2 * linux/arch/m68k/atari/time.c
4 * Atari time and real time clock stuff
6 * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file COPYING in the main directory of this archive
13 #include <linux/types.h>
14 #include <linux/mc146818rtc.h>
15 #include <linux/interrupt.h>
16 #include <linux/init.h>
17 #include <linux/rtc.h>
18 #include <linux/bcd.h>
20 #include <asm/atariints.h>
23 atari_sched_init(irqreturn_t (*timer_routine
)(int, void *, struct pt_regs
*))
25 /* set Timer C data Register */
26 mfp
.tim_dt_c
= INT_TICKS
;
27 /* start timer C, div = 1:100 */
28 mfp
.tim_ct_cd
= (mfp
.tim_ct_cd
& 15) | 0x60;
29 /* install interrupt service routine for MFP Timer C */
30 request_irq(IRQ_MFP_TIMC
, timer_routine
, IRQ_TYPE_SLOW
,
31 "timer", timer_routine
);
34 /* ++andreas: gettimeoffset fixed to check for pending interrupt */
36 #define TICK_SIZE 10000
38 /* This is always executed with interrupts disabled. */
39 unsigned long atari_gettimeoffset (void)
41 unsigned long ticks
, offset
= 0;
43 /* read MFP timer C current value */
45 /* The probability of underflow is less than 2% */
46 if (ticks
> INT_TICKS
- INT_TICKS
/ 50)
47 /* Check for pending timer interrupt */
48 if (mfp
.int_pn_b
& (1 << 5))
51 ticks
= INT_TICKS
- ticks
;
52 ticks
= ticks
* 10000L / INT_TICKS
;
54 return ticks
+ offset
;
58 static void mste_read(struct MSTE_RTC
*val
)
60 #define COPY(v) val->v=(mste_rtc.v & 0xf)
62 COPY(sec_ones
) ; COPY(sec_tens
) ; COPY(min_ones
) ;
63 COPY(min_tens
) ; COPY(hr_ones
) ; COPY(hr_tens
) ;
64 COPY(weekday
) ; COPY(day_ones
) ; COPY(day_tens
) ;
65 COPY(mon_ones
) ; COPY(mon_tens
) ; COPY(year_ones
) ;
67 /* prevent from reading the clock while it changed */
68 } while (val
->sec_ones
!= (mste_rtc
.sec_ones
& 0xf));
72 static void mste_write(struct MSTE_RTC
*val
)
74 #define COPY(v) mste_rtc.v=val->v
76 COPY(sec_ones
) ; COPY(sec_tens
) ; COPY(min_ones
) ;
77 COPY(min_tens
) ; COPY(hr_ones
) ; COPY(hr_tens
) ;
78 COPY(weekday
) ; COPY(day_ones
) ; COPY(day_tens
) ;
79 COPY(mon_ones
) ; COPY(mon_tens
) ; COPY(year_ones
) ;
81 /* prevent from writing the clock while it changed */
82 } while (val
->sec_ones
!= (mste_rtc
.sec_ones
& 0xf));
86 #define RTC_READ(reg) \
87 ({ unsigned char __val; \
88 (void) atari_writeb(reg,&tt_rtc.regsel); \
89 __val = tt_rtc.data; \
93 #define RTC_WRITE(reg,val) \
95 atari_writeb(reg,&tt_rtc.regsel); \
96 tt_rtc.data = (val); \
100 #define HWCLK_POLL_INTERVAL 5
102 int atari_mste_hwclk( int op
, struct rtc_time
*t
)
108 mste_rtc
.mode
=(mste_rtc
.mode
| 1);
109 hr24
=mste_rtc
.mon_tens
& 1;
110 mste_rtc
.mode
=(mste_rtc
.mode
& ~1);
113 /* write: prepare values */
115 val
.sec_ones
= t
->tm_sec
% 10;
116 val
.sec_tens
= t
->tm_sec
/ 10;
117 val
.min_ones
= t
->tm_min
% 10;
118 val
.min_tens
= t
->tm_min
/ 10;
123 if (hour
== 0 || hour
== 20)
126 val
.hr_ones
= hour
% 10;
127 val
.hr_tens
= hour
/ 10;
128 val
.day_ones
= t
->tm_mday
% 10;
129 val
.day_tens
= t
->tm_mday
/ 10;
130 val
.mon_ones
= (t
->tm_mon
+1) % 10;
131 val
.mon_tens
= (t
->tm_mon
+1) / 10;
132 year
= t
->tm_year
- 80;
133 val
.year_ones
= year
% 10;
134 val
.year_tens
= year
/ 10;
135 val
.weekday
= t
->tm_wday
;
137 mste_rtc
.mode
=(mste_rtc
.mode
| 1);
138 val
.year_ones
= (year
% 4); /* leap year register */
139 mste_rtc
.mode
=(mste_rtc
.mode
& ~1);
143 t
->tm_sec
= val
.sec_ones
+ val
.sec_tens
* 10;
144 t
->tm_min
= val
.min_ones
+ val
.min_tens
* 10;
145 hour
= val
.hr_ones
+ val
.hr_tens
* 10;
147 if (hour
== 12 || hour
== 12 + 20)
153 t
->tm_mday
= val
.day_ones
+ val
.day_tens
* 10;
154 t
->tm_mon
= val
.mon_ones
+ val
.mon_tens
* 10 - 1;
155 t
->tm_year
= val
.year_ones
+ val
.year_tens
* 10 + 80;
156 t
->tm_wday
= val
.weekday
;
161 int atari_tt_hwclk( int op
, struct rtc_time
*t
)
163 int sec
=0, min
=0, hour
=0, day
=0, mon
=0, year
=0, wday
=0;
168 ctrl
= RTC_READ(RTC_CONTROL
); /* control registers are
169 * independent from the UIP */
172 /* write: prepare values */
179 year
= t
->tm_year
- atari_rtc_year_offset
;
180 wday
= t
->tm_wday
+ (t
->tm_wday
>= 0);
182 if (!(ctrl
& RTC_24H
)) {
192 if (!(ctrl
& RTC_DM_BINARY
)) {
199 if (wday
>= 0) BIN_TO_BCD(wday
);
203 /* Reading/writing the clock registers is a bit critical due to
204 * the regular update cycle of the RTC. While an update is in
205 * progress, registers 0..9 shouldn't be touched.
206 * The problem is solved like that: If an update is currently in
207 * progress (the UIP bit is set), the process sleeps for a while
208 * (50ms). This really should be enough, since the update cycle
209 * normally needs 2 ms.
210 * If the UIP bit reads as 0, we have at least 244 usecs until the
211 * update starts. This should be enough... But to be sure,
212 * additionally the RTC_SET bit is set to prevent an update cycle.
215 while( RTC_READ(RTC_FREQ_SELECT
) & RTC_UIP
) {
216 current
->state
= TASK_INTERRUPTIBLE
;
217 schedule_timeout(HWCLK_POLL_INTERVAL
);
220 local_irq_save(flags
);
221 RTC_WRITE( RTC_CONTROL
, ctrl
| RTC_SET
);
223 sec
= RTC_READ( RTC_SECONDS
);
224 min
= RTC_READ( RTC_MINUTES
);
225 hour
= RTC_READ( RTC_HOURS
);
226 day
= RTC_READ( RTC_DAY_OF_MONTH
);
227 mon
= RTC_READ( RTC_MONTH
);
228 year
= RTC_READ( RTC_YEAR
);
229 wday
= RTC_READ( RTC_DAY_OF_WEEK
);
232 RTC_WRITE( RTC_SECONDS
, sec
);
233 RTC_WRITE( RTC_MINUTES
, min
);
234 RTC_WRITE( RTC_HOURS
, hour
+ pm
);
235 RTC_WRITE( RTC_DAY_OF_MONTH
, day
);
236 RTC_WRITE( RTC_MONTH
, mon
);
237 RTC_WRITE( RTC_YEAR
, year
);
238 if (wday
>= 0) RTC_WRITE( RTC_DAY_OF_WEEK
, wday
);
240 RTC_WRITE( RTC_CONTROL
, ctrl
& ~RTC_SET
);
241 local_irq_restore(flags
);
244 /* read: adjust values */
251 if (!(ctrl
& RTC_DM_BINARY
)) {
261 if (!(ctrl
& RTC_24H
)) {
262 if (!pm
&& hour
== 12)
264 else if (pm
&& hour
!= 12)
273 t
->tm_year
= year
+ atari_rtc_year_offset
;
274 t
->tm_wday
= wday
- 1;
281 int atari_mste_set_clock_mmss (unsigned long nowtime
)
283 short real_seconds
= nowtime
% 60, real_minutes
= (nowtime
/ 60) % 60;
285 unsigned char rtc_minutes
;
288 rtc_minutes
= val
.min_ones
+ val
.min_tens
* 10;
289 if ((rtc_minutes
< real_minutes
290 ? real_minutes
- rtc_minutes
291 : rtc_minutes
- real_minutes
) < 30)
293 val
.sec_ones
= real_seconds
% 10;
294 val
.sec_tens
= real_seconds
/ 10;
295 val
.min_ones
= real_minutes
% 10;
296 val
.min_tens
= real_minutes
/ 10;
304 int atari_tt_set_clock_mmss (unsigned long nowtime
)
307 short real_seconds
= nowtime
% 60, real_minutes
= (nowtime
/ 60) % 60;
308 unsigned char save_control
, save_freq_select
, rtc_minutes
;
310 save_control
= RTC_READ (RTC_CONTROL
); /* tell the clock it's being set */
311 RTC_WRITE (RTC_CONTROL
, save_control
| RTC_SET
);
313 save_freq_select
= RTC_READ (RTC_FREQ_SELECT
); /* stop and reset prescaler */
314 RTC_WRITE (RTC_FREQ_SELECT
, save_freq_select
| RTC_DIV_RESET2
);
316 rtc_minutes
= RTC_READ (RTC_MINUTES
);
317 if (!(save_control
& RTC_DM_BINARY
))
318 BCD_TO_BIN (rtc_minutes
);
320 /* Since we're only adjusting minutes and seconds, don't interfere
321 with hour overflow. This avoids messing with unknown time zones
322 but requires your RTC not to be off by more than 30 minutes. */
323 if ((rtc_minutes
< real_minutes
324 ? real_minutes
- rtc_minutes
325 : rtc_minutes
- real_minutes
) < 30)
327 if (!(save_control
& RTC_DM_BINARY
))
329 BIN_TO_BCD (real_seconds
);
330 BIN_TO_BCD (real_minutes
);
332 RTC_WRITE (RTC_SECONDS
, real_seconds
);
333 RTC_WRITE (RTC_MINUTES
, real_minutes
);
338 RTC_WRITE (RTC_FREQ_SELECT
, save_freq_select
);
339 RTC_WRITE (RTC_CONTROL
, save_control
);