segments
== 0) {
1104 md_write_end(conf
->mddev
);
1105 bi
->bi_next
= return_bi
;
1110 /* and fail all 'written' */
1111 bi
= sh
->dev
[i
].written
;
1112 sh
->dev
[i
].written
= NULL
;
1113 if (bi
) bitmap_end
= 1;
1114 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1115 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1116 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1117 if (--bi
->bi_phys_segments
== 0) {
1118 md_write_end(conf
->mddev
);
1119 bi
->bi_next
= return_bi
;
1125 /* fail any reads if this device is non-operational */
1126 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
)) {
1127 bi
= sh
->dev
[i
].toread
;
1128 sh
->dev
[i
].toread
= NULL
;
1129 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1130 wake_up(&conf
->wait_for_overlap
);
1132 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1133 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1134 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1135 if (--bi
->bi_phys_segments
== 0) {
1136 bi
->bi_next
= return_bi
;
1142 spin_unlock_irq(&conf
->device_lock
);
1144 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1145 STRIPE_SECTORS
, 0, 0);
1148 if (failed
> 2 && syncing
) {
1149 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
1150 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1155 * might be able to return some write requests if the parity blocks
1156 * are safe, or on a failed drive
1158 pdev
= &sh
->dev
[pd_idx
];
1159 p_failed
= (failed
>= 1 && failed_num
[0] == pd_idx
)
1160 || (failed
>= 2 && failed_num
[1] == pd_idx
);
1161 qdev
= &sh
->dev
[qd_idx
];
1162 q_failed
= (failed
>= 1 && failed_num
[0] == qd_idx
)
1163 || (failed
>= 2 && failed_num
[1] == qd_idx
);
1166 ( p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
1167 && !test_bit(R5_LOCKED
, &pdev
->flags
)
1168 && test_bit(R5_UPTODATE
, &pdev
->flags
))) ) &&
1169 ( q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
1170 && !test_bit(R5_LOCKED
, &qdev
->flags
)
1171 && test_bit(R5_UPTODATE
, &qdev
->flags
))) ) ) {
1172 /* any written block on an uptodate or failed drive can be
1173 * returned. Note that if we 'wrote' to a failed drive,
1174 * it will be UPTODATE, but never LOCKED, so we don't need
1175 * to test 'failed' directly.
1177 for (i
=disks
; i
--; )
1178 if (sh
->dev
[i
].written
) {
1180 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1181 test_bit(R5_UPTODATE
, &dev
->flags
) ) {
1182 /* We can return any write requests */
1184 struct bio
*wbi
, *wbi2
;
1185 PRINTK("Return write for stripe %llu disc %d\n",
1186 (unsigned long long)sh
->sector
, i
);
1187 spin_lock_irq(&conf
->device_lock
);
1189 dev
->written
= NULL
;
1190 while (wbi
&& wbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1191 wbi2
= r5_next_bio(wbi
, dev
->sector
);
1192 if (--wbi
->bi_phys_segments
== 0) {
1193 md_write_end(conf
->mddev
);
1194 wbi
->bi_next
= return_bi
;
1199 if (dev
->towrite
== NULL
)
1201 spin_unlock_irq(&conf
->device_lock
);
1203 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1205 !test_bit(STRIPE_DEGRADED
, &sh
->state
), 0);
1210 /* Now we might consider reading some blocks, either to check/generate
1211 * parity, or to satisfy requests
1212 * or to load a block that is being partially written.
1214 if (to_read
|| non_overwrite
|| (to_write
&& failed
) || (syncing
&& (uptodate
< disks
))) {
1215 for (i
=disks
; i
--;) {
1217 if (!test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1219 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1221 (failed
>= 1 && (sh
->dev
[failed_num
[0]].toread
|| to_write
)) ||
1222 (failed
>= 2 && (sh
->dev
[failed_num
[1]].toread
|| to_write
))
1225 /* we would like to get this block, possibly
1226 * by computing it, but we might not be able to
1228 if (uptodate
== disks
-1) {
1229 PRINTK("Computing stripe %llu block %d\n",
1230 (unsigned long long)sh
->sector
, i
);
1231 compute_block_1(sh
, i
);
1233 } else if ( uptodate
== disks
-2 && failed
>= 2 ) {
1234 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
1236 for (other
=disks
; other
--;) {
1239 if ( !test_bit(R5_UPTODATE
, &sh
->dev
[other
].flags
) )
1243 PRINTK("Computing stripe %llu blocks %d,%d\n",
1244 (unsigned long long)sh
->sector
, i
, other
);
1245 compute_block_2(sh
, i
, other
);
1247 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
1248 set_bit(R5_LOCKED
, &dev
->flags
);
1249 set_bit(R5_Wantread
, &dev
->flags
);
1251 /* if I am just reading this block and we don't have
1252 a failed drive, or any pending writes then sidestep the cache */
1253 if (sh
->bh_read
[i
] && !sh
->bh_read
[i
]->b_reqnext
&&
1254 ! syncing
&& !failed
&& !to_write
) {
1255 sh
->bh_cache
[i
]->b_page
= sh
->bh_read
[i
]->b_page
;
1256 sh
->bh_cache
[i
]->b_data
= sh
->bh_read
[i
]->b_data
;
1260 PRINTK("Reading block %d (sync=%d)\n",
1263 md_sync_acct(conf
->disks
[i
].rdev
->bdev
,
1268 set_bit(STRIPE_HANDLE
, &sh
->state
);
1271 /* now to consider writing and what else, if anything should be read */
1273 int rcw
=0, must_compute
=0;
1274 for (i
=disks
; i
--;) {
1276 /* Would I have to read this buffer for reconstruct_write */
1277 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
1278 && i
!= pd_idx
&& i
!= qd_idx
1279 && (!test_bit(R5_LOCKED
, &dev
->flags
)
1281 || sh
->bh_page
[i
] != bh
->b_page
1284 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
1285 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
1287 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i
, dev
->flags
);
1292 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
1293 (unsigned long long)sh
->sector
, rcw
, must_compute
);
1294 set_bit(STRIPE_HANDLE
, &sh
->state
);
1297 /* want reconstruct write, but need to get some data */
1298 for (i
=disks
; i
--;) {
1300 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
1301 && !(failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
1302 && !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1303 test_bit(R5_Insync
, &dev
->flags
)) {
1304 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1306 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
1307 (unsigned long long)sh
->sector
, i
);
1308 set_bit(R5_LOCKED
, &dev
->flags
);
1309 set_bit(R5_Wantread
, &dev
->flags
);
1312 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
1313 (unsigned long long)sh
->sector
, i
);
1314 set_bit(STRIPE_DELAYED
, &sh
->state
);
1315 set_bit(STRIPE_HANDLE
, &sh
->state
);
1319 /* now if nothing is locked, and if we have enough data, we can start a write request */
1320 if (locked
== 0 && rcw
== 0 &&
1321 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
1322 if ( must_compute
> 0 ) {
1323 /* We have failed blocks and need to compute them */
1326 case 1: compute_block_1(sh
, failed_num
[0]); break;
1327 case 2: compute_block_2(sh
, failed_num
[0], failed_num
[1]); break;
1328 default: BUG(); /* This request should have been failed? */
1332 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh
->sector
);
1333 compute_parity(sh
, RECONSTRUCT_WRITE
);
1334 /* now every locked buffer is ready to be written */
1336 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
1337 PRINTK("Writing stripe %llu block %d\n",
1338 (unsigned long long)sh
->sector
, i
);
1340 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
1341 #if 0 /**** FIX: I don't understand the logic here... ****/
1342 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
)
1343 || ((i
==pd_idx
|| i
==qd_idx
) && failed
== 0)) /* FIX? */
1344 set_bit(STRIPE_INSYNC
, &sh
->state
);
1347 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
1348 atomic_dec(&conf
->preread_active_stripes
);
1349 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
1350 md_wakeup_thread(conf
->mddev
->thread
);
1355 /* maybe we need to check and possibly fix the parity for this stripe
1356 * Any reads will already have been scheduled, so we just see if enough data
1359 if (syncing
&& locked
== 0 &&
1360 !test_bit(STRIPE_INSYNC
, &sh
->state
) && failed
<= 2) {
1361 set_bit(STRIPE_HANDLE
, &sh
->state
);
1362 #if 0 /* RAID-6: Don't support CHECK PARITY yet */
1365 if (uptodate
!= disks
)
1367 compute_parity(sh
, CHECK_PARITY
);
1369 pagea
= page_address(sh
->dev
[pd_idx
].page
);
1370 if ((*(u32
*)pagea
) == 0 &&
1371 !memcmp(pagea
, pagea
+4, STRIPE_SIZE
-4)) {
1372 /* parity is correct (on disc, not in buffer any more) */
1373 set_bit(STRIPE_INSYNC
, &sh
->state
);
1377 if (!test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1378 int failed_needupdate
[2];
1379 struct r5dev
*adev
, *bdev
;
1382 failed_num
[0] = pd_idx
;
1384 failed_num
[1] = (failed_num
[0] == qd_idx
) ? pd_idx
: qd_idx
;
1386 failed_needupdate
[0] = !test_bit(R5_UPTODATE
, &sh
->dev
[failed_num
[0]].flags
);
1387 failed_needupdate
[1] = !test_bit(R5_UPTODATE
, &sh
->dev
[failed_num
[1]].flags
);
1389 PRINTK("sync: failed=%d num=%d,%d fnu=%u%u\n",
1390 failed
, failed_num
[0], failed_num
[1], failed_needupdate
[0], failed_needupdate
[1]);
1392 #if 0 /* RAID-6: This code seems to require that CHECK_PARITY destroys the uptodateness of the parity */
1393 /* should be able to compute the missing block(s) and write to spare */
1394 if ( failed_needupdate
[0] ^ failed_needupdate
[1] ) {
1395 if (uptodate
+1 != disks
)
1397 compute_block_1(sh
, failed_needupdate
[0] ? failed_num
[0] : failed_num
[1]);
1399 } else if ( failed_needupdate
[0] & failed_needupdate
[1] ) {
1400 if (uptodate
+2 != disks
)
1402 compute_block_2(sh
, failed_num
[0], failed_num
[1]);
1406 compute_block_2(sh
, failed_num
[0], failed_num
[1]);
1407 uptodate
+= failed_needupdate
[0] + failed_needupdate
[1];
1410 if (uptodate
!= disks
)
1413 PRINTK("Marking for sync stripe %llu blocks %d,%d\n",
1414 (unsigned long long)sh
->sector
, failed_num
[0], failed_num
[1]);
1416 /**** FIX: Should we really do both of these unconditionally? ****/
1417 adev
= &sh
->dev
[failed_num
[0]];
1418 locked
+= !test_bit(R5_LOCKED
, &adev
->flags
);
1419 set_bit(R5_LOCKED
, &adev
->flags
);
1420 set_bit(R5_Wantwrite
, &adev
->flags
);
1421 bdev
= &sh
->dev
[failed_num
[1]];
1422 locked
+= !test_bit(R5_LOCKED
, &bdev
->flags
);
1423 set_bit(R5_LOCKED
, &bdev
->flags
);
1424 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
1425 set_bit(R5_Wantwrite
, &bdev
->flags
);
1427 set_bit(STRIPE_INSYNC
, &sh
->state
);
1428 set_bit(R5_Syncio
, &adev
->flags
);
1429 set_bit(R5_Syncio
, &bdev
->flags
);
1432 if (syncing
&& locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1433 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
1434 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1437 spin_unlock(&sh
->lock
);
1439 while ((bi
=return_bi
)) {
1440 int bytes
= bi
->bi_size
;
1442 return_bi
= bi
->bi_next
;
1445 bi
->bi_end_io(bi
, bytes
, 0);
1447 for (i
=disks
; i
-- ;) {
1451 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
1453 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1458 bi
= &sh
->dev
[i
].req
;
1462 bi
->bi_end_io
= raid6_end_write_request
;
1464 bi
->bi_end_io
= raid6_end_read_request
;
1467 rdev
= conf
->disks
[i
].rdev
;
1468 if (rdev
&& rdev
->faulty
)
1471 atomic_inc(&rdev
->nr_pending
);
1475 if (test_bit(R5_Syncio
, &sh
->dev
[i
].flags
))
1476 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1478 bi
->bi_bdev
= rdev
->bdev
;
1479 PRINTK("for %llu schedule op %ld on disc %d\n",
1480 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
1481 atomic_inc(&sh
->count
);
1482 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
1483 bi
->bi_flags
= 1 << BIO_UPTODATE
;
1485 bi
->bi_max_vecs
= 1;
1487 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
1488 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1489 bi
->bi_io_vec
[0].bv_offset
= 0;
1490 bi
->bi_size
= STRIPE_SIZE
;
1492 generic_make_request(bi
);
1495 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1496 PRINTK("skip op %ld on disc %d for sector %llu\n",
1497 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1498 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1499 set_bit(STRIPE_HANDLE
, &sh
->state
);
1504 static inline void raid6_activate_delayed(raid6_conf_t
*conf
)
1506 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
1507 while (!list_empty(&conf
->delayed_list
)) {
1508 struct list_head
*l
= conf
->delayed_list
.next
;
1509 struct stripe_head
*sh
;
1510 sh
= list_entry(l
, struct stripe_head
, lru
);
1512 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1513 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1514 atomic_inc(&conf
->preread_active_stripes
);
1515 list_add_tail(&sh
->lru
, &conf
->handle_list
);
1520 static inline void activate_bit_delay(raid6_conf_t
*conf
)
1522 /* device_lock is held */
1523 struct list_head head
;
1524 list_add(&head
, &conf
->bitmap_list
);
1525 list_del_init(&conf
->bitmap_list
);
1526 while (!list_empty(&head
)) {
1527 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
1528 list_del_init(&sh
->lru
);
1529 atomic_inc(&sh
->count
);
1530 __release_stripe(conf
, sh
);
1534 static void unplug_slaves(mddev_t
*mddev
)
1536 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1540 for (i
=0; i
<mddev
->raid_disks
; i
++) {
1541 mdk_rdev_t
*rdev
= conf
->disks
[i
].rdev
;
1542 if (rdev
&& !rdev
->faulty
&& atomic_read(&rdev
->nr_pending
)) {
1543 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
1545 atomic_inc(&rdev
->nr_pending
);
1548 if (r_queue
->unplug_fn
)
1549 r_queue
->unplug_fn(r_queue
);
1551 rdev_dec_pending(rdev
, mddev
);
1558 static void raid6_unplug_device(request_queue_t
*q
)
1560 mddev_t
*mddev
= q
->queuedata
;
1561 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1562 unsigned long flags
;
1564 spin_lock_irqsave(&conf
->device_lock
, flags
);
1566 if (blk_remove_plug(q
)) {
1568 raid6_activate_delayed(conf
);
1570 md_wakeup_thread(mddev
->thread
);
1572 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1574 unplug_slaves(mddev
);
1577 static int raid6_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
1578 sector_t
*error_sector
)
1580 mddev_t
*mddev
= q
->queuedata
;
1581 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1585 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
1586 mdk_rdev_t
*rdev
= conf
->disks
[i
].rdev
;
1587 if (rdev
&& !rdev
->faulty
) {
1588 struct block_device
*bdev
= rdev
->bdev
;
1589 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
1591 if (!r_queue
->issue_flush_fn
)
1594 atomic_inc(&rdev
->nr_pending
);
1596 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
1598 rdev_dec_pending(rdev
, mddev
);
1607 static inline void raid6_plug_device(raid6_conf_t
*conf
)
1609 spin_lock_irq(&conf
->device_lock
);
1610 blk_plug_device(conf
->mddev
->queue
);
1611 spin_unlock_irq(&conf
->device_lock
);
1614 static int make_request (request_queue_t
*q
, struct bio
* bi
)
1616 mddev_t
*mddev
= q
->queuedata
;
1617 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1618 const unsigned int raid_disks
= conf
->raid_disks
;
1619 const unsigned int data_disks
= raid_disks
- 2;
1620 unsigned int dd_idx
, pd_idx
;
1621 sector_t new_sector
;
1622 sector_t logical_sector
, last_sector
;
1623 struct stripe_head
*sh
;
1625 if (unlikely(bio_barrier(bi
))) {
1626 bio_endio(bi
, bi
->bi_size
, -EOPNOTSUPP
);
1630 md_write_start(mddev
, bi
);
1632 if (bio_data_dir(bi
)==WRITE
) {
1633 disk_stat_inc(mddev
->gendisk
, writes
);
1634 disk_stat_add(mddev
->gendisk
, write_sectors
, bio_sectors(bi
));
1636 disk_stat_inc(mddev
->gendisk
, reads
);
1637 disk_stat_add(mddev
->gendisk
, read_sectors
, bio_sectors(bi
));
1640 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
1641 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1644 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
1646 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
1649 new_sector
= raid6_compute_sector(logical_sector
,
1650 raid_disks
, data_disks
, &dd_idx
, &pd_idx
, conf
);
1652 PRINTK("raid6: make_request, sector %llu logical %llu\n",
1653 (unsigned long long)new_sector
,
1654 (unsigned long long)logical_sector
);
1657 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
1658 sh
= get_active_stripe(conf
, new_sector
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
1660 if (!add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
1661 /* Add failed due to overlap. Flush everything
1664 raid6_unplug_device(mddev
->queue
);
1669 finish_wait(&conf
->wait_for_overlap
, &w
);
1670 raid6_plug_device(conf
);
1674 /* cannot get stripe for read-ahead, just give-up */
1675 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1676 finish_wait(&conf
->wait_for_overlap
, &w
);
1681 spin_lock_irq(&conf
->device_lock
);
1682 if (--bi
->bi_phys_segments
== 0) {
1683 int bytes
= bi
->bi_size
;
1685 if ( bio_data_dir(bi
) == WRITE
)
1686 md_write_end(mddev
);
1688 bi
->bi_end_io(bi
, bytes
, 0);
1690 spin_unlock_irq(&conf
->device_lock
);
1694 /* FIXME go_faster isn't used */
1695 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1697 raid6_conf_t
*conf
= (raid6_conf_t
*) mddev
->private;
1698 struct stripe_head
*sh
;
1699 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1701 unsigned long stripe
;
1704 sector_t first_sector
;
1705 int raid_disks
= conf
->raid_disks
;
1706 int data_disks
= raid_disks
- 2;
1707 sector_t max_sector
= mddev
->size
<< 1;
1710 if (sector_nr
>= max_sector
) {
1711 /* just being told to finish up .. nothing much to do */
1712 unplug_slaves(mddev
);
1714 if (mddev
->curr_resync
< max_sector
) /* aborted */
1715 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1717 else /* compelted sync */
1719 bitmap_close_sync(mddev
->bitmap
);
1723 /* if there are 2 or more failed drives and we are trying
1724 * to resync, then assert that we are finished, because there is
1725 * nothing we can do.
1727 if (mddev
->degraded
>= 2 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1728 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
1732 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
1733 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
1734 /* we can skip this block, and probably more */
1735 sync_blocks
/= STRIPE_SECTORS
;
1737 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
1741 chunk_offset
= sector_div(x
, sectors_per_chunk
);
1743 BUG_ON(x
!= stripe
);
1745 first_sector
= raid6_compute_sector((sector_t
)stripe
*data_disks
*sectors_per_chunk
1746 + chunk_offset
, raid_disks
, data_disks
, &dd_idx
, &pd_idx
, conf
);
1747 sh
= get_active_stripe(conf
, sector_nr
, pd_idx
, 1);
1749 sh
= get_active_stripe(conf
, sector_nr
, pd_idx
, 0);
1750 /* make sure we don't swamp the stripe cache if someone else
1751 * is trying to get access
1753 set_current_state(TASK_UNINTERRUPTIBLE
);
1754 schedule_timeout(1);
1756 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 0);
1757 spin_lock(&sh
->lock
);
1758 set_bit(STRIPE_SYNCING
, &sh
->state
);
1759 clear_bit(STRIPE_INSYNC
, &sh
->state
);
1760 spin_unlock(&sh
->lock
);
1765 return STRIPE_SECTORS
;
1769 * This is our raid6 kernel thread.
1771 * We scan the hash table for stripes which can be handled now.
1772 * During the scan, completed stripes are saved for us by the interrupt
1773 * handler, so that they will not have to wait for our next wakeup.
1775 static void raid6d (mddev_t
*mddev
)
1777 struct stripe_head
*sh
;
1778 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1781 PRINTK("+++ raid6d active\n");
1783 md_check_recovery(mddev
);
1786 spin_lock_irq(&conf
->device_lock
);
1788 struct list_head
*first
;
1790 if (conf
->seq_flush
- conf
->seq_write
> 0) {
1791 int seq
= conf
->seq_flush
;
1792 bitmap_unplug(mddev
->bitmap
);
1793 conf
->seq_write
= seq
;
1794 activate_bit_delay(conf
);
1797 if (list_empty(&conf
->handle_list
) &&
1798 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
1799 !blk_queue_plugged(mddev
->queue
) &&
1800 !list_empty(&conf
->delayed_list
))
1801 raid6_activate_delayed(conf
);
1803 if (list_empty(&conf
->handle_list
))
1806 first
= conf
->handle_list
.next
;
1807 sh
= list_entry(first
, struct stripe_head
, lru
);
1809 list_del_init(first
);
1810 atomic_inc(&sh
->count
);
1811 if (atomic_read(&sh
->count
)!= 1)
1813 spin_unlock_irq(&conf
->device_lock
);
1819 spin_lock_irq(&conf
->device_lock
);
1821 PRINTK("%d stripes handled\n", handled
);
1823 spin_unlock_irq(&conf
->device_lock
);
1825 unplug_slaves(mddev
);
1827 PRINTK("--- raid6d inactive\n");
1830 static int run(mddev_t
*mddev
)
1833 int raid_disk
, memory
;
1835 struct disk_info
*disk
;
1836 struct list_head
*tmp
;
1838 if (mddev
->level
!= 6) {
1839 PRINTK("raid6: %s: raid level not set to 6 (%d)\n", mdname(mddev
), mddev
->level
);
1843 mddev
->private = kmalloc (sizeof (raid6_conf_t
)
1844 + mddev
->raid_disks
* sizeof(struct disk_info
),
1846 if ((conf
= mddev
->private) == NULL
)
1848 memset (conf
, 0, sizeof (*conf
) + mddev
->raid_disks
* sizeof(struct disk_info
) );
1849 conf
->mddev
= mddev
;
1851 if ((conf
->stripe_hashtbl
= (struct stripe_head
**) __get_free_pages(GFP_ATOMIC
, HASH_PAGES_ORDER
)) == NULL
)
1853 memset(conf
->stripe_hashtbl
, 0, HASH_PAGES
* PAGE_SIZE
);
1855 spin_lock_init(&conf
->device_lock
);
1856 init_waitqueue_head(&conf
->wait_for_stripe
);
1857 init_waitqueue_head(&conf
->wait_for_overlap
);
1858 INIT_LIST_HEAD(&conf
->handle_list
);
1859 INIT_LIST_HEAD(&conf
->delayed_list
);
1860 INIT_LIST_HEAD(&conf
->bitmap_list
);
1861 INIT_LIST_HEAD(&conf
->inactive_list
);
1862 atomic_set(&conf
->active_stripes
, 0);
1863 atomic_set(&conf
->preread_active_stripes
, 0);
1865 PRINTK("raid6: run(%s) called.\n", mdname(mddev
));
1867 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1868 raid_disk
= rdev
->raid_disk
;
1869 if (raid_disk
>= mddev
->raid_disks
1872 disk
= conf
->disks
+ raid_disk
;
1876 if (rdev
->in_sync
) {
1877 char b
[BDEVNAME_SIZE
];
1878 printk(KERN_INFO
"raid6: device %s operational as raid"
1879 " disk %d\n", bdevname(rdev
->bdev
,b
),
1881 conf
->working_disks
++;
1885 conf
->raid_disks
= mddev
->raid_disks
;
1888 * 0 for a fully functional array, 1 or 2 for a degraded array.
1890 mddev
->degraded
= conf
->failed_disks
= conf
->raid_disks
- conf
->working_disks
;
1891 conf
->mddev
= mddev
;
1892 conf
->chunk_size
= mddev
->chunk_size
;
1893 conf
->level
= mddev
->level
;
1894 conf
->algorithm
= mddev
->layout
;
1895 conf
->max_nr_stripes
= NR_STRIPES
;
1897 /* device size must be a multiple of chunk size */
1898 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
1899 mddev
->resync_max_sectors
= mddev
->size
<< 1;
1901 if (conf
->raid_disks
< 4) {
1902 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
1903 mdname(mddev
), conf
->raid_disks
);
1906 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
1907 printk(KERN_ERR
"raid6: invalid chunk size %d for %s\n",
1908 conf
->chunk_size
, mdname(mddev
));
1911 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
1913 "raid6: unsupported parity algorithm %d for %s\n",
1914 conf
->algorithm
, mdname(mddev
));
1917 if (mddev
->degraded
> 2) {
1918 printk(KERN_ERR
"raid6: not enough operational devices for %s"
1919 " (%d/%d failed)\n",
1920 mdname(mddev
), conf
->failed_disks
, conf
->raid_disks
);
1924 #if 0 /* FIX: For now */
1925 if (mddev
->degraded
> 0 &&
1926 mddev
->recovery_cp
!= MaxSector
) {
1927 printk(KERN_ERR
"raid6: cannot start dirty degraded array for %s\n", mdname(mddev
));
1933 mddev
->thread
= md_register_thread(raid6d
, mddev
, "%s_raid6");
1934 if (!mddev
->thread
) {
1936 "raid6: couldn't allocate thread for %s\n",
1942 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
1943 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
1944 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
1946 "raid6: couldn't allocate %dkB for buffers\n", memory
);
1947 shrink_stripes(conf
);
1948 md_unregister_thread(mddev
->thread
);
1951 printk(KERN_INFO
"raid6: allocated %dkB for %s\n",
1952 memory
, mdname(mddev
));
1954 if (mddev
->degraded
== 0)
1955 printk(KERN_INFO
"raid6: raid level %d set %s active with %d out of %d"
1956 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
1957 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
1960 printk(KERN_ALERT
"raid6: raid level %d set %s active with %d"
1961 " out of %d devices, algorithm %d\n", conf
->level
,
1962 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
1963 mddev
->raid_disks
, conf
->algorithm
);
1965 print_raid6_conf(conf
);
1967 /* read-ahead size must cover two whole stripes, which is
1968 * 2 * (n-2) * chunksize where 'n' is the number of raid devices
1971 int stripe
= (mddev
->raid_disks
-2) * mddev
->chunk_size
1973 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
1974 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
1977 /* Ok, everything is just fine now */
1978 mddev
->array_size
= mddev
->size
* (mddev
->raid_disks
- 2);
1981 mddev
->thread
->timeout
= mddev
->bitmap
->daemon_sleep
* HZ
;
1983 mddev
->queue
->unplug_fn
= raid6_unplug_device
;
1984 mddev
->queue
->issue_flush_fn
= raid6_issue_flush
;
1988 print_raid6_conf(conf
);
1989 if (conf
->stripe_hashtbl
)
1990 free_pages((unsigned long) conf
->stripe_hashtbl
,
1994 mddev
->private = NULL
;
1995 printk(KERN_ALERT
"raid6: failed to run raid set %s\n", mdname(mddev
));
2001 static int stop (mddev_t
*mddev
)
2003 raid6_conf_t
*conf
= (raid6_conf_t
*) mddev
->private;
2005 md_unregister_thread(mddev
->thread
);
2006 mddev
->thread
= NULL
;
2007 shrink_stripes(conf
);
2008 free_pages((unsigned long) conf
->stripe_hashtbl
, HASH_PAGES_ORDER
);
2009 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2011 mddev
->private = NULL
;
2016 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
2020 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
2021 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
2022 seq_printf(seq
, "sh %llu, count %d.\n",
2023 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
2024 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
2025 for (i
= 0; i
< sh
->raid_conf
->raid_disks
; i
++) {
2026 seq_printf(seq
, "(cache%d: %p %ld) ",
2027 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
2029 seq_printf(seq
, "\n");
2032 static void printall (struct seq_file
*seq
, raid6_conf_t
*conf
)
2034 struct stripe_head
*sh
;
2037 spin_lock_irq(&conf
->device_lock
);
2038 for (i
= 0; i
< NR_HASH
; i
++) {
2039 sh
= conf
->stripe_hashtbl
[i
];
2040 for (; sh
; sh
= sh
->hash_next
) {
2041 if (sh
->raid_conf
!= conf
)
2046 spin_unlock_irq(&conf
->device_lock
);
2050 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
2052 raid6_conf_t
*conf
= (raid6_conf_t
*) mddev
->private;
2055 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
2056 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->working_disks
);
2057 for (i
= 0; i
< conf
->raid_disks
; i
++)
2058 seq_printf (seq
, "%s",
2059 conf
->disks
[i
].rdev
&&
2060 conf
->disks
[i
].rdev
->in_sync
? "U" : "_");
2061 seq_printf (seq
, "]");
2063 seq_printf (seq
, "\n");
2064 printall(seq
, conf
);
2068 static void print_raid6_conf (raid6_conf_t
*conf
)
2071 struct disk_info
*tmp
;
2073 printk("RAID6 conf printout:\n");
2075 printk("(conf==NULL)\n");
2078 printk(" --- rd:%d wd:%d fd:%d\n", conf
->raid_disks
,
2079 conf
->working_disks
, conf
->failed_disks
);
2081 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2082 char b
[BDEVNAME_SIZE
];
2083 tmp
= conf
->disks
+ i
;
2085 printk(" disk %d, o:%d, dev:%s\n",
2086 i
, !tmp
->rdev
->faulty
,
2087 bdevname(tmp
->rdev
->bdev
,b
));
2091 static int raid6_spare_active(mddev_t
*mddev
)
2094 raid6_conf_t
*conf
= mddev
->private;
2095 struct disk_info
*tmp
;
2097 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2098 tmp
= conf
->disks
+ i
;
2100 && !tmp
->rdev
->faulty
2101 && !tmp
->rdev
->in_sync
) {
2103 conf
->failed_disks
--;
2104 conf
->working_disks
++;
2105 tmp
->rdev
->in_sync
= 1;
2108 print_raid6_conf(conf
);
2112 static int raid6_remove_disk(mddev_t
*mddev
, int number
)
2114 raid6_conf_t
*conf
= mddev
->private;
2117 struct disk_info
*p
= conf
->disks
+ number
;
2119 print_raid6_conf(conf
);
2122 if (rdev
->in_sync
||
2123 atomic_read(&rdev
->nr_pending
)) {
2129 if (atomic_read(&rdev
->nr_pending
)) {
2130 /* lost the race, try later */
2138 print_raid6_conf(conf
);
2142 static int raid6_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
2144 raid6_conf_t
*conf
= mddev
->private;
2147 struct disk_info
*p
;
2149 if (mddev
->degraded
> 2)
2150 /* no point adding a device */
2155 for (disk
=0; disk
< mddev
->raid_disks
; disk
++)
2156 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
2158 rdev
->raid_disk
= disk
;
2160 if (rdev
->saved_raid_disk
!= disk
)
2165 print_raid6_conf(conf
);
2169 static int raid6_resize(mddev_t
*mddev
, sector_t sectors
)
2171 /* no resync is happening, and there is enough space
2172 * on all devices, so we can resize.
2173 * We need to make sure resync covers any new space.
2174 * If the array is shrinking we should possibly wait until
2175 * any io in the removed space completes, but it hardly seems
2178 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
2179 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-2))>>1;
2180 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
2182 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
2183 mddev
->recovery_cp
= mddev
->size
<< 1;
2184 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2186 mddev
->size
= sectors
/2;
2187 mddev
->resync_max_sectors
= sectors
;
2191 static void raid6_quiesce(mddev_t
*mddev
, int state
)
2193 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
2196 case 1: /* stop all writes */
2197 spin_lock_irq(&conf
->device_lock
);
2199 wait_event_lock_irq(conf
->wait_for_stripe
,
2200 atomic_read(&conf
->active_stripes
) == 0,
2201 conf
->device_lock
, /* nothing */);
2202 spin_unlock_irq(&conf
->device_lock
);
2205 case 0: /* re-enable writes */
2206 spin_lock_irq(&conf
->device_lock
);
2208 wake_up(&conf
->wait_for_stripe
);
2209 spin_unlock_irq(&conf
->device_lock
);
2212 if (mddev
->thread
) {
2214 mddev
->thread
->timeout
= mddev
->bitmap
->daemon_sleep
* HZ
;
2216 mddev
->thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
2217 md_wakeup_thread(mddev
->thread
);
2220 static mdk_personality_t raid6_personality
=
2223 .owner
= THIS_MODULE
,
2224 .make_request
= make_request
,
2228 .error_handler
= error
,
2229 .hot_add_disk
= raid6_add_disk
,
2230 .hot_remove_disk
= raid6_remove_disk
,
2231 .spare_active
= raid6_spare_active
,
2232 .sync_request
= sync_request
,
2233 .resize
= raid6_resize
,
2234 .quiesce
= raid6_quiesce
,
2237 static int __init
raid6_init (void)
2241 e
= raid6_select_algo();
2245 return register_md_personality (RAID6
, &raid6_personality
);
2248 static void raid6_exit (void)
2250 unregister_md_personality (RAID6
);
2253 module_init(raid6_init
);
2254 module_exit(raid6_exit
);
2255 MODULE_LICENSE("GPL");
2256 MODULE_ALIAS("md-personality-8"); /* RAID6 */